
RC24336 (W0708-086) August 29, 2007
Computer Science

IBM Research Report

SERvartuka: Enhancing SIP Server Scalability with
Dynamic State Management

Vijay Balasubramaniyan*, Arup Acharya,
Mustaque Ahamad*, Charles P. Wright

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

*College of Computing
Georgia Institute of Technology

Atlanta, GA 30332

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

SERvartuka∗ : Enhancing SIP Server Scalability with
Dynamic State Management

Vijay A. Balasubramaniyan†, Arup Acharya‡, Mustaque Ahamad†, Charles P. Wright‡

†College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
{vijayab,mustaq}@cc.gatech.edu

‡Network Server System Software, IBM Research T.J. Watson, Hawthorne, NY, USA
{arup,cpwright}@us.ibm.com

ABSTRACT
A growing class of applications, including VoIP, IMS and
Presence, are enabled by the Session Initiation Protocol
(SIP). Requests in SIP typically traverse through multi-
ple proxies. The availability of multiple proxies offers the
flexibility to distribute proxy functionality across several
nodes. In particular, after experimentally demonstrating
that the resource consumption of maintaining state is signif-
icant, we define the problem of state distribution across mul-
tiple nodes when the goal is to increase overall call through-
put. Our approach for solving this problem leads to the
design and evaluation of SERvartuka, a more scalable SIP
server that dynamically determines the optimal fraction of
SIP requests to be handled statefully per server in order
to maximize call throughput. This design is in contrast to
existing SIP servers that are statically configured to be ei-
ther stateful or stateless and therefore result in sub-optimal
call throughput. We implemented SERvartuka on top of
OpenSER and measured performance benefits of different
server configurations on a BladeCenter. An example of our
results is a 15% percent increase in call throughput when
using our algorithm for a configuration of two servers in se-
quence.

1. INTRODUCTION
The Session Initiation Protocol (SIP)[1] is a control plane

protocol that is used in connection setup and teardown for
a variety of applications including VoIP, IMS[3], Presence[2]
and now 3GPP[19]. In addition, there are proposals for us-
ing SIP as an off path signaling mechanism for any kind
of data or media session[21]. In SIP, call requests traverse
through an application overlay of proxies each of which per-
forms some setup function. These functions include host
discovery, routing, maintaining state (for retransmissions,
accounting etc.) and authentication. As more applications
adopt SIP for connection handshake, the functionality pro-
vided by SIP proxies will grow. The traditional approach to
supporting this functionality is to assign each function to a
particular proxy in the application overlay. If the number of
proxies exceeds the functions that need to be provided, then
core proxies provide the necessary functionality while the re-

∗Sanskrit, adapted to all seasons.

maining proxies simply route the request. If the functions
outnumber the proxies then certain proxies perform multi-
ple functions. In either case network operators are left with
the difficult task of making this static assignment, having
to consider resources available at each proxy to get the best
call throughput. Experience has shown that such assign-
ments typically lead to resource bottlenecks and suboptimal
throughput.

We challenge the traditional approach and claim that the
most scalable mechanism would be to dynamically distribute
call functions across the servers. Each server then provides a
particular functionality for a fraction of the requests travers-
ing through the server network. Scalability is particularly
important for SIP server deployments due to the increasing
loads that need to be handled by such servers. Estimates
predict that by the year 2010, the global number of civilian
VoIP users will reach 197.2 million, about 40 times that of
the 4.8 million in 2004 [15]. Examples of current real world
deployments of SIP include AT&T, CallVantage[16], Yahoo
Messenger[18], and Vonage[17] to name a few. The large an-
ticipated VoIP user base will require an infrastructure that
is capable of handling large volumes of call traffic.

We develop SERvartuka, a SIP server that implements
the algorithm that distributes state across the server con-
figuration. In addition, the algorithm is designed such that
each server can decide the amount of state that it maintains
locally and still achieve close to optimal call throughput.
Thus, each server dynamically reconfigures itself such that
the system as a whole provides higher call throughput. For a
simple hierarchy that contains two servers in series, we show
an increase in throughput of 15% when state distribution is
determined dynamically using our algorithm compared to a
configuration where a server statically decides if it operates
in stateful or stateless mode. Since realistic deployments
will have many proxies, the benefits will be much higher.

