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Timing-aware Power Minimization via 
Extended Timing Graph Methods 

Haifeng Qian and Emrah Acar 

Circuit optimization research used to be concerned with 
automatic tuning the circuit solely for timing performance, 
and the transistor width used to be the primary variable to 
be continuously tuned 

 
Abstract— Power is an increasingly important performance 

metric, and must be considered during various design stages. 
With the advancement of multiple threshold devices, leakage 
power can be better controlled, utilizing fast and high-leakage 
devices just for critical paths, while low-leakage devices are 
used for non-critical parts to minimize power. In this paper, a 
practical timing graph-based algorithm is proposed to 
perform concurrent discrete optimization (V

[3][4][5][13]. Established transistor 
sizing methodologies can be roughly divided into two 
categories. The first is sensitivity-based discrete heuristics 
represented by TILOS [5][13]. The transistor sizing 
operation is discretized, for example, a downsizing or 
upsizing operation can be defined as scaling the width of a 
transistor by a constant factor; the solution is optimal under 
certain simplistic delay model, but suboptimal in general. 
The second is continuous nonlinear optimization, followed 
by snapping transistor sizes to the technology-imposed 
values 

t-assignment, 
device width biasing, device length biasing, etc) to minimize 
the power consumption, especially leakage, of a circuit subject 
to timing performance constraints. Our algorithm honors 
important constraints that are common to an industrial design 
methodology, including hierarchy, structural connectivity and 
layout-related rules. We demonstrate the performance of the 
algorithm in an industrial design automation platform 
consisting of an incremental transistor-level timing analysis 
engine and optimization environment. 

[3]. Because its solution in the continuous domain is 
optimal and transistor widths are near-continuous variables, 
the quality is typically superior to discrete heuristics, at the 
cost of high runtime.  

Index Terms—Circuit tuning, discrete optimization, power 
minimization, threshold voltage. With the advent of multiple-Vt devices, voltage islands 

and multiple oxide thickness, the list of candidate variables 
is now expanded by a number of discrete operations, e.g. 

 

[6], which often offer better power-delay tradeoffs than 
transistor sizing. Most prominently, because sub-threshold 
leakage current is an exponential function of V

I. INTRODUCTION 
LTHOUGH timing performance is still the primary 
target for IC manufacturers, power is recognized as 

the real performance limiter with current integration 
technologies. As devices shrink, they run faster at the 
expense of excessive leakage current. This poses itself as a 
tax on the performance, as the leakage power is becoming 
the dominant portion of the total power of a circuit [8]. 
Hence power optimization must be performed at various 
stages of the design flow. 

A 

We present a circuit-level optimization procedure, 
specifically by manipulating threshold voltage assignments, 
transistor widths, gate channel lengths and other parameter 
modifications that allow a design meet power and timing 
requirements. This is different than continuous 
optimization, where some design parameters can be chosen 
freely on an analog scale.  
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t [17], 
changing certain gates to higher Vt has the potential to 
achieve more power savings than gate sizing alone with the 
same timing budget. Recently gate-length is also suggested 
as a new design parameter, where it can be selected from a 
variety of alternatives as opposed to a single design length 
[18]. 

Since the optimal solution is most likely achieved by the 
simultaneous consideration of all design options, several 
methods have been proposed to incorporate multiple 
operations [10][11][12][14][15][16].  

It is not trivial to incorporate discrete variables into a 
continuous sizing methodology such as [3], and the cost is 
often suboptimality and significant runtime increase.  
Hence most of these multi-variable methods are heuristics, 
and are often based on sensitivities defined similar to [5]. 

Here in this work, the proposed method is also a 
sensitivity-based one that performs discrete optimization. 
We discretize the operations just like [5], however the 
sensitivity is defined in an inverse way: we start with a 
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design that meets the timing requirement, and minimize its 
power without creating a timing violation. To reduce the 
greediness and avoid the lack of global view in [5][17], a 
graph-based iterative approach is used to look for an 
optimal set of transistors to modify in each iteration. This is 
similar in principle to [2] and [16] (Vt assignment only), but 
there are differences that make our method more likely to 
find a near-optimal solution and with less computational 
complexity. More importantly, the proposed approach is a 
general framework of truly simultaneous considering 
multiple discrete design choices: the set of chosen changes 
in each iteration is a mix of, for example, sizing operations 
and Vt assignments. 

This technique is general enough to support a variety of 
design options, e.g., oxide thickness assignment and Vdd 
selection. Furthermore, emphasis is placed on handling 
constraints in industrial designs, which may originate from 
high-level issues, structural integrity of the design data, or 
layout related issues. 

II. PROBLEM STATEMENT 
In this section, we define the power optimization 

problem, and discuss various practical constraints. 

A. Definitions and Assumptions 
We assume that a static timing analysis engine is 

available. We will assume it supports transistor-level 
netlists by characterizing individual devices in clusters with 
proper logic functions. Figure 1  shows a timing graph used 
in the timing engine, where the oval nodes correspond to 
channel-connected components (CCC) (i.e., sets of 
transistors that are source-drain connected, and roughly 
correspond to gates), and the directed edges correspond to 
timing propagation segments, each of which represents the 
delay of a CCC or the interconnect delay of a net. 

