
RC24342 (W0709-011) September 5, 2007
Mathematics

IBM Research Report

Distributed SBP Cholesky Factorization
Algorithms with Near-Optimal Scheduling

Fred Gustavson
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA

Lars Karlsson, Bo Kågström
Department of Computing Science and HPC2N

Umeå University
SE-901 87
Sweden

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Distributed SBP Cholesky Factorization
Algorithms with Near-Optimal Scheduling

FRED GUSTAVSON
IBM T.J. Watson Research Center and Umeå University
LARS KARLSSON and BO KÅGSTRÖM
Umeå University

The minimal block storage Distributed Square Block Packed (DSBP) format for distributed mem-
ory computing on symmetric and triangular matrices is presented. Three algorithm variants
(Basic, Static, and Dynamic) of the blocked right-looking Cholesky factorization are designed for
the DSBP format, implemented, and evaluated. On our target machine, all variants outperform
standard full storage implementations while saving half the storage. Communication overhead is
shown to be virtually eliminated by our Static and Dynamic variants which take advantage of
hardware parallelism. The Static and Dynamic variants give nearly the same performance while
clearly outperforming the Basic variant which in turn is comparable with standard implementa-
tions such as the one found in ScaLAPACK. Models of execution assuming zero communication
costs are developed. The Static schedule is near-optimal on our target machine for medium to
large problems based on comparisons with these models.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Com-
plexity]: Numerical Algorithm and Problems—Computation on matrices; G1.3 [Numerical
Analysis]: Numerical Linear Algebra—Linear Systems (direct methods); G.4 [Mathematical
Software]: Algorithm Design and Analysis, Reliability and robustness, Performance

General Terms: Parallel Computing, Parallel Algorithms
Additional Key Words and Phrases: Real symmetric matrices, positive definite matrices, Cholesky
factorization, distributed square block format, packed storage

1. INTRODUCTION

Cholesky factorization is a special case of Gaussian elimination when the matrix is
symmetric positive definite. Algorithms for Cholesky factorization can save roughly
half of the floating point operations, use half of the memory, and since A is positive
definite there is no need for pivoting [Golub and van Loan 1996]. In the literature
there has been a great deal of interest in sparse parallel Cholesky algorithms but

Technical Report UMINF 07.19. Author’s addresses: F. G. Gustavson, IBM T.J. Watson
Research Center, Yorktown Heights, NY 10598, USA; email: fg2@us.ibm.com; L. Karlsson and B.
Kågström, Department of Computing Science and HPC2N, Umeå University, SE-901 87, UMEÅ;
email: {larsk,bokg}@cs.umu.se.
The research was conducted using the resources of the High Performance Computing Center
North (HPC2N). Financial support was provided by the Swedish Research Council under grant
VR 621-2001-3284 and by the Swedish Foundation for Strategic Research under grant A3 02:128.

2 · F. Gustavson, L. Karlsson and B. Kågström

here we only consider dense matrices.
A number of different parallel dense Cholesky factorization algorithms have been

designed and implemented on a wide range of computer architectures. Three of
the earliest ones are on use of systolic arrays [Brent and Luk 1982], data-flow
[O’Leary and Stewart 1985] and distributed memory [Geist and Heath 1985]. Today,
distributed memory computing (DMC) with message passing through the MPI
interface is the de-facto standard for parallel large-scale computations. Scalable,
portable routines for Cholesky factorization adapted to DM architectures can be
found in ScaLAPACK [Choi et al. 1996] and PLAPACK [van de Geijn 1997] to
name but two.
However, few attempts have been made at storing the symmetric matrix in a

packed format. Previous approaches have often looked at packed routines as special
and these have not been able to deliver the same level of performance as full storage
routines. Here, we present the Distributed Square Block Packed (DSBP) format
which generalizes both standard packed and full storage. Parallel algorithms using
this format will work in both modes, resulting in performance for the packed storage
being at least as good as for the full storage.
In [Gustavson et al. 2006b], we first examined the feasibility of the DSBP format

