
RC24324 (W0707-163) July 31, 2007
Electrical Engineering

IBM Research Report

Timing-aware Power Minimization via
Extended Timing Graph Methods

Haifeng Qian, Emrah Acar
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Timing-aware Power Minimization via
Extended Timing Graph Methods

Haifeng Qian and Emrah Acar

Circuit optimization research used to be concerned with
automatic tuning the circuit solely for timing performance,
and the transistor width used to be the primary variable to
be continuously tuned

Abstract— Power is an increasingly important performance

metric, and must be considered during various design stages.
With the advancement of multiple threshold devices, leakage
power can be better controlled, utilizing fast and high-leakage
devices just for critical paths, while low-leakage devices are
used for non-critical parts to minimize power. In this paper, a
practical timing graph-based algorithm is proposed to
perform concurrent discrete optimization (V

[3][4][5][13]. Established transistor
sizing methodologies can be roughly divided into two
categories. The first is sensitivity-based discrete heuristics
represented by TILOS [5][13]. The transistor sizing
operation is discretized, for example, a downsizing or
upsizing operation can be defined as scaling the width of a
transistor by a constant factor; the solution is optimal under
certain simplistic delay model, but suboptimal in general.
The second is continuous nonlinear optimization, followed
by snapping transistor sizes to the technology-imposed
values

t-assignment,
device width biasing, device length biasing, etc) to minimize
the power consumption, especially leakage, of a circuit subject
to timing performance constraints. Our algorithm honors
important constraints that are common to an industrial design
methodology, including hierarchy, structural connectivity and
layout-related rules. We demonstrate the performance of the
algorithm in an industrial design automation platform
consisting of an incremental transistor-level timing analysis
engine and optimization environment.

[3]. Because its solution in the continuous domain is
optimal and transistor widths are near-continuous variables,
the quality is typically superior to discrete heuristics, at the
cost of high runtime.

Index Terms—Circuit tuning, discrete optimization, power
minimization, threshold voltage. With the advent of multiple-Vt devices, voltage islands

and multiple oxide thickness, the list of candidate variables
is now expanded by a number of discrete operations, e.g.

[6], which often offer better power-delay tradeoffs than
transistor sizing. Most prominently, because sub-threshold
leakage current is an exponential function of V

I. INTRODUCTION
LTHOUGH timing performance is still the primary
target for IC manufacturers, power is recognized as

the real performance limiter with current integration
technologies. As devices shrink, they run faster at the
expense of excessive leakage current. This poses itself as a
tax on the performance, as the leakage power is becoming
the dominant portion of the total power of a circuit [8].
Hence power optimization must be performed at various
stages of the design flow.

A

We present a circuit-level optimization procedure,
specifically by manipulating threshold voltage assignments,
transistor widths, gate channel lengths and other parameter
modifications that allow a design meet power and timing
requirements. This is different than continuous
optimization, where some design parameters can be chosen
freely on an analog scale.

Manuscript received February 2, 2007.
Haifeng Qian and Emrah Acar are with IBM Research, Yorktown

Heights, NY 10598 USA (phone: 914-945-2102; e-mail:
qianhaifeng@us.ibm.com, emrah@us.ibm.com).

t [17],
changing certain gates to higher Vt has the potential to
achieve more power savings than gate sizing alone with the
same timing budget. Recently gate-length is also suggested
as a new design parameter, where it can be selected from a
variety of alternatives as opposed to a single design length
[18].

Since the optimal solution is most likely achieved by the
simultaneous consideration of all design options, several
methods have been proposed to incorporate multiple
operations [10][11][12][14][15][16].

It is not trivial to incorporate discrete variables into a
continuous sizing methodology such as [3], and the cost is
often suboptimality and significant runtime increase.
Hence most of these multi-variable methods are heuristics,
and are often based on sensitivities defined similar to [5].

Here in this work, the proposed method is also a
sensitivity-based one that performs discrete optimization.
We discretize the operations just like [5], however the
sensitivity is defined in an inverse way: we start with a

 2

design that meets the timing requirement, and minimize its
power without creating a timing violation. To reduce the
greediness and avoid the lack of global view in [5][17], a
graph-based iterative approach is used to look for an
optimal set of transistors to modify in each iteration. This is
similar in principle to [2] and [16] (Vt assignment only), but
there are differences that make our method more likely to
find a near-optimal solution and with less computational
complexity. More importantly, the proposed approach is a
general framework of truly simultaneous considering
multiple discrete design choices: the set of chosen changes
in each iteration is a mix of, for example, sizing operations
and Vt assignments.

This technique is general enough to support a variety of
design options, e.g., oxide thickness assignment and Vdd
selection. Furthermore, emphasis is placed on handling
constraints in industrial designs, which may originate from
high-level issues, structural integrity of the design data, or
layout related issues.

II. PROBLEM STATEMENT
In this section, we define the power optimization

problem, and discuss various practical constraints.

