
RC24339 (W0709-001) September 5, 2007
Computer Science

IBM Research Report

Design, Implementation, and Performance Analysis of PKI
Certificate Repository Using LDAP Component Matching

Sang Seok Lim*, Jong Hyuk Choi, Kurt D. Zeilenga**
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

*Currently with Samsung Electronics, South Korea

**Currently with Isode Ltd.

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Design, Implementation, and Performance

Analysis of PKI Certificate Repository using

LDAP Component Matching

Sang Seok Lim∗, Jong Hyuk Choi, Kurt D. Zeilenga†

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598, USA

Abstract

The X.509 certificate stored in an LDAP certificate repository requires
secure and flexible means to make assertions against its component values
such as the identity of its owner, issuer, and the intended usage of the
public key contained therein. LDAP has traditionally lacked this ability
because its string based encodings do not have a standardized way to carry
structural information of complex syntaxes as in X.500. The traditional
remedies to this LDAP’s limitation are 1) to provide certificate specific
matching for a limited set of components and their combinations and 2)
to extract and store the certificate components in separate searchable at-
tributes. Neither of these remedies are considered complete because the
former lacks flexibility while the latter heightens complexity in manag-
ing the integrity of the certificate repository and doubles storage require-
ments. Due to the significant downside of these remedies, we investigate
the possibility of an ASN.1 based Component Matching alternative. In
this paper, we present 1) the design and implementation of the LDAP
Component Matching for an OpenLDAP directory server to facilitate its
use as the certificate repository in PKI, 2) various optimization mecha-
nisms to increase the performance of the Component Matching and their
implementation in OpenLDAP, and 3) the detailed performance analysis
of the LDAP directory server as a certificate repository in comparison with
the traditional certificate specific matching and the attribute extraction
approaches. We show that Component Matching, if equipped with the op-
timization techniques proposed in this paper, outperforms the traditional
approaches.

1Sang Seok Lim is currently with Samsung Electronics, South Korea.
2Kurt D. Zeilenga is currently with Isode Ltd. He also serves as the Executive Director of

the OpenLDAP Foundation.

1

1 Introduction

LDAP (Lightweight Directory Access Protocol) [8] is the predominant direc-
tory access protocol for the Internet and is also widely used as the X.509 [7]
certificate repository in PKI (Public Key Infrastructure). Certificates created
and signed by a CA (Certification Authority) are stored in LDAP directories
so that they can be conveniently located and searched via LDAP queries on
the certificate attributes. Given its pivotal role as the certificate repository in
PKI, it is essential for directories to support seamless interoperation with PKI
entities without any compromise in security and scalability.

The wide adoption of LDAP as a certificate repository is attributable to its
ability to render lightweight directory services by the following simplifications
of heavyweight X.500 DAP (Directory Access Protocol) [12].

• The reduced number of directory operations.

• Direct mapping onto a TCP/IP protocol stack.

• Simple protocol encodings.

• String-based encoding of names and attribute / assertion values.

These simplifications were intended to make DAP lightweight with minimally
disturbing existing DAP applications. In fact, LDAP had first been used as
the gateway to DAP DSA (Directory Service Agent) to facilitate the use of the
lightweight directory client which did not necessarily equipped with a full OSI
protocol stack. It evolved into the stand-alone directory service afterwards.

The last simplification, string-based encoding deviating from the ASN.1 (Ab-
stract Syntax Notation One) [10] encoding rules of X.500, however, significantly
degrades interoperability with the applications using complex data structures
such as the PKI certificate repository. For instance, in PKI, a certificate needs
to be located based upon the contents of its components, such as serialNumber,
issuer, subject, and keyUsage [11]. LDAP search operations, however, cannot
understand the ASN.1 type of the certificate as defined in [11] because attributes
and assertions in LDAP are encoded in octet string with no structural informa-
tion about the type. Not only would it require an exceptional effort to support
certificate syntax specific matching rules such as certificateMatch and certifi-
cateExactMatch as defined in [11], that effort would have to be repeated for
each matching rule introduced to match on a particular component (or set of
components) of a certificate. As a result, few new rules have been introduced
to LDAP since its inception.

As a practical solution to the certificate matching in PKI, LDAP servers
can store certificate components extracted from the given certificate in separate
searchable attributes in parallel with the original certificate attribute. Clients,
then, have to perform matching against those extracted attributes but not the
original certificate. This approach is called the attribute extraction and can
be performed either offline or online. Certificate Parsing Server (XPS) [2] is
an online certificate extraction system which automatically extracts certificate

2

components and stores them into separate LDAP attributes when directory
entries containing certificates are being added or modified by CA. Although
the attribute extraction approach has filled the interoperability gap between
LDAP and PKI, it is considered as a temporary workaround because it not only
introduces manageability and scalability issues but also shifts a complicated
logic for structurally understanding a complex ASN.1 type from the server to
the client.

In order to provide a complete solution to the component level matching and
hence to enhance the interoperability between LDAP and PKI, the directory
community engineered a number of extensions to LDAP. First, GSER (Generic
String Encoding Rules) [14] was introduced to bring back structural information
to LDAP string encodings in a standardized way. Second, the Component
Matching [15] mechanism was introduced to enable component level matching to
be performed against arbitrary components of composite ASN.1 types. GSER
is used to represent the assertion value in an LDAP search operation which
is matched against the attribute value in any ASN.1 encoding rules including
GSER, BER (Basic Encoding Rules), and DER (Distinguished Encoding Rules).

Our OpenLDAP implementation of Component Matching can be considered
as the first implementation of Component Matching for a pure LDAP-based
directory server (overall, it can be considered as the second to the X.500-based
directory server from eB2Bcom (formerly Adacel) implemented by the authors
of the Component Matching standard). Since OpenLDAP, a pure LDAP-based
directory server, did not originally support ASN.1 data types, we first had to
bring ASN.1 awareness into OpenLDAP by providing an automatic path to
generate encoders and decoders for ASN.1 encoding rules (BER, DER, and
GSER) from given ASN.1 data type definitions and to generate matching and
component extraction routines for each component of the composite ASN.1 data
type.

Extending our previous works which introduced the early design and imple-
mentation of Component Matching in OpenLDAP [17] and discussed its applica-
bility to WS-Security [16], this paper presents a very detailed and comprehen-
sive description of the design and implementation of Component Matching for
better PKI support, focusing on various optimizations devised to improve the
interoperability and performance of Component Matching in OpenLDAP. This
paper also presents a quantitative evaluation and analysis of the advantages
of the Component Matching over the preexisting attribute extraction in terms
of performance and scalability. To our knowledge, this is the first attempt to
quantitatively evaluate the performance and scalability of an LDAP certificate
repository.

The performance evaluation results showed that LDAP Component Match-
ing performs as well as the attribute extraction if the optimizations proposed
in this paper are activated. It is also shown that Component Matching outper-
forms attribute extraction by a significant margin in case when memory resource
becomes scarce as in a constrained system or with a large scale DIT (Directory
Information Tree).

This paper is organized as follows. Section 2 introduces the interoperabil-

3

C
er

tif
ic

at
e

/ C
R

L
R

ep
os

ito
ry

 (
LD

A
P

)

Registration

Authority (RA)

Certification

Authority (CA)

Client

Certificate / CRL

Access

Publish

Certificate

Publish

Certificate / CRL

Management

Transactions

Figure 1: The Architecture of Public Key Infrastructure.

ity issues in using LDAP as the PKI certificate repository and introduces the
existing approaches to implement an LDAP certificate repository. Section 3
describes the Component Matching and GSER as the standard track approach
to the component-level matching of composite attributes. Section 4 describes
the use of Component Matching in PKI enabling secure and flexible certificate
access. In Section 5, we present the design and implementation of the ASN.1
awareness and the Component Matching in the OpenLDAP directory server
and describe various optimizations introduced to enhance Component Match-
ing in OpenLDAP. Section 6 demonstrates the applications of the Component
Matching for PKI to the security of Web services. Section 7 presents the perfor-
mance evaluation results of the attribute extraction and Component Matching
with varying application and system parameters and compares the previous two
approaches. Section 8 concludes the paper.