The delay and slew values are obtained by simulation in 
our implementation environment, but they can also be 
computed by analytical equations and/or table lookup, and 
the proposed algorithm in this paper is independent of this 
choice of technique. Directed paths in the timing graph 
represent data paths within one clock cycle. In other words, 
the start and end nodes are primary inputs/outputs and 
latches; in the case of designs using transparent latches, the 
start and end nodes are those with the same clock phase. 

Timing analysis provides the arrival time (AT) at each 
node in the graph, and given a timing target, the required 
arrival time (RAT) at each node; the slack at a node is 
defined as RAT-AT, and the slack at the output pin of a 
CCC is referred to as the timing slack of this CCC. 

For simplicity of presentation, in Sections II and III, we 
will work with two types of variables: transistor width and 
V

 
Fig. 1.  CCC timing graph. 

t -level. The optimization variables are represented by the 
following vector 

 

x = [w1, v1, w2, v2 … wN , v ]T
N

where w's are continuous transistor width variables, and v's 
are discrete variables representing choices of design 
parameters in an countable feasible set. For simplicity v’s 
can be thought of Vt -levels for devices. The operation can 
be performed in three granularity levels: 

• CCC level: All transistors in a CCC must be scaled 
together, and must share the same discrete parameter 
(e.g. Vt). Then N is the number of CCCs in the 
circuit. 

• Ptree/Ntree level: PMOS transistors in a CCC must 
be scaled together and must have the same discrete 
parameter, while NMOS transistors in a CCC must 
be scaled together and must share the same discrete 
parameter. For each CCC, there is a (w,v) pair for 
the PMOS transistors and another pair for the 
NMOS transistors. Hence N is twice the number of 
CCCs in the circuit. 

• Transistor level: Every single transistor can be 
modified independently, and needs a (w,v) pair. 
Hence N is the total number of transistors in the 
circuit. 

In this paper, we only consider application of power-
saving techniques. Namely, we will select transistor width 
downsizing and high-Vt insertion. We define a move as a 
single change in an entry of the vector x. If the move 
affects a single design object, we refer to as a single move, 
and if it impacts multiple objects due to a design/netlist 
constraint, it will be referred to as a group move.  In our 
experiments, we used 65nm SOI technology with such 
opportunities to mitigate leakage power. 

We assume that there is a delay engine available to 
compute ΔD, the delay impact of any single move. Because 
at any of three granularity levels, a single move can only 
modify one CCC, ΔD is defined as the internal delay 
increase of this CCC, plus the delay increase of the net it 
drives. Since we deal with moves that don’t affect input 
device capacitances significantly, the delay impact on the 
previous stage is very small and can be neglected. However 
if really desired, the impact can also be calculated and 
modeled in ΔD at a cost of extra runtime. ΔD can be 
obtained by simulation, analytical equations or table 
lookup, and again the proposed algorithm is independent of 
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this choice of technique. The only assumption about ΔD is 
that it is nonnegative for any move. Note that ΔD is 
computed assuming that only one entry of x is modified, 
and it is a function of both the move and the current status 
x, and hence must be recomputed for a different x. 
However, it could be computed incrementally when the 
specific CCC is modified, and can be tagged along with the 
delay calculation in an incremental static timing analysis 
engine. 

We assume that there is an analysis engine available to 
compute P(x), the power consumption of the design 
specified by x. Depending on the application, P(x) can be 
leakage alone, or the sum of leakage, dynamic, and short-
circuit power, or more generally, a weighted sum of all 
three power components. The proposed algorithm is 
independent of this choice of object function. The power 
impact of a single move can be defined as ΔP = P(x)- 
P(x’), where x’ differs from x by only one entry. 

Like delay, power consumption can be computed by 
various methods, and the proposed algorithm is 
independent of this choice of technique. Like ΔD, the 
power impact ΔP can be also calculated incrementally. 

B. Problem Statement 
Let S(x) be the minimum of all CCC timing slacks in the 

design solution specified by x. Let Starget be a given 
constant that represents the desired timing target. The 
power optimization problem can be stated as follows. 

Given an initial solution x1 such that S(x1) > Starget, given 
the timing analysis and power estimation engines that can 
compute ΔD and ΔP of any single move for any solution 
vector, find x2 such that: 

• P(x2) is minimized. 

• The w entries of x2 are equal or less than the 
corresponding entries of x1, the v entries of x2 are 
equal or greater than the corresponding entries of x1. 

• S(x1) > Starget. 

In the above problem statement, we only assume the 
availability of ΔD and ΔP of single moves, and do not 
make any assumption about the joint effect of multiple 
moves. For example, if a move is applied to CCC-A and 
another move is applied to CCC-B in Figure 1, the 
resulting slacks of both CCCs may or may not be the 
original slacks deducted by ΔDA + ΔDB, depending on the 
accuracy of the timer engine. Such an additive assumption 
is often needed by existing methods such as [11][12], but 
our method does not need it. 

C. Additional Constraints 
Many research efforts including ones referenced above 

have targeted at leakage power optimization. However 

most of the previous works assume that applicable design 
changes are for individual design objects (gates, transistors, 
NMOS/PMOS stacks) and can be applied without 
restrictions. However, these assumptions are often not valid 
in real-life design environments. 

