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Abstract

All-to-all communication is a well known performance bottleneck for many applications. For such applications
to scale to a large number of processors, optimizing all-to-all communication is critical. In this paper, we analyze
the performance of all-to-all communication on the Blue Gene/L torus interconnection network, which has limited bi-
section bandwidth. The torus interconnect topology has link contention even for all-to-all communication operations
with short messages. We observed that the performance of all-to-all communication also depends on the shape of
the processor partition. We present a performance analysis of all-to-all communication on mesh and torus partitions
of various shapes and sizes. We then present optimization schemes to enhance the performance of all-to-all commu-
nication. The large message optimization substantially improves all-to-all performance on an asymmetric torus. In
particular, performance improved from about 70% to over 99% of peak on a 20,480 (40 × 32 × 16) node configura-
tion, which was the largest machine to which we had access. The short message optimization can double all-to-all
performance for very short messages.

1 Introduction

Since collective communication operations, such as all-to-all communication can consume a significant share of the
application run-time on large machines, optimizing such operations is necessary to achieve good scaling. In this paper
we study all-to-all personalized exchange, where every processor sendsdistinct data toall other processors. There
are different types of communication architectures currently available to run scientific applications, using different
network topologies such as Fat-trees, Meshes, Tori and Hypercubes. There are also several communication opti-
mization algorithms published in literature being used for the different communication architectures. Optimization of
all-to-all communication on fat-tree networks is presented in [7, 10], while on meshes and tori have been presented
in [9, 11]. In this paper we present a performance analysis and optimization strategies for all-to-all (or AA for brevity)
communication on Blue Gene/L.

The Blue Gene/L machine [4] is a low-power massively parallel supercomputer with a 65536 processor installation
at the Lawrence Livermore National Laboratories. The Blue Gene/L machine has a three dimensional torus intercon-
nect for application data communication. The Livermore machine is configured as a64 × 32 × 32 torus. When the
number of nodes in each dimension is the same we call the torussymmetric, otherwise we call itasymmetric. On a
symmetric three dimensional torus withP nodes, the bisection bandwidth isO(P 2/3), hence it is critical that all-to-all
traffic can easily achieve peak performance on the available bisection bandwidth. Studies in [1] and [2] show that all-
to-all achieves excellent performance on Blue Gene/L machines having a symmetric torus; typically over 95% of peak
is achieved for long messages. However, performance can suffer on an asymmetric torus due to network contention;
typically 70 to the low 80’s percent of peak is achieved for long messages.



In this paper, we demonstrate that all-to-all performance can be substantially improved on Blue Gene/L by pre-
senting and measuring optimization schemes for bothasymmetric toriandshort messages. In addition, we present
performance models and analysis of all-to-all communication on symmetric and asymmetric Blue Gene/L torus parti-
tions. We hope the performance analysis and the optimization techniques presented in this paper can be also applied
for more complex many-to-many communication patterns and benefit many applications on Blue Gene/L.

We explore both direct and indirect strategies to optimize all-to-all communication. Direct strategies [9, 11] try to
minimize network contention and are typically more suitable for large messages. We explore both deterministic and
adaptive routing algorithms to optimize direct all-to-all communication. Indirect strategies route packets or messages
through intermediate nodes. Message combining based indirect strategies [9, 3, 6] minimize startup overheads for all-
to-all communication and are suitable for short messages. This technique was effectively used to optimize the HPCC
Randomaccess benchmark [5] on Blue Gene/L which has a similar communication pattern as all-to-all communication.
The Randomaccess optimization however had two phases of forwarding and hence had a significant CPU overhead.
Our indirect strategies use only one phase of forwarding, hence allowing the processor core to keep the necessary
links busy in the all-to-all communication operation. Traditionally, indirect strategies have been used to optimize
short messages. However, we present two indirect strategies to optimize network throughput for large messages and
startup overheads for short messages respectively. Our large message algorithm has achieved over 95% of peak on
all asymmetric partitions that we have tested. Thus a strategy that uses a direct algorithm on a symmetric torus and
an indirect algorithm on an asymmetric torus delivers over 95% of peak. Our short message optimization, based on
algorithms in [3, 6], can more than double all-to-all performance for short 8-byte all-to-all operations.