which resulted in performance better than the ScaLAPACK full storage Cholesky
factorization routine PDPOTRF (see [Choi et al. 1996]). In this contribution, three
DSBP algorithm variants of parallel packed Cholesky factorization are developed.
The first variant is a basic right-looking Cholesky factorization algorithm and it is
comparable with PDPOTRF but operates on a matrix in DSBP format. The second
variant takes advantage of hardware parallelism to overlap communication with
computation via use of look-ahead and non-blocking communication primitives.
The third, a dynamic approach, uses a more flexible scheduling and is important
on hybrid systems with multi-core nodes. Our goal is to reach an almost optimal
task schedule and overlap between communication and computation (see [Agarwal
et al. 1994] for earlier such results for parallel matrix multiplication).
Earlier contributions on packed distributed storage of symmetric matrices include

work by [D’Azevedo and Dongarra 1998] where a packed lower triangular matrix is
represented as a collection of block columns, each using a standard storage format.
Their main focus is to encapsulate the packed storage within the abstraction frame-
work of the ScaLAPACK building blocks such as the PBLAS. Performance figures
are presented which show respectable but slightly worse performance compared
with full storage ScaLAPACK routines.
A different approach is taken in [Baboulin et al. 2005] where a secondary blocking

level is introduced. An elementary block corresponds to a square block of a two-
dimensional block-cyclic distribution and a grid block is a Pr × Pc block matrix of
elementary blocks (i.e. each processor gets exactly one elementary block). Finally,
a distributed block is a square matrix of grid blocks. A matrix is divided into
distributed blocks and a blocked packed implementation with parallelization within
the block operations is presented. This is a form of algorithmic blocking but on a
macro level. Performance is for the most part slightly worse than for the full storage
ScaLAPACK routine, possibly due to extra communication and library overhead.
We remark that the storage requirement is larger than that of the DSBP format.

Parallel Cholesky using Minimum Block Storage · 3

2. ORGANIZATION AND NOTATION

The rest of the paper is organized as follows. Section 3 describes the DSBP format
for memory efficient storage and high-performance implementations in distributed
memory. In Section 4, the three DSBP algorithm variants are described along with
a brief discussion of the details of the communication algorithms. The MPI in-
terface provides the possibility to overlap communication with computation, but
to what extent is highly machine and software specific. In Section 5, we present
an evaluation of the target machine’s overlap capabilities. The performance of the
DSBP algorithm variants are evaluated in Section 6 and their scalability character-
istics, using different metrics, are examined in Section 7. Finally, we conclude with
a summary of our major findings and outline future work in Section 8.
Processors are arranged in a logical Pr × Pc mesh with each processor having

2-dimensional coordinates (p, q) with p ∈ {0, . . . , Pr − 1} and q ∈ {0, . . . , Pc − 1}.
The matrix A being factored is of size N ×N . It is partioned into

N2
b =

⌈
N

nb

⌉2

blocks of size nb × nb with padding of the possibly incomplete last block row and
column. Due to symmetry only Nb (Nb + 1)/2 blocks need to be stored.
The following LAPACK/BLAS mnemonics are used in the text1:

—POTRF: computes a Cholesky factorization A = LLT of a symmetric positive
definite matrix stored in lower triangular format and the factor overwrites the
input.

—TRSM: solves one of the matrix equations

op(A)X = αB or X op(A) = αB,

where A is triangular and the solution X overwrites B.
—GEMM: computes one of the matrix multiply updates

C ← βC + α op(A) op(B).

—SYRK: computes one of the symmetric rank-k updates

C ← βC + αAAT or βC + αAT A,

where C is symmetric and stored in triangular format.

