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Abstract

Power-aware operating systems ensure that the system temperature does not exceed a threshold
by utilizing system-throttling. In this technique, the system load (or alternatively, the clock speed)
is scaled when the temperature hits this threshold. At other times, the system operates at maximum
load.

In this paper, we show that such simple system-throttling rules are in fact the best one can
achieve under certain assumptions. We show that maintaining a constant operating speed (and thus
temperature) always does more work than operating in alternating periods of cooling and heating. As
a result, for certain settings and for a reasonable temperature model, we prove that system-throttling
is the most effective temperature aware-scheduling. Naturally, these assumptions do not always hold;
we also discuss the scenario when some of our assumptions are relaxed, and argue why one needs
more complex scheduling algorithms in this case.

1 Introduction

Energy and temperature management of processor systems is an increasingly important problem as the
power consumption of these chips rises drastically with every new generation. At the same time, the
rate of technological improvements in cooling systems has not been keeping pace [3]. Naturally, this has
resulted in a large body of work that attempts to incorporate energy and temperature considerations
into processor scheduling levels. Some of these are incorporated at the system level, where the on-chip
architecture scales the speed of the processor if it is getting too hot.

With advances in processor technology, this is also possible at the operating system level since most
modern day processors have interfaces that allow the user to control its speed in real-time. The current
processors by Intel, AMD, and IBM now allow a mechanism called dynamic voltage scaling (DVS) to
control the clock speed of the processor [14] by varying the supply voltage. Most operating systems
now also include commands which allow the user to access this interface (e.g., cpufreq in Linux).

This allows the user to design efficient energy-aware algorithms (to schedule tasks and scale processor
speeds), thus improving the performance of the system subject to energy or temperature constraints. A
detailed investigation into the various trade-offs involved, the techniques utilized, and mechanisms for
implementing dynamic thermal management (DTM) can be found in [7]; observe that DVS is just one
of the mechanisms for implementing DTM. In Section 5, we describe some of these techniques in detail.

However, the focus of this paper is quite different; we try to analyze the settings under which
system-enforced throttling is sufficient. We argue that simple system-throttling rules are the best one
can do in many settings. While this may not be true in all settings, this still justifies the use of such
simple rules at a system level. We believe that the theoretical justification for the effectiveness of simple
system-throttling policies as a first-pass approach is the main contribution of this work.

To make our case, we argue that we would like to maximize the amount of work done over the
time horizon. We believe this is a good metric to consider since it is applicable in a variety of settings.
Even when the objective is more complex, this is still often a good rule of thumb: more work done is
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better. We make a clear distinction between decisions involving job selection and selection of system
operating load. We do not concern ourselves with scheduling decisions in the traditional task-scheduling
sense (which job to run next based on a certain objective, etc.), but instead with the decision of how
much processing to give to the currently active jobs. We prove that under many scenarios, simple
system-throttling rules are sufficient to guarantee the maximum amount of work done.

In Section 2, we introduce the thermodynamics models for estimating the energy and temperature
characteristics of the system. We also present our scheduling objectives, and introduce system-throttling,
a simple scheduling policy to ensure that the temperature of the system does not exceed its threshold.
The main contributions of this paper are presented in Section 3. In this section, we argue that system-
throttling is the most effective scheduling policy under a variety of circumstances, and derive expressions
for choosing the optimal load under this policy. In Section 4, we consider some extensions for which
system-throttling is still optimal. In Section 5, we closely analyze some of our assumptions, and present
scenarios where system-throttling can be improved upon by more complex scheduling policies. We also
present a short literature review of some of the work in this domain, characterizing them based on the
assumptions of the models considered. Finally, we conclude in Section 6 summarizing the contributions
of this paper.

2 Problem setting

In this section, we introduce the relevant concepts for the rest of the paper. We first present the
heat model for estimating the temperature of the system at any time. Then, we discuss the operating
constraints that the system has to enforce, and introduce system-throttling, a simple scheduling policy
for ensuring the operating constraints. We intend to argue that system-throttling is a very effective
policy for maximizing the amount of work done subject to the operating constraints.