A. Definitions and Assumptions
We assume that a static timing analysis engine is

available. We will assume it supports transistor-level
netlists by characterizing individual devices in clusters with
proper logic functions. Figure 1 shows a timing graph used
in the timing engine, where the oval nodes correspond to
channel-connected components (CCC) (i.e., sets of
transistors that are source-drain connected, and roughly
correspond to gates), and the directed edges correspond to
timing propagation segments, each of which represents the
delay of a CCC or the interconnect delay of a net.

The delay and slew values are obtained by simulation in
our implementation environment, but they can also be
computed by analytical equations and/or table lookup, and
the proposed algorithm in this paper is independent of this
choice of technique. Directed paths in the timing graph
represent data paths within one clock cycle. In other words,
the start and end nodes are primary inputs/outputs and
latches; in the case of designs using transparent latches, the
start and end nodes are those with the same clock phase.

Timing analysis provides the arrival time (AT) at each
node in the graph, and given a timing target, the required
arrival time (RAT) at each node; the slack at a node is
defined as RAT-AT, and the slack at the output pin of a
CCC is referred to as the timing slack of this CCC.

For simplicity of presentation, in Sections II and III, we
will work with two types of variables: transistor width and
V

Fig. 1. CCC timing graph.

t -level. The optimization variables are represented by the
following vector

x = [w1, v1, w2, v2 … wN , v]T
N

where w's are continuous transistor width variables, and v's
are discrete variables representing choices of design
parameters in an countable feasible set. For simplicity v’s
can be thought of Vt -levels for devices. The operation can
be performed in three granularity levels:

• CCC level: All transistors in a CCC must be scaled
together, and must share the same discrete parameter
(e.g. Vt). Then N is the number of CCCs in the
circuit.

• Ptree/Ntree level: PMOS transistors in a CCC must
be scaled together and must have the same discrete
parameter, while NMOS transistors in a CCC must
be scaled together and must share the same discrete
parameter. For each CCC, there is a (w,v) pair for
the PMOS transistors and another pair for the
NMOS transistors. Hence N is twice the number of
CCCs in the circuit.

• Transistor level: Every single transistor can be
modified independently, and needs a (w,v) pair.
Hence N is the total number of transistors in the
circuit.

In this paper, we only consider application of power-
saving techniques. Namely, we will select transistor width
downsizing and high-Vt insertion. We define a move as a
single change in an entry of the vector x. If the move
affects a single design object, we refer to as a single move,
and if it impacts multiple objects due to a design/netlist
constraint, it will be referred to as a group move. In our
experiments, we used 65nm SOI technology with such
opportunities to mitigate leakage power.

We assume that there is a delay engine available to
compute ΔD, the delay impact of any single move. Because
at any of three granularity levels, a single move can only
modify one CCC, ΔD is defined as the internal delay
increase of this CCC, plus the delay increase of the net it
drives. Since we deal with moves that don’t affect input
device capacitances significantly, the delay impact on the
previous stage is very small and can be neglected. However
if really desired, the impact can also be calculated and
modeled in ΔD at a cost of extra runtime. ΔD can be
obtained by simulation, analytical equations or table
lookup, and again the proposed algorithm is independent of

 3

this choice of technique. The only assumption about ΔD is
that it is nonnegative for any move. Note that ΔD is
computed assuming that only one entry of x is modified,
and it is a function of both the move and the current status
x, and hence must be recomputed for a different x.
However, it could be computed incrementally when the
specific CCC is modified, and can be tagged along with the
delay calculation in an incremental static timing analysis
engine.

We assume that there is an analysis engine available to
compute P(x), the power consumption of the design
specified by x. Depending on the application, P(x) can be
leakage alone, or the sum of leakage, dynamic, and short-
circuit power, or more generally, a weighted sum of all
three power components. The proposed algorithm is
independent of this choice of object function. The power
impact of a single move can be defined as ΔP = P(x)-
P(x’), where x’ differs from x by only one entry.

Like delay, power consumption can be computed by
various methods, and the proposed algorithm is
independent of this choice of technique. Like ΔD, the
power impact ΔP can be also calculated incrementally.

B. Problem Statement
Let S(x) be the minimum of all CCC timing slacks in the

design solution specified by x. Let Starget be a given
constant that represents the desired timing target. The
power optimization problem can be stated as follows.

Given an initial solution x1 such that S(x1) > Starget, given
the timing analysis and power estimation engines that can
compute ΔD and ΔP of any single move for any solution
vector, find x2 such that:

• P(x2) is minimized.

• The w entries of x2 are equal or less than the
corresponding entries of x1, the v entries of x2 are
equal or greater than the corresponding entries of x1.

• S(x1) > Starget.

In the above problem statement, we only assume the
availability of ΔD and ΔP of single moves, and do not
make any assumption about the joint effect of multiple
moves. For example, if a move is applied to CCC-A and
another move is applied to CCC-B in Figure 1, the
resulting slacks of both CCCs may or may not be the
original slacks deducted by ΔDA + ΔDB, depending on the
accuracy of the timer engine. Such an additive assumption
is often needed by existing methods such as [11][12], but
our method does not need it.

