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Abstract

This paper revisits the asymptotic normality of the nonlinear least-squarestestioraginusoidal parameter
estimation and fills two voids in the literature. First, it provides a complete prabeaisymptotic normality
of the nonlinear least-squares estimator for sinusoidal signals in addiiv&aussian white noise. Sec-
ond, it uncovers the necessity of re-interpreting and re-defining tinalsig-noise ratio when applying the
asymptotic theory to practical situations where the sample sizes are finite andigieedistribution has

heavy tails. Simulation results are given to demonstrate the findings.



1 Introduction

Consider the problem of estimating the paramétes [Aq, By, @y, ..., Ap,Bp, wp]T € Op:= (R x R x Q)P

from a data recordys, ..., yn} of lengthn that can be modeled as

P
Vi = Z{Akcos(m(t)Jersin(m(t)}Jrst (t=1,...,n) 1)
K=1

wherep > 0 is a known integer®y € R, By € R, andax € Q := (0, i), satisfyingax # wy for k £ K, are
unknown constants, ani} is a white noise process with mean zero and unknown variaice 0. It is

commonly believed that the nonlinear least-squares (NLS) estima@yrd&fined as a minimizer of

p 2
Yo — > {Jak-2c08ad) + Fz-1sin(Fad)} (2)
&

52(19) = i

with & := [94,...,93p|", has an asymptotic normal distribution with mean equé &nd covariance ma-

trix equal to the Crar Rao lower bound (CRLB) under the Gaussian white noise (GWN) asgrmp
which we denote by CRLE). In other words 8, 1= arg mind2(8) £ N(6,CRLB(8)), whereX means
“asymptotically distributed as.”

This asymptotic normality (AN) assertion is believed to be true in the case of G¥¢bluse the NLS
estimator then becomes the maximum likelihood (ML) estimator which typically hasyampéstic normal
distribution with the CRLB as its asymptotic variance. For non-Gaussian nbes@&N assertion is largely
based on an “approximation” argument originated from [1] and [2] bseahe well-known results for
the general problem of nonlinear least-squares regression, syghawd [4], do not directly apply. In
this argument, the NLS objective function (2) is first approximated by a ngective function of which
the minimization leads to a periodogram maximizer for the frequency estimation amtisttrete Fourier
transform for the amplitude estimation (with the estimated frequencies in place dfuih frequencies).
From this approximation one tends to conclude that the NLS estimator showddiagame asymptotic
distribution as the minimizer of the new objective function which was proved @smptotically normal

with the asserted mean and covariance matrix for any finite-variance wh#e. ndowever, this leap of



conclusion is not automatically valid. In fact, the results in [1] were pregant&re as a justification of the
periodogram maximizer than as an analysis of NLS itself.

The asymptotic variance of the NLS estimator was derived in [5] and showairicide with CRLE)
for any finite-variance white noise. It was done by using the standanditpee of Taylor series expansion of
the normal equations, but all higher-order terms were simply ignoredédntefExistence or nonexistence of
a limiting distribution was not discussed. A proof of asymptotic normality wasigealvin [6] for complex
sinusoids but under the GWN assumption rather than non-Gaussian cosdio attempt was made more
recently in [7] to give a direct proof of the AN assertion of the NLS estimatater (1) and non-Gaussian
conditions. As in [3] and [4], the approach taken by [7] is the traditional$tep approach by which one
first establishes consistency and then proves asymptotic normality usinaytioe @xpansion of the gradient
function which equals zero at the minimizer. Unfortunately, the argumertidtir steps is flawed. See [8]
for more detailed comments on [7] and related literature.

In this article, we provide a complete proof of the asymptotic normality of the Niti§ator by working
directly with the NLS objective function and by taking a modern approactectbm the analysis of local
asymptotic normality (LAN) [9]. In addition, we point out a potential difficultyapplying the asymptotic
theory to practical situations where the sample size is finite and the noise &asthéds. This issue is
largely absent in the literature because the noise used in most simulation shadiesmpare simulated
results with the CRLB, including more recent ones [10]-[13], is invarigdyssian. Our findings suggest
that to ensure the validity of the theoretical results the notion of signal-t@mat® (SNR) in the CRLB
should be more carefully interpreted for heavy-tailed but finite-variaocge, and that the sample variance
instead of the theoretical variance should be used in these situations vaheatimg the performance of the

NLS estimator against the asymptotic theory.



2 Proof of Asymptotic Normality

Because of the presence of numerous local minima in the NLS objectiviedunfew algorithms of practical
value can produce the global minimizer®{#). Practical algorithms usually begin with an initial value,
based on prior knowledge or an initialization procedure, and then findehntiaimizer nearby as the final
estimate. This method often lead to satisfactory results as long as the initial eatuesfficiently close
to the true parameter value. Therefore, it sufficies to consider the minimfize($®) in a neighborhood
of @ and study the properties of this local minimizer. Critical to this line of inquiry is thatsize of the
neighborhood should be specified as precisely as possible in ordeid®tha practitioner in choosing the
right initial values or initialization procedures. Our main theorem serveg fh@gposes.