The next section provides a summary of the Blue Gene/L architecture and a performance model for message passing
on the Blue Gene/L torus interconnect. Section 3 presents and models direct strategies for all-to-all communication.
Indirect strategies are presented in Section 4, and we conclude in Section 5.

2 The Blue Gene Machine

The Blue Gene/L (BG/L) machine has been designed with a full system-on-chip model with two processor cores
and all network interfaces and routing integrated onto the same chip. BG/L uses a torus interconnect for the majority
of application messaging. A detailed description of the BG/L torus network may be found in [1]. Since BG/L does not
have a DMA engine, the cores are responsible for managing communications, specifically for injecting packets into
network injection FIFOs and removing packets from network receptions FIFOs at the destination node. BG/L uses
virtual cut through routing, so the packets at intermediate nodes do not require handling by the cores. Each node on
the BG/L torus is connected with six neighbors. When the data is in L1-cache, low level communication APIs can
achieve aboutfive links throughput for near neighbor communication. When the data is not in L1 the processor can
only keep aboutfour links busy. The lower throughput is due to the relatively slow CPU (compared to the network)
and the relatively high packet processing overheads. Even on a small BG/L, a 512 node (8x8x8) midplane, the data
for all-to-all will not fit in the L1-cache for message sizes larger than 64 bytes, so in the rest of paper we assume that
each processor core can keep about four links busy. Note that on a midplane, the average packet in an AA takes 2 (=
8/4) hops in each of the three dimensions, so on average 1/6 of the packets arriving at a node will be destined for that
node. As there are six links/node, the processors need to sustain only one link of throughput. In general, the processing
demand is proportional to one over the average number of hops, which decreases as the machine size increases.

The torus router has four virtual channels, two dynamic, one “bubble normal” (for deterministic routing and dead-
lock prevention) and one for high priority messages. Application messages typically do not use the high-priority virtual
channel. The torus router supports both deterministic and adaptive routing. Adaptive routing is enabled by default on
the two dynamic VCs. For deterministic routing the packets have to be routed on the bubble normal VC. Deterministic
routing, and selection of the “escape” VC for deadlock prevention are done in dimension order (first X, then Y, then
Z).



2.1 Communication Model

In this paper we use the following model, for the time to send a point-to-point message,Tptp is given by

Tptp = α + (m + h) ∗ C ∗ β + L (1)

• α is the total processor and network startup overhead for sending each message that cannot be pipelined.

• β is the per byte network transfer time. The byte here is being sent out from main memory.

• m is the size of the message.

• C is the network contention delay experienced by the message, which actually depends on the message size.

• h is the size of the software header in the message.

• L is the network latency. The network latency depends on the number of hops of the packet traverses. In all-to-
all communication this latency term is not very critical, as each node sends many packets that are pipelined on
the network.

Analyzing Network Contention:As the BG/L torus does experience network contention, we now present an an-
alytical technique to estimate the contention parameter for AA. On the BG/L torus withP processors, whereP =
Px × Py × Pz andM = max(Px, Py, Pz), let each processor sendn packets to every other processor withpayload
bytes of application data in each packet. So the network would have to moveP 2n packets in the all-to-all operation.
Now each of these packets would travelM/4 links on an average, along the maximum sized dimension. The total
number of links in the maximum dimension is2 ∗ P as the interconnect has a torus topology. Hence the network time
to do AA is given by :

T = (P 2 ∗M/4 ∗ n ∗ payload ∗ β)/(2 ∗ P ) = P ∗ (M/8) ∗m ∗ β (2)

From Equation 2 we can conclude that the contention parameter isC = M/8.
Measuring model parameters: The model parameters are measured from ping-pong benchmark and measuring

all-to-all performance on with small messages on smaller processor partitions.