2 LDAP Certificate Repository for PKI

LDAP is is the predominant directory access protocol for the Internet and is also
widely used as a repository for disseminating the X.509 certificate and certificate
revocation list (CRL) in PKI. Figure 1 illustrates the conceptual interoperation
of four entities in PKI. In the public key registration phase, a client sends its
identity as well as its public key to RA. If the identity is validated by the RA,
the CA publishes the client’s certificate by storing it in the LDAP directory. If
the issued certificate is revoked by any reason, the CA revokes the certificate
by publishing a CRL to the LDAP directory as well. Thus LDAP directories
serve as the place where the clients can download certificates of other users in
order to send encrypted messages or verify digital signatures. In addition, they
can be informed of the latest certificate revocation information by downloading
a CRL from the directory. Therefore, a number of PKIs utilize LDAP and
no significant rearrangements should be done from their side to use an LDAP
directory for managing processes in their environments.

When certificates or CRLs are managed in an LDAP server, a client might
send an LDAP search request asserting that “find the userCertificate attribute

4

(userCertificate:certificateExactMatch:=12345$o=IBM,c=US)

Figure 2a: Syntax Specific Parsing.

(&(x509SerialNumber=12345)(x509KeyUsage=010000000))

Figure 2b: Attribute Extraction.

whose issuer and serial number are o=Samsung Electronics, c=kr and 20005261”.
The issuer’s name is contained in a certificate attribute value as a part along
with other values of certificate components. Thus it is required to match the
part of userCertificate, or the attribute value, against issuer’s name in the as-
sertion of the request. In LDAP, attribute and assertion values are represented
in octet string without structural information as opposed to original ASN.1 en-
codings such as BER and DER. Worse, no string encodings are specified for the
assertion values and there is no rule how to refer to the components of an at-
tribute value in the request. As a result, it is very difficult to match an assertion
value against a specific component of a complex attribute in a way conforming
to LDAP standards. Current methods to tackle this deficiency require PKI ad-
ministrator’s extra effort for managing complicated Directory Information Tree
(DIT) and keeping integrity of mutable attributes which will be discussed in
the following subsection. These limitations of LDAP PKI interoperability have
severely hampered the deployment of X.509-based PKIs.

2.1 Syntax Specific Parsing

A brute force way to providing matching for arbitrary components of a certificate
against an assertion is to provide certificate-syntax specific matching rules. For
instance, for an OpenLDAP directory server, an LDAP client should generate
search filters in the predetermined form, not standardized, of the combination
of a serial number and an issuer of userCertificate. For example in Figure 2
(a), “userCertificate=12345$o=ibm,c=us” is generated by a client and slapd 1

recognizes the serial number by reading the string right before the predetermined
separator ‘$’ followed by the issuer. The matching rule, certificateExactMatch
in the filter is defined to be one of certificate-syntax specific matching rules that
matches only the serial number and the issuer. The downside of this approach is
that it will be too costly to define syntax specific matching rules for all possible
components and their combinations. In addition, it is difficult to cope with
changes such as certificate extensions.

1OpenLDAP’s stand-alone LDAP daemon and associated overlays and tools,

5

(userCertificate:componentFilterMatch:=

and:{

item:{

component "toBeSigned.serialNumber",

rule intgerMatch,

value "12345"

}

item:{

component "toBeSigned.extension.*.extnValue.(2.5.29.15)",

rule bitStringMatch,

value ‘010000000’B

}

}

)

Figure 2c: Component Matching.

2.2 Attribute Extraction

To address the LDAP deficiencies, Klasen and Gietz [20] proposed an alter-
native solution, based on the workaround that PKI administrators have been
using practically. A set of components are extracted from the certificate and
then stored as a simple, searchable, and separate attributes in the same en-
try where the certificate is located. For this purpose, they defined a set of 30
attributes [20] for the X.509 certificate. On the reception of an LDAP search
request in an LDAP server, matching is performed on the extracted attributes
but not the original certificate. After successful completion of an attribute ex-
traction process, writing a search filter for locating a target certificate based on
its component values becomes identical to writing an ordinary attribute search-
ing filter as shown in Figure 2 (b) where x509SerialNumber and x509KeyUsage
attributes are extracted from the userCertificate attribute.

Although the attribute extraction facilitates matching against components
of a complex attribute, it can be considered as a suboptimal approach in the
following aspects. First, matching is performed on extracted attributes, not on
the certificate itself. Because the contents of the extracted attributes are mu-
table while the certificate are immutable due to its signature, there is a chance
of returning a wrong certificate to a client. It is strongly recommended for the
client to verify the returned certificate again. In order to minimize this problem,
the server administrator must ensure the integrity of a certificate and extracted
attributes. Second, it is inevitable to restructure the Directory Information
Tree (DIT) structure by creating a set of subordinate entries to store extracted
attributes. When a set of attributes is extracted and stored into subordinate
entries, the view of a client toward the DIT is different from that of CAs who
publish the certificates. Finally, from the view point of server performance, this
approach doubles or triples storage requirements to store extracted attributes
along with an original certificate. In addition, on performing matching in a

6

server-side, all candidate entries need to be loaded into a memory in advance,
increasing memory requirements as well. These increased storage and memory
requirements severely degrade throughput of an LDAP directory server espe-
cially when the server lacks memory and storage, which will be discussed in
detail in Section 7.

2.3 Certificate Parsing Server

As an extension of the attribute extraction that PKI administrators manually
extract attributes, an automatic attribute extraction mechanism was recently
proposed in the Certificate Parsing Server (XPS). XPS which is designed by
the University of Kent [2], automatically extracts all the certificate attributes.
It is placed in front of an LDAP server as a front-end gateway to deal with
incoming directory entries containing a certificate from the CA. Although it
significantly relieved the PKI administrator’s effort, still has suffered from all
the same problems that the attribute extraction does.

3 Component Matching

3.1 GSER: Generic String Encoding Rule

A native LDAP encoding is in the format of either an octet string for textual
information such as name, address, telephone, etc. or a binary for JPEG, PNG,
MP3, etc. For textual information, this encoding scheme comes in handy since
a user can interpret the given encoding without any decoders. This benefit,
however, comes at a price that the LDAP encoding does not carry the structure
of an ASN.1 type in its representation due to the LDAP’s simplification while
DAP’s ASN.1 encodings such as BER and DER do (conversely speaking, inter-
preting BER/DER-encodings always require appropriate decoders). In order to
solve this problem, S. Legg [14] recently proposed GSER (Generic String En-
coding Rules). Component Matching uses GSER as its basic encoding for the
component assertion value. GSER generates a human readable UTF-8 character
string encoding of a given ASN.1 specification and supports reuse of the existing
LDAP string encodings. It defines UTF-8 string encodings at the lowest level of
the ASN.1 built-in types such as INTEGER, BOOLEAN, and STRING types
and then builds up more complex ASN.1 types such as SEQUENCE and SET
from the lowest level. Thus, the structural information of an ASN.1 specification
is maintained in encodings so that it can be recovered in the decoding process.
By using GSER to store attribute values instead of the native LDAP encod-
ing, an LDAP server becomes capable of identifying the structure of the ASN.1
specification of the attribute. Furthermore, the component filter of an LDAP
request is also encoded in GSER. Hence, GSER is an essential mechanism to
ASN.1 awareness and Component Matching.