C. Additional Constraints
Many research efforts including ones referenced above

have targeted at leakage power optimization. However

most of the previous works assume that applicable design
changes are for individual design objects (gates, transistors,
NMOS/PMOS stacks) and can be applied without
restrictions. However, these assumptions are often not valid
in real-life design environments.

A typical macro design for a high-performance
integrated circuit consists of logic synthesis, layout design,
electrical and physical verification on multiple databases
with parallel representations of the design. It is not easy to
modify the netlist locally without propagating the changes
to other representations. And if the original design is in a
hierarchical data model, the modified design often needs to
maintain a similar hierarchy, which maps any local change
to multiple changes throughout the design. In other words,
there are limitations from the design methodology, which
require multiple objects to be considered together. We will
denote this requirement as grouping. For instance, if the
hierarchy of the original design is desired to be kept the
same, all instances of a particular cell in the design need to
be grouped together: if any instance of a particular cell is to
be modified, its other instances should follow the same
modification. Hence, in evaluating the impact of modifying
an instance, we need to analyze the joint effects of
changing all the instances of the same type used in the
netlist. Similar limitations can be layout-based. For
example, two cells need to be in the same Vt class if they
are spatially close, and their Vt moves are grouped together.
The concept of grouping may also be used to represent
other classes of constraints.

Another constraint is that certain circuit elements that are
not intended for any modifications: typically clock
circuitry, clock gating, and power gating modules. This
requires an additional no-touch designation for such
elements. If a no-touch-designated object is also inside a
group, we will propagate the no-touch designation to all
other items in the group. In other words, these constraints
can be used in association rules.

In summary, the following constraints are not included
in the problem statement in the previous subsection, but are
present in a custom-design environment and need to be
handled.

• Slew constraint: timing constraints are also defined
on slews at the output pin(s) of each CCC. The
circuit optimization procedure should not cause any
slew violation.

• No-touch designation: design changes are prohibited
for certain CCCs.

• Grouping: certain objects must be identically
modified for reasons not limited to preserve higher
level representations, hierarchy etc. Hence these
objects share the same w and v.

Next, we first describe a graph-based algorithm for the

 4

problem stated, and then how to incorporate these
constraints.

III. PROPOSED METHOD
The proposed algorithm is an iterative procedure, where

in each iteration, a set of moves are chosen and applied to
the design, such that the power saving is maximized in a
certain way, and that no two modified objects share a data
path in a given iteration. The description is divided into
three subsections: the first converts a timing graph into a
move graph, the second formulates one iteration of the
procedure as a weighted maximum independent set
(WMIS) problem, and the third incorporates specific
design constraints.

As the first step of the proposed method, we construct a
directed graph where each node corresponds to a single
move defined in Section 2, based on the original CCC
timing graph and available design operations.

Let us use the example in Figure 2 to explain this graph
conversion. Figure 2(a) shows two CCCs in the timing
graph, one driving the other. Note that the graph is already
different from Figure 1: timing propagation edges inside
CCCs are dropped. The remaining edges carry connectivity
information, i.e., if there exists a directed path between two
CCCs, then they must share a data path in the design, and it
is possible that the ΔD of a move on one of the two can
affect the timing slack of the other.

Figure 2(b) shows the corresponding structure in the
converted move graph. In this example, the algorithm
works in the Ptree/Ntree mode, and there are four possible
operations on a CCC: changing all PMOS transistors to
higher Vt, changing all NMOS transistors to higher Vt,

downsizing all PMOS transistors with a constant factor,
downsizing all NMOS transistors with a constant factor.
Each node in the timing graph is converted to a string of
nodes in the move graph, where each move node represents
a single change on the associated CCC, and hence has its
own ΔD and ΔP pair.

Obviously, if the algorithm works in the CCC mode,
each CCC in the timing graph would be converted into a
list of two nodes, the sizing move and the Vt move; if the
algorithm works in the transistor mode, a CCC with m
transistors would be converted into a string of 2m nodes:
two for each transistor. In fact, the above conversion can be
more flexible.

Any design change on a CCC can become a move node
and join the string, as long as it is a discrete operation: for
example, choices among multiple supply voltages, choices
among multiple oxide thickness, and so on, can all be
incorporated. To achieve a faster convergence, the string
can also include nodes that represent combined moves: for
example, a node that represents higher V

Fig. 2. Conversion from a timing graph to a move graph.

t selection plus
downsizing of PMOS transistors can be added to Figure 2.
The size of the move graph increases linearly with the
number of candidate design changes to be considered for a
CCC, and this makes the proposed algorithm scalable.

It is easy to verify that the following property is
maintained during the graph conversion: if there exists a
directed path between two CCCs in the timing graph, there
also exists a directed path between any pair of their move
nodes. This ensures the correctness of the proposed
heuristic, and will be explained in the next subsection.

Finally, the graph conversion only needs to be performed
once during the initialization of the algorithm, and the
move graph can be used repeatedly, while ΔP and ΔD
values of a move node should be updated when the design
is modified.