3 All-to-all Communication

All-to-all communication algorithms can be classified as direct or indirect[8]. With direct algorithms each processor
sends its data directly to the destination processors, typically through point-to-point messages. Direct algorithms aim
at exploiting specific communication architectures and emphasize sequencing of messages to avoid link and node
contention. In the indirect approach [3, 6], processors combine messages into larger data blocks which are sent to
intermediate processors to be routed to the final destination. Indirect approaches use message combining to reduce
the total number of messages sent, and are hence most useful for small messages; while direct approaches minimize
network contention overheads making them suitable for long messages.

In this section, we analyze the performance of direct strategies on the BG/L torus. The cost of implementing direct
all-to-all communication, where each processor sends point-to-point messages to the (P-1) destinations is given by
Equation 3 using the model presented in Section 2.1. The derivation is intuitive, the cost for AA is the non-pipelinable
startup overhead and the time to get all the data on the network. The messages may then get stuck in network buffers
resulting in an additional contention delay given by the(M/8) term. Here M is the size of the longest dimension of
the torus network.

Tsimple direct ≈ P ∗ α + P ∗ (M/8) ∗ (m + h) ∗ β (3)
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Figure 1. AR strategy performance and prediction on an 8x8x8 mid-plane of Blue Gene/L

MPI All-to-all: On BG/L, the MPI all-to-all [2] library call is implemented with a single message per node to amor-
tize the startup costs of the all-to-all across all destinations. Implementing AA with point-to-point communications
incurs a penalty for the allocation and deallocation of each message object. Additional overhead is incurred from
protocol overhead and message startup times for each message. This production MPI all-to-all also injects packets in a
random permutation to smoothen the areas of link contention on the network. There is a tuning parameter which injects
multiple packets per destination before moving to the next destination; this parameter balances cache and memory sys-
tem performance against network performance. Depending on partition shape and size, the optimal tuning parameter
is usually 1 or 2 full-sized 256-byte packets per destination (such a packet generally contains 240 bytes of payload
data).

AR Strategy: In this paper, all the presented results use a native communication library (below MPI) developed by
the authors. In this framework we redesigned the above randomized packet all-to-all scheme with lower overheads. We
refer to this optimization strategy asAR in the rest of the paper. This scheme also avoids overheads of the MPI layer.
It also use a different randomization scheme than MPI. This low level optimization library allowed us to experiment
with new direct schemes for all-to-all communication which are presented in Section 3.2. On a 512 node (8× 8× 8)
midplane of Blue Gene/L the AR scheme has a throughput of 99% of peak compared with 97% for MPI for a 4KB
message.

We have measured the startup overhead (α) of the AR scheme to be about 450 processor cycles or640µs for each
destination. We also measured the per-byte term (β) to be about 6.48ns/byte. The software header is about 48 bytes
and it sent only in the first packet. The software header makes the shortest all-to-all to packet to be 64 bytes. On the
Blue Gene/L torus network, packet sizes that are multiple of 32 bytes (up to 256 bytes) can be sent on the network.
We are in the process of optimizing our runtime to reduce overheads allowing it to send 32 byte packets.