2.1 Heat model

We assume that the system is cooled using Newton’s law; i.e. dT = ρ(Tamb − T ), where dT is the
instantaneous rate of change of temperature, Tamb is the ambient temperature (or the temperature of
the cooling medium), and ρ is a positive constant. Here, the system being modeled is the processor
itself, and Tamb is the temperature of the cooling medium. This principle of heat-loss is not exact, but
provides a good first-order approximation to the process [20].

To model the heat gain due to the load of the processors, we assume that dT = βP , where P is the
power dissipated by the processors, and β is a positive constant. Again, this model provides a good
first order approximation, and has been used often in literature [1]. Combining the two effects, one can
estimate the instantaneous rate of change of temperature as follows:

dT = βP + ρ(Tamb − T ). (1)

Equation was used in [4] to develop a thermal management scheme for determining energy consumptions
of processors on the fly. In the paper, the authors also measured their temperature estimates against
real measurements, and empirically showed that this model is very accurate.

We model the power dissipated by the processor as proposed by [22]. Thus, P = `α, where α is a
positive constant strictly larger than 1, and ` is the speed of the processor. We use processor speed and
operating load synonymously in this paper. For CMOS-based processors, it is empirically believed that
α = 3 is a good approximation [8]. For the rest of this paper, we assume w.l.o.g that Tamb = 0 (this
can be done by reducing all temperatures by Tamb).

To summarize, the instantaneous change of temperature can be modeled as

dT = β`α + ρ(Tamb − T ). (2)
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This is an ordinary differential equation that can be easily solved [17] for constant load. Let us define
τ(`) = β`α/ρ. If the load in time interval [t1, t2] is `, then we get

T (t2) = τ(`) + (T (t1) − τ(`))e−ρ(t2−t1), (3)

where T (t) denotes the temperature at time t. We also assume that at time 0, the system temperature
is Tamb. For any given load, we can calculate the temperature at any time using equation 3. Conversely,
given an initial temperature T1 and load `, we can calculate the time taken to reach temperature T2

using the following equation.

t = −
1

ρ
log

τ(`) − T2

τ(`) − T1
(4)

Similar to τ(`), we also define the load that stabilizes the system at temperature T by `(T ). This
quantity can be easily calculated as

`(T ) = (Tρ/β)
1

α (5)

2.2 Constraints and objectives

We consider a single-processor system. In section 4, we discuss the multi-processor case. We assume,
by scaling, w.l.o.g. that the maximum load of the machine is 1. Thus, at full load, the processor can
completes x units of work in x time units. Furthermore, at load `, machine can complete x units of
work in time = x/`. Conversely, if the machine runs at load ` for time t, then the amount of work done
(which we denote by W ) is equal to `t. Let the maximum system design temperature be Tmax. We can
assume that Tmax < τ(1); else the maximum system temperature will not be reached.

To meet this constraint, the system scheduler must modify the system load ` so that the temperature
stays below Tmax. Let `0 be the maximum load at which the system never reaches the maximum
temperature. This can be evaluated easily:

`0 = (Tmaxρ/β)1/α (6)

2.3 System throttling

One way to ensure that the system never exceeds Tmax is to always operate each machine at load not
larger than `0, and go full-blast while the temperature is less than Tmax. In fact, this is the most
commonly used rule for system-throttling.

1. If the temperature reaches Tmax, then the system will enforce throttling (load is set to `0).

2. If the temperature is below Tmax (due to idling periods), the system increases the load to 1 ≥
`∗ > `0, until Tmax is reached again.

In Figure 1, we plot the temperature and load of the system as a function of time for such a system
under normal operation. From time 0, the system operates at load `∗, until temperature Tmax is reached
at time t1. At this point, the system is throttled to run at load `0. Thus, the system operates in two
modes, either at load `∗, or at load `0, while ensuring that the temperature does not go above Tmax. In
Section 3, we show that such a simple throttling rule is the most effective, and show how the best value
of `∗ can be calculated. We prove that going full-blast is sub-optimal (`∗ may be less than 1, depending
on the system). Nevertheless, we show that it is optimal to operate at load `∗ until temperature Tmax

is reached, and then to operate at load `0.
In general, the scheduler can decide to go at any intermediate load (`0 ≤ ` ≤ 1) depending on

the state of the system. This can potentially depend on various factors, including information about
the tasks at hand and in the queue. Furthermore, the scheduler may choose to operate at any load
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Figure 2: Zig-zag and Constant policies

0 ≤ ` ≤ l0 so as to increase the rate of cooling. This decision may again be made based on a variety of
factors. In Section 3, we show that the simple system throttling is the most efficient operating principle
for a large range of settings.