If a move becomes infeasible (for example, a Vt move
becomes infeasible when a transistor is already using the
highest threshold voltage), the ΔP and ΔD values of that
node are simply set to zero so that it will not be selected by
the procedure described in the next subsection.

 5

A. Weighted Maximum Independent Set
Let us start by citing definitions from the graph theory.

The maximum independent set (MIS) of a graph is defined
as the largest set of nodes such that no two nodes in this set
are adjacent.

The weighted maximum independent set (WMIS) of a
node-weighted graph is defined as the set of nodes with the
maximum weight sum such that no two nodes in this set are
adjacent. The transitive closure of an directed graph G1 is
another directed graph G2 constructed by adding directed
edges to G1, such that there exists an edge from node a to
node b in G2, if and only if there exists an directed path
from a to b in G1. The transitive reduction of G1 is defined
as the smallest directed graph such that its transitive
closure is also G2. For example, Figure 3 is the transitive
closure of Figure 1. (ignoring the edges inside CCCs), and
Figure 1 is the transitive reduction of Figure 3. In general,
however, if G2 is the transitive closure of G1, G1 is not
necessarily the transitive reduction of G2. In that case, we
will refer to G1 as a relaxed transitive reduction of G2 in
the following discussion.

Now suppose the move graph from the previous
subsection is graph G1, and we construct its transitive
closure G2 and then find the WMIS of G2, based on the
following node weight definition:

node weight =
⎪⎩

⎪
⎨
⎧

−≥Δ

−<Δ
Δ
Δ

targetCCC

targetCCC

if0

if

SSD

SSD
D
P

where ΔD, ΔP are as defined for this move node, Starget is as
defined in the problem statement, and SCCC is measured for
the move node in the timing graph. Such weight definition
for a move node is a sensitivity function similar to those in
[1][5][14] and zero if the move is infeasible under the
timing constraint. Intuitively, this serves as the merit
function of a node, and the proposed algorithm tries to
maximize the total value of the chosen moves.

The WMIS of the transitive closure graph G2 therefore
corresponds to the node set with the maximum weight sum
in the move graph G1 such that there does not exist a
directed path between any two nodes in this set. From the
previous subsection, if there is no path between two move
nodes, the two affected CCCs do not share a data path in
the design. This means that if the design changes
represented by the WMIS are applied on the design, each
modified CCC is independent from others in terms of
timing, and is only affected by its own ΔD. According to
the node weight definition, any move with a positive
weight is feasible, and therefore applying these changes
will not cause a timing violation. The above forms the
basic framework of the proposed algorithm.

Now the power optimization problem can be converted

into an iterative process, where each iteration finds the
WMIS of the transitive closure of the move graph and
applies the design changes specified by the WMIS.

Fig. 3. The transitive closure of the timing graph in Figure 1.

This usage of WMIS is similar to the methodology in [2]
for dual-supply voltages optimization, but the following
differentiates our method from theirs. For a large timing
graph, finding its transitive closure graph can be expensive
in terms of both time and space complexity. Fortunately,
for acyclic graphs, there exists a correspondence between
the WMIS of the transitive closure and the min flow of the
relaxed transitive reduction graphs. The min flow problem
considers a directed graph with a set of source nodes and
sink nodes; for a non-source non-sink node, the sum of its
in-flows must be equal to its out-flows; each node has a
non-negative minimum capacity, and the problem is to find
the minimum flow that can be routed from source nodes to
sink nodes such that the flow through each node is at least
its assigned minimum capacity. The min flow problem can
be mapped to the commonly known max flow problem, and
hence be solved in polynomial time [7]. If the minimum
capacity of any node is assigned to be equal to the node
weight, for an acyclic directed graph G1 and its transitive
closure G2, the sum of node weights of the WMIS of G2 is
equal to the min flow of G2 [9]; then because of the fact
that the min flow of G2 is equal to the min flow of any of
its relaxed transitive reduction graphs (proof omitted), the
min flow of G1 is also equal to the sum of node weights of
the WMIS of G2. Therefore, unlike [2], we do not build the
transitive closure G2 explicitly, and only work on the
original relaxed transitive reduction G1 itself: find its min
flow first, and then techniques are available to identify the
WMIS of the transitive closure [9]. Another similar
methodology can be found in [16] for Vt assignment only,
which also modifies a set of independent CCCs in each
iteration. But instead of WMIS, [16] used a heuristic based
on topological levels of gates. Since our method works on a
much larger search space, it is more likely to approach the
optimal solution.

The above discussion assumes the move graph to be
acyclic. This is true for the majority of designs where the
CCC timing graph is acyclic to start with. However the
CCC timing graph of a design is not necessarily acyclic in

 6

general, and for those timing graphs that are not, they need
to be made acyclic by ignoring certain timing propagation
segments. Typically only a few edges need to be dropped,
and to minimize the incurred accuracy impact, the max-
slack edge of each cycle is chosen in our implementation.