3.1 Performance on Symmetric Torus

All the results reported in this paper were run on the BG/L system at the IBM T.J. Watson Research Center; the
largest partition on this machine is40×32×16. Figure 1 shows the performance of the adaptive routing strategy (AR)
on an8× 8× 8 mid-plane (512 nodes) of Blue Gene/L. Figure 2 shows the performance of the AR all-to-all on 4096
nodes of Blue Gene/L. The figures also show the performance predictions from the model presented in Section 2.1 and
the achievable peak performance with no startup overheads.
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Figure 2. AR strategy performance and prediction on an 16x16x16 partition of Blue Gene/L

Partition Size AR % of Peak achieved
8 98.2
16 97.7

8 x 8 98.7
16 x 16 99.7
8 x 8 x 8 99.0

16 x 16 x 16 99.0

Table 1. All-to-all peak performance of various symmetric partitions for large messages

Table 1 presents the peak performance of all-to-all communication symmetric lines, planes and 3D torus partitions.
The percent of peak is computed using equation 2 which does not account for the start up overheads. Observe that on
these symmetric torus partitions, where Xsize=Ysize=Zsize for a 3D torus, where Xsize==Ysize for a 2D torus, and
for a 1D torus line, the direct AR strategy achieves very close to peak performance. This is because randomization and
adaptive routing effectively prevent links and routers on the network from becoming hot-spots. For large messages,
over 99% of peak is acheived on a 3D torus, meaning that theaveragelink utilization during the all-to-all is over 99%.
Performance increases rapidly: on 512 nodes over 90% of peak is achieved for messages as small as 1 packet or a 240
byte payload. (This is not clearly evident from Figure 1, as the message sizes in the all-to-all are not multiples of 240.)

3.2 Performance on Asymmetric Meshes and Tori

Unlike meshes, both asymmetric and symmetric tori should have no hot-spots due to the torus links. Table 2 shows
the percent of peak achieved for large messages using the AR all-to-all strategy on various partition sizes of BG/L.
The percent of peak is computed on the message size which can fit in memory, or when the percent of performance
asymptotically reaches the maximum possible value. Figure 3 shows plots the peak bisection bandwidth per node and
the bandwidth achieved by the AR strategy for one packet and for large messages. Notice that a one packet all-to-all
achieves performance quite close to the achievable throughput. For symmetric partitions (512 nodes and 4096 nodes)
AR achieves very close to peak throughput.

As shown in [1] and [2], we also observe that performance of all-to-all degrades on an asymmetric torus, even with



Partition Size AR % of Peak achieved
8 x 2M 91.8
8 x 4M 89.0
8 x 16 85.7
8 x 32 84.0

8 x 8 x 2M 90.1
8 x 8 x 4M 87.7
8 x 8 x 16 81.0
8 x 16 x 16 87.0
8 x 32 x 16 73.3
16 x 32 x 16 71.0
32 x 32 x 16 73.6

Table 2. AA performance using the AR strategy for large message sizes on various processor partitions.
An “M” indicates that the partition is a mesh rather than a torus in that dimension.
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the randomized AR all-to-all strategy. This is due to contention inside the network caused by the asymmetry which
induces unequal utilization on the links. Note that in a2n×n×n torus, the average number of hops in the X dimension
is twice that of the Y and Z dimensions, so in an all-to-all, the X links have twice the utilization of the Y and Z links.

The torus router on BG/L is input-queued [1] with support for both deterministic and adaptive routing on multiple
virtual channels. With deterministically routed packets there is only one direction and virtual channel available to
a packet. Adaptive routing uses a JSQ (join the shortest queue) algorithm to find a destination direction and virtual
channel. Directions which have more downstream tokens and link availability are preferred Hence, adaptive routing
tries to ensure that all directions are equally loaded for uniform traffic.

In all-to-all, on an asymmetric torus, network buffers can become full and degrade throughput. Suppose the longest
dimension is X, so the X links are most heavily utilized. With dynamic routing, packets can enter the network on the
less used Y and Z links. As the X links are busy, packets tend to move along Y and Z until no more hops are available.
Eventually packets at the head of a Y or Z VC must make an X hop, however as there tend to be many packets waiting
for the X link, a queue develops behind such a packet, eventually filling the VC and preventing packets on other
nodes from using this Y or Z link into the node. In this way, contention builds up inside the network. Even with this
phenomenon, BG/L still delivers over 70% of peak on all-to-all.