3 Analysis and results

In this section, we present the main results of this work. We argue that the operating rules presented
in Section 2.3 maximize the amount of work done while ensuring that the system temperature does not
exceed the threshold Tmax. To make this case, consider an alternate strategy, which we shall refer to as
the Zig-zag operating policy. In this strategy, the scheduler operates between alternate stages of cooling
and heating, in an attempt to increase the amount of work done while ensuring that the maximum
temperature is below Tmax.

• The operating temperature range of this policy is [T1, T0], where T0 < Tmax.

• The operating load of this policy is `a during cooling and `b during heating. (`b < `0 < `a).

We illustrate this policy in Figure 2 using solid lines. The system operates between temperatures T1

and T0, alternating periods of cooling (load `b) and heating (load `a). We remark that all policies that
do not maintain a constant load can be characterized using an appropriately combination of Zig-zag
policies, one corresponding to each cooling and heating phase.

We refer to a policy that keeps the temperature constant as Constant. In such a policy, if the
current temperature is T0, the system operates at the load (`0) that maintains the temperature at T0.
We illustrate this policy in Figure 2 using dashed-and-dotted lines.

3.1 Outline of proof

We argue that system throttling dominates any zig-zagging strategy in two parts. First, we prove, in
Section 3.2, that given the current temperature T0, it is more effective to continue running at the speed
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Figure 3: Function F(x, 0.75, 0.5, 3)

that maintains this temperature, than to reduce the temperature to T1 and increase it back to T0. Let
the load that attains stable temperature T0 be `0; we show that it is not possible to get more work done
by alternating between stages of system cooling (load ≤ `0) and heating (load ≥ `0) until T0 is reached.
This proves that the Constant policy dominates the Zig-zag policy; see Figure 2.

Given that it is better to be at a constant temperature, it is clearly best to stay at the highest
possible temperature, which is Tmax. Therefore, it behooves us to attain this temperature soon. The
simple system-throttling rule presented in Section 2.3 achieves this goal by going at full-blast. We
show in Section 3.3 that this may be sub-optimal, and that increased performance may be achieved by
operating at load ` < 1, while increasing the system temperature to Tmax. We show this by proving
that there exists an optimal load 1 ≥ `∗ > `0 which the system should use at any point when the
temperature is less than Tmax. This load should be maintained until Tmax is attained. In Section 3.3,
we show how the optimal value of `∗ can be evaluated.

But first, we introduce the following function, which will be used repeatedly in our proofs to char-
acterize the trade-offs involved in operating at alternating periods of cooling and heating. To illustrate,
we plot the function F(x, 0.75, 0.5, 3) in Figure 3. We state the technical result in Lemma 1 without
proof since it is a tedious, but straightforward, application of univariate calculus.

F(x, p, q, α) = (x − p)log
xα − qα

xα − pα
(7)

Lemma 1. For given p, q, α such that p > q and α > 1, then F(x) has a maximizer x∗ for x > p, and
a minimizer x̂ for x < q. Furthermore, F(x1) > F(x2), for all x1 < q and x2 > p. Finally, for x > p,
the function F increases monotonically to x∗.

3.2 Keeping temperature constant

Now, we are ready to prove the main result in this paper. We show that more work is done by keeping
the temperature constant, than by decreasing it and increasing it back to the initial level. In other
words, we show that the Constant policy dominates the Zig-zag policy; see Figure 2.

Theorem 1. Let the temperature of the system be T0. Let Wz be the amount of work done by cooling
the system to temperature T1 < T0 and then increasing it back to temperature T0. Let Wc be the work
done by keeping the temperature constant at T0. Then, Wc > Wz.