A typical macro design for a high-performance 
integrated circuit consists of logic synthesis, layout design, 
electrical and physical verification on multiple databases 
with parallel representations of the design. It is not easy to 
modify the netlist locally without propagating the changes 
to other representations. And if the original design is in a 
hierarchical data model, the modified design often needs to 
maintain a similar hierarchy, which maps any local change 
to multiple changes throughout the design. In other words, 
there are limitations from the design methodology, which 
require multiple objects to be considered together. We will 
denote this requirement as grouping. For instance, if the 
hierarchy of the original design is desired to be kept the 
same, all instances of a particular cell in the design need to 
be grouped together: if any instance of a particular cell is to 
be modified, its other instances should follow the same 
modification. Hence, in evaluating the impact of modifying 
an instance, we need to analyze the joint effects of 
changing all the instances of the same type used in the 
netlist. Similar limitations can be layout-based. For 
example, two cells need to be in the same Vt class if they 
are spatially close, and their Vt moves are grouped together. 
The concept of grouping may also be used to represent 
other classes of constraints. 

Another constraint is that certain circuit elements that are 
not intended for any modifications: typically clock 
circuitry, clock gating, and power gating modules. This 
requires an additional no-touch designation for such 
elements. If a no-touch-designated object is also inside a 
group, we will propagate the no-touch designation to all 
other items in the group. In other words, these constraints 
can be used in association rules. 

In summary, the following constraints are not included 
in the problem statement in the previous subsection, but are 
present in a custom-design environment and need to be 
handled. 

• Slew constraint: timing constraints are also defined 
on slews at the output pin(s) of each CCC. The 
circuit optimization procedure should not cause any 
slew violation. 

• No-touch designation: design changes are prohibited 
for certain CCCs. 

• Grouping: certain objects must be identically 
modified for reasons not limited to preserve higher 
level representations, hierarchy etc. Hence these 
objects share the same w and v. 

Next, we first describe a graph-based algorithm for the 
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problem stated, and then how to incorporate these 
constraints. 

III. PROPOSED METHOD 
The proposed algorithm is an iterative procedure, where 

in each iteration, a set of moves are chosen and applied to 
the design, such that the power saving is maximized in a 
certain way, and that no two modified objects share a data 
path in a given iteration. The description is divided into 
three subsections: the first converts a timing graph into a 
move graph, the second formulates one iteration of the 
procedure as a weighted maximum independent set 
(WMIS) problem, and the third incorporates specific 
design constraints.  

As the first step of the proposed method, we construct a 
directed graph where each node corresponds to a single 
move defined in Section 2, based on the original CCC 
timing graph and available design operations. 

Let us use the example in Figure 2 to explain this graph 
conversion. Figure 2(a) shows two CCCs in the timing 
graph, one driving the other. Note that the graph is already 
different from Figure 1: timing propagation edges inside 
CCCs are dropped. The remaining edges carry connectivity 
information, i.e., if there exists a directed path between two 
CCCs, then they must share a data path in the design, and it 
is possible that the ΔD of a move on one of the two can 
affect the timing slack of the other. 

Figure 2(b) shows the corresponding structure in the 
converted move graph. In this example, the algorithm 
works in the Ptree/Ntree mode, and there are four possible 
operations on a CCC: changing all PMOS transistors to 
higher Vt, changing all NMOS transistors to higher Vt, 

downsizing all PMOS transistors with a constant factor, 
downsizing all NMOS transistors with a constant factor. 
Each node in the timing graph is converted to a string of 
nodes in the move graph, where each move node represents 
a single change on the associated CCC, and hence has its 
own ΔD and ΔP pair. 

Obviously, if the algorithm works in the CCC mode, 
each CCC in the timing graph would be converted into a 
list of two nodes, the sizing move and the Vt move; if the 
algorithm works in the transistor mode, a CCC with m 
transistors would be converted into a string of 2m nodes: 
two for each transistor. In fact, the above conversion can be 
more flexible. 

Any design change on a CCC can become a move node 
and join the string, as long as it is a discrete operation: for 
example, choices among multiple supply voltages, choices 
among multiple oxide thickness, and so on, can all be 
incorporated. To achieve a faster convergence, the string 
can also include nodes that represent combined moves: for 
example, a node that represents higher V

Fig. 2.  Conversion from a timing graph to a move graph. 
 

t selection plus 
downsizing of PMOS transistors can be added to Figure 2. 
The size of the move graph increases linearly with the 
number of candidate design changes to be considered for a 
CCC, and this makes the proposed algorithm scalable. 

It is easy to verify that the following property is 
maintained during the graph conversion: if there exists a 
directed path between two CCCs in the timing graph, there 
also exists a directed path between any pair of their move 
nodes. This ensures the correctness of the proposed 
heuristic, and will be explained in the next subsection. 

Finally, the graph conversion only needs to be performed 
once during the initialization of the algorithm, and the 
move graph can be used repeatedly, while ΔP and ΔD 
values of a move node should be updated when the design 
is modified. 

If a move becomes infeasible (for example, a Vt move 
becomes infeasible when a transistor is already using the 
highest threshold voltage), the ΔP and ΔD values of that 
node are simply set to zero so that it will not be selected by 
the procedure described in the next subsection. 
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A. Weighted Maximum Independent Set 
Let us start by citing definitions from the graph theory. 