To minimize network contention we explore two new direct strategies strategies for all-to-all communication on
BG/L. The are described below :

• Throttling Packets: As adaptive routing leads to congestion, we explore a strategy to limit the number of packets
in the network by injecting packets at a rate driven by the bisection bandwidth (equation 2). This may prevent
switches from getting overloaded and congested.

• Deterministic Routing: Here the packets are sent in a random order on the deterministic bubble virtual channel.
The dimension-ordered routing prevents packets packets on a Y VC to wait for an X link as it happens in dynamic
routing, thus making network congestion less likely in some cases. We expect this strategy to work best if X is
the longest dimension, since then packets already in the network that are changing dimension tend to wait for less
utilized links. Notice that if the longest dimension is, say Y, and a packet at the head of a Y VC is turning onto a
Z link, then there is a likelihood that the outgoing Y link from this node will be idle since with high probability
packets waiting in an injection FIFO cannot enter the network on this Y link (since the deterministically routed
packet must enter on an X link if it has X hops to make). Thus if the longest, bottleneck, dimension is not X, we
expect a dropoff in performance compared to a similar sized machine whose longest dimension is X.

The percent of peak throughput achieved by the different strategies in shown in Figure 4. Note that onsymmetric
tori, deterministic routing is not as effective as adaptive routing because of head-of-line blocking and the fact that most
packets must be injected onto an X link. Deterministic routing achieves greater than 90% of peak on2n × n × n
partitions. This because the X links are the bottleneck and deterministic routing starts packets off in the X dimension.
Note in particular that, as mentioned above, the performance of DR on a16 × 8 × 8 partition is better than on an
8×16×8 or an8×8×16 partition. For other shaped partitions, sometimes DR is better than AR (e.g, on8×32×16
DR achieves 86% of peak compared to AR’s 77% of peak), but sometimes it is worse (e.g., on8×16×16 DR achieves
only 67% of peak compared to AR’s 86% of peak).

The throttling enhancement to adaptive routing only helps by about 2-3% on 1024 nodes, suggesting that it does not
prevent routers from being congested. From Figure 4, we can conclude that the performance direct strategies is not
optimal for all processor partitions. This has motivated us to study indirect strategies presented in the next Section.

4 Indirect Strategies

In the last section we presented direct optimization schemes for all-to-all communication. The performance of
these schemes range between 71-99% of peak depending on the shape of the torus partition. We now explore indirect
strategies, which route all-to-all data into intermediate nodes. The intermediate node may just store and forward
packets or, for short messages, coalesce data from different sources into point-to-point messages for each destination.



Figure 4. Performance for large messages and different direct strategies. AR = adaptive routing, DR =
deterministic routing

The important price paid with indirect strategies is the space required for an all-to-all is doubled for storing and
processing packets to other destinations. We explore both the scenarios of packet forwarding and coalescing.

4.1 Two Phase Schedule Strategy

In practice, we observe that many important partitions of BG/L are of the type2n×n×n or 2n× 2n×n. One can
think of such partitions as a set of symmetric planes along a torus line in a third dimension. As the direct strategies
hit near-peak performance for both torus lines and symmetric planes, we therefore designed the following Two Phase
Schedule (TPS) all-to-all optimization strategy to take advantage of the high performance on lines and symmetric
planes. This strategy essentially pipelines one all-to-all along a line with a second all-to-all along a symmetric (or
nearly symmetric) plane.

• Phase 1: Pick a dimension to be the “linear” dimension. Each node sends packets along this linear dimension
dimension to intermediate nodes. The intermediate node for a given final destination is chosen to have the same
coordinate in the linear dimension as the final destination. For example, on a2n× n× n torus, the (best) linear
dimension is X and packets will be sent along the X dimension. Each source(x1, y1, z1) will send packets to
intermediate node(x2, y1, z1) for all destinations(x2, y2, z2).