7

3.2 Component Matching

Component Matching is published in RFC 3687 [15]. All attribute syntaxes of
X.500 and LDAP are described originally by ASN.1 type specifications [12, 8].
Basically, the ASN.1 type is constructed structurally from basic types to com-
posite types just like C struct definitions. It is much of importance to remark
that every field of an ASN.1 type is a component. Based on ASN.1, Compo-
nent Matching defines a generic way of performing matching on user selected
components in an attribute value, or a field of a given ASN.1 type specification,
by introducing new notions such as component assertion, component filter, and
matching rules for components. For example, an infrastructure is enabled to
perform matching against an arbitrary component of an X.509 certificate, such
as serialNumber, issuer, keyUsage, and subjectAltName.

In detail, Component Matching [15] defines, firstly, how to refer to a com-
ponent within an attribute value by retrieving the structural information of an
ASN.1 type and how to match the component value against an assertion value.
Secondly, matching rules are defined for the ASN.1 basic and composite types.
Lastly, it defines a new assertion and filter tailored for each field of the ASN.1
type. These definitions are based on ASN.1 so that they can be applied to any
complex syntax, as long as the syntax is specified in ASN.1.

In order to use Component Matching, a client needs to specify a component
assertion as an extensible matching of LDAP [8]. In the component assertion,
there are three key fields:

• Component Reference specifies which component of the attribute value
will be matched against the assertion value.

• Matching Rule specifies which matching rule will be used to perform
matching on the values.

• Value is an assertion value in GSER.

No change in an LDAP client side is required, as long as the assertion/filter of
the client are not hard-coded because the component assertion/filter themselves
can be carried within an attribute assertion value of an LDAPv3 extensible
matching as shown in Figure 2 (c).

3.3 Advantages of Component Matching

Compared to the attribute extraction approach, Component Matching has the
following advantages:

1. It does not store the X.509 attributes separate from the certificates them-
selves. Therefore, it does not increase storage requirements and does not
open a potential to the compromised integrity between a certificate and
its extracted attributes.

2. Matching is performed directly on its contents but not on the associated
attribute’s contents. Even if there is more than one certificate in a user’s

8

entry, it can return only the matched certificate when it is used along with
the matched values control [3].

3. Flexible matching becomes possible because matching between an at-
tribute value and an assertion value, both represented in ASN.1, is pro-
vided.

4 Component Matching and PKI

4.1 Certificate Access

With Component Matching, as mentioned in Section 3.2, matching an assertion
value against a specific component of a complex attribute such as serialNumber,
issuer, keyUsage, and subjectAltName becomes possible. Therefore, a client in
PKI can use arbitrary fields of a certificate in order to search for the target
certificate. Assume that a user has two certificates: one for digital signature;
the other for non repudiation. With Component Matching, they can be located
in the same directory entry while with attribute extraction they cannot. In
order to find a certificate for non repudiation, a client makes a component
assertion in the second item shown in Figure 2.(c). The component reference
“toBeSigned.extension.*” means all extensions of the certificate. In the value,
“extndId 15” is the object identifier of a key usage and “‘01000000’B” is to
check if non repudiation bit (the second bit) is set. This component assertion in
the component filter enables the client to find the certificate for pre-determined
purpose (non-repudiation in the example) only.

4.2 Certificate Revocation List (CRL) Access

The certificate standard [7] provides a few mechanisms to check the status of
certificates. A CRL can be generated and distributed periodically by a Certi-
ficatation Authority, making it publicly accessible in the Internet by typically
using an LDAP directory server. Because the CRL contains the list of all re-
voked certificates, it can become quite large and hence it becomes costly to
transmit over the Internet. To alleviate this problems of CRLs, Online Certifi-
cate Status Protocol (OCSP) [19] was proposed to provide a timelier and more
efficient status inquiry mechanism. The OCSP responder returns the only sta-
tus (either good, revoked, or unknown) of a requested certificate without costly
downloading operation.

Based on Component Matching, we also proposed an on-line certificate vali-
dation method as an alternative of OCSP [5, 6]. A CRL is a signed sequence of
pairs of a revoked certificate’s serial number and revocation time [7]. In order
to check the status of the certificate by using Component Matching, the client
needs to make a component assertion by using the serial number of the desired
certificate. Then the LDAP server will perform Component Matching on the
CRL, against the assertion to find the serial number of the asserted certificate
in the CRL to check if the serial number is in the CRL or not. This is possible

9

Component
Filter Parser

(GSER)

DER
Decoder

Component
Extractor

Referenced
Comp. Tree

v e rs io n

s e ria l n u m b e r

s ig n a tu re

is s u e r

v a lid ity

s u b je c t

s u b je c t p u b lic k e y in fo

Is s u e r u n iq u e id e n tifie r

Is s u e r u n iq u e id e n tifie r

e x te n s io n s

n o t b e fo re

n o t a fte r

a lg o rith m

s u b je c t p u b lic k e y

a lg o rith m id e n tifie r

p a ra me te rs

n o n re p u d a tio n

e x te n s io n

v e rs io n

s e ria l n u mb e r

s ig n a tu re

is s u e r

v a lid ity

s u b je c t

s u b je c t p u b lic k e y in fo

Is s u e r u n iq u e id e n tifie r

Is s u e r u n iq u e id e n tifie r

e x te n s io n s

n o t b e fo re

n o t a fte r

a lg o rith m

s u b je c t p u b lic k e y

a lg o rith m id e n tifie r

p a ra m e te rs
n o n re p u d a tio n

e x te n s io n

Component
Tree

Assertion
Comp. Tree

v e rs io n

s e ria l n u mb e r

s ig n a tu re

is s u e r

v a lid ity

s u b je c t

s u b je c t p u b lic k e y in fo

Is s u e r u n iq u e id e n tifie r

Is s u e r u n iq u e id e n tifie r

e x te n s io n s

n o t b e fo re

n o t a fte r

a lg o rith m

s u b je c t p u b lic k e y

a lg o rith m id e n tifie r

p a ra me te rs

n o n re p u d a tio n

e x te n s io n

GSER
Decoder

Component
Filter

Component
Caching

Matching
Rule

Component
Assertion Value

Component
Reference

Component Filter Processing Attribute Processing

OpenLDAP Directory Server (slapd)

LDAP
Component

Search Request

1

2

4

5

6

7

X.509 ASN.1
Specification

eSNACC
Compiler

BER DER GSER

Extractor Decoder Encoder

Matching Rules Indexer

Internal ASN .1 Data Representation

Back-ends

Automatic
Generation

Dynamic Module
Loading

3

Figure 3: Architecture of Component Matching in OpenLDAP.

with Component Matching, since the LDAP server understands the structure
of the CRL and is able to compare the serial number, or the specific compo-
nents of the CRL against the component assertion. Therefore, the client does
not necessarily have to download and scan the CRLs any more. Furthermore,
an LDAP server already has been widely used for distributing CRLs and cer-
tificates. Hence, if the server can perform validity checking over the CRLs as
well, it will be very practical and an efficient alternative to OCSP. Please refer
to our previous studies [5, 6] for more detailed information about Component
Matching based certificate validation.

5 Component Matching in OpenLDAP

The overall architecture of the Component Matching in the OpenLDAP slapd
directory server is illustrated in Figure 3. Given the ASN.1 specification of the
X.509 certificate as an input, the extended eSNACC ASN.1 compiler generates
the slapd internal data representation of the X.509 certificate and their encoding
/ decoding routines. We extended the eSNACC ASN.1 compiler [13] to support
the GSER in addition to the originally supported BER and DER [13]. It also
generates component equality matching rules, component extract functions, and
component indexer functions which will be discussed later in this section in de-
tail. In order to facilitate the integration of the newly defined syntaxes without
the need of rebuilding the slapd executable, the generated data structures and
routines are built into a module which can be dynamically loaded to slapd.

