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Abstract

This paper revisits the asymptotic normality of the nonlinear least-squares estimator for sinusoidal parameter

estimation and fills two voids in the literature. First, it provides a complete proof ofthe asymptotic normality

of the nonlinear least-squares estimator for sinusoidal signals in additive non-Gaussian white noise. Sec-

ond, it uncovers the necessity of re-interpreting and re-defining the signal-to-noise ratio when applying the

asymptotic theory to practical situations where the sample sizes are finite and thenoise distribution has

heavy tails. Simulation results are given to demonstrate the findings.



1 Introduction

Consider the problem of estimating the parameterθθθ := [A1,B1,ω1, . . . ,Ap,Bp,ωp]
T ∈ Θ0 := (R×R×Ω)p

from a data record{y1, . . . ,yn} of lengthn that can be modeled as

yt =
p

∑
k=1

{Ak cos(ωkt)+Bk sin(ωkt)}+ εt (t = 1, . . . ,n) (1)

wherep > 0 is a known integer,Ak ∈ R, Bk ∈ R, andωk ∈ Ω := (0,π), satisfyingωk 6= ωk′ for k 6= k′, are

unknown constants, and{εt} is a white noise process with mean zero and unknown varianceσ2 > 0. It is

commonly believed that the nonlinear least-squares (NLS) estimator ofθθθ , defined as a minimizer of

ℓ2(ϑϑϑ) :=
n

∑
t=1

∣

∣

∣

∣

yt −
p

∑
k=1

{ϑ3k−2cos(ϑ3kt)+ϑ3k−1sin(ϑ3kt)}
∣

∣

∣

∣

2

(2)

with ϑϑϑ := [ϑ1, . . . ,ϑ3p]
T , has an asymptotic normal distribution with mean equal toθθθ and covariance ma-

trix equal to the Craḿer Rao lower bound (CRLB) under the Gaussian white noise (GWN) assumption,

which we denote by CRLB(θθθ). In other words,θ̂θθ n := argminℓ2(ϑϑϑ) A∼ N(θθθ ,CRLB(θθθ)), where A∼ means

“asymptotically distributed as.”

This asymptotic normality (AN) assertion is believed to be true in the case of GWN because the NLS

estimator then becomes the maximum likelihood (ML) estimator which typically has an asymptotic normal

distribution with the CRLB as its asymptotic variance. For non-Gaussian noise,the AN assertion is largely

based on an “approximation” argument originated from [1] and [2] because the well-known results for

the general problem of nonlinear least-squares regression, such as[3] and [4], do not directly apply. In

this argument, the NLS objective function (2) is first approximated by a new objective function of which

the minimization leads to a periodogram maximizer for the frequency estimation and the discrete Fourier

transform for the amplitude estimation (with the estimated frequencies in place of the true frequencies).

From this approximation one tends to conclude that the NLS estimator should have the same asymptotic

distribution as the minimizer of the new objective function which was proved to beasymptotically normal

with the asserted mean and covariance matrix for any finite-variance white noise. However, this leap of
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conclusion is not automatically valid. In fact, the results in [1] were presented more as a justification of the

periodogram maximizer than as an analysis of NLS itself.

The asymptotic variance of the NLS estimator was derived in [5] and shown tocoincide with CRLB(θθθ)

for any finite-variance white noise. It was done by using the standard technique of Taylor series expansion of

the normal equations, but all higher-order terms were simply ignored in effect. Existence or nonexistence of

a limiting distribution was not discussed. A proof of asymptotic normality was provided in [6] for complex

sinusoids but under the GWN assumption rather than non-Gaussian conditions. An attempt was made more

recently in [7] to give a direct proof of the AN assertion of the NLS estimatorunder (1) and non-Gaussian

conditions. As in [3] and [4], the approach taken by [7] is the traditional two-step approach by which one

first establishes consistency and then proves asymptotic normality using the Taylor expansion of the gradient

function which equals zero at the minimizer. Unfortunately, the argument forboth steps is flawed. See [8]

for more detailed comments on [7] and related literature.