The maximum independent set (MIS) of a graph is defined 
as the largest set of nodes such that no two nodes in this set 
are adjacent.  

The weighted maximum independent set (WMIS) of a 
node-weighted graph is defined as the set of nodes with the 
maximum weight sum such that no two nodes in this set are 
adjacent. The transitive closure of an directed graph G1 is 
another directed graph G2 constructed by adding directed 
edges to G1, such that there exists an edge from node a  to 
node b in G2, if and only if there exists an directed path 
from a to b in G1. The transitive reduction of G1 is defined 
as the smallest directed graph such that its transitive 
closure is also G2. For example, Figure 3 is the transitive 
closure of Figure 1. (ignoring the edges inside CCCs), and 
Figure 1 is the transitive reduction of Figure 3. In general, 
however, if G2 is the transitive closure of G1, G1 is not 
necessarily the transitive reduction of G2. In that case, we 
will refer to G1 as a relaxed transitive reduction of G2 in 
the following discussion. 

Now suppose the move graph from the previous 
subsection is graph G1, and we construct its transitive 
closure G2 and then find the WMIS of G2, based on the 
following node weight definition: 

node weight  = 
⎪⎩

⎪
⎨
⎧

−≥Δ

−<Δ
Δ
Δ

targetCCC

targetCCC

if0

if

SSD

SSD
D
P

 

where ΔD, ΔP are as defined for this move node, Starget is as 
defined in the problem statement, and SCCC is measured for 
the move node in the timing graph. Such weight definition 
for a move node is a sensitivity function similar to those in 
[1][5][14] and zero if the move is infeasible under the 
timing constraint. Intuitively, this serves as the merit 
function of a node, and the proposed algorithm tries to 
maximize the total value of the chosen moves. 

The WMIS of the transitive closure graph G2 therefore 
corresponds to the node set with the maximum weight sum 
in the move graph G1 such that there does not exist a 
directed path between any two nodes in this set. From the 
previous subsection, if there is no path between two move 
nodes, the two affected CCCs do not share a data path in 
the design. This means that if the design changes 
represented by the WMIS are applied on the design, each 
modified CCC is independent from others in terms of 
timing, and is only affected by its own ΔD. According to 
the node weight definition, any move with a positive 
weight is feasible, and therefore applying these changes 
will not cause a timing violation. The above forms the 
basic framework of the proposed algorithm. 

Now the power optimization problem can be converted 

into an iterative process, where each iteration finds the 
WMIS of the transitive closure of the move graph and 
applies the design changes specified by the WMIS. 

 
Fig. 3.  The transitive closure of the timing graph in Figure 1. 
 

This usage of WMIS is similar to the methodology in [2]  
for dual-supply voltages optimization, but the following 
differentiates our method from theirs. For a large timing 
graph, finding its transitive closure graph can be expensive 
in terms of both time and space complexity. Fortunately, 
for acyclic graphs, there exists a correspondence between 
the WMIS of the transitive closure and the min flow of the 
relaxed transitive reduction graphs. The min flow problem 
considers a directed graph with a set of source nodes and 
sink nodes; for a non-source non-sink node, the sum of its 
in-flows must be equal to its out-flows; each node has a 
non-negative minimum capacity, and the problem is to find 
the minimum flow that can be routed from source nodes to 
sink nodes such that the flow through each node is at least 
its assigned minimum capacity. The min flow problem can 
be mapped to the commonly known max flow problem, and 
hence be solved in polynomial time [7]. If the minimum 
capacity of any node is assigned to be equal to the node 
weight, for an acyclic directed graph G1 and its transitive 
closure G2, the sum of node weights of the WMIS of G2 is 
equal to the min flow of G2 [9]; then because of the fact 
that the min flow of G2 is equal to the min flow of any of 
its relaxed transitive reduction graphs (proof omitted), the 
min flow of G1 is also equal to the sum of node weights of 
the WMIS of G2. Therefore, unlike [2], we do not build the 
transitive closure G2 explicitly, and only work on the 
original relaxed transitive reduction G1 itself: find its min 
flow first, and then techniques are available to identify the 
WMIS of the transitive closure [9]. Another similar 
methodology can be found in [16] for Vt assignment only, 
which also modifies a set of independent CCCs in each 
iteration. But instead of WMIS, [16] used a heuristic based 
on topological levels of gates. Since our method works on a 
much larger search space, it is more likely to approach the 
optimal solution. 

The above discussion assumes the move graph to be 
acyclic. This is true for the majority of designs where the 
CCC timing graph is acyclic to start with. However the 
CCC timing graph of a design is not necessarily acyclic in 
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general, and for those timing graphs that are not, they need 
to be made acyclic by ignoring certain timing propagation 
segments. Typically only a few edges need to be dropped, 
and to minimize the incurred accuracy impact, the max-
slack edge of each cycle is chosen in our implementation.  

 
Fig. 4.  Merging two independent nodes. 
 Admittedly, this iterative algorithm based on finding 

WMIS in each iteration is a sequence of local optimizations 
that does not guarantee optimality of the overall solution to 
the optimization problem. However, it has the capability to 
handle multiple design options and various practical 
constraints, and we will validate its performance on real-
life designs in the next section. 