Although we specifically look at state distribution, we con-
tend that new ways for distributing functionality for connec-
tion requests must be explored to achieve close to optimal
throughput in SIP proxy overlays. The rest of the paper is
as follows: In Section 2 we define the problem of distribut-
ing state. The dynamic state distribution algorithm and the
SERvartuka design are discussed in Section 3. We evaluate
SERvartuka performance is Section 4. The applicability of
our solution is discussed in Section 5. Related work is de-
scribed in Section 6 and we conclude the paper in Section
7

1

2. DISTRIBUTING STATE
Most SIP deployments are organized like a DNS hierarchy.

A call from a SIP URI sip:burdell@cc.gatech.edu will traverse
through the proxies responsible for the cc.gatech.edu domain
and the gatech.edu domain. In commercial deployments the
proxy is also responsible for billing. It then needs to main-
tain state to record the start and the end of the call. In this
case either the cc.gatech.edu. or the gatech.edu. proxy can
maintain this information. However such a static decision
will lead to that proxy becoming a bottleneck. If on the
other hand we split the state maintenance load across the 2
proxies such that each proxy maintains state for some frac-
tion of the requests then we can improve the call throughput.

A state distribution algorithm has to satisfy the following
requirements. First, the call related state must be main-
tained by one node on the path that is traversed by the
call. Other nodes forward the call statelessly and thus do
not incur the computational overhead associated with state
maintenance. We must dynamically determine which node
in a path should maintain the call state in such a way that
the system is able to handle an incoming call as long as the
resources available in the system are sufficient to handle the
call in stateful manner at one node and stateless manner at
all other nodes on some path in the overlay network.

In order to characterize the nature of such an algorithm we
start by profiling OpenSER[12], an open source SIP Server,
as a representative SIP server to experimentally measure the
processing resources consumed by call handling functions at
low call load and at increasing call load.

2.1 Low Load CPU Profiling
The run setup includes the OpenSER server setting up

a call between two SIPp[14] clients. SIPp is a workload
generator for SIP and uses XML documents to create call
flows. OpenSER is configured to profile five typical server
modes of operation. Each mode represents a service that
the server is providing for the call and successive modes pro-
vide additional service (and are thus resource wise costlier).
OpenSER does a lookup in order to make a translation from
the URI to the IP address of the endpoint. The various
modes are as follows:

1. Stateless with No Lookup: No call related state is main-
tained as a result of handling the call message. Also,
the message contains sufficient information such as the
IP address within the SIP URI of the endpoint, so no
lookup is necessary.

2. Stateless with Lookup: No call state is maintained as in
the previous case but a database lookup is performed
to map the URI to an IP address.

3. Transaction Stateful with Lookup: In this case, a lookup
is performed to map the URI in the message to an IP
address. In addition, state is maintained only for in-
dividual transactions. A transaction in SIP consists of
all messages starting with the initial request till the
first non provisional response.

4. Dialog Stateful with Lookup: Here too the IP address is
looked up. In addition the state is maintained for the
entire call duration, spanning multiple transactions.

5. Dialog Stateful with Authentication : In this mode, all
the previous functions are executed. In addition, the
proxy checks the credentials of the client.

 0

 200

 400

 600

 800

 1000

AuthenticationDialog-SFTran-SFStatelessNo-Lookup

C
P

U
 E

ve
nt

s

Scenario

362

412

707

803

983
Others

Authentication
State

Lookup
Hashing
Routing

Lumping
Memory
Parsing

Figure 1: Server Functionality costs

Each run has the server configured in one of the above
modes and two SIPp clients make and break calls through
the server at the rate of 1 call per second for 10 minutes.
During this time OProfile[13] profiles the various function-
ality blocks of OpenSER. The results for these runs is as
shown in Figure 1.

The bar graph in Figure 1 shows that as the server ex-
ecutes more functionality, it results in higher CPU load.
This is expected but the size of increase is noteworthy. In
the most basic configuration where the server is stateless
and performs no lookup, the CPU cycles consumed are ap-
proximately one third compared to a server that performs
lookups, maintains transaction state and performs authenti-
cation. This clearly shows that control plane costs for sim-
ple call establishment vary widely with the complexity of
the service being provided by the SIP server. In our experi-
ence, we find most SIP vendors providing blanket through-
put specifications of the number of calls per second. From
our graphs, we however see that such throughput could differ
by a factor of three depending on the functionality executed
by the server.