Fig. 4. Merging two independent nodes.
 Admittedly, this iterative algorithm based on finding

WMIS in each iteration is a sequence of local optimizations
that does not guarantee optimality of the overall solution to
the optimization problem. However, it has the capability to
handle multiple design options and various practical
constraints, and we will validate its performance on real-
life designs in the next section.

B. Handling Constraints
No-touch constraints are handled by forcing zero

sensitivity, i.e., zero weight on the corresponding graph
nodes. Slew constraints and the grouping constraints need a
closer look.

A grouping constraint dictates that the group members
must be identically modified. For example, in Figure 2, if
the PMOS transistors in CCC1 and the PMOS transistors in
CCC2 are grouped, the “CCC1 Ptree Vt” move and the
“CCC1 Ptree Vt” move must happen together, and the
“CCC1 Ptree Sizing” move and the “CCC1 Ptree Sizing”
move must happen together. To honor such constraints, a
preprocessing step is added to merge the nodes in the move
graph. This is done by merging them into a single node,
which represents a group of moves, and is referred to as a
group node. Such merger operations convert the original
move graph that contains only single move nodes, to a new
move graph that contains the remaining independent single
moves nodes plus the newly created group nodes, and this
new mixed graph will be used in the iterative algorithm in
the previous subsection. During the merging operations, the
following three issues must be resolved:

• If a member in a group is designated as no-touch, all
other members in the group will be designated as no-
touch. Hence we process all group members as
described earlier.

• After the merger operations, the resulting new graph
must remain acyclic, and the correlation among the
move nodes must be maintained. In other words, if
there exists a directed path from move node a to
move node b in the original move graph before
mergers, there must still exist a directed path from
the representative of a, either a itself or a group
node that contains a, to the representative of b.
Figure 4 and 5 illustrate the merger operations that
satisfy these requirements: Figure 4 shows the
simple case of merging two nodes that do not share a
path, and Figure 5 shows merging nodes A and B
when B is inside the fan-out cone of A. Nodes C and

D in Figure 5 represent the first set of nodes that are
outside the fan-out cone of A encountered during an
upstream traversal from B; new edges are added
from them to the merged node AB; a blank node
replaces node B after the merger, to maintain
connectivity among B's neighboring nodes. The
merging operation is similar for the case when B is
in the fan-in cone of A. A group with more than two
nodes can be merged by repeating the above
operations. The worst-case complexity of merging
all groups is quadratic with respect to the number of
nodes in the move graph, and this is a one-time
overhead at the initialization stage of the algorithm.

Fig. 5. Merging two dependent nodes.

• There are many ways to define the weight, i.e.,
sensitivity, of a group node. In our implementation,
we still use ΔPgroup/ΔDgroup. The ΔPgroup of a group
node is defined as the sum of ΔP values of the
original single move nodes. In order to evaluate
ΔDgroup, suppose the original move nodes are
1,2,…k, we construct a new directed graph G
composed of these nodes, such that there exists a
directed path from node i to node j in G if and only
if there exists a directed path from i to j in the
original move graph. G is not unique, and is acyclic
if the original move graph is acyclic. For a directed
path Y in G, define its length as ∑ ∈

Δ=
Yi iY DL . For

node j, define
YjYj LD passsesmax=Δ and then for the

group node define
jj DD Δ=Δ maxgroup
. The group

node is considered infeasible and has zero sensitivity
if for any node j, ΔDj is greater than SCCC-Starget.
Such sensitivity calculation and feasibility check can

 7

be done in linear runtime with respect to the group
size.

Honoring the slew constraints are done both in the ΔD
calculation and in the post-validation of the applied moves.
During the calculation of ΔD, we also monitor output slews
and penalize any slew violation due to a suggested move by
increasing the ΔD by a large number. This would force the
algorithm to skip such a move with a low weight. If for
some reason, the move is still picked up by the procedure
and applied on the design, the post-validation step of static
timing analysis based on the modified circuit may
demonstrate slew violations. When a slew violation is
detected after one iteration, the move that causes this
violation is identified based on timing path information,
and will be revoked, i.e. it will be reverted back to its
original status.

We also generalized our weighting scheme to include
slack-criticality of the design [19]. Based on the current
timing slacks and the targets we can propagate a criticality
metric within the circuit and incorporate it in the weights
for each move node. By now, we have collected the
necessary pieces of the proposed algorithm, which is
summarized in the pseudo-code below:
Build acyclic timing graph;
Convert timing graph to move graph;
Merge grouped move nodes into group nodes;
Propagate no-touch designations;
Loop until convergence:
 Update node weight = sensitivity;
 Find WMIS;
 Apply design changes;
 Revoke moves if timing violation;

IV. RESULTS
In the experiments, we use a number of circuit macros

from a high-performance microprocessor core implemented
in a state-of-the-art technology (65nm, SOI). These macros
are implemented by mostly regular-Vt devices, while some
critical-path elements may have low-Vt devices. The macro
sizes range from hundreds of devices to tens of thousands
of devices. The timing performance of the macros is
satisfactory, but the power performance, especially
leakage, needs to be greatly improved to meet the power
specifications of the end product.