Proof. Let `a be the load during the cooling phase, and `b be the load when the system heats back up
to temperature T0. Also, let `0 and `1 be the load that maintain the system temperature at T0 and T1,
respectively; in other words `0 = `(T0) and `1 = `(T1). Now, `b > `0 > `1 > `a. Also, let ta be the time
elapsed in cooling the system from T0 to T1, and tb be the time during the heating from T1 back to T0.
Therefore, Wz = ta`a + tb`b and Wc = (tb + ta)`0, and we need to prove that

(tb + ta)`0 > ta`a + tb`b
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Alternatively, we need to show that ta(`0 − `a) > tb(`b − `0). Now, from equation 4, we can evaluate

ta = −
1

ρ
log

`α
1 − `α

a

`α
0 − `α

a

tb = −
1

ρ
log

`α
b − `α

0

`α
b − `α

1

Observe that `0 and `1 are fixed data, given T1 and T2. Furthermore, given `0 and `1, we can consider
ta as a function of `a and tb as a function of `b. In equation 7, if we set p = `0 and q = `1, we have
ta(`0 − `a) = F(`a, `0, `1, α)/ρ, and tb(`b − `0) = F(`b, `0, `1, α)/ρ, Therefore, from Lemma 1, since
`b > `0 and `a < `1, we have ta(`0 − `a) > tb(`b − `0). For all values of `b > `0 > `1 > `a, we have shown
that Wc > Wz.

3.3 Aiming for Tmax

We are now interested in calculating the load that maximizes the net work done while heating the system
to attain temperature Tmax. In Theorem 2, we prove that the amount of work done is maximized for a
particular choice of ` = `∗, and show how to calculate this value.

Theorem 2. Let the current temperature be T1. Assume that we run the system at a load ` till the
system reaches temperature T2, and then operate the system such that the temperature is maintained at
T2. Let the net work done (until time infinity) be W (`). Then, W` has a unique maximizer which is
obtained by setting ` = `∗, where `∗ = min{1, max{F(`, `2, `1, α)}}.

Proof. Observe that `1 ≤ `2. We consider load ` such that ` > `2. By operating at load `, let the system
reach temperature T2 at time t. For time tb > t, let W be the work done by the time tb by operating at
load ` until time t and load `2 for the remainder. Let Wb be the work done by the time tb by operating
at load `2.

We illustrate these operating decisions in Figure 4. In the dashed-and-dotted line, we plot the
temperature and load of the system as a function of time if we operate at load ` until temperature T2 is
reached, and load `2 subsequently. With the thin solid line, we present the system operating at load `2

at all times. While the proof does not require this, we also plot the system running at full-blast (load
`m = 1) until temperature Tmax is reached using the thick solid line.

To calculate the load that results in maximum work, we need to maximize W . Since Wb does not
depend on `, we instead maximize W −Wb, since this quantity is easier to characterize. We prove that
W − Wb is maximized by `∗. Now, W = `t + `2(tb − t). On the other hand, Wb = `2tb. Therefore,
W − Wb = t(` − `2).

From equation 4, we know that time t = − 1
ρ log

`α−`α

2

`α−`α

1

. Therefore, from equation 7

W − Wb = F(`, `2, `1, α)/ρ
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From Lemma 1, we know that this function has a unique maximizer `∗ for ` > `2. If this maximizer is
greater than 1, then `∗ is set to 1, since F increases monotonically from `2 to its maximum.

Next, we prove that this unique maximizer `∗ can be calculated efficiently. In particular, this can
be evaluated to any accuracy ε in time that is a polynomial function of 1/ε.

Theorem 3. For any load `1 ≤ `2 ≤ 1 and desired accuracy of solution ε, the maximizer `∗ =
max`2≤`≤1{F(`, `2, `1, α)}} can be calculated to the nearest ε in time O(log((1 − `2)/ε))

Proof. From Lemma 1, we know that F increases monotonically from `2 to `∗; in other words there
exists a unique maximizer ˆ̀∗ to F(`, `2, `1, α) for `2 ≤ ` ≤ 1. This maximizer corresponds to load `
where the gradient of F changes from positive to negative; this can happen at most once for ` ≥ `2.
As a result, this maximum can be computed efficiently by bisection search on the gradient of F . For
desired accuracy ε, this can be done in O(log((1 − `2)/ε)) time.