We define the NLS estimator as the minimizer/gfd ) in a closed neighborhood & that shrinks at
a certain rate as the sample size grows. The existence of the minimizer istgedrhy the continuity of
¢>(¥) as a function of. The shrinking neighborhood circumvents the consistency issue witbquiring
the minimizer to lie in the interior of the neighborhood or to have a zero gradierstnbt a limitation of
our approach but a basic requirement for NLS to overcome the proldlepudous local extrema [5] [18].
Our theorem explicitly specifies the minimal rate of shrinkage and thus helgsdbttioner to choose the
right initialization procedures. For example, according to the theoremgadrey estimator of accuracy
O(n~%2) is not good enough, but a frequency estimator of accurday'¥/®) is. Note that the rate of
shrinkage could be improved slightly (e.g., by assuming the existence ofrhigtraents for the noise),
but it must be faster thafh(n—!) for the frequency parameter; otherwise, one would face the problem of

spurious local extrema as demonstrated by many analytical and numerdiakg&j [18].

Theorem 1. Let {y;} satisfy (1), wherd &} is a white noise process with mean zero and finite variance
02> 0. LetO,:={# € Op: ||D;1(# — 0)|| < cn?} for some constantg € (O,%) and c> 0, where B

be a block-diagonal matrix of p blocks with each diagonal block equdiag{n—/2,n~%2 n=3/2}, Then,



6 :=argmin{(2(3): 9 € ©,} £ N(8,CRLE8)) as n— o, where CRLRO) is a block-diagonal matrix of

p blocks with the kth diagonal block taking the form

(AZ+4B2)/n  —3AB/n  —6By/n?
1
2= (4A2+BY)/n  BAY/M |-
symmetry 12/nd

and withy, := 3(AZ + BZ)/0? being the SNR of the kth sinusoid.

Proof. Lets(9) := Zlle{ﬁgk,zcos(z‘}gkt) + J-1Sin(Jxt)} and consider, according to the LAN ap-
proach, the random functia®y(8) := (20%) 1S, {|yt — (0 + Dnd)|2 — |&|?}. The objective is to prove

thatZ,(d) can be expressed as
Z,(8) = —8"{n+18"1(8)8 + Rn(8), (3)

whereR,(8) = Op(n~42%) uniformly in & € Ay := {8:0+Dnd € Oy, ||8]| <cn®} = {6: 0 +Dnd € Op}
andZ, > N(0,ig(8)), with ig(8) := D,CRLB™(8)Dy, which does not depend anbeing the normalized
asymptotic Fisher information matrix under the GWN assumption. Note that uniike Boear LAN prob-
lems for which it suffices to establish the uniformity of an expression anakogo(3) in a fixed compact set
of &, the nonlinear problem under consideration commands a greater demandlih#or the uniformity
of (3) to hold in a compact sét, which grows to the inifinite spade3P. The rate at whicl, is permitted
to grow ultimately determines the required accuracy of initial values.

The quadratic function @ in (3) has a unique minimurzfin = fgl(e)zn. The assertion of the theorem
follows immediately if we can show thak, := arg min{Zn(8) : 8 € Ay} = D16, — ) is 0p(1) away
from &y, i.e., 8, — &, = 0. Toward that end, we rewrite (3) @(8) = Zn(8n) + 5(8 — 31)Ti5(8) (8 —
Sn) +Rq(0) — Rn(Sn) and defineR, := max{|R,(8)| : & € A,}. For any constantt > 0, if &n € A, then
iNnf{Zn(d) : & € An, ||6—3n|| >up> Zn(Sn) + %KHZ— 2R,, wherek > 0 is the smallest eigenvalue igf(0).
Since;Sn converges in distribution antl, — R3P, we haveP(Sn ¢ An) — 0. This, combined witiR, 0,

impliesP(||&n — 8n|| > U, 8n € An) — 0, which, in turn, leads t&(||&n — 8n|| > 1) — O.



To establish (3), we use the Taylor expanssi® + Dnd) = §(8) + v + ft, wherev; := (D8)"g:(0)
andr; := 3(Dn6)THi(8r) (Dnd), with gi(#) being the gradient vecto;(#) the Hessian matrix, anfl
an intermediate point betwe@&and@ + Dpd. Sincey; = &(0) + &, it follows thatZ,(8) = zf;lzni, where
Zn = — Y& /0%, Znp 1= 3 Y V2/ 0%, Zng := — Y T1&/ 0%, Zna := Y Wi /02, andZys == 5 5 72/ 02.