In this article, we provide a complete proof of the asymptotic normality of the NLS estimator by working

directly with the NLS objective function and by taking a modern approach rooted in the analysis of local

asymptotic normality (LAN) [9]. In addition, we point out a potential difficulty inapplying the asymptotic

theory to practical situations where the sample size is finite and the noise has heavy tails. This issue is

largely absent in the literature because the noise used in most simulation studiesthat compare simulated

results with the CRLB, including more recent ones [10]–[13], is invariablyGaussian. Our findings suggest

that to ensure the validity of the theoretical results the notion of signal-to-noise ratio (SNR) in the CRLB

should be more carefully interpreted for heavy-tailed but finite-variancenoise, and that the sample variance

instead of the theoretical variance should be used in these situations when evaluating the performance of the

NLS estimator against the asymptotic theory.
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2 Proof of Asymptotic Normality

Because of the presence of numerous local minima in the NLS objective function, few algorithms of practical

value can produce the global minimizer ofℓ2(ϑϑϑ). Practical algorithms usually begin with an initial value,

based on prior knowledge or an initialization procedure, and then find a local minimizer nearby as the final

estimate. This method often lead to satisfactory results as long as the initial valuesare sufficiently close

to the true parameter value. Therefore, it sufficies to consider the minimizer of ℓ2(ϑϑϑ) in a neighborhood

of θθθ and study the properties of this local minimizer. Critical to this line of inquiry is thatthe size of the

neighborhood should be specified as precisely as possible in order to guide the practitioner in choosing the

right initial values or initialization procedures. Our main theorem serves these purposes.

We define the NLS estimator as the minimizer ofℓ2(ϑϑϑ) in a closed neighborhood ofθθθ that shrinks at

a certain rate as the sample size grows. The existence of the minimizer is guaranteed by the continuity of

ℓ2(ϑϑϑ) as a function ofϑϑϑ . The shrinking neighborhood circumvents the consistency issue without requiring

the minimizer to lie in the interior of the neighborhood or to have a zero gradient. It is not a limitation of

our approach but a basic requirement for NLS to overcome the problem of spurious local extrema [5] [18].

Our theorem explicitly specifies the minimal rate of shrinkage and thus helps thepractitioner to choose the

right initialization procedures. For example, according to the theorem, a frequency estimator of accuracy

O(n−1/2) is not good enough, but a frequency estimator of accuracyO(n−11/8) is. Note that the rate of

shrinkage could be improved slightly (e.g., by assuming the existence of higher moments for the noise),

but it must be faster thanO(n−1) for the frequency parameter; otherwise, one would face the problem of

spurious local extrema as demonstrated by many analytical and numerical studies [5] [18].

Theorem 1. Let {yt} satisfy (1), where{εt} is a white noise process with mean zero and finite variance

σ2 > 0. Let Θn := {ϑϑϑ ∈ Θ0 : ‖D−1
n (ϑϑϑ −θθθ)‖ ≤ cnα} for some constantsα ∈ (0, 1

8) and c> 0, where Dn

be a block-diagonal matrix of p blocks with each diagonal block equal todiag{n−1/2,n−1/2,n−3/2}. Then,
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θ̂θθ n := argmin{ℓ2(ϑϑϑ) : ϑϑϑ ∈ Θn} A∼ N(θθθ ,CRLB(θθθ)) as n→ ∞, where CRLB(θθθ) is a block-diagonal matrix of

p blocks with the kth diagonal block taking the form

Σk :=
1
γk

















(A2
k +4B2

k)/n −3AkBk/n −6Bk/n2

(4A2
k +B2

k)/n 6Ak/n2

symmetry 12/n3

















,

and withγk := 1
2(A2

k +B2
k)/σ2 being the SNR of the kth sinusoid.

Proof. Let st(ϑϑϑ) := ∑p
k=1{ϑ3k−2cos(ϑ3kt)+ ϑ3k−1sin(ϑ3kt)} and consider, according to the LAN ap-

proach, the random functionZn(δδδ ) := (2σ2)−1 ∑n
t=1{|yt −st(θθθ +Dnδδδ )|2−|εt |2}. The objective is to prove

thatZn(δδδ ) can be expressed as

Zn(δδδ ) = −δδδ Tζζζ n + 1
2δδδ T ĨG(θθθ)δδδ +Rn(δδδ ), (3)

whereRn(δδδ ) = Op(n−1/4+2α) uniformly inδδδ ∈ ∆n := {δδδ : θθθ +Dnδδδ ∈ Θ0,‖δδδ‖≤ cnα}= {δδδ : θθθ +Dnδδδ ∈ Θn}

andζζζ n
D→ N(0, ĨG(θθθ)), with ĨG(θθθ) := DnCRLB−1(θθθ)Dn, which does not depend onn, being the normalized

asymptotic Fisher information matrix under the GWN assumption. Note that unlike some linear LAN prob-

lems for which it suffices to establish the uniformity of an expression analogous to (3) in a fixed compact set

of δδδ , the nonlinear problem under consideration commands a greater demand that calls for the uniformity

of (3) to hold in a compact set∆n which grows to the inifinite spaceR3p. The rate at which∆n is permitted

to grow ultimately determines the required accuracy of initial values.