4 Extensions

In this section, we discuss some examples where system-throttling is the optimal strategy for maximizing
work output subject to a temperature threshold.

4.1 Multi-processor systems

Here, we argue that system-throttling continues to dominate other scheduling policies so long as the
tasks on different processors can not be moved from one processor to another. In this setting, we assume
that each processor has a separate temperature sensor; therefore, the temperature of each processor must
not exceed Tmax. Furthermore, we assume that the loads of each processor can be chosen independent
of the load(s) of the other processor(s).

Each processor maximizes the amount of work done by choosing its operating load based on system-
throttling. As long as the objective is to maximize the amount of work done, system-throttling is still
the best scheduling policy.

4.2 Imperfect cooling

Perfect cooling assumes that the cooling system behaves ideally. This essentially corresponds to three key
assumptions made in Section 2 about the parameters in the heat dissipation model. These assumptions
characterize the cooling system, and are the following:

1. ρ is a constant. This assumes that parameter ρ does not depend on the temperature, and therefore
the rate of heat dissipation is linear in the temperature.

2. Tamb is a constant. This assumes that the temperature of the cooling medium does not change.

3. The rate of change of temperature may vary as a delayed function of the temperature; in other
words, it may depend on the temperature some t0 time units ago.

Relaxing these assumption is much harder to incorporate into the heat model, since differential
equation 2 is a function of Tamb and ρ, which now depend on T . Furthermore, they may depend on
historical values of T . (To solve this, we need to model the rate of change of Tamb and ρ as a function
of temperature and time.)

However, things are not as bad as they seem. If these assumptions are relaxed, this really manifests
itself as the power dissipation ability of the cooling system being dependent on whether the system
temperature is increasing or decreasing. We consider this state of the system as imperfect cooling. In a
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simplified setting, one can think of imperfect cooling as the phenomenon that the system takes longer
to cool down than to heat up (all other things equal); this makes intuitive sense.

One way to model this, as a reasonable approximation, is to assume that ρ can be either of two
values, ρh or ρc. Since the system takes longer to cool down than to heat up, imperfect cooling is
modeled by setting ρh > ρc. Let T be the current temperature. When the temperature is rising (i.e.,
when the load ` > `(T )), we use ρh. Similarly, when the temperature is dropping (` < `(T )), we use ρc.
This model has been used in the literature; in [4], the authors show that such a model is accurate by
comparing estimated and measured temperature.

We now prove that system-throttling is optimal even if cooling is imperfect. The argument is as
follows: If system cooling occurs at a faster rate than system heating, then any Zig-zag policy under
imperfect cooling will spend longer periods of time in the cooling phase; in Figure 2, the cooling phase
would be longer for imperfect cooling. As a result, the time-average work done during a cycle (cooling
followed by heating) is lesser for imperfect cooling. Therefore, Zig-zag policies continue to be dominated
by Constant policies when there is imperfect cooling.

5 When is system-throttling not enough?

In Section 3, we argued that system-throttling is the best operating rule under a variety of assumptions.
Naturally, this is not always true. In this section, we list each of our assumptions, and discuss the
consequences of relaxing them. We remark that these scenarios do not exclude the possibility that
system-throttling is optimal for particular problem instances; but that a carefully constructed scheduling
policy may outperform system-throttling.

5.1 Forced Zig-zag

In most practical implementations, the speed of the processor is not continuously variable; it can operate
only at certain states. In this case, one if forced to Zig-zag in an attempt to simulate the best operating
load. Some of our work in this direction is presented in [19]. In this paper, we consider settings where
the processor is forced to Zig-zag due to design constraints. We use our analysis to describe the best
Zig-zag algorithm, and present computational results that illustrate the effectiveness of our algorithm.