Compared to the no lookup bar, all other cases (Stateless
to Authentication) have lookup processing which involves
either querying a DB or an internal cache. This is reflected
as a thin lookup band in Figure 1. Similarly we see increase
in CPU cycles for state maintenance and authentication.

Most of the granular functionality performed by the server
also monotonically increases with scenario/service. In par-
ticular we see costs associated with parsing, memory and
state increasing significantly with service provided. Parsing
in most SIP servers is lazy which means they parse only as
much of the message that is required to be able to either dis-
patch the request to the next hop or create an appropriate
response or both. Richer services require more of the mes-
sage to be parsed. Lookups do not change the parsing costs
significantly as the Request-URI always needs to be parsed
to decide whether a route lookup needs to be done. Hence
parsing costs in the first two scenarios consume almost the
same resources. To create/maintain state, however, more
headers need to be parsed. This is because to maintain
state, the request needs to be uniquely identified. This is
done by hashing together a set of fields including From, To,

2

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

P
er

ce
nt

ag
e

U
til

iz
at

io
n

Calls per second (cps)

CPU Utilization

Stateful
Stateless

Figure 2: CPU Increasing Load Utilization

which requires these fields to be parsed.
The increase in CPU processing by being transaction state-

ful or dialog stateful is largely due to the extra state that
needs to be maintained. This extra state causes increased
parsing and increased memory processing at the server. From
the graph we can see that, at a low request rate of 1 call
per second, being dialog stateful or transaction stateful is 2
times or 1.75 times, respectively, costlier that being state-
less. We next explore how stateful and stateless servers be-
have when the call rate increases.

2.2 Performance with Increasing Call Rates
At high loads, a single SIPp client saturates (reaches 100%

CPU utilization) at about the same loads as OpenSER and
therefore skews the measurements. We therefore split this
load among 2 SIPp clients on equally powerful blade cen-
ter machines. Associated with these servers were two URIs
which the two SIPp clients made calls to respectively. The
OpenSER database was populated with these two URIs and
was configured to run in 2 modes (i) stateless with lookup
and (ii) transaction stateful with lookup.

The SIPp clients generated a load starting with 20 calls
per second and increasing it in steps of 20 calls per sec-
ond. Saturation of the OpenSER server was determined by
observing that CPU utilization of the server was at 100%
and the call throughput at the SIPp server did not increase
any longer with increased call rate generated at the SIPp
client. At the saturation point there is also a large increase
in SIP 500 Server Busy messages and increased retransmis-
sion of call requests from the SIPp client. Top logs were
kept throughout the run to ensure that when OpenSER sat-
urated, the SIPp clients were operating far below 100% CPU
utilization.

As seen in Figure 2, as the call rate increases, the state-
fully configured server’s CPU utilization increases at a faster
rate when compared to the statelessly configured server.
The stateful server saturates at ≈ 4700 calls per second while
a stateless server saturates at 5700 calls per second. This
difference between stateful and stateless servers forms the
basis for obtaining higher throughput by distributing state
maintenance functions. The theoretical basis for this is de-
scribed in the next section (Section 2.3).

2.3 Formulation of State Distribution as an
Optimization Problem

We show that dynamically maintaining state can increase
call throughput by formulating state distribution as an op-
timization problem similar to [10]. Intuitively, the proxy
overlay network can be considered as a graph. Call set up
requests enter the system at some node in this graph and
they traverse a set of nodes along links in the graph. A re-
quest exits at a proxy node that forwards the request to the
called user agent.