The quadratic function ofδδδ in (3) has a unique minimum̃δδδ n := Ĩ−1
G (θθθ)ζζζ n. The assertion of the theorem

follows immediately if we can show that̂δδδ n := argmin{Zn(δδδ ) : δδδ ∈ ∆n} = D−1
n (θ̂θθ n −θθθ) is Op(1) away

from δ̃δδ n, i.e., δ̂δδ n− δ̃δδ n
P→ 0. Toward that end, we rewrite (3) asZn(δδδ ) = Zn(δ̃δδ n) + 1

2(δδδ − δ̃δδ n)
T ĨG(θθθ)(δδδ −

δ̃δδ n)+ Rn(δδδ )−Rn(δ̃δδ n) and defineRn := max{|Rn(δδδ )| : δδδ ∈ ∆n}. For any constantµ > 0, if δ̃δδ n ∈ ∆n, then

inf{Zn(δδδ ) : δδδ ∈ ∆n,‖δδδ −δ̃δδ n‖> µ}≥ Zn(δ̃δδ n)+
1
2κµ2−2Rn, whereκ > 0 is the smallest eigenvalue ofĨG(θθθ).

Sinceδ̃δδ n converges in distribution and∆n → R
3p, we haveP(δ̃δδ n /∈ ∆n) → 0. This, combined withRn

P→ 0,

impliesP(‖δ̂δδ n− δ̃δδ n‖ > µ,δ̃δδ n ∈ ∆n) → 0, which, in turn, leads toP(‖δ̂δδ n− δ̃δδ n‖ > µ) → 0.
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To establish (3), we use the Taylor expansionst(θθθ + Dnδδδ ) = st(θθθ)+ vt + r̃t , wherevt := (Dnδδδ )Tgt(θθθ)

and ˜rt := 1
2(Dnδδδ )THt(θθθ nt)(Dnδδδ ), with gt(ϑϑϑ) being the gradient vector,Ht(ϑϑϑ) the Hessian matrix, andθθθ nt

an intermediate point betweenθθθ andθθθ +Dnδδδ . Sinceyt = st(θθθ)+εt , it follows thatZn(δδδ ) = ∑5
i=1Zni, where

Zn1 := −∑vtεt/σ2, Zn2 := 1
2 ∑v2

t /σ2, Zn3 := −∑ r̃tεt/σ2, Zn4 := ∑vt r̃t/σ2, andZn5 := 1
2 ∑ r̃2

t /σ2.

First, we showZn4 = O(n−1/2+3α) uniformly in δδδ ∈ ∆n by using the Taylor expansion ˜rt = rt + ut ,

wherert is defined in the same way as ˜rt except that the true parameter valueθθθ is in place of the inter-

mediate pointθθθ nt. In this expansion,ut is a linear combination of the third partial derivatives ofst(ϑϑϑ)

evaluated at an intermediate point which may depend ont. These third partial derivatives are either zero

(for those that involve differentiation with respect to the amplitudes more than once) or can be expressed

asO(tβ ) for someβ = 2,3. Moreover, owing to the presence ofDnδδδ and to the fact that the components

in θθθ nt −θθθ that correspond to the amplitudes can be expressed asO(n−1/2+α) and those that correspond

to the frequencies asO(n−3/2+α), the coefficients of the third partial derivatives of the formO(tβ ) take

the formO(n−(β+1)−1/2+3α). This, combined withvt = O(n−1/2+α), leads to∑vtut = O(n−1+4α). Direct

calculation also shows that∑vtrt = O(n−1/2+3α). This provesZn4 = O(n−1/2+3α). Similarly, we obtain

Zn5 = O(n−1+4α) because∑ r2
t = O(n−1+4α), ∑ rtut = O(n−3/2+5α), and∑u2

t = O(n−2+6α). Furthermore,

straightforward calculation yieldsZn2 = 1
2δδδ T{ĨG(θθθ)+O(n−1)}δδδ = 1

2δδδ T ĨG(θθθ)δδδ +O(n−1+2α).

Next, we showZn3 = Op(n−1/4+2α) uniformly inδδδ ∈∆n. Toward that end, we note thatZn3 =−(∑ rtεt +

∑utεt)/σ2. Because the expected value ofn−(β+1)−1/2+3α ∑ tβ |εt | takes the formO(n−1/2+3α), we obtain

max|∑utεt | = Op(n−1/2+3α), where the max is overδδδ ∈ ∆n. Moreover,|∑ rtεt | can be upper bounded

uniformly in δδδ ∈ ∆n by a linear combination ofn−(β+1)+2α |∑ tβ εt exp(iωkt)| for β = 1,2, wherei :=
√
−1.