After loading the eSNACC-compiler generated module into the slapd, it
becomes able to deal with the new attribute syntax supported by the module.
With Figure 3, we summarize the overall processing steps of incoming LDAP
search requests in the OpenLDAP directory server as follows,

10

1. A search for components of an X.509 certificate attribute is initiated by
the inclusion of the component filter in the filter of the search request.

2. On the reception of the search request, the component filter contained in
the request is parsed to obtain component assertion values and component
references.

3. The component assertion value is decoded to the internal representation
for ASN.1 by the GSER decoder. If the values is a composite type, it is
also converted into a component tree.

4. With the obtained component reference, the component cache is retrieved
to check if the target certificate already exists or not in a decoded form.
If hit, goto 7.

5. Candidate directory entries having certificates are loaded and then the in-
cluded certificates are decoded by an appropriate ASN.1 decoder according
to the encoding rule of the corresponding attribute syntax. Because X.509
certificate is DER encoded, a DER decoder is used to decode the certifi-
cate into an internal representation of an ASN.1 type, or a component
tree.

6. The component reference is fed into the component extractor to obtain a
sub tree out of the attribute component tree.

7. The assertion component and the extracted attribute component are then
matched against each other by the matching rule which is specified in the
component filter.

8. After matching is completed at the server, the client is returned with
entries including the target certificates. The client MUST verify the sig-
nature of the certificates to see if they are maliciously altered or not.

The rest of this section will provide the detailed description of the Compo-
nent Matching in two steps. After describing how to make the OpenLDAP direc-
tory server ASN.1 aware, the detailed description of component filter processing,
aliasing, component indexing, and component caching will be given.

5.1 ASN.1 Awareness

As explained in the previous section, Component Matching is based on ASN.1.
A current OpenLDAP directory server, however, is incapable of dealing with
ASN.1 encodings such as BER, DER, and GSER due to the LDAP’s adoption of
string-based encodings (The server does not necessarily have to be prepared with
necessary functions to handle the ASN.1 encodings). In an effort to make the
server ASN.1 aware, we employ the widely used ASN.1 compiler, eSNACC, and
extend it to automatically generate all necessary functions and data structures
in C required for processing a given ASN.1 encoding in the server. In the
following section, the methodologies to bring ASN.1 awareness into the server
will be elaborated.

11

{ version 2,

serialNumber 12345 ,

signature { algorithm 1.2.840.113549.1.14, parameters NULL},

issuer {{type cn, value IBM trust} , {type o, value IBM},{type c, value US}},

validity {notBefore {2004 01 13 18 59}, notAfter {2005 01 13 18 59} },

…

}
GSER encodings

toBeSigned :: = SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublickKeyInfo subjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIOMAL
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL
extensions [3] EXPLICIT Extensions OPTIONAL

}

typedef struct toBeSigned{
AsnInt version;
AsnInt serialNumber;
struct AlgorithmIdentifier* signature;
struct Name* issuer;
…

}

C internal data structure

Encoding

EnctoBeSigned(…)

Decoding

DectoBeSigned(…)

ASN.1 Compiling

Figure 4: ASN.1 TBSCertificate specification, its compiler output, and example
GSER encodings (*certificate should be DER-encoded).

5.1.1 eSNACC Compiler

An ASN.1 compiler translates ASN.1 modules (specification) into C / C++ data
structures and their encoding / decoding routines. The eSNACC ASN.1 com-
piler generates them for BER and DER. In Component Matching, a component
assertion value is encoded in GSER, so it is required to extend the compiler to
have a GSER backend. The encoding / decoding routines enable back and forth
data conversion between BER / DER / GSER encodings and the instantiation
of C / C++ data struct, making the server be capable of handling any compo-
nent of given ASN.1 encodings internally. For example, Figure 4 illustrates the
ASN.1 specification of an X.509 certificate, example GSER encodings, internal
C data struct definition, and encoder/decoder functions. The generated internal
C data struct has data fields corresponding to components of the toBeSigned
ASN.1 type. Once the internal data structure for toBeSigned is instantiated,
it can be converted to DER by DEnctoBeSigned() and back to the internal
representation by DDectoBeSgined().

Besides an encoder, decoder, C data struct, following functions are also
generated automatically by our ASN.1 compiler.

• Component extractor: Component Matching enables matching an arbi-
trary component of attribute values against a component assertion, which
requires the capability of extracting any component out of a given at-
tribute value.

• Component matching rule: Component Matching defined a new match-
ing rule, allComponentMatch required for matching against a composite
ASN.1 type as specified in RFC 3687 [15]. Further explanation will be
given in the Section 5.1.3.

• Component indexer: Most LDAP directory servers collaborate with a
database that acts as an underlying infrastructure to store directory en-
tries. When it comes to database access, indexing on entries is an es-
sential function from the perspective of performance. The OpenLDAP

12

has supported only attribute-level indexing, leading us to newly engineer
component-level value indexing. Further explanation will be given in Sec-
tion 5.4.

5.1.2 Internal Representation of ASN.1 Types

A new data structure of slapd is needed to represent an attribute value as its
components because the original data structure for an attribute type does not
contain the structural information of an ASN.1 type in its representation. Every
field of an ASN.1 type is a component which is addressable by a component
reference. In our implementation, the component data structure consists of two
parts: one to store the value of the component; the other to store a component
descriptor which contains information on how to encode, decode, extract, index,
and match the values.

5.1.3 Syntax and Matching Rules

An attribute is described by an attribute type in LDAP. An attribute type
contains two key fields which help to define the attribute as well as the rules
that attribute must follow. The first field is a syntax which defines the data
format used by the attribute type. The second field is a matching rule which
is used by an LDAP server to compare an attribute value with an assertion
value supplied by LDAP client search or compare operations. Attributes must
include the matching rules in their definition. At least, equality matching rule
should be supported for each attribute type. From the viewpoint of an LDAP
server, an ASN.1 specification defining a new attribute type requires a new
syntax and its matching rule to be defined. To fully automate the Component
Matching in which the composite attribute types are defined in ASN.1, we
extended the eSNACC compiler to generate the basic equality matching rule
of a given ASN.1 type, or allComponentMatch matching rule specified in RFC
3687 [15]. The allComponentMatch matching rule evaluates to true only when
the corresponding components of the assertion and the attribute values are
the same. It can be implemented by performing matching from the topmost
component which is identified by the component reference recursively down to
the subordinate components.

5.2 Component Assertion and Filter

RFC 3687 [15] defines a new component filter as the means of referencing a
component of a composite attribute and as the means of representing an as-
sertion value for a composite attribute types. The component assertion is an
assertion about presence or values of components within an ASN.1 value. It
has a component reference to identify one component within an attribute value.
The component filter is an expression of component assertions, which evaluates
to either TRUE, FALSE, or Undefined while performing matching. For exam-
ple, in Figure 5, the component reference or toBeSigned.serialNumber identifies

13

(userCertificate:componentFilterMatch
:= not:item:{

component toBeSigned.serialNumber,
rule integerMatch,
value 9453771

}
)

Component Reference

Component Assertion

Component Filter

New Matching Rule

Figure 5: Example Component Filter.

Table 1: Attribute Aliasing Table.
Alias Attribute Aliased Attribute Component Reference Matching Rule

x509certificateSerialNumber userCertificate toBeSigned.serialNumber integerMatch
x509certificateIssuer userCertificate toBeSigned.issuer distinguishedNameMatch

one component in the Certificate attribute value. In the component reference,
“.” means identifying one of components subordinate to the preceding compo-
nent. In the component assertion, rule is followed by an integerMatch matching
rule [12] which will be used to compare the following assertion value with the
referenced component of the attribute value. The routines required to sup-
port the component filter and the component assertion were hand-coded and
integrated into slapd while the routines for the component assertion values are
automatically generated from a given ASN.1 type.