Let us consider a network of N servers arranged in any
topography, where each server is represented as a number
from 1 to N . Let the expected traffic at node i be ti. This
expected traffic will be routed to node i by a set of upstream
servers denoted by Li. Thus, for any upstream server, lεLi,
i is a downstream server. Node l will thus route requests to
many such downstream servers. Let the fraction of requests
that a server l routes to i be φli. This fraction can be either
predetermined because of existing routing tables or can be
calculated in case there is flexibility in determining routes
dynamically. We note that if φli is pre-determined then the
optimization problem is reduced to a linear programming
problem. As the incoming flow at l will be routed to some
downstream server ∑

i

φli = 1

The incoming traffic at node i then is the sum total of the
fraction of requests that the l upstream servers route to it.

ti =
∑

l

tl ∗ φli

Each server then determines the amount of incoming traf-
fic ti to forward statefully, represented by tSF

i and the rest
statelessly as tSL

i . Therefore

ti = tSF
i + tSL

i

The entire premise of creating this optimization problem is
the fact that stateful resource consumption is different from
stateless resource consumption. Thus, if the CPU utilization
due to stateful request forwarding at node i is represented
by USF

i = fSF (tSF
i) and stateless by USL

i = fSL(tSL
i) we

have the CPU utilization represented by

Ui = USF
i + USL

i

The utilization at each node should not exceed 100%. If the
utilizations are normalized then this translates to

Ui <= 1

The first server node will receive the call traffic from a set
of VoIP clients. Without any loss in generality, we assume
that there is only one initial entry node. If there are multi-
ple entry points we can always assume an imaginary source
that sends requests to these multiple entry points. The the-
oretical results do not change in this case. The first node,
by our initial convention, is then node 1 and the incoming
traffic is t1. This represents the total incoming load or the
call throughput. In our case we assume that state for all of
this incoming load has to be maintained at some node in the
overlay network. Therefore

t1 =

N∑
i=1

tSF
i

3

Figure 3: Static vs Dynamic state maintenance

With these constraints in place, the objective of the opti-
mization problem is then to maximize the throughput or t1.
Thus the problem has the form

Maximize t1

Subject to

ti =
∑

l

tl ∗ φli (1)

∑
i

φli = 1 (2)

ti = tSF
i + tSL

i (3)

fSF (tSF
i) + fSL(tSL

i) <= 1 (4)

t1 =

N∑
i=1

tSF
i (5)

Conservation of flow is implicit in equation 1 of the for-
mulation as the sum of all outgoing flow at node i is the
total incoming flow. The solution of this optimization prob-
lem then gives the optimal values at each node i for tSF

i ,
tSL
i . Reducing it to an optimization problem implies that

an algorithm that solves it will yield an optimal throughput
solution. Our formulation is applicable to any configuration
of servers and can accommodate multiple flows and does
not require a strictly ordered direction of requests. Any al-
gorithm created can thus be measured against the optimal
throughput determined by this formulation. In the next
section we use this formulation and compute the optimal
fraction of requests maintained by each server in a simple
configuration to show how state distribution can in fact lead
to higher throughput.

2.3.1 Illustrative example
Let us consider a simple case where a request traverses

through two servers in series (S1 and S2), within a domain.
The possible configurations that these servers can be ar-
ranged are (i) both stateful, (ii) one stateful and the other
stateless, and (iii) both stateless. In case (i), each server by
virtue of being stateful will maintain state for each request
that passes through it. As a result, the maximum number
of such requests that it will be able to service will be equal
to the saturation limit of a stateful server, TSF (from our
experiments this is ≈ 4700 cps). Since both servers see the
same request load the maximum system throughput will be
around 4700 cps.

Case (ii) is when one of these servers is configured to be
stateless. Such a system will continue to have maximum
throughput of 4700 cps because the stateful server is the
bottleneck and hence will dictate the overall throughput.
Case(iii) is when both servers are stateless, in which case the
maximum system throughput will be the saturation limit of

a stateless server, TSL (from our experiments ≈ 5700 cps).
This throughput will be significantly higher than the first
two cases but here state is not maintained in the system
at all. Such a system is unusable for requests that need to
maintain application state. Therefore, for the two servers
in series, where each server is pre-configured statically as
stateful or stateless, the maximal throughput will be TSF

and this configuration is shown in Figure 3(a).
If we now use the LP formulation to calculate the opti-

mal throughput, we obtain the values shown in Figure 3(b).
Here each server maintains 2600 cps statelessly and 2600
cps statefully, giving a total throughput of 5200 cps. This
is higher than the throughput of the static configuration in
3(a). This is because in configuration (a), where one server
is stateful and the other stateless, we notice that though the
stateful server at 4700 cps will be operating at 100% uti-
lization (and thus becoming the bottleneck), the stateless
server is under-utilized. The formulation obtains the opti-
mal throughput by ensuring that all servers are utilized to
the maximal possible extent.