First, we showZy = O(n~Y/2+3¢) uniformly in & € A, by using the Taylor expansion = r + u,
wherer; is defined in the same way as€xcept that the true parameter valdas in place of the inter-
mediate point9,;. In this expansiony is a linear combination of the third partial derivativesspf®)
evaluated at an intermediate point which may depentl drhese third partial derivatives are either zero
(for those that involve differentiation with respect to the amplitudes more thae)wr can be expressed
asO(tP) for somef = 2,3. Moreover, owing to the presence @fd and to the fact that the components
in @, — @ that correspond to the amplitudes can be expressef(ms?/?*?) and those that correspond
to the frequencies a8(n~%/2+9), the coefficients of the third partial derivatives of the fott?) take
the formO(n~(B+D-1/2+3a) " This, combined withy = O(n~%2+9), leads toy ik = O(n~14%). Direct
calculation also shows thgtwviry = O(n~Y/2+39). This provesZ, = O(n~Y/2+39). Similarly, we obtain
Zns = O(n~ 149 pecause rZ = O(n~1149), 5w = O(n~%/2+59) andy U = O(n~2+89). Furthermore,
straightforward calculation yieldg, = 36" {ig(8) + O(n"1)} & = 267ig(0) 6 + O (n~1+2).

Next, we showZg = O p(n~Y/4+2%) uniformly in & € A,. Toward that end, we note thais = — (3 re& +
Y Ww&)/02. Because the expected valuerof#+1)-1/2+30 5 tB || takes the form®(n~%/2+37), we obtain
max| ¥ wé&| = Op(n~23%) where the max is oved € A,. Moreover, |y ri&| can be upper bounded
uniformly in & € A, by a linear combination af~B+1+29| 5 tBg expliat)| for B = 1,2, wherei := /1.

Itis easy to see thaty tP& exp(ict)|? does not exceed

n n—-1
thzﬁ g2+2 Z
t= (=

The expected value of the first term can be expresse(a®*1); the expected value of the second term

n—s
Ztﬁ(t—FS)ﬁ&SH_S
t=




can be bounded, using the Cauchy-Schwarz inequality, by

n—1 nfsB 5 2y 1/2
2 {E( tP(t+9)"a& > } ;
AL .

which, in turn, takes the forr®(n?$+3/2). This proves thah~(F+D+20| s tPg expliot)| = Op(n~1/4+2)
uniformly in w € R. Therefore, maky ri&| = Op(n~Y/4+2%), and the assertion follows.

Finally, lety, := Dn Y t(0)&/0?. It remains to show thaly = — Y wé& /02 = —8'{n > —8' for
any fixedd # 0, where ~ N(0,ig(8)). We follow the steps in [1]. First, we note thafy v &) = 0 and

o2 :=Var(y w&) = 02y V2 — 0*8"ig(0) 8. Therefore, it suffices to verify the Lindeberg condition

iE{(vtet/an)zl (|w&|/on>a)} — 0 4)
t=

for anya > 0. This can be done by showing := maxv?)/s v? — 0. Indeed, because the left hand side
of (4) can be written a5 (v /0on)2E{&?l (|&| > aon/|w|)}, and becausen /|| > g /c, so thatE{?l (|&| >
aon/|\|)} <E{&?l(|&| > aog/cn)} = en:= E{€?I(|&1] > ao/cn)}, where the last expression is due to the
identical distribution of;, the quantity in the left hand side of (4) is upper bounded by / dn)?en = en/ 0.
If ¢, — 0, thene, — 0, hence the Lindeberg condition. Th@gt— 0 follows from the fact that maw|) =

O(n~Y2) andy V? — 026"i(8) 8 > 0. O

3 Simulation

There are simulation studies in the literature that compare the NLS estimatortagei@RLB under the
GWN conditions. These studies show that the simulated mean-square(\sioy of the estimator closely
follows the CRLB suggested by the asymptotic theory, even for relativelll saraple sizes. In this section,
we are interested in a similar comparison but under non-Gaussian condispesially under the condition
of heavy-tailed noise. This is different from the estimation issues disdusgé4]—[16] under impulsive

noise with infinite variance and the robustness issues discussed in [17].



For illustration purposes, consider the casgef 1 wherey; = Acog wt) + Bsin(wt) + &. According
to Theorem 1, the NLS frequency estimatd@r, should be asymptotically distributed Bgw, 12y~ 1n—3),
wherey := %(A2 1 B?)/0? is the SNR. More to the point, Theorem 1 promises that the asymptotic distribu-
tion is valid for any zero-mean white noise with heavy or light tails, as long asdise has a finite variance.

In particular, Theorem 1 promises that the MSE®fshould be closely approximated by the CRLB, which
equals 19 1n~3, at least for large sample sizes. The purpose of our simulation study irettisrsis to
find out how closely the MSE follows the CRLB under the condition of heigd noise.