B. Handling Constraints 
No-touch constraints are handled by forcing zero 

sensitivity, i.e., zero weight on the corresponding graph 
nodes. Slew constraints and the grouping constraints need a 
closer look. 

A grouping constraint dictates that the group members 
must be identically modified. For example, in Figure 2, if 
the PMOS transistors in CCC1 and the PMOS transistors in 
CCC2 are grouped, the “CCC1 Ptree Vt” move and the 
“CCC1 Ptree Vt” move must happen together, and the 
“CCC1 Ptree Sizing” move and the “CCC1 Ptree Sizing” 
move must happen together. To honor such constraints, a 
preprocessing step is added to merge the nodes in the move 
graph. This is done by merging them into a single node, 
which represents a group of moves, and is referred to as a 
group node. Such merger operations convert the original 
move graph that contains only single move nodes, to a new 
move graph that contains the remaining independent single 
moves nodes plus the newly created group nodes, and this 
new mixed graph will be used in the iterative algorithm in 
the previous subsection. During the merging operations, the 
following three issues must be resolved: 

• If a member in a group is designated as no-touch, all 
other members in the group will be designated as no-
touch. Hence we process all group members as 
described earlier. 

• After the merger operations, the resulting new graph 
must remain acyclic, and the correlation among the 
move nodes must be maintained. In other words, if 
there exists a directed path from move node a to 
move node b in the original move graph before 
mergers, there must still exist a directed path from 
the representative of a, either a itself or a group 
node that contains a, to the representative of b. 
Figure 4 and 5 illustrate the merger operations that 
satisfy these requirements: Figure 4 shows the 
simple case of merging two nodes that do not share a 
path, and Figure 5 shows merging nodes A and B 
when B is inside the fan-out cone of A. Nodes C and 

D in Figure 5 represent the first set of nodes that are 
outside the fan-out cone of A encountered during an 
upstream traversal from B; new edges are added 
from them to the merged node AB; a blank node 
replaces node B after the merger, to maintain 
connectivity among B's neighboring nodes. The 
merging operation is similar for the case when B is 
in the fan-in cone of A. A group with more than two 
nodes can be merged by repeating the above 
operations. The worst-case complexity of merging 
all groups is quadratic with respect to the number of 
nodes in the move graph, and this is a one-time 
overhead at the initialization stage of the algorithm. 

 
Fig. 5.  Merging two dependent nodes. 
 

• There are many ways to define the weight, i.e., 
sensitivity, of a group node. In our implementation, 
we still use ΔPgroup/ΔDgroup. The ΔPgroup of a group 
node is defined as the sum of ΔP values of the 
original single move nodes. In order to evaluate 
ΔDgroup, suppose the original move nodes are 
1,2,…k, we construct a new directed graph G 
composed of these nodes, such that there exists a 
directed path from node i to node j in G if and only 
if there exists a directed path from i to j in the 
original move graph. G is not unique, and is acyclic 
if the original move graph is acyclic. For a directed 
path Y in G, define its length as ∑ ∈

Δ=
Yi iY DL . For 

node j, define 
YjYj LD passsesmax=Δ  and then for the 

group node define 
jj DD Δ=Δ maxgroup
. The group 

node is considered infeasible and has zero sensitivity 
if for any node j, ΔDj is greater than SCCC-Starget. 
Such sensitivity calculation and feasibility check can 
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be done in linear runtime with respect to the group 
size. 

Honoring the slew constraints are done both in the ΔD 
calculation and in the post-validation of the applied moves. 
During the calculation of ΔD, we also monitor output slews 
and penalize any slew violation due to a suggested move by 
increasing the ΔD by a large number. This would force the 
algorithm to skip such a move with a low weight. If for 
some reason, the move is still picked up by the procedure 
and applied on the design, the post-validation step of static 
timing analysis based on the modified circuit may 
demonstrate slew violations. When a slew violation is 
detected after one iteration, the move that causes this 
violation is identified based on timing path information, 
and will be revoked, i.e. it will be reverted back to its 
original status. 

We also generalized our weighting scheme to include 
slack-criticality of the design [19]. Based on the current 
timing slacks and the targets we can propagate a criticality 
metric within the circuit and incorporate it in the weights 
for each move node. By now, we have collected the 
necessary pieces of the proposed algorithm, which is 
summarized in the pseudo-code below: 
Build acyclic timing graph; 
Convert timing graph to move graph; 
Merge grouped move nodes into group nodes; 
Propagate no-touch designations; 
Loop until convergence: 
    Update node weight = sensitivity; 
    Find WMIS; 
    Apply design changes; 
    Revoke moves if timing violation; 

IV. RESULTS 
In the experiments, we use a number of circuit macros 

from a high-performance microprocessor core implemented 
in a state-of-the-art technology (65nm, SOI). These macros 
are implemented by mostly regular-Vt devices, while some 
critical-path elements may have low-Vt devices. The macro 
sizes range from hundreds of devices to tens of thousands 
of devices. The timing performance of the macros is 
satisfactory, but the power performance, especially 
leakage, needs to be greatly improved to meet the power 
specifications of the end product. 