5.3 Component Aliasing

To enable Component Matching, clients as well as servers need to support GSER
and new component matching rules. However, the client side changes will be
minimal, because the component filter can be specified by using the existing
extensible matching rule mechanism of LDAPv3 and the component assertion
value is represented as the text centric GSER encoding rules. Especially, the
clients that accept search filters as strings require no changes to utilize Compo-
nent Matching other than filling in the necessary component filter as the search
filter. However, for those clients who have search filters hard coded in them, we
propose an attribute aliasing mechanism which maps a virtual attribute type
to an attribute component and a component matching rule and a matching
rule aliasing mechanism which maps a virtual matching rule to a component
assertion.

Attribute aliasing registers a set of virtual attributes to an LDAP server.
The virtual attributes themselves find corresponding matching rules and com-
ponent references by looking up an attribute alias table. The example at-
tribute aliasing table is shown in Table 1. X509certificateSerialNumber attribute
is aliased to “userCertificate.toBeSigned.serialNumber” with the integerMatch
matching rule. Hence, the filter “(x509certificateSerialNumber=1)” is consid-
ered equivalent to “(userCertificate:ComponentFilter:=item:component toBe-

14

Signed.serialNumber, rule integerMatch, value 1)”. With the attribute aliasing,
clients only have to form simple assertions to utilize Component Matching.
Matching rule aliasing works in a similar way, so an aliasing matching rule is
mapped into the corresponding component reference and the matching rule.

5.4 Component Indexing

The maintenance of proper indices is critical to the search performance in the
Component Matching as much as in the conventional attribute matching. In
slapd, the attribute indexing is performed by generating a hash key value of the
attribute syntax, matching rule, and the attribute value.

The component indexing can be specified in the same way as the attribute
indexing, except that the component reference is used to specify which com-
ponent of a composite attribute to be indexed. Once a component is selected
for indexing, corresponding syntax, component matching rule, and component
value are combined to generate a hash key value. On generating the hash key,
a component value can be either a basic ASN.1 type or composite ASN.1 type,
and it is encoded in BER, DER, and GSER. In our OpenLDAP implementa-
tion, we decide to use GSER when generating a hash key of a component since
an incoming component assertion value from a client is GSER-encoded. If a
component is a basic ASN.1 type, it is quite straightforward to generate a hash
key value since a GSER-encoded component value is used as it is without any
manipulation. For a composite component, however, careful consideration is
required to generate a hash key, depending on which constructors (SET, SE-
QUENCE, SET OF, SEQUENCE OF) are used. For the SET and SET OF
constructed types, it is required to canonicalize the order of the elements in the
GSER encodings before generating the hash key value. For <all> component
reference of SET OF and SEQUENCE OF constructed types, it is needed to
union the indices for each value element of SET OF and SEQUENCE OF.

5.5 Component Caching

The OpenLDAP server is equipped with two caches for the performance im-
provement [4]; one is an entry cache, the other is a BDB database cache. The
entry cache is to store frequently requested entries to reduce the latency of
accessing a back-end BDB database. A database cache is to hide disk access
latency. The sizes of both caches should be configured accordingly to maximize
throughput, considering the size of available physical memory and the number
of entries. The current entry cache only stores the DER form of a certificate.
Whenever matching on a certificate is performed, the DER-encoded certificate
needs to be decoded repeatedly to a internal representation, a component tree.
The DER decoding latency of a human-optimized OpenSSL decoder and our
ASN.1 compiler generated decoder for Component Matching are measured and
shown in Table II.

In an effort to remove the decoding latency, we devise various caching policies
for the entry cache storing a decoded component tree. In brief, the overall

15

Table 2: Decoding Time
d2i X509() ASN.1
OpenSSL Decoder

Time (microsec) 32.74 40.20

policies are summarized as follows;

• CM-NC: Decoded component tree is not cached.

• CM-FC: Decoded component tree as a whole is cached.

• CM-VC: Values of components which are unlikely to be used for matching
are excluded from caching.

• CM-SC: Only indexed components are cached.

In early implementation, we decided to cache a decoded certificate component
tree, as a whole, along with its entry into the entry cache, which is named as a
CM-FC scheme. The size of userCertificate is around 1Kbbyte and that of the
corresponding decoded component tree is approximately 3Kbytes. Caching all
the decoded component tree consumes more than three times as much memory
as the non-caching scheme (CM-NC). Hence, in order to reduce the memory
consumption of CM-FC, we devise CM-VC which caches only selected compo-
nent values of a given certificate. In CM-VC, the values of a certificate such as
a public key and a signature that are highly unlikely to be used for matching
upon by a client are excluded from the cache. In other word, CM-VC does
not cache those values specified in an ASN.1 BIT STRING type, saving around
273Bytes for each certificate. Even with this improvement, it still appears that
the memory requirement of CM-VC is still very high as compared to CM-NC,
leading us to devise more memory-efficient scheme. In a directory, all attributes
that are highly likely to be requested by clients are always indexed by a server
administrator. Therefore, we came to the conclusion that caching only the in-
dexed components would be a very practical solution to relieve the high memory
requirement which is named as a CM-SC scheme. In our experiment, the serial
number component was indexed and cached which took only 148Bytes. As a
conclusion, it is observed that CM-SC can reduce memory requirement in the
proportion to how many components are indexed.

6 Applications of Component Matching

Component Matching facilitates the development of emerging applications en-
compassing WS-security [21] and XKMS [23]. In the following two subsections,
how the applications can take full advantage of Component Matching will be
described. Those readers who are not interested in Web services can skip this
section.

16

6.1 Component Matching in WS-Security

SOAP (Simple Object Access Protocol) is a protocol for invoking methods on
servers, services, components, and objects [1]. It is a way to create widely
distributed, complex computing environments that run over the Internet us-
ing existing Internet infrastructure, enabling Web service developers to build
Web services by linking heterogeneous components over the Internet. For inter-
pretability over heterogeneous platforms, it is built on top of XML and HTTP
which are universally supported in most services. WS-Security is recently pub-
lished as the standard for secure Web Services [21]. It provides a set of mech-
anisms to help Web Services exchange secure SOAP message. WS-Security
provides a general purpose mechanism for signing and encrypting parts of a
SOAP message for authenticity and confidentiality. It also provides a mecha-
nism to associate security tokens with the SOAP messages to be secured. The
security token can be cryptographically endorsed by a security authority. It can
be either embedded in the SOAP message or acquired externally. There are
two types of PKI clients in WS-Security: one directly accesses PKI; the other
indirectly accesses it by using service proxies such as XML Key Management
System (XKMS) [23] which provides clients with a simple-to-use interface to a
PKI so as to hide the complexities of the underlying infrastructure.

In the X.509 token profile of WS-Security [22], it is defined that the following
three types of token references can be used:

1. Reference to a Subject Key Identifier: value of certificate’s X.509SubjectKeyIdentifier.

2. Reference to a Security Token: either an internal or an external URI
reference.

3. Reference to an Issuer and Serial Number: the certificate issuer and serial
number.

Because it is defined as extensible, any security token can also be used
based on schemas. It is shown in Figure 6 that the <ds:X509Data> element of
<ds:KeyInfo> is used as the security token. <ds:X509Data> defined in [24] con-
tains various references such as X509IssuerSerial, X509SubjectName, X509SKI,
and so on. With the ASN.1 awareness and the Component Matching supported
in the OpenLDAP directory server, these references can be used without the
need of implementing syntax specific matching rules for various types of ref-
erences. It is also possible in <ds:X509Data> to use elements from external
namespace for further flexibility.