To facilitate the study, we consider the family of Studeft’'distributions, denoted ag,, because the
heaviness of its tails can be easily controlled by the degree-of-freedommptern. Recall thatT, has a
finite fourth moment only ifv > 4, a finite third moment only i > 3, and a finite second moment, with
variancev/(v —2), only if v > 2. In general, the lower the order of the nonexistent moments the heavier
the tails would become. Therefore, by varymgwe can simulate noise data with a range of tail behavior.

The first simulation setg = 4.1, so the noise does not have very heavy tails. For a given\shi noise
data{ée, ..., &} are generated by scaling a sample of i Tiddistributed random variablgsq, . .., X, } such
thate; = cx/+/V/(v — 2), wherec:= /3 (A2+B?) /y. In theory, the variance of so-generateds 02 = c2
and, according to Theorem 1, the MSE@f is expected to be close to f2'n—3 = 24n—30?/(A? 4 B?).

In the simulation, we choos&=1,B=0, w=0.15x 211, andy = 1 (SNR = 0 dB). The NLS estimates
are calculated by the functiosptim of the software package R using a simplex algorithm. To avoid the
problem of spurious local minima, we use the true parameter value as the in@&d.gn practice, the initial
value can be obtained from other estimators [1] [5] [11] [19], but thijesti is not our focus here.

Fig. 1(a) shows the result of the first simulation whef®SE is plotted against the sample size, with
MSE calculated from 10,000 independent Monte Carlo runs. The dottedéipiets YCRLB. As we can
see, in this case, the MSE follows the CRLB very closely, even for sam@é&86izZThis result resembles the

results in the literature under the GWN conditions.
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Figure 1:Reciprocal MSE (in decibels) of the NLS estimatag/ (2m) as a function of. Dotted line represents the

reciprocal CRLB. The noise is distributed Bswith (a) v = 4.1 and (b)v = 2.1.

In the next simulation, we reduce the degrees of freedom-t02.1, so the noise becomes very heavy
tailed (third moment does not exist). Fig. 1(b) depicts the resulting MSE in the 8ay as Fig. 1(a). This
experiment reveals that the MSE is no longer approximated well by the CB\IdB) for sample sizes as
large as 900. In fact, the simulated MSE is about 5 dB smaller than the CRIdR{@@ by Theorem 1. It
is important to note that the noise distribution does not violate the assumptiongdnehin 1, because the
noise remains to have a finite variance witk= 2.1. The only difference from the previous simulation is
that the noise no longer possesses finite third and fourth moments. Cleéhnlg, ¢gase, the sample size must
be extremely large in order for Theorem 1 to be relevant. (We tested it samgle sizes up to 20,000 and
still observed a 2.8 dB discrepancy.)

To explain the huge discrepancy revealed in Fig. 1(b), one has to takeser took at the proof of
Theorem 1. As can be seen, the theoretical variarfcplays a crucial role in calculating the asymptotic

variance of the surly v & that ultimately determines the asymptotic distribution of the NLS estimator. The
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Figure 2:A sample ofT,-distributed random noise with = 2.1, scaled by theoretical variance (top) and by sample

variance (middle). The bottom panel shows a random sammuieN(0, 1) as reference.

variancea? is interpreted as the power of the noise, but is calculated as an ensemtalgeavés? over

the imaginary statistical population or an infinite data record. For finite sampme, sizmore meaningful
measure of the noise power is the sample avesage n‘lzet2 of the noise datdey,...,&n}. Typically,

02 ands? do not differ very much (at least for reasonably large sample sizeshwie noise distribution
behaves well. For example, if the noise has finite fourth momsehtmproaches? asn — o. This is true

in particular for the widely studied GWN cases. But, when the noise hay laiés; g is no longer a good
measure of the power of a specific realization of the noise, whefe@snains so. In factg? is usually
much higher thars?. Therefore, usingr? to define the SNR tends to considerably lower the true SNR of
the data which is better defined 2672 + B2) /<2. This explains why the CRLB, defined using, is much

greater than the simulated MSE in Fig. 1(b).
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Figure 3:Same as Fig. 1(b) except the noise is scaled by sample variastead of theoretical variance.

With this in mind, we replace the theoretical variance of Thevariables with their sample variance
in scaling them to obtais;. This scaling technique ensures that the sample SNR is always equal to the
design valuey for each realization of the noise. Its effect, as demonstrated in Fig. 2 rigpanly boosted
noise power. By repeating the experiment shown in Fig. 1(b) with the nalmganethod, we find that the
resulting MSE, depicted in Fig. 3, becomes well approximated by the CRLBhsorem 1 becomes valid
again for these sample sizes. To close this section, we must point out thatethéed use of the scaling
technique is not for estimating the noise variance from the observedyataut for simulation studies that

compare simulated results with theoretical results.
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