A. Experimenting Different Modes
Table I shows the first experiment where three circuits

are used to evaluate the performance of high-Vt assignment
in CCC, Ptree/Ntree and Transistor modes. The initial
timing slack is preserved, i.e., the initial and final timing
slacks are the same in each run. No grouping constraint is
imposed.

The transistor mode always gives the largest leakage
saving, at the expense of more runtime: 3-4 times of that of

the CCC-level. Transistor mode also impacts the rest of the
design tasks (layout generation, transistor back-annotation,
library support). The ptree/ntree mode brings intermediate
results and could be used whenever the cell libraries can
support it. If used in a design flow, each cell need to be
provided in not only all-V

TABLE I
LEAKAGE REDUCTION BY HIGH-VT ASSIGNMENT ONLY

Circuit Initial
Leakage

Mode Final
Leakage

Reduction

CCC 0.787mW 47.22%
Ptree/Ntre

e

t modes but also in hybrid
combinations (nfets and pfets may have different Vt ‘s).
Hence this typically results in a larger number of cells
needed to be supported by the cell library. We believe that
this is more likely to gain more traction in practical design
flows compared to fine grain transistor-level optimization
requirements. Looking at the CCC mode, we see that
algorithm achieve reduction in bulk of the leakage and
rather keep the following design automation tasks as is
with very little post-optimization impact. The post-
optimization tasks often remain the same since we replace a
particular CCC with a different version of Vt. This is
similar to gate-level optimization in many aspects. For all
other experiments, we will use the CCC mode, as it is the
most efficient and often preferred due to their
simplicity/practicality of post-processing and back-
annotation tasks following this optimization.

B. High-Vt and Width Downsizing with the Grouping
Contstraints
Table II shows the second experiment with a set of

examples with tight power performance specifications. We
compare high-Vt assignment only and simultaneous high-Vt
assignment and transistor downsizing, both in CCC mode.
Each downsizing move uses a scaling factor of 0.8. No
grouping constraint is imposed, except for the results in the
last column. By high-Vt assignment only, the dynamic
power is also reduced by a few percent, since the
capacitance of the higher Vt devices are less than the
regular ones. The overall runtime of high-Vt assignment
(including the initial timing) is only 2-4 times that of a
complete static timing analysis. Such efficiency is achieved
by using an incremental timing analysis engine and semi-
analytical hardware-based power models that don’t require
excessive simulation.

0.484mW 67.54% #1 1.49mW

Transistor 0.453mW 69.92%
CCC 9.19mW 20.81%

Ptree/Ntre
e 8.67mW 25.30% #2 11.6mW

Transistor 8.58mW 26.05%
CCC 5.48mW 8.92%

Ptree/Ntre
e 5.46mW 9.25% #3 6.02mW

 8

The runtime of simultaneous high-Vt assignment and
transistor downsizing, however, is 50-200 times that of a
complete static timing analysis; on the other hand, more
power reduction is achieved with such extra effort. The
only exception is benchmark 7, where the total power
reduction by high-Vt plus downsizing is slightly less than
that by high-Vt assignment alone: in this case, the local
optimization of an early iteration leads to a less satisfactory
final solution.

The last column of Table II shows the impact of
grouping constraints. The designs typically contain several
levels of hierarchy, and grouping constraints are added to
guarantee the structural connectivity of the post-
optimization circuit. Clearly the additional constraints
resulted in an unfavorable power reduction, but these are
the results of necessities and requirements of a real-life
design flow.

C. High-Vt compared to a Formal Circuit Tuner
In Table III, we use the proposed method in conjunction

with a formal circuit optimization tool [3] that yields
almost optimal transistor sizes for area minimization under
timing and other constraints. The optimizer works on the
objective of reducing area based on timing constraints and

it results in smaller widths for transistors located in non-
critical paths. Hence the leakage and dynamic power could
be reduced without affecting the critical paths and timing
requirements. The optimizer operates on delay sensitivities
of each CCC with respect to device widths. For each
circuit, three different runs are performed: the first with the
formal optimization tool that carries out transistor sizing
only, the second with the proposed method in high-Vt
assignment only, and then a cascade run in which the

proposed high-Vt assignment procedure is called after the
formal optimization tool. In these three runs, we preserve
the minimum slack of the circuit, and honor all the
constraints required from hierarchy and layout. The results
suggest that transistor-width optimization alone to
minimize area is inferior in terms of leakage power to our
approach where leakage is targeted for the optimization,
and that both methods complement each other and produce
the best results when used together.

TABLE II
POWER REDUCTIONS BY HIGH-V

D. Joint High-Vt and Device Length Biasing
As the last experiment, we evaluate the performance of

the proposed method with multiple types of moves. As
mentioned before, high-Vt assignment and longer device
length may be used to mitigate leakage of devices located
in non-critical paths. To compare the benefits of these
techniques when applied individually and jointly, we
perform the proposed algorithm with three different
schemes with identical timing and other constraints: CCC-
level high-Vt assignment only; simultaneous CCC-level
high-Vt assignment and CCC-level channel length biasing;
CCC-level high-Vt assignment followed by transistor-level
channel length biasing. For these experiments, we allowed
the device length to increase by 2nm or 4nm from the
nominal value.