Figure 6 shows one such an example. Here, GenericCertificateReference
element from dsext namespace is used to provide a generic reference mechanism
which implements CertificateMatch in the X.509 recommendation [11]. The
reference consists of a sequence of certificate attributes, serialNumber, issuer,
subjectKeyIdentifier, authorityKeyIdentifier, certificateValid, privateKeyValid,
subjectPublicKeyAlgID, keyUsage, subjectAltName, policy, pathToName each

17

<ds:KeyInfo>

<wsse:SecurityTokenReference>

<ds:X509Data>

<dsext:GenericCertificateReference xmlns:dsext="..." EncodingType="...#XER">

<dsext:CertificateAssertion>

<dsext:serialNumber>8fb2adb53a9056a511d356947cedeec0</dsext:serialNumber>

<dsext:issuer>o=IBM,c=US</dsext:issuer>

<dsext:keyUsage>0</dsext:keyUsage>

</dsext:CertificateAssertion>

</dsext:GenericCertificateReference>

</ds:X509Data>

</wsse:SecurityTokenReference>

</ds:KeyInfo>

Figure 6a: XER.

<ds:KeyInfo>

<wsse:SecurityTokenReference>

<ds:X509Data>

<dsext:GenericCertificateReference xmlns:dsext="..." EncodingType="...#GSER">

{ serialNumber "8fb2adb53a9056a511d356947cedeec0", issuer "o=IBM,c=US" ,

keyUsage ‘010000000’B }

</dsext:GenericCertificateReference>

</ds:X509Data>

</wsse:SecurityTokenReference>

</ds:KeyInfo>

Figure 6b: GSER.

18

of which is defined optional. By using the example reference, it would be possible
to perform security key reference in a very flexible way. It would be possible
to search for a certificate having a subjectAltName with a specific keyUsage.
Figure 6 (a) shows that the reference is encoded in XML while Figure 6 (b)
shows that the reference is encoded in GSER.

With the Component Matching enabled LDAP server, the GSER encoded
reference value can be used as an LDAP assertion value in a component filter.
With the ASN.1 awareness support, the LDAP server is now capable of under-
standing the structure of the CertificateAssertion type when configured with
its ASN.1 definition. Because encoders / decoders for various encoding rules
(GSER, DER, XER ...) are automatically generated and integrated into the
LDAP server, it is possible to use ASN.1 values encoded in those encoding rules
as an assertion value in an LDAP search operation.

With the ASN.1 aware and Component Matching enabled LDAP server,
flexible reference formats for X.509 certificates can now be defined in ASN.1 to
configure the LDAP server to understand the reference. The required matching
rules, encoders, and decoders for the reference type will be automatically gen-
erated and integrated to the LDAP server. This increased flexibility will foster
the flexible use of security token references in the LDAP server by making it
easy to create and update references.

6.2 Component Matching and XKMS

Figure 7 illustrates an overall PKI architecture which is comprised of CA, RA,
and two types of end-entities. When a PKI is used for Web Services, there
are two types of PKI clients: one directly accesses PKI; the other indirectly
accesses it by using service proxies such as XML Key Management Specification
(XKMS) [23] services which provide clients with a well defined interface to a PKI
so as to hide the complexities of the underlying PKI. The XML Key Information
Service Specification (X-KISS) is one of the services provided by XKMS [23]. It
defines two key services: locate and validate. In the following subsection, it will
be presented how the Component Matching can be used in the X-KISS services
with respect to certificate.

6.2.1 Certificate Access

Figure 8 shows an example X-KISS Locate service request. In the request,
there is <QueryKeyBinding> which describes how to bind this request to a
desired public key. In the example, <KeyUsage> and <ds:KeyInfo> are pro-
vided to bind the request. A client using the XKMS service sends the X-KISS
Locate request shown in Figure 8. In response to the request, the XKMS ser-
vice needs to resolve the request and then might contact an LDAP directory
server to locate the desired certificate. In the example locate request, the serial
number in line 15-17 and the key usage in line 07 are supplied by the client for
<QueryKeyBinding>. With Component Matching, the component filter will be
constructed from the request by the XKMS services as shown in Figure 2. The

19

C
er

tif
ic

at
e

/ C
R

L
R

ep
os

ito
ry

 (
LD

A
P

)

Registration

Authority (RA)

Certificate

Authority (CA)

XKMS Trust
Service

Client
Tier 0 RetrievalMethod

Tier 1 / 2

Locate / Validate

Key Mgmt

Certificate / CRL

Access

Publish

Certificate

Publish

Certificate / CRL

Management

Transactions

Management

Transactions

Registration
Revocation
Recovery

C
er

tif
ic

at
e

/ C
R

L
R

ep
os

ito
ry

 (
LD

A
P

)

Registration

Authority (RA)

Certificate

Authority (CA)

XKMS Trust
Service

Client
Tier 0 RetrievalMethod

Tier 1 / 2

Locate / Validate

Key Mgmt

Certificate / CRL

Access

Publish

Certificate

Publish

Certificate / CRL

Management

Transactions

Management

Transactions

Registration
Revocation
Recovery

Figure 7: XKMS in PKI.

00 <?xml version="1.0" encoding="utf-8"?>
01 <LocateRequest xmlns:ds=http://www.w3.org/2000/09/xmldsig#
02 xmlns:xenc=http://www.w3.org/2001/04/xmlenc#
03 Id="I8fc9f97052a34073312b22a69b3843b6“
04 Service=http://test.xmltrustcenter.org/XKMS
05 xmlns="http://www.w3.org/2002/03/xkms#">
06 <QueryKeyBinding>
07 <KeyUsage>Signature</KeyUsage>
08 <ds:KeyInfo>
09 <wsse:SecurityTokenReference>
10 <ds:X509Data>
11 <ds:X509IssuerSerial>
12 <ds:X509IssuerName>
13 o=IBM,c=US
14 </ds:X509IssuerName>
15 <ds:X509SerialNumber>
16 9453771
17 </ds:X509SerialNumber>
18 </ds:X509IssuerSerial>
19 </ds:X509Data>
20 </wsse:SecurityTokenReference>
21 </ds:KeyInfo>
22 </QueryKeyBinding>
23 </LocateRequest>

Figure 8: Example XKMS Locate Service Request.

20

c=us

O=IBM

ou =Accounting, Product Development,
Product Testing, Human Resources,
Janitorial, Management, Administrative,
Planning

cn=sangseok
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

c=us

O=IBM

x509Serial=957508
objectClass: x509base
objectClass: x509Certificate
objectClass: x509PKC

cn=sangseok

(a) DIT of OpenSSL and Component Matching (b) DIT of XPS

Figure 9: DIT Structures of the LDAP Certificate Repository.

component reference “toBeSigned.extension.*.extnValue.content.(2.5.29.15)” refers
to all extensions of the certificate of which KeyUsage is ‘100000000’B. It is used
to check if a certain bit (the first bit for signature) is set. The correspond-
ing component filter of Figure 2 enables the XKMS service to find a certificate
of a subject for a signature purpose only. If the client uses GenericCertifi-
cateReference explained in the previous section and the Component Matching
is supported in an LDAP directory server, the XKMS service can use arbitrary
fields of a certificate in order to construct component filters to process the locate
request.

7 Performance Analysis of LDAP for PKI

This section analyzes the performance of the three different approaches to
the LDAP certificate repositories: Component Matching, dedicated certificate
matching, and attribute extraction.

7.1 Experiment Environment

The SUT (System Under Test) is an IBM xSeries 445 server with 4 Intel Xeon
2.8GHz processors and with 12GB of main memory running SUSE SLES9 (Linux
kernel version 2.6.5). We used MindCraft’s DirectoryMark [18] tools to gener-
ate the directory entries and client scripts containing a list of LDAP operations.
We developed a new multi-threaded client program in Linux that reads the Di-
rectoryMark script and requests corresponding LDAP operations to the LDAP
server. The client program was run on an 8-way IBM xSeries 445 server with
Intel Xeon 2.8GHz processors. We used the transactional backend (back-bdb)
of OpenLDAP version 2.2.22 together with Berkeley DB 4.3 and OpenSSL 0.9.7
for the evaluation.