A. Experimenting Different Modes 
Table I shows the first experiment where three circuits 

are used to evaluate the performance of high-Vt assignment 
in CCC, Ptree/Ntree and Transistor modes. The initial 
timing slack is preserved, i.e., the initial and final timing 
slacks are the same in each run. No grouping constraint is 
imposed.  

The transistor mode always gives the largest leakage 
saving, at the expense of more runtime: 3-4 times of that of 

the CCC-level. Transistor mode also impacts the rest of the 
design tasks (layout generation, transistor back-annotation, 
library support). The ptree/ntree mode brings intermediate 
results and could be used whenever the cell libraries can 
support it. If used in a design flow, each cell need to be 
provided in not only all-V

TABLE I 
LEAKAGE REDUCTION BY HIGH-VT ASSIGNMENT ONLY 

Circuit Initial 
Leakage 

Mode Final 
Leakage 

Reduction 

CCC 0.787mW 47.22% 
Ptree/Ntre

e 

t modes but also in hybrid 
combinations (nfets and pfets may have different Vt ‘s). 
Hence this typically results in a larger number of cells 
needed to be supported by the cell library. We believe that 
this is more likely to gain more traction in practical design 
flows compared to fine grain transistor-level optimization 
requirements. Looking at the CCC mode, we see that 
algorithm achieve reduction in bulk of the leakage and 
rather keep the following design automation tasks as is 
with very little post-optimization impact. The post-
optimization tasks often remain the same since we replace a 
particular CCC with a different version of Vt. This is 
similar to gate-level optimization in many aspects. For all 
other experiments, we will use the CCC mode, as it is the 
most efficient and often preferred due to their 
simplicity/practicality of post-processing and back-
annotation tasks following this optimization. 

B. High-Vt and Width Downsizing with the Grouping 
Contstraints 
Table II shows the second experiment with a set of 

examples with tight power performance specifications. We 
compare high-Vt assignment only and simultaneous high-Vt 
assignment and transistor downsizing, both in CCC mode. 
Each downsizing move uses a scaling factor of 0.8. No 
grouping constraint is imposed, except for the results in the 
last column. By high-Vt assignment only, the dynamic 
power is also reduced by a few percent, since the 
capacitance of the higher Vt devices are less than the 
regular ones. The overall runtime of high-Vt assignment 
(including the initial timing) is only 2-4 times that of a 
complete static timing analysis. Such efficiency is achieved 
by using an incremental timing analysis engine and semi-
analytical hardware-based power models that don’t require 
excessive simulation. 

0.484mW 67.54% #1 1.49mW 

Transistor 0.453mW 69.92% 
CCC 9.19mW 20.81% 

Ptree/Ntre
e 8.67mW 25.30% #2 11.6mW 

Transistor 8.58mW 26.05% 
CCC 5.48mW 8.92% 

Ptree/Ntre
e 5.46mW 9.25% #3 6.02mW 
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The runtime of simultaneous high-Vt assignment and 
transistor downsizing, however, is 50-200 times that of a 
complete static timing analysis; on the other hand, more 
power reduction is achieved with such extra effort. The 
only exception is benchmark 7, where the total power 
reduction by high-Vt plus downsizing is slightly less than 
that by high-Vt assignment alone: in this case, the local 
optimization of an early iteration leads to a less satisfactory 
final solution. 

The last column of Table II shows the impact of 
grouping constraints. The designs typically contain several 
levels of hierarchy, and grouping constraints are added to 
guarantee the structural connectivity of the post-
optimization circuit. Clearly the additional constraints 
resulted in an unfavorable power reduction, but these are 
the results of necessities and requirements of a real-life 
design flow. 

C. High-Vt compared to a Formal Circuit Tuner  
In Table III, we use the proposed method in conjunction 

with a formal circuit optimization tool [3] that yields 
almost optimal transistor sizes for area minimization under 
timing and other constraints. The optimizer works on the 
objective of reducing area based on timing constraints and 

it results in smaller widths for transistors located in non-
critical paths. Hence the leakage and dynamic power could 
be reduced without affecting the critical paths and timing 
requirements. The optimizer operates on delay sensitivities 
of each CCC with respect to device widths. For each 
circuit, three different runs are performed: the first with the 
formal optimization tool that carries out transistor sizing 
only, the second with the proposed method in high-Vt 
assignment only, and then a cascade run in which the 

proposed high-Vt assignment procedure is called after the 
formal optimization tool. In these three runs, we preserve 
the minimum slack of the circuit, and honor all the 
constraints required from hierarchy and layout. The results 
suggest that transistor-width optimization alone to 
minimize area is inferior in terms of leakage power to our 
approach where leakage is targeted for the optimization, 
and that both methods complement each other and produce 
the best results when used together. 

TABLE II 
POWER REDUCTIONS BY HIGH-V

D. Joint High-Vt and Device Length Biasing 
As the last experiment, we evaluate the performance of 

the proposed method with multiple types of moves. As 
mentioned before, high-Vt assignment and longer device 
length may be used to mitigate leakage of devices located 
in non-critical paths. To compare the benefits of these 
techniques when applied individually and jointly, we 
perform the proposed algorithm with three different 
schemes with identical timing and other constraints: CCC-
level high-Vt assignment only; simultaneous CCC-level 
high-Vt assignment and CCC-level channel length biasing; 
CCC-level high-Vt assignment followed by transistor-level 
channel length biasing. For these experiments, we allowed 
the device length to increase by 2nm or 4nm from the 
nominal value.  