We can think of a centralized solver which is fed the to-
pography of the servers and is then able to communicate
to each server the exact fraction of stateful to stateless re-
quests to maintain. In section 3 we create SERvartuka, a
distributed solution to the problem where each server dy-
namically reconfigures itself to decide the amount of state
that it maintains locally in an attempt to achieve close to
optimal call throughput for the entire system.

3. SERVARTUKA DESIGN
The above sections show that by distributing state among

a set of servers, we can increase system throughput. Each
server then needs to decide the fraction of incoming requests
it will forward statefully. The intuition behind an algorithm
that achieves this stems from a parallel we draw from net-
work flows. The max flow problem[4] tries to maximize a
flow in a network given that the edges of the graph have
bounded capacities. Analogous to this, we are trying to
maximize the amount of state that the system can sink given
that the amount of state sinkable by each server is bounded.
Maximizing the amount of state that the system can sink is
equivalent to maximizing the throughput as is seen in equa-
tion 5 of the LP. The Floyd Fulkerson method[4] determines
the max flow in a network and follows the algorithm:

while there exists augmenting path p do
augment flow f along p

end

In the state distribution case this translates to:

while there exists augmenting path p that can sink
state do

sink state s along p
end

However, being able to sink state into an augmenting path
also implies that the nodes connected to this path have
enough resources to be able to send this extra flow. This
means if a node j and nodes reachable from j are able to
sink extra state s, then all nodes i preceding j should have

4

available CPU resources to be able to forward the flow s
statelessly. This forms the basis of SERvartuka where each
server in the system tries to sink as much state while making
sure that it can also sink state along augmenting paths by
forwarding calls statelessly to downstream nodes. We fol-
low a modified greedy strategy, where the server forwards
requests statefully until a utilization threshold is reached.
Thereafter, with the increasing call load it routes the ex-
tra call load statelessly, and reduces the amount of state it
maintains by small amounts when required. The latter is
necessary because the server needs to free up utilization to
be able to route this extra call load statelessly.

Now if the servers downstream also follow the above mech-
anism, we will have a system of dynamically self configuring
servers, each taking up the state that the upstream servers
have not been able to maintain. Each server in this system
is then constantly trying to find an operating point where
the number of requests that it forwards statefully is maxi-
mized while making sure that the number of requests that
the system as a whole forwards is maximized.

Servers cannot sink unlimited state through its down-
stream path as there will be a limit after which the down-
stream servers will get saturated and will not be able to take
up anymore state. Downstream servers can indicate this
by the use of a throttle message mechanism to the imme-
diate upstream server. Once the upstream server receives
this message, it knows it cannot delegate additional state
through that path of servers anymore. The throttle message
is issued by a server only when the following two conditions
are satisfied: (i) the server is saturated, and (ii) all paths
downstream to it are saturated.

The upstream servers need to somehow indicate to the
downstream servers that they have already maintained state
for a set of requests. This way the downstream servers can
forward these statelessly. This guarantees that state is dis-
tributed and only a single server maintains state for a par-
ticular transaction or a dialog.

Combining most of what has been discussed so far, we de-
velop the dynamically stateful algorithm (DSA) for a server
that is outlined here (Algorithm 1)

// First time Csf reduced = ∞
Csf req = min(C - Csf up, Csf reduced)1

U = (Csf req, C - Csf req)2

// Check CPU utilization threshold

if U < U high then3

Forward Csf req statefully4

Forward C - Csf req statelessly5

else if there exists downstream servers AND6

downstream servers are not saturated then7

Csf reduced = min(Csf req, Csf reduced) - deltaC8

Forward Csf reduced statefully9

Forward C - Csf reduced statelessly10

else11

Send throttle messages upstream12

end13

Algorithm 1: Dynamically stateful algorithm

The algorithm basically allows each server to decide the
right operating point. Each server is subjected to an in-
coming load C cps. However, the upstream servers already
maintain state for Csf up calls, so this server will need to