Figure 9 shows the DIT structures used in the evaluation. The DIT for
the Component Matching and the dedicated certificate matching (Figure 9 (a))
consists of inetOrgPerson entries each having a userCertificate attribute under
10 organizationalUnits under the base entry. The userCertificate attributes was

21

��

��

��

��

��

���

���

���

���

���

���

� � � �� ��

���������	
�

�
�
�
��
��
�
	

��
�

�

��������

�������

����

����

����

Figure 10: Performance of Component Caching Policies. (NA and A denote no
aliasing and aliasing respectively

��

��

��

��

��

���

���

���

���

���

���

� � � �� ��

	
��
������

�
�
�
��
��
�
	

��
�
�
�

��������

�����

���	�

��		�

��	

(a) 10K Entries

��

��

��

��

��

���

���

���

���

���

���

� � � �� ��

	
��
������

�
�
�
��
��
�
	

��
�
�
�

��������

�����

���	�

��		�

��	

(b) 100K Entries

Figure 11: Performance of LDAP Certificate Repositories without Memory Pres-
sure.

created by using the OpenSSL toolkit. In the DIT for the attribute extraction
mechanism, on the other hand, each inetOrgPerson has one additional subordi-
nate entry for one userCertificate it has. This additional entry contains userCer-
tificate along with the corresponding extracted attributes. Each userCertificate
should exist as a separate object.

Three different DIT sizes, 10K, 100K, and 500K entries were used for eval-
uation. Entries were searched randomly so that the memory working set size is
increased in proportion to the number of entries. The directory was indexed for
cn, sn, email of inetOrgPerson and for serialNumber and issuer of userCertifi-
cate (or the corresponding extracted attributes in the case of attribute extraction
mechanism).

In the experiment, OpenLDAP stand-alone directory server, slapd was used
as an LDAP certificate repository testbed for all three methods. slapd as of
OpenLDAP version 2.2.22 supports both the Component Matching and the
certificate specific matching. The attribute extraction mechanism was tested by
using the XPS patch to OpenLDAP which was contributed to the OpenLDAP
project by University of Salford. XPS was used to automatically generate the

22

DIT for the attribute extraction. The same version of slapd was tested for all
three mechanisms for the LDAP certificate repository.

7.2 Performance of Component Caching

Figure 10 shows the throughput of Component Matching with various caching
policies for 10K entry directory. Search was performed against serialNumber
component of the userCertificate attribute. The entry cache size and database
cache size are set to 10K entries and to 1GB respectively so that all the en-
tries were able to be cached into both caches. CM-FC improves the throughput
by 15% as compared to CM-NC. CM-SC not only saves memory but also out-
performs other component caching polices by as much as 20%. This is because
caching extracted components reduces the code path of slapd by eliminating the
BER decoding operations out of it. It only checks if the component reference
of an incoming component assertion is identical to the extracted component’s
in the entry cache and directly compares the assertion value with the cached
component value. CM-VC shows almost the same performance as does CM-FC
with a slightly decreased memory usage.

7.2.1 Performance of Component Aliasing

In Section 5.3, we discussed the component aliasing mechanism in the context of
providing backward compatibility to legacy client applications. Interestingly, it
also turned out that aliasing also has significant impact on throughput. Aliasing
improves the throughput of CM-FC by up to 11% as depicted in Figure 10. This
is mainly because the component aliasing helps to bypass both the overhead of
the extensible filter parsing step which has a very long code path to read from
BER stream and that of the component filter parsing step including GSER
stream decoding.

7.3 Performance Analysis of Three LDAP Mechanisms for
Certificate Repository

Figure 11 shows the throughput of three approaches with varying the number
of entries and clients. As the number of clients increases, throughput of all
the methods increases up to the point of 20 clients. When it reaches to 20
clients, the server becomes saturated, restricting its throughput lower than the
peak throughput. The throughput of CM-SC and attribute extraction mech-
anisms follow almost the same characteristics. The certificate specific match-
ing (OpenSSL decoder) exhibits slightly lower performance than the other two
methods. We attribute the reason of the lower throughput of the certificate
specific matching to longer code path of slapd such as normalization and sanity
checks of assertion values using the OpenSSL library. CM-NC shows the worst
throughput among them as expected due to the overhead of the repeated cer-
tificate decodings. CM-FC performs well for both 10K and 100K entries even

23

��

��

��

��

��

���

���

���

���

���

���

�	
�� ������ ���

�
�
�
��
��
�
	

��
�
�
�

����� ����� �����

Figure 12: SMP Scalability (1-way, 2-way, and 4-way).

though its memory consumption is high because sufficient amount of memory
resources were provided.

Figure 12 shows the scalability of slapd with 100k entries on an SMP ma-
chine, varying the number of processors from 1 to 4. As the number of processors
increases, the throughput also increases in three methods at almost the same
scaling factors. The scaling factor is approximately 65% of the ideal linear
scaling.

In order to observe the behavior of the three methods in the presence of
memory pressure, we increased the number of entries to 500K entries. The
database cache size is reduced to 200MB from 1GB and the entry cache size is
set to 50,000 from 100,000. With this configuration, only small portion of the
entries can be cached and hence the system suffers from frequent memory swap-
ping. Figure 14 (a) shows that the throughput of all three methods are degraded
significantly. The peak throughput of CM-SC is 3250 ops/sec, significantly de-
graded from 17,507 ops/sec throughput with sufficient memory caching. The
attribute extraction mechanism was hit by even further performance degrada-
tion than the other two mechanisms. This is because the number of entries
becomes doubled by extracting attributes and having them as a separate en-
try subordinate to the original entry. This performance degradation confirms
the intrinsic limitation of the attribute extraction approach which multiplies
the number of directory entries as many entries should be created as there are
userCertificate attribute values. When we increased the database cache size to
800MB, the throughput bounced back as shown in Figure 14 (b). The peak
throughput of CM-SC becomes 4500 ops/sec. The throughput of the attribute
extraction mechanism is still the worst among the three even though it becomes
doubled by the increase in the database cache size.

Figure 13 shows that the scaling factors of the three methods remain almost
the same as that without memory pressure. However, the performance of the
attribute extraction mechanism dropped almost to the half of those of the other
two mechanisms. It is obvious in all system sizes that the attribute extraction
approach is more susceptible to memory resource constraint than the others
because of the increased directory size.

Table 3 shows the directory population times with 100k entries. XPS is
about 5 times slower than the other two. This is because it extracts attributes

24

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

����� ������	
��

�
�
�
��
��
�
	

��
�
�
�

�����

�����

�����

Figure 13: SMP Scalability under Memory Pressure
(Database Cache Size = 800MB).

and stores them in the subordinate entry separately. This clearly multiplies
the number of database update operations. Additional overhead comes from
excessive WAL (Write Ahead Logging) [2] on top of the transaction logging
of the underlying Berkeley DB to maintain transactional semantics across the
addition and certificate extraction of the original object and the addition of the
certificate objects. The directory loading time shown in Table 3 already reflects
the indexing overhead for serialNumber and issuer component of userCertificate
in Component Matching and certificate specific matching. Indexing requires
decoding of the DER encoded certificates into the indexed components to obtain
the component values to generate indexing keys.

7.4 Assessment of Three LDAP Mechanisms for Certifi-
cate Repository

Configuring a directory server’s entry cache and database cache has a significant
impact on the overall performance. As observed in the series of experiments,
each mechanism has different memory and storage requirements which requires
careful consideration of the characteristics of the three mechanisms in the capac-
ity planning process. Table 4 summarizes the characteristics of the three mech-
anisms for LDAP certificate repository. Regarding the storage requirement, the
attribute extraction mechanism has multiplied storage requirement to provide
the same flexibility as does Component Matching. It has to extract a priori
all the certificate components which can be matched by the client applications
for maximum flexibility. Component matching does not need additional storage

Table 3: Directory Load Performance (100K entries).