The second scheme in this experiment models the effect
of design-time channel-length optimization, since the

T, BY SIMULTANEOUS HIGH-VT AND WIDTH DOWNSIZING AND HIGH-VT UNDER GROUPING CONSTRAINTS
After high-V After high-V After high-Vt t and width

downsizing
t

with grouping
Initial Circuit Initial
dynamic leakage
power power Leakage Total power Leakage Total power Leakage

reduction reduction reduction reduction reduction
#4 1.06mW 1.24mW 69% 33.9% 69% 60.7% 32.6%
#5 0.20mW 0.25mW 33.8% 16% 42.1% 33.64% 12.3%
#6 0.99mW 1.23mW 40.93% 19.38% 45.6% 37.9% 9.1%
#7 1.84mW 2.23mW 28.35% 13.66% 14.6% 11.1% 10.4%
#8 5.01mW 5.93mW 22.29% 10.81% 31.8% 27.0% 8.2%
#9 4.67mW 5.67mW 15.59% 7.46% 20.9% 16.47% 7.3%
#10 4.93mW 5.96mW 25.74% 12.37% 32.16% 26.37% 9.1%
#11 8.66mW 10.6mW 40.71% 19.46% 35.75% 29.44% 11.5%
#12 3.69mW 4.51mW 22.20% 10.59% 36.47% 29.12% 6.2%
#13 5.17mW 6.30mW 36.77% 17.59% 36.42% 30.06% 20.1%

TABLE III

POWER REDUCTION BY NEAR-OPTIMAL MIN-AREA TRANSISTOR SIZING, HIGH
VT ASSIGNMENT, AND BY THE SEQUENTIAL RUN OF THE TWO

High-V Both high-VCircuit Width
downsizing

t t and
widthdownsizing

 Total Leakage
power

Total Leakage
power

Total Leakage
power power

reductio
n

power
reductio
n

power
reductio
n

reductio
n

reductio
n

reductio
n

#14 26.87% 25.98% 26.82% 16.05% 41.09% 34.38%
#15 19.57% 20.06% 35.95% 20.24% 45.65% 34.78%
#16 8.88% 8.91% 19.22% 11.64% 25.58% 19.01%
#17 11.05% 10.98% 11.82% 6.64% 22.44% 17.4%
#18 7.84% 6.69% 10.21% 4.96% 14.78% 10.09%

 9

changes perform on each CCC and can be followed by
post-optimization tasks. The third scheme models the effect
of post-layout channel-length optimization, since transistor-
level optimization results can be applied directly to the
final layout at the very end of the design flow.

The results in Table IV suggest that the additional
flexibility of channel length biasing results in a 5-8%
further leakage reduction compared to only using High-Vt
by varying doping concentration. For these testcases, which
are based on 65nm technology, the primary reason for
these extra power savings is that channel length biasing is a
more fine-grain operation than a Vt change, and therefore
help to reach better a power-delay trade-off point in the
solution space. We expect the device length biasing would
yield more benefits for 45nm technology.

V. CONCLUSION
We proposed a graph-based optimization method to

perform power minimization in transistor-level circuit
designs. Our approach performs power-reduction actions
on the circuit and results in low power circuits with given
timing constraints. We also honor constraints that are
typical in real-life production lines. This method is
implemented in an industrial tool that is incorporated into
an industrial design flow and currently yields reliable
results.

The proposed method is based on an extended timing to
evaluate the power reduction actions. The proposed method
evaluates the impact of each action on power and timing,
and formulates a maximum independent set problem.
Although not performed explicitly, the method considers
delay budgeting and evaluates only feasible moves that are
allowed in a given path. The iterative nature of the
algorithm results in high-quality results.

We emphasized an important aspect of real-life design
environments: structural constraints that must be honored
for physical and methodological reasons. These issues are
solved by the concept of grouping which lets the annotation
of the suggested changes with minimum effort. Besides the
operations of width sizing, channel length biasing and Vt

assignment of which experimental results are presented in
this paper, the suggested approach can also be used with
other power minimizing actions, including oxide thickness
assignment, Vdd island selection, etc. Any discrete actions
that impact the design in a local manner can be
incorporated in the proposed framework.

TABLE IV
POWER REDUCTION BY CHANNEL LENGTH BIASING

CCC-High-V CCC-High-VCircuit Joint CCC-level
High-V

REFERENCES
[1] Z. Chen, M. Johnson, L. Wei and K. Roy, “Estimation of standby

leakage power in CMOS circuit considering accurate modeling of
transistor stacks,” Proceedings of International Symposium on Low
Power Electronics and Design, pp. 239--244, 1998.