5.2 Non-homogeneous jobs

In many scenarios, the tasks have different performance profiles, in the sense that they have different
processor, memory and I/O requirements. The power dissipated by the system is no longer just the
power dissipated by the processor.

In such settings, it is possible to mix and match tasks with differing characteristics to reduce net
system power utilization. In [12], the authors incorporate such ideas to develop efficient an efficient
algorithm for CPU power management. In [21], the authors implement an algorithm that utilizes the
characteristics of the active jobs to scale the processor whenever it switches threads.

5.3 Movable jobs

In many multi-processor systems, it is possible to move jobs among the different processors. Thus, based
on the temperature of the various processors, a scheduling algorithm can outperform system throttling
by moving jobs between hot and cold processors. Furthermore, if the jobs are non-homogeneous, per-
formance can be further improved by utilizing the performance profiles of the jobs. In [15], the authors
assume system-throttling, and attempt to avoid scenarios where throttling may occur, either by scaling
the load, or by swapping jobs. They show that the benefits obtained outweigh the overhead of moving
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jobs around. This concept, of moving jobs between processors based on the temperature, can be thought
of as a variation on the Heat-and-Run scheduling policy, first developed in [11].

5.4 Conserving energy

In some settings, the net energy available is limited. This is more relevant to mobile computing, es-
pecially hand-held devices and laptops. Here, one is more concerned at optimizing the metric (work,
make-span, etc.) subject to a net energy availability and the maximum system temperature. In this
framework, if we have limited energy, it may make sense to run the processor at a lower load to
conserve energy. Not surprisingly, this problem is also referred to in literature as the laptop prob-
lem. It is important to re-iterate that energy-constrained problems are structurally very different from
temperature-constrained problems, and require very different solution strategies.

The laptop problem has studied in a theoretical setting, where the goal is to develop approximation
algorithms [9, 2]. Recently, there has been some theoretical results which also consider the system
temperature [1]; however, most of the papers that we are aware of consider only the energy constraint,
and not both temperature and energy thresholds.

In the practical setting, the problem has been widely studied, and many algorithms have been
proposed which extend the battery life while still satisfying various performance criteria [13, 10].

5.5 Jobs with differing importances

In the preceding sections of this paper, we have assumed that the goal is to maximize the amount of
work done over time. However, there are some scenarios where this is not the case.

The most common example where this is the case is when the jobs are heterogeneous with respect
their importance. For instance, one may wish to minimize weighted response time of various tasks in
the system. In such a setting, it might make sense to run at a lower load during low-weight jobs such
that the system can operate at a higher load when high-weight jobs arrive [19].

5.6 Temperature-aware computing centers

In this paper, we have focused mainly on temperature management of single-processor systems, and
discussed multi-processor systems briefly. We do not consider the effect of processing on the temperature
of computing centers as a whole, which has been widely studied by a variety of authors (see [5] for an
extensive survey). Some of these strategies minimize global power consumption in an effort to reduce
the cooling requirements [6, 18]. Other, more recent papers incorporate a temperature-aware workload
placement policy to increase energy savings [16].

6 Conclusions

In this paper, we argued that simple system-throttling rules are often very effective scheduling policies.
This theoretical justification for the implementation of system-throttling as an effective (often optimal)
first-pass algorithm is the key contribution of this paper.

To illustrate, we considered a single-processor system where the goal is to maximize the amount of
work done, while ensuring that that the temperature constraint is not violated. We proved that the
simple system-throttling strategy outperforms any other scheduling policy. Even though we illustrate
our arguments in a particular setting for a particular objective, the ideas presented here (in Section 3)
were shown to be applicable to a variety of scenarios.

However, our assumptions may not always hold. We also consider the effect when each of our
assumptions may not be true, discuss the kind of scheduling algorithms that perform better than
system-throttling in these settings, and list some related literature. In the future, we would like to
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consider other scenarios where system-throttling is not sufficient, and develop scheduling algorithms
that minimize other objectives subject to a temperature threshold. In such scenarios, it would also
be interesting to calculate some worst-case performance metrics for system-throttling and compare it
against the best Zig-zag algorithm.
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