It is easy to see that|∑ tβ εt exp(iωkt)|2 does not exceed

n

∑
t=1

t2β ε2
t +2

n−1

∑
s=1

∣

∣

∣

∣

n−s

∑
t=1

tβ (t +s)β εtεt+s

∣

∣

∣

∣

.

The expected value of the first term can be expressed asO(n2β+1); the expected value of the second term
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can be bounded, using the Cauchy-Schwarz inequality, by

2
n−1

∑
s=1

{

E

(n−s

∑
t=1

tβ (t +s)β εtεt+s

)2}1/2

,

which, in turn, takes the formO(n2β+3/2). This proves thatn−(β+1)+2α |∑ tβ εt exp(iωt)| = Op(n−1/4+2α)

uniformly in ω ∈ R. Therefore, max|∑ rtεt | = Op(n−1/4+2α), and the assertion follows.

Finally, letζζζ n := Dn ∑gt(θθθ)εt/σ2. It remains to show thatZn1 = −∑vtεt/σ2 = −δδδ Tζζζ n
D→ −δδδ Tζζζ for

any fixedδδδ 6= 0, whereζζζ ∼ N(0, ĨG(θθθ)). We follow the steps in [1]. First, we note thatE(∑vtεt) = 0 and

σ2
n := Var(∑vtεt) = σ2 ∑v2

t → σ4δδδ T ĨG(θθθ)δδδ . Therefore, it suffices to verify the Lindeberg condition

n

∑
t=1

E{(vtεt/σn)
2I(|vtεt |/σn > a)}→ 0 (4)

for anya > 0. This can be done by showingc2
n := max(v2

t )/∑v2
t → 0. Indeed, because the left hand side

of (4) can be written as∑(vt/σn)
2E{ε2

t I(|εt |> aσn/|vt |)}, and becauseσn/|vt | ≥ σ/cn so thatE{ε2
t I(|εt |>

aσn/|vt |)} ≤ E{ε2
t I(|εt | > aσ/cn)} = en := E{ε2

1 I(|ε1| > aσ/cn)}, where the last expression is due to the

identical distribution ofεt , the quantity in the left hand side of (4) is upper bounded by∑(vt/σn)
2en = en/σ2.

If cn → 0, thenen → 0, hence the Lindeberg condition. Thatcn → 0 follows from the fact that max(|vt |) =

O(n−1/2) and∑v2
t → σ2δδδ T ĨG(θθθ)δδδ > 0.

3 Simulation

There are simulation studies in the literature that compare the NLS estimator against the CRLB under the

GWN conditions. These studies show that the simulated mean-squared error(MSE) of the estimator closely

follows the CRLB suggested by the asymptotic theory, even for relatively small sample sizes. In this section,

we are interested in a similar comparison but under non-Gaussian conditions, especially under the condition

of heavy-tailed noise. This is different from the estimation issues discussed in [14]–[16] under impulsive

noise with infinite variance and the robustness issues discussed in [17].
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For illustration purposes, consider the case ofp = 1 whereyt = Acos(ωt)+Bsin(ωt)+ εt . According

to Theorem 1, the NLS frequency estimator,ω̂n, should be asymptotically distributed asN(ω ,12γ−1n−3),

whereγ := 1
2(A2 +B2)/σ2 is the SNR. More to the point, Theorem 1 promises that the asymptotic distribu-

tion is valid for any zero-mean white noise with heavy or light tails, as long as thenoise has a finite variance.

In particular, Theorem 1 promises that the MSE ofω̂n should be closely approximated by the CRLB, which

equals 12γ−1n−3, at least for large sample sizes. The purpose of our simulation study in this section is to

find out how closely the MSE follows the CRLB under the condition of heavy-tailed noise.

To facilitate the study, we consider the family of Student’sT distributions, denoted asTν , because the

heaviness of its tails can be easily controlled by the degree-of-freedom parameterν . Recall thatTν has a

finite fourth moment only ifν > 4, a finite third moment only ifν > 3, and a finite second moment, with

varianceν/(ν −2), only if ν > 2. In general, the lower the order of the nonexistent moments the heavier

the tails would become. Therefore, by varyingν , we can simulate noise data with a range of tail behavior.