Component Certificate XPS
Matching Matching

Time 178sec 167sec 815sec
DB Size 234MB 234MB 410MB

25

����

����

����

����

����

����

����

����

����

� � 	 �
 ��

�����������

�
�
�
��
��
�
	

��
�
�
�

�����

�����

�����

��	
���

��

(a) Database Cache: 200MB

����

����

����

����

����

����

����

����

����

����

����

� � 	 �
 ��

�����������

�
�
�
��
��
�
	

��
�
�
�

�����

�����

�����

��	
���

��

(b) Database Cache: 800MB

Figure 14: Performance of LDAP Mechanisms Certificate Repositories under
Memory Pressure (500K Entries).

except for the certificate itself. Component matching’s memory requirement is
determined by the caching policy. If CM-SC is used, it is almost the same as
that of the certificate specific matching. The multiplied number of entries in
attribute extraction also increases the memory requirement accordingly.

When multiple certificates are stored for a subject entry, the attribute ex-
traction mechanism need to create one subordinate entry for each certificate.
This not only complicates the management of DIT but also increases the search
latency because the LDAP server has to visit more entries during DIT traversal.
With the certificate specific matching and Component Matching, on the other
hand, multiple certificates can be stored in a single object.

The certificate specific matching lacks the flexibility of the Component Match-
ing and the attribute extraction approaches. Currently, the matching on “seri-
alNumber$issuer” is the only supported certificate specific matching in OpenL-
DAP. In order to support matching against various components and their com-
binations, vendors should provide matching rule codes for each combination to
be processed in slapd by using an OpenSSL library. The other two methods, on
the other hand, provide a very flexible way to handle this demand. Both use
ASN.1 compilers to provide an automatic path to generate necessary codes for
various matching.

The search performances of the three methods are comparable when there
is no memory constraint. In the presence of memory resource constraints, how-
ever, the search performance of the attribute extraction becomes about 40% of
the other two methods. Finally, the directory population performance of the at-
tribute extraction mechanism is almost five times lower than those of the other
two methods. If a large number of certificates needs to be published frequently,
it is discouraged to use the attribute extraction mechanism unless the directory
loading performance is significantly improved.

26

Table 4: Characteristics of Three LDAP Certificate Repositories.

Component Matching OpenSSL XPS
Normalized Storage Requirement 1 1 2
Normalized Memory Requirement 1 - 3 1 2

Multiple Certificate Support Simple Simple Complex
Matching Flexibility Good Bad Good

Security High High Low
Peak Search Perf. wo memory pressure 0.84 -0.97 0.97 1
Peak Search Perf. w memory pressure 1 1.02 0.4
Normalized Directory Loading Time 1.00 0.94 4.58

8 Conclusion

This paper presented how Component Matching enables flexible and secure
certificate access when LDAP directories are used as the certificate reposito-
ries in PKI. This paper also presented a detailed description of the design and
implementation of the Component Matching in OpenLDAP directory server fo-
cusing on various optimizations we proposed to improve the performance and
interoperability of the Component Matching. Another important contribution
of this paper is the quantitative performance evaluation and analysis of the
Component Matching compared with the preexisting practices of certificate
specific matching and the attribute extraction. The result convinced us that
higher manageability and flexibility can be accomplished by using the Com-
ponent Matching without any compromise in performance. It also shows that
the Component Matching outperforms the attribute extraction approach in a
resource constrained system. The evaluation results presented in this paper can
be found useful in evaluating the three different options to implement LDAP
certificate repository in PKI and can be used as base data for capacity planning
to build such systems as well. The Component Matching technology and its
implementation in OpenLDAP enable flexible and high performance LDAP cer-
tificate repository for PKI. Finally, it is noteworthy that even though our paper
focused on describing the use of Component Matching for X.509 certificate but
it does not necessarily mean that its use is limited to X.509 certificate. This
is because, fundamentally, Component Matching is a very general solution to
store and retrieve any data via LDAP as long as its syntax is defined by ASN.1.

8.1 Availability

The Component Matching is included in OpenLDAP release which can be down-
loaded at http://www.openldap.org/software/download/. The eSNACC ASN.1
compiler can be obtained from DigitalNet at http://digitalnet.com/knowledge/download.htm.

27

References

[1] D. Box and D. Ehne. Simple object access protocol (SOAP). W3C Note,
May 2000.

[2] D. W. Chadwick, E. Ball, and M. Sahalayev. Modifying LDAP to support
x.509-based PKIs. In 17th Annual IFIP WG 11.3 Working Conference on
Database and Applications Security, August 2003.

[3] D. W. Chadwick and S. Mullan. Returning matched values with LDAPv3.
RFC 3876, September 2004.

[4] J. H. Choi, H. Franke, and K. D. Zeilenga. Enhancing the performance
of openldap directory server with multiple caching. In International Sym-
posium on Performance Evaluation of Computers and Telecommunications
Systems, July 2003.

[5] J. H. Choi, S. S. Lim, and K. D. Zeilenga. A new on-line certificate val-
idation method for improved security, scalability, and interoperability. In
IEEE Information Assurance Workshop, June 2005.

[6] J. H. Choi, S. S. Lim, and K. D. Zeilenga. On-line certificate revocation
via ldap component matching. In DIMACS Workshop on Security of Web
Services & E-Commerce, May 2005.

[7] W. Ford and D. Solo. Internet x.509 public key infrastructure certificate
and certificate revocation list (CRL) profile. RFC 3280, 2002.

[8] J. Hodges, R. Morgan, and M. Wahl. Lightweight directory access protocol
(v3): Technical specification. RFC 3377, September 2002.

[9] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 public key
infrastructure certificate and CRL profile. RFC 2459, January 1999.

[10] ITU-T Rec. X.680, Abstract syntax notation one (ASN.1): Specification
of basic notation, December 1997.

[11] ITU-T Rec. X.509, The directory: Public-key and attribute certificate
frameworks, March 2000.

[12] ITU-T Rec. X.500, The directory: Overview of concepts, models and ser-
vice, February 2001.

[13] R. Joop. Snacc 1.2rj. http://www.fokus.gmd.de/ovma/freeware/snacc/
entry.html.

[14] S. Legg. Generic string encoding rules. RFC 3641, October 2003.

[15] S. Legg. X.500 and LDAP component matching rules. RFC 3687, February
2004.

28

[16] S. S. Lim, J. H. Choi, and K. D. Zeilenga. Secure and flexible certifi-
cate access in WS-security through LDAP component matching. In ACM
Workshop on Secure Web Services held in conjunction with the 11th ACM
Conference on Computer and Communications Security, October 2004.

[17] S. S. Lim, J. H. Choi, and K. D. Zeilenga. Design and implementation of
ldap component matching for flexible and secure certificate access in pki.
In Internet2 PKI R&D Workshop, April 2005.

[18] Mindcraft. DirectoryMark. http://www.mindcraft.com/directorymark/.

[19] M. Myers, R.Ankney, A.Malpani, and C.Adams. Internet X.509 public key
infrastructure online certificate status protocol - OCSP. RFC 2560, June
1999.

[20] N. Klasen and P. Gietz. An ldapv3 schema for x.509 certificates, <draft-
klasenldap- x509certificate-schema-00.txt>, February 2002.

[21] OASIS. Web services security: SOAP message security 1.0 (WS-Security
2004). OASIS Standard 200401, March 2004.

[22] OASIS. Web services security: X.509 certificate token profile. OASIS
Standard 200401, January 2004.

[23] W3C. XML key management specification (XKMS). W3C Standard, March
2001.

[24] W3C. XML - signature syntax and processing. W3C Standard, February
2002.

29