• Phase 2: Packets are forwarded from the intermediate nodes along the other two “planar” dimensions. In the
2n× n× n example, intermediate node(x2, y1, z1) sends its messages to final destinations(x2, y2, z2) in this
phase and thus only uses the Y and Z dimensions. This is done in a pipelined fashion allowing Phase 1 and



Partition Size Partition Shape Two Phase Percent of PeakPhase 1 Dimension
512 8 x 8 x 8 77.2 Z
1024 16 x 8 x 8 99.0 X
1024 8 x 16 x 8 98.9 Y
1024 8 x 8 x 16 97.9 Z
2048 16 x 16 x 8 97.5 Z
2048 16 x 8 x 16 97.4 Y
2048 8 x 16 x 16 97.2 X
4096 8 x 32 x 16 99.5 Y
4096 16 x 16 x 16 96.1 X
8192 16 x 32 x 16 99.8 Y
8192 32 x 16 x 16 99.8 X
16384 32 x 32 x 16 96.8 Z
20480 40 x 32 x 16 99.5 X

Table 3. All-to-all performance use the Two Phase Schedule (TPS) algorithm for long messages

Phase 2 to overlap. The pipelining is possible as some of the injection FIFOs arereservedfor each of the phases,
i.e., Phase 1 packets are neverblockedbehind a Phase 2 packet in a network injection FIFO, and vice versa.

While we are free to chose the linear dimension to be any of the three dimensions, ideally we want to select it so that
the remaining planar dimensions are symmetric, if possible. Otherwise, we select it to be the longest dimension. For
example, in a2n× 2n× n torus, the linear dimension would be Z. If the planar dimensions are symmetric, we expect
near-peak performance on both the linear phase and the planar phase. If the planar dimensions are not symmetric,
then choosing the linear dimension to be the longest dimension optimizes performance for that dimension, which is
the bottleneck. Although the resulting planar phase may not operate at peak, it need not achieve peak in order for the
overall algorithm to operate at peak. Based on the performance models shown earlier, if the longest dimension has size
n and the second longest dimension has sizem, then we expect near-peak performance if the planar phase operates at
at least(m/n)× 100% of peak.

A similar scheme can also be designed over a 3D torus with two phases of forwarding, where are packets are first
routed along X links and then turned around in software along the Y dimension and then routed in software along the
Z dimensions; this approach is similar to the HPCC Randomaccess strategy described in [5]. We believe the Two
Phase scheme gains from lower overheads as it has only one forwarding phase. The performance results show that it
can achieve near-peak performance on various asymmetric partitions.

Distinction from deterministic routing: One may wonder why the above indirect scheme is different from determin-
istic routing at least on some partition sizes. The key difference here is that we use adaptive routing on the Dynamic
VC for both phases. This allows 3 network virtual channels (2 dynamic VCs and 1 bubble VC) to be dedicated to
the all-to-all operation. With deterministic routing only the bubble VC would be available for the all-to-all operation
which may result in head of line blocking and congestion. In addition, in the Two Phase algorithm, packets sent along
the linear dimension never compete for links and VC FIFO space with packets sent along planar dimensions. For
example, a Y-Z planar packet is never queued behind an X linear packet in a VC FIFO, whereas with deterministic
routing a packet with only Y and Z hops remaining may be queued (in an X VC FIFO) behind a packet with X hops
remaining.

4.1.1 Performance

The performance of the Two Phase schedule strategy is presented in Table 3. The peak performance is computed
from equation 2. The percent of peak throughput is the achieved all-to-all time divided by the peak predicted time.