The second scheme in this experiment models the effect 
of design-time channel-length optimization, since the 

T, BY SIMULTANEOUS HIGH-VT AND WIDTH DOWNSIZING AND HIGH-VT UNDER GROUPING CONSTRAINTS 
After high-V After high-V After high-Vt t and width 

downsizing 
t 

with grouping 
Initial Circuit Initial 
dynamic leakage 
power power Leakage Total power Leakage Total power Leakage 

reduction reduction reduction reduction reduction 
#4 1.06mW 1.24mW 69% 33.9% 69% 60.7% 32.6% 
#5 0.20mW 0.25mW 33.8% 16% 42.1% 33.64% 12.3% 
#6 0.99mW 1.23mW 40.93% 19.38% 45.6% 37.9% 9.1% 
#7 1.84mW 2.23mW 28.35% 13.66% 14.6% 11.1% 10.4% 
#8 5.01mW 5.93mW 22.29% 10.81% 31.8% 27.0% 8.2% 
#9 4.67mW 5.67mW 15.59% 7.46% 20.9% 16.47% 7.3% 
#10 4.93mW 5.96mW 25.74% 12.37% 32.16% 26.37% 9.1% 
#11 8.66mW 10.6mW 40.71% 19.46% 35.75% 29.44% 11.5% 
#12 3.69mW 4.51mW 22.20% 10.59% 36.47% 29.12% 6.2% 
#13 5.17mW 6.30mW 36.77% 17.59% 36.42% 30.06% 20.1% 

 
TABLE III 

POWER REDUCTION BY NEAR-OPTIMAL MIN-AREA TRANSISTOR SIZING, HIGH 
VT ASSIGNMENT, AND BY THE SEQUENTIAL RUN OF THE TWO 

High-V Both high-VCircuit Width 
downsizing 

t t and 
widthdownsizing 

 Total Leakage 
power 

Total Leakage 
power 

Total Leakage 
power power 

reductio
n 

power 
reductio
n 

power 
reductio
n 

reductio
n 

reductio
n 

reductio
n  

#14 26.87% 25.98% 26.82% 16.05% 41.09% 34.38%
#15 19.57% 20.06% 35.95% 20.24% 45.65% 34.78%
#16 8.88% 8.91% 19.22% 11.64% 25.58% 19.01%
#17 11.05% 10.98% 11.82% 6.64% 22.44% 17.4%
#18 7.84% 6.69% 10.21% 4.96% 14.78% 10.09%
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changes perform on each CCC and can be followed by 
post-optimization tasks. The third scheme models the effect 
of post-layout channel-length optimization, since transistor-
level optimization results can be applied directly to the 
final layout at the very end of the design flow.  

The results in Table IV suggest that the additional 
flexibility of channel length biasing results in a 5-8% 
further leakage reduction compared to only using High-Vt 
by varying doping concentration. For these testcases, which 
are based on 65nm technology, the primary reason for 
these extra power savings is that channel length biasing is a 
more fine-grain operation than a Vt change, and therefore 
help to reach better a power-delay trade-off point in the 
solution space. We expect the device length biasing would 
yield more benefits for 45nm technology. 

V. CONCLUSION 
We proposed a graph-based optimization method to 

perform power minimization in transistor-level circuit 
designs. Our approach performs power-reduction actions 
on the circuit and results in low power circuits with given 
timing constraints. We also honor constraints that are 
typical in real-life production lines. This method is 
implemented in an industrial tool that is incorporated into 
an industrial design flow and currently yields reliable 
results.  

The proposed method is based on an extended timing to 
evaluate the power reduction actions. The proposed method 
evaluates the impact of each action on power and timing, 
and formulates a maximum independent set problem. 
Although not performed explicitly, the method considers 
delay budgeting and evaluates only feasible moves that are 
allowed in a given path. The iterative nature of the 
algorithm results in high-quality results.  

We emphasized an important aspect of real-life design 
environments: structural constraints that must be honored 
for physical and methodological reasons. These issues are 
solved by the concept of grouping which lets the annotation 
of the suggested changes with minimum effort. Besides the 
operations of width sizing, channel length biasing and Vt 

assignment of which experimental results are presented in 
this paper, the suggested approach can also be used with 
other power minimizing actions, including oxide thickness 
assignment, Vdd island selection, etc. Any discrete actions 
that impact the design in a local manner can be 
incorporated in the proposed framework. 

TABLE IV 
POWER REDUCTION BY CHANNEL LENGTH BIASING 

CCC-High-V CCC-High-VCircuit Joint CCC-level 
High-V

REFERENCES 
[1] Z. Chen, M. Johnson, L. Wei and K. Roy, “Estimation of standby 

leakage power in CMOS circuit considering accurate modeling of 
transistor stacks,” Proceedings of International Symposium on Low 
Power Electronics and Design, pp. 239--244, 1998. 

[2] C. Chen, A. Srivastava and M. Sarrafzadeh, “On gate level power 
optimization using dual-supply voltages,” IEEE Transactions on 
Very Large Scale Integration (VLSI) Systems, vol. 9, no. 5, pp. 616--
629, 2001.  