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1000 2000 3000 4000 5000 6000

T
hr

ou
gh

pu
t (

cp
s)

Calls per second (cps)

Throughput Two Server Series

Static Configuration
SERvartuka

Figure 4: Comparison of Goodput

maintain state only for Csf req = C − Csf up (line 1). It
then calculates the utilization to route Csf req calls state-
fully and C − Csf req calls statelessly and checks to see if
it is below the utilization threshold (lines 2 and 3). If so,
then this is the right operating point. However if not, and
there exists downstream servers that the server can delegate
state to, then the server reduces the amount of state main-
tained by an amount deltaC and then forwards the result-
ing Csf reduced statefully and C−Csf reduced statelessly
(lines 6 through 10). Thereafter, each time the threshold
is crossed, it will reduce Csf reduced by deltaC. We use
min(Csf req, Csf reduced)(line 8) to achieve this. Essen-
tially Csf reduced keeps undergoing an additive decrease
each time the server crosses the utilization threshold. This
additive decrease is good enough because delegating deltaC
amounts of state frees up significant amounts of CPU utiliza-
tion which it can then use to route the extra load statelessly.

In case there are no downstream servers or all downstream
servers are saturated then the server itself will then send
throttle messages (line 12) to indicate saturation of itself
and all paths (if they exist) downstream to it. By using this
algorithm, the server constantly reconfigures itself to find
the right amount of stateful and stateless calls to forward.
The advantage of this algorithm is that other than for min-
imal communication, the server can decide this information
in a local fashion. This algorithm however only shows the
net effect at each server, a more refined algorithm is actually
used and this includes other mechanisms such as unthrottle
messages (to undo the throttle messages when utilization
goes below a lower threshold) and providing a state delega-
tion order (to reduce call setup times).

4. PRELIMINARY RESULTS AND ANALY-
SIS

In our preliminary evaluation, we arranged two servers in
a series configuration and measured maximum throughput
when (a) the servers are pre-configured statically as stateful,
and (b) the servers run the load balanced DSA algorithm of
SERvartuka. Our results are as shown in Figure 4. The
static pre-configuration results in a maximal throughput of
4000 cps, actually lesser than the single pre-configured server
call rate. SERvartuka on the other hand gives a maximal

5

throughput of 4600 cps a 15% increase. There is a significant
throughput drop when the system load is 3500 cps for the
unmodified OpenSER static configuration and a similar drop
at 4500 cps for the SERvartuka algorithm. We are right now
unsure of the exact reason for the drop and are investigating
it.

5. APPLICABILITY OF THE SOLUTION
The current algorithm will work when the configuration of

servers are strictly ordered in the direction of requests. This
is because each server needs to clearly know its upstream
servers in order to be able to communicate saturation and
unsaturation and provide a loading order for the algorithm.
In typical SIP deployments where servers are arranged as a
hierarchy, there exists such an order. However, this algo-
rithm will not work for deployments that partition networks
into core and edge proxy servers as these networks do not
guarantee a strict ordering. We plan to determine such a
distributed algorithm as part of future work.

6. RELATED WORK
In [9], the authors have recognized the scalability benefits

of a transaction-stateless processing and have defined an al-
gorithm that determines whether a request must be handled
statefully if (a) the network link is lossy (BER > 10−5), and
the CPU utilization is (i) either low (< 60%), or (ii) medium
(< 75%) and the transaction is an INVITE or a BYE, or (b)
the transaction requires forking. Our algorithm is broader in
multiple aspects: our algorithm seeks to determine an opti-
mal ratio of stateful to stateless transaction processing in the
aggregate when the input load is greater than what can be
handled statefully at 100% CPU utilization. It is a dynamic
algorithm in that it recomputes the ratio as the total input
load changes. We leverage the per-server algorithm to es-
tablish a distributed algorithm which ensures that a request
is handled statefully at some downstream server (”distribut-
ing state”) when upstream servers prior to that handle calls
statelessly. As mentioned before, our assumption in this pa-
per that a request needs a set of functions to be executed in
it call path or before exiting a domain, some of which may
require stateful processing, and thus these functions can be
performed over a sequence of proxies.