Partition Size Partition Shape Two Phase Latency (ms)AR Latency (ms)
512 8 x 8 x 8 0.81 0.52
1024 8 x 8 x 16 1.64 1.25
4096 16 x 16 x 16 7.5 4.7
4096 8 x 32 x 16 8.1 12.4
16384 32 x 32 x 16 35.9 65.2

Table 4. AA 1 byte latency for different schemes

The linear dimension (Phase 1) chosen is the dimension of asymmetry or the longest dimension. In almost all cases
the indirect strategy achieves a throughput in the high 90’s percent of peak, as it can effectively minimize network
congestion. Even when the planar phase is not symmetric, near-peak performance is achieved. For example, in the
8x32x16 case, packets are fist sent along the Y axis and then on an asymmetric X-Z plane. However, as mentioned
above, the bisection bandwidth/node on the plane is twice that of the 32 way Y line, so even though the plane may not
achieve peak performance it has sufficient bandwidth for the global all-to-all to reach 99% of peak performance.

For the 512 node case, the performance is lower as the processor core is unable to keep both the all-to-all packets
along the Z dimension and the software forwarding on the XY plane going on at the same time with full throughput.
We are working on optimizing the runtime to optimize the 512 node case. But on 512 nodes, the direct strategies
already achieve full throughput.

Table 4 shows the latency for a 1byte message between the AR and indirect strategies. For small processor partitions
the Two Phase schedule algorithm has higher latency as packets are passed into an intermediate node, which increases
latency by a few hundred processor clocks. However, as the smallest packet sent in our messaging runtime is 64 bytes
we have observed contention on larger configurations. Observe that with asymmetric partitions larger than 4096 nodes
the indirect strategy is faster than the direct adaptive routing scheme. This shows that there is significant network
contention even with 64 byte packets on the Blue Gene/L torus.

4.2 Optimizing Short All-to-all communication

So far we have considered all-to-all communication performance on relatively large messages. We observed that
performance reaches close to peak performance for short messages a few packets in size. However, as the shortest
packet in the AR protocol is at least 64 bytes, we believe that we can further optimize packets in the 1-64 byte range.

We use a 2D Virtual mesh based message combining scheme presented in [3, 6]. Here a2D virtual meshor size
P = Pvx × Pvy is mapped to a 3D torus processor partition. A similar 3D Mesh (on a 3D torus) optimization for the
GUPS benchmark is presented in [5]. In our 2D virtual mesh scheme data exchange happens in two phases :

• Phase 1: In the first phase each processor exchanges data with its neighbors in a row of the virtual mesh. Each
processor combines the data to thePvy destinations in column j and sends it to itsjth row neighbor in the virtual
mesh. Each processor sendsPvx messagesPvy ∗m bytes in size.

• Phase 2: Here each processor exchanges data with its column neighbors in the2D virtual mesh. The messages
from the row neighbors in phase 1 are sorted according to the column destinations and then forwarded to that
column neighbor. Here, each processor sendsPvy messagesPvx ∗m bytes in size.

This scheme is similar to the Two Phase schedule scheme presented in the previous section when the 2D virtual
mesh is aligned with the coordinates of the 3D torus, ie when a row or column of the virtual mesh is a plane in the 3D
torus. We have observed that for the best performance the sizes of rows and columns should be similar. So we choose
a decomposition which keeps number of rows and columns to be about the same.

In both phases, each processor sendsP ×m bytes of data. Equation 4 gives the predicted performance for the 2D
virtual mesh strategy. There are two additional termsγ andproto. The termγ refers to memory copying overhead
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Figure 5. VMesh AA performance prediction on a 512 nodes

to move data from row messages to column messages on the intermediate node. We estimate the copying overhead
to be about 1.1byte/cycle or 1.6ns/byte for short copies. The termproto is the protocol header carries the size of the
message and the source and is about 8 bytes in size. It is different and smaller the software header ’h’ presented
before for direct strategies and the Two Phase scheduling scheme. As phases do not overlap, each message is injected
twice into the network and this optimization may not be effective for larger messages. The other difference with other
strategies presented before is that we use message passing as opposed to a packet based communication here resulting
is a slightly higherα overhead of about 1170 processor cycles or1.7µs.