[2] C. Chen, A. Srivastava and M. Sarrafzadeh, “On gate level power
optimization using dual-supply voltages,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 9, no. 5, pp. 616--
629, 2001.

[3] A. R. Conn, I. M. Elfadel, W. W. Molzen, P. R. O'Brien, P. N.
Strenski, C. Visweswariah and C. B. Whan, “Gradient-based
optimization of custom circuits using a static-timing formulation,”
Proceedings of Design Automation Conference, pp. 452--459, 1999.

[4] J. Darringer etal., “EDA in IBM: Past, Present and Future,” IEEE
Transactions on Computer Aided Design of Integrated Circuits and
Systems, vol. 19, no. 12, pp. 1476--1497, 2000.

[5] J. P. Fishburn and A. E. Dunlop, “TILOS: a posynomial
programming approach to transistor sizing,” International
Conference on Computer-Aided Design Digest of Technical Papers,
pp. 326--328, 1985.

[6] K. Fujii, T. Douseki and M. Harada, “A sub-1V triple-threshold
CMOS/SIMOX circuit for active power reduction,” International
Solid-State Circuits Conference Digest of Technical Papers, pp. 190-
-191, 1998.

[7] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum
flow problem,” Proceedings of Symposium on Theory of Computing,
pp. 136--146, 1986.

[8] International Technology Roadmap for Semiconductors,
Semiconductor Industry Association, 2004. Available at
http://public.itrs.net

[9] D. Kagaris and S. Tragoudas, “Maximum independent sets on
transitive graphs and their applications in testing and CAD,”
International Conference on Computer-Aided Design Digest of
Technical Papers, pp. 736--740, 1997.

[10] M. Ketkar and S. S. Sapatnekar, “Standby power optimization via
transistor sizing and dual threshold voltage assignment,”
International Conference on Computer-Aided Design Digest of
Technical Papers, pp. 375--378, 2002.

[11] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, B. Thompson
and K. Keutzer, “Minimization of dynamic and static power through
joint assignment of threshold voltages and sizing optimization,”
Proceedings of the International Symposium on Low Power
Electronics and Design, pp. 158--163, 2003.

[12] P. Pant, V. K. De and A. Chatterjee, “Simultaneous power supply,
threshold voltage, and transistor size optimization for low-power
operation of CMOS circuits,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 6, no. 4, pp. 538--545, 1998.

[13] J. M. Shyu, A. Sangiovanni-Vincentelli, J. P. Fishburn and A. E.
Dunlop, “Optimization-Based Transistor Sizing,” IEEE Journal of
Solid Slate Circuits, vol. 23, no. 2, pp. 400--409, 1988.

[14] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda and D. Blaauw,
“Duet: an accurate leakage estimation and optimization tool for dual-
V_t circuits,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 10, no. 2, pp. 79--90, 2002.

[15] A. Srivastava, D. Sylvester and D. Blaauw, “Power minimization
using simultaneous gate sizing, dual-Vdd and dual-Vth assignment,”
Proceedings of Design Automation Conference, pp. 783--786, 2004.

[16] Q. Wang and S. B. K. Vrudhula, “Static power optimization of deep
submicron CMOS circuits for dual V_t Technology,”

t t
followed by
transistor-level
Channel-length

t and
Channel-length

 Total Leakage
power

Total Leakage
power

Total Leakage
power power

reductio
n

power
reductio
n

power
reductio
n

reductio
n

reductio
n

reductio
n

#19 57.87% 50.28% 64.05% 54.91% 63.46% 54.74%
#20 20.9% 18.24% 25.56% 21.96% 24.74% 21.32%
#21 44.78% 38.94% 52.79% 45.29% 52.82% 45.32%
#22 40.67% 35.06% 46.65% 39.7% 45.03% 39.1%

 10

International Conference on Computer-Aided Design Digest of
Technical Papers, pp. 490--496, 1998.

[17] L. Wei, K. Roy and C. Koh, “Power minimization by simultaneous
dual-Vth assignment and gate-sizing,” Proceedings of IEEE Custom
Integrated Circuits Conference, pp. 413--416, 2000.

[18] P. Gupta, A.B. Kahng, P. Sharma, and D. Sylvester, “Gate-length
biasing for runtime leakage control,” IEEE Transactions on
Computer-Aided Design, pp. 1475-1485, August 2006.

[19] C. L. Berman, D. J. Hathaway, A. S. LaPaugh, L. H. Trevillyan,
"Efficient techniques for timing correction," IEEE International
Symposium on Circuits and Systems, pp. 415-419, 1990.

	I. INTRODUCTION
	II. Problem Statement
	A. Definitions and Assumptions
	B. Problem Statement
	C. Additional Constraints

	III. Proposed Method
	Weighted Maximum Independent Set
	B. Handling Constraints

	IV. Results
	A. Experimenting Different Modes
	B. High-Vt and Width Downsizing with the Grouping Contstraints
	C. High-Vt compared to a Formal Circuit Tuner
	D. Joint High-Vt and Device Length Biasing

	V. Conclusion