The first simulation setsν = 4.1, so the noise does not have very heavy tails. For a given SNRγ, the noise

data{ε1, . . . ,εn} are generated by scaling a sample of i.i.d.Tν -distributed random variables{x1, . . . ,xn} such

thatεt = cxt/
√

ν/(ν −2), wherec :=
√

1
2(A2 +B2)/γ. In theory, the variance of so-generatedεt is σ2 = c2

and, according to Theorem 1, the MSE ofω̂n is expected to be close to 12γ−1n−3 = 24n−3σ2/(A2 + B2).

In the simulation, we chooseA = 1, B = 0, ω = 0.15×2π, andγ = 1 (SNR = 0 dB). The NLS estimates

are calculated by the functionoptim of the software package R using a simplex algorithm. To avoid the

problem of spurious local minima, we use the true parameter value as the initial guess. In practice, the initial

value can be obtained from other estimators [1] [5] [11] [19], but this subject is not our focus here.

Fig. 1(a) shows the result of the first simulation where 1/MSE is plotted against the sample size, with

MSE calculated from 10,000 independent Monte Carlo runs. The dotted linedepicts 1/CRLB. As we can

see, in this case, the MSE follows the CRLB very closely, even for sample size 50. This result resembles the

results in the literature under the GWN conditions.
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(a) (b)

Figure 1:Reciprocal MSE (in decibels) of the NLS estimatesω̂n/(2π) as a function ofn. Dotted line represents the

reciprocal CRLB. The noise is distributed asTν with (a) ν = 4.1 and (b)ν = 2.1.

In the next simulation, we reduce the degrees of freedom toν = 2.1, so the noise becomes very heavy

tailed (third moment does not exist). Fig. 1(b) depicts the resulting MSE in the same way as Fig. 1(a). This

experiment reveals that the MSE is no longer approximated well by the CRLB,even for sample sizes as

large as 900. In fact, the simulated MSE is about 5 dB smaller than the CRLB predicted by Theorem 1. It

is important to note that the noise distribution does not violate the assumptions in Theorem 1, because the

noise remains to have a finite variance withν = 2.1. The only difference from the previous simulation is

that the noise no longer possesses finite third and fourth moments. Clearly, inthis case, the sample size must

be extremely large in order for Theorem 1 to be relevant. (We tested it usingsample sizes up to 20,000 and

still observed a 2.8 dB discrepancy.)

To explain the huge discrepancy revealed in Fig. 1(b), one has to take a closer look at the proof of

Theorem 1. As can be seen, the theoretical varianceσ2 plays a crucial role in calculating the asymptotic

variance of the sum∑vtεt that ultimately determines the asymptotic distribution of the NLS estimator. The
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Figure 2:A sample ofTν -distributed random noise withν = 2.1, scaled by theoretical variance (top) and by sample

variance (middle). The bottom panel shows a random sample fromN(0,1) as reference.

varianceσ2 is interpreted as the power of the noise, but is calculated as an ensemble average ofε2
t over

the imaginary statistical population or an infinite data record. For finite sample sizes, a more meaningful

measure of the noise power is the sample averages2
n := n−1 ∑ε2

t of the noise data{ε1, . . . ,εn}. Typically,

σ2 ands2
n do not differ very much (at least for reasonably large sample sizes) when the noise distribution

behaves well. For example, if the noise has finite fourth moments,s2
n approachesσ2 asn→ ∞. This is true

in particular for the widely studied GWN cases. But, when the noise has heavy tails,σ2 is no longer a good

measure of the power of a specific realization of the noise, whereass2
n remains so. In fact,σ2 is usually

much higher thans2
n. Therefore, usingσ2 to define the SNR tends to considerably lower the true SNR of

the data which is better defined as1
2(A2 +B2)/s2

n. This explains why the CRLB, defined usingσ2, is much

greater than the simulated MSE in Fig. 1(b).
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Figure 3:Same as Fig. 1(b) except the noise is scaled by sample variance instead of theoretical variance.

With this in mind, we replace the theoretical variance of theTν variables with their sample variance

in scaling them to obtainεt . This scaling technique ensures that the sample SNR is always equal to the

design valueγ for each realization of the noise. Its effect, as demonstrated in Fig. 2, is a properly boosted

noise power. By repeating the experiment shown in Fig. 1(b) with the new scaling method, we find that the

resulting MSE, depicted in Fig. 3, becomes well approximated by the CRLB, soTheorem 1 becomes valid

again for these sample sizes. To close this section, we must point out that theintended use of the scaling

technique is not for estimating the noise variance from the observed data{yt} but for simulation studies that

compare simulated results with theoretical results.
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