[3] A. R. Conn, I. M. Elfadel, W. W. Molzen, P. R. O'Brien, P. N. 
Strenski, C. Visweswariah and C. B. Whan, “Gradient-based 
optimization of custom circuits using a static-timing formulation,” 
Proceedings of Design Automation Conference, pp. 452--459, 1999. 

[4] J. Darringer etal., “EDA in IBM: Past, Present and Future,” IEEE 
Transactions on Computer Aided Design of Integrated Circuits and 
Systems, vol. 19, no. 12, pp. 1476--1497, 2000. 

[5] J. P. Fishburn and A. E. Dunlop, “TILOS: a posynomial 
programming approach to transistor sizing,” International 
Conference on Computer-Aided Design Digest of Technical Papers, 
pp. 326--328, 1985. 

[6] K. Fujii, T. Douseki and M. Harada, “A sub-1V triple-threshold 
CMOS/SIMOX circuit for active power reduction,” International 
Solid-State Circuits Conference Digest of Technical Papers, pp. 190-
-191, 1998. 

[7] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum 
flow problem,” Proceedings of Symposium on Theory of Computing, 
pp. 136--146, 1986.  

[8] International Technology Roadmap for Semiconductors, 
Semiconductor Industry Association, 2004. Available at 
http://public.itrs.net 

[9] D. Kagaris and S. Tragoudas, “Maximum independent sets on 
transitive graphs and their applications in testing and CAD,” 
International Conference on Computer-Aided Design Digest of 
Technical Papers, pp. 736--740, 1997. 

[10] M. Ketkar and S. S. Sapatnekar, “Standby power optimization via 
transistor sizing and dual threshold voltage assignment,” 
International Conference on Computer-Aided Design Digest of 
Technical Papers, pp. 375--378, 2002. 

[11] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, B. Thompson 
and K. Keutzer, “Minimization of dynamic and static power through 
joint assignment of threshold voltages and sizing optimization,” 
Proceedings of the International Symposium on Low Power 
Electronics and Design, pp. 158--163, 2003. 

[12] P. Pant, V. K. De and A. Chatterjee, “Simultaneous power supply, 
threshold voltage, and transistor size optimization for low-power 
operation of CMOS circuits,” IEEE Transactions on Very Large 
Scale Integration Systems, vol. 6, no. 4, pp. 538--545, 1998. 

[13] J. M. Shyu, A. Sangiovanni-Vincentelli, J. P. Fishburn and A. E. 
Dunlop, “Optimization-Based Transistor Sizing,” IEEE Journal of 
Solid Slate Circuits, vol. 23, no. 2, pp. 400--409, 1988.  

[14] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda and D. Blaauw, 
“Duet: an accurate leakage estimation and optimization tool for dual-
$V_t$ circuits,” IEEE Transactions on Very Large Scale Integration 
(VLSI) Systems, vol. 10, no. 2, pp. 79--90, 2002. 

[15] A. Srivastava, D. Sylvester and D. Blaauw, “Power minimization 
using simultaneous gate sizing, dual-Vdd and dual-Vth assignment,” 
Proceedings of Design Automation Conference, pp. 783--786, 2004.  

[16] Q. Wang and S. B. K. Vrudhula, “Static power optimization of deep 
submicron CMOS circuits for dual $V_t$  Technology,” 

t t 
followed by 
transistor-level 
Channel-length 

t and 
Channel-length 

 Total Leakage 
power 

Total Leakage 
power 

Total Leakage 
power power 

reductio
n 

power 
reductio
n 

power 
reductio
n 

reductio
n 

reductio
n 

reductio
n  

#19 57.87% 50.28% 64.05% 54.91% 63.46% 54.74%
#20 20.9% 18.24% 25.56% 21.96% 24.74% 21.32%
#21 44.78% 38.94% 52.79% 45.29% 52.82% 45.32%
#22 40.67% 35.06% 46.65% 39.7% 45.03% 39.1%
 



 10

International Conference on Computer-Aided Design Digest of 
Technical Papers, pp. 490--496, 1998. 

[17] L. Wei, K. Roy and C. Koh, “Power minimization by simultaneous 
dual-Vth assignment and gate-sizing,” Proceedings of IEEE Custom 
Integrated Circuits Conference, pp. 413--416, 2000. 

[18] P. Gupta, A.B. Kahng, P. Sharma, and D. Sylvester, “Gate-length 
biasing for runtime leakage control,” IEEE Transactions on 
Computer-Aided Design, pp. 1475-1485, August 2006. 

[19] C. L. Berman, D. J. Hathaway, A. S. LaPaugh, L. H. Trevillyan, 
"Efficient techniques for timing correction," IEEE International 
Symposium on Circuits and Systems, pp. 415-419, 1990. 

 


	I. INTRODUCTION
	II. Problem Statement
	A. Definitions and Assumptions
	B. Problem Statement
	C. Additional Constraints

	III. Proposed Method
	Weighted Maximum Independent Set
	B. Handling Constraints

	IV. Results
	A. Experimenting Different Modes
	B. High-Vt and Width Downsizing with the Grouping Contstraints
	C. High-Vt compared to a Formal Circuit Tuner 
	D. Joint High-Vt and Device Length Biasing

	V. Conclusion