In general, the performance of SIP proxies has been in-
vestigated in [5][6][7]. In [7], authors study sipd, a SIP
proxy server developed in [20], and identify bottlenecks such
as parsing, string operations and database access, compare
performance of thread-based vs. process-based models for
request processing in sipd and compare scalability of dif-
ferent proxy and database access combinations. In [8], the
authors point out that ability to handle transactions state-
lessly could be used to thwart denial-of-service attacks.

Although the notion of trading off state for performance
has been studied in other contexts to some degree, e.g for
coupling link-state routing information only with long-lived
flows for load-sensitivizing routing, thereby reducing route
flapping [11], we believe our work is one of the first to design
and implement a concrete detailed algorithm for SIP server
systems.

7. CONCLUSION AND FUTURE WORK
We have experimentally evaluated the performance of a

SIP server under various call scenarios. Based on this per-

formance study, we defined the state management problem
and developed a mathematical model for deriving an optimal
solution. This provides insights for developing a more scal-
able server design by dynamically distributing state across
a set of servers. We evaluate our algorithm against existing
pre-configured static algorithms and show a 15% increase in
the maximum call throughput that can be achieved. Our
work can be extended in several ways.

• Explore the algorithm’s performance on more complex
configurations

• Create a distributed algorithm for configurations where
the direction of the flows are not strictly ordered.

• Explore implications of state distribution on security
issues such as privacy and confidentiality.

• Apply these ideas to distribute other functionality in
SIP such as authentication as well on other overlay
network protocols

Acknowledgements
We would like to thank Erich M. Nahum and John M. Tracey
from IBM Research, T.J. Watson for valuable discussions.

8. REFERENCES
[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.

Peterson, R. Sparks, M. Handley, and E. Schooler, SIP: Session
initiation protocol. RFC 3261, June 2002.

[2] J. Rosenberg, A Presence Event Package for the Session
Initiation Protocol (SIP). RFC 3856, August 2004.

[3] G. Camarillo, and M. Garca-Martn, The 3G IP Multimedia
Subsystem (IMS): Merging the Internet and the Cellular
Worlds. John Wiley & Sons, 2006, ISBN 0-470-01818-6.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest. and C. Stein,
Introduction to Algorithms, Second Edition. The MIT Press,
2001, ISBN-10: 0-262-03293-7.

[5] J. Janak, SIP Proxy Server Effectiveness. Master’s thesis,
Czech Technical University, May 2003.

[6] K. Singh, Reliable, Scalable and Interoperable Internet
Telephony. PhD Thesis, Columbia University, 2006.

[7] K. Singh, H. Schulzrinne, and J. Lennox SIP Server Scalability.
http://www1.cs.columbia.edu/ kns10/talks/, May 2005.

[8] D. Sisalem, and J. Kuthan, Denial of Service attacks and SIP
Infrastructure. http://www.snocer.org/Paper/sisalem dos.pdf.

[9] M. Cortes, J. Esteban, and H. Jun, Towards Stateless Core :
Improving SIP Proxy Scalability. IEEE Globecom Conference,
Nov 2006.

[10] R. Gallagher,A Minimum Delay Routing Algorithm Using
Distributed Computation. IEEE Transactions on
Communications, Pgs 73-85, Volume 25, Issue 1, Jan 1977.

[11] A. Shaikh, J. Rexford, and K. Shin, Load-sensitive routing of
long-lived IP flows. ACM Sigcomm 1999.

[12] OpenSER. http://www.openser.org/

[13] OProfile. http://oprofile.sourceforge.net/

[14] SIPp. http://sipp.sourceforge.net/

[15] 4.8 million VoIP users in 2004. How many in 2010 ?.
http://www.voip-security-blog.com/comments.php?post=8

[16] AT&T CallVantage. https://www.callvantage.att.com/

[17] Vonage broadband phone service. http://www.vonage.com

[18] Yahoo! Messenger with voice.
http://www.messenger.yahoo.com

[19] The 3rd Generation Partnership Project (3GPP).
http://www.3gpp.org/

[20] CINEMA. http://www.cs.columbia.edu/IRT/cinema/

[21] A. Falk, P. Francis, Path-decoupled Signaling for Data
(offpath). http://www.cs.cornell.edu/people/francis/offpath/

6