Tbgl−mesh ≈ (Pvx + Pvy) ∗ α + 2 ∗ P ∗ (m + proto) ∗ ((M/8) ∗ β + γ) (4)

When we compare equation 4 to equation 3, we find that for large processor partitions (with a large M) theβ terms
will dominate for even very short messages. Comparing the twoβ terms notice that the change-over point between AR
and vmesh scheme would be whenm = h − 2 ∗ proto bytes. Substituting h=48 and proto=8 we get the change-over
point to be about 32 bytes. As the network throughput is higher for 256 byte packets than for 32 or 64 byte packets
this change over point may actually be larger than 32 bytes.

Performance: We explored a virtual 2D Mesh of dimensions32 × 16 on an8 × 8 × 8 torus mid-plane. The 32
processors of each row of the 2D virtual mesh are spread out on half of an XY plane of the physical 3D torus. In the
first phase of the mesh strategy, all processors in8 × 4 half-XY planes perform all-to-all exchange with each other.
In the second phase, Z pencil i andi + 4 exchange messages with each other. The performance prediction of the 2D
mesh strategy is presented in Figure 5. The prediction assumesα = 1.7us, β = 6.48ns/byte, γ = 1.6ns/byte.

Figure 6 compares the performance of the virtual mesh scheme and AR direct. For very short messages the perfor-
mance of the mesh strategy is about two times better than the AR scheme on a midplane. However, for large messages
as the network term (β) is two times larger the AA time for VMesh is twice that of AR. The change over point for the
best scheme is between 32 and 64 bytes as predicted earlier.

We did a similar test run on an asymmetric8 × 32 × 16 torus with 4096 nodes. We map a 128x32 virtual mesh to
the torus with the 128 node rows of the virtual mesh mapped to the XZ planes and the columns mapped to the Y lines.
Figure 7 compares the performance of the AR, Two Phase Schedule and Virtual Mesh optimization schemes. For an
8 byte message the VMesh scheme is about two times better than TPS and three times better than the AR scheme.
The change over point between TPS and VMesh is at 64 bytes. As the AR scheme has network contention on an



Figure 6. AA performance comparison on 512 nodes

Figure 7. AA performance comparison on 4096 nodes



asymmetric torus it has lower performance as compared with the other two schemes even at 80 bytes.

5 Summary and Future Work

In this paper, we presented a performance model and measurements of all-to-all on Blue Gene/L. The performance
model was shown to be an accurate predictor of actual performance on BG/L. More importantly, we presented al-
gorithms for improving all-to-all in several important practical situations. First, for long messages, a Two Phase
algorithm was shown to substantially increase all-to-all performance on an asymmetric torus. For example, on our
largest partition (40× 32× 16), performance was increased from 72% of peak to over 99% of peak. For all partitions
test, all-to-all performance in excess of 95% of peak can be achieved by using our best algorithm: a direct algorithm
on a symmetric torus or the Two Phase algorithm on an asymmetric torus. In addition, we presented one possible in-
direct algorithm for improving small message all-to-all performance by aggregating messages. Better use of network
bandwidth is obtained by the larger packet size that comes with message aggregation. Over a two times improvement
in performance was obtained for small messages on 512 and 4096 node partitions.

Some modifications to these algorithms would be needed for production quality implementations. In particular,
extra memory has to be put aside for the intermediate node forwarding. For very large messages, one would like to
bound the amount of extra memory. To do so in a manner that guarantees that the intermediate memory is not overrun
requires some sort of flow control. This can be solved fairly easily, and we believe quite efficiently, by a credit-
based flow control algorithm in which the intermediate nodes send back short “credit” packets to the sources after
forwarding along some number of (large) packets. There is a tradeoff between the amount of intermediate memory
and the overhead (bandwidth and processing cycles) of the credit packets. Notice, for example, if one 32 byte credit
packet is sent for every ten 256 byte all-to-all packets, the bandwidth overhead is only about 1%.
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