3. DISTRIBUTED SQUARE BLOCK PACKED FORMAT

Globally the blocks are distributed with a square two-dimensional block-cyclic dis-
tribution. Locally the blocks are stored in Square Block Packed (SBP) format
[Gustavson 2003]. The elements of the blocks are stored by column, but other data
formats could be more efficient and the generally best solution is to adapt the data
format to suit the characteristics of the kernels. For brevity we only discuss the
storage of a lower triangular matrix or the lower triangular part of a symmetric
matrix. The upper triangular case is the transposed form of the lower triangular
case with the blocks stored by row.

1The α and β are scalars and op(X) = X orXT .

4 · F. Gustavson, L. Karlsson and B. Kågström

The number of blocks of block column j stored on processor (p, q) with q =
j mod Pc is

colsizepq(j) =
⌊

(Nb − 1)− p

Pr

⌋
−

⌈
j − p

Pr

⌉
+ 1.

We assign to the colsizepq(q) blocks of block column q on processor (p, q) these
block offsets:

0, . . . , colsizepq(q)− 1.

The second local block column (global block column q + Pc) has colsizepq(q + Pc)
blocks and we assign the block offsets

colsizepq(q), . . . , colsizepq(q) + colsizepq(q + Pc)− 1.

A detailed example of this numbering scheme is illustrated in Figure 1 and concep-
tually it corresponds to label the local blocks consecutively from left to right and
from top to bottom.

(0, 2)

0

1

2 6

3 7 A

4 8 B

5 9 C D

0

2

4

6

8

A

0

1

2

3

4

5

0 3 6 9
0 1 2 3

G
lobal

L
ocal

Global
Local

0

1

2 5

3 6 8

4 7 9

0

2

4

6

8

A

0

1

2

3

4

5

5 8 B2
0 1 2 3

0

1 6

2 7

3 8 B

4 9 C E

5 A D F

0 3 6 9
0 1 2 3

0

1

62

3 7 A

4 8 B

5 9 C D

1 4 7 A
0 1 2 3

0

1 5

2 6

3 7 9

4 8 A B

5 8 B2
0 1 2 3

0

1

2

3

4

5

6

7

8

9

A B

1 4 7 A
0 1 2 3

0

2

4

6

8

A

0

1

2

3

4

5

1

3

5

7

9

B

0

1

2

3

4

5

1

3

5

7

9

B

0

1

2

3

4

5

1

3

5

7

9

B

0

1

2

3

4

5

0 1 2

0

1

(0, 0) (0, 1)

(1, 1)(1, 0) (1, 2)

Fig. 1. Detailed example of a 12×12 block matrix distributed on a 2×3 mesh from the processors’
viewpoint. Hexadecimal numbers indicate the local block offsets and circled block offsets are the
elements of the auxiliary vector used in the addressing scheme. Dotted blocks emphasize the
typical full storage requirements.

A block’s address in local memory is determined by its block offset. We remark
that for Pr = Pc the colsizepq(·) numbers are easy to calculate in closed form, but
for Pr 6= Pc these values get complicated because of modular arithmetic. Efficient
use and calculation of a block offset is implemented via an auxiliary integer vector
holding the block offsets of the last block in each column. On the (1, 0) processor
in Figure 1 this vector contains the offsets 5, 10, 14, 15 (circled numbers in Fig-
ure 1). The last block row on processor (p, q) has (if it is non-empty) the local row
coordinate

ilast =
⌊

(Nb − 1)− p

Pr

⌋
.

Parallel Cholesky using Minimum Block Storage · 5

The block offset of a particular block with local coordinates (i, j) is calculated by

joffset − (ilast − i),

where joffset is the offset for column j (as stored in the auxiliary integer vector).
Note that the addressing scheme is based on the last block of a column and a

negative offset depending on the local row coordinate. Thus, the addressing scheme
is not dependent on whether the blocks are stored packed or are just blocks of a
larger matrix in full storage. For full storage the auxiliary integer vector of the
(1, 0) processor in Figure 1 contains 5, 11, 17, 23 and the same addressing scheme
can be used.
The storage required by the DSBP format is roughly half that of full storage. In

case there are incomplete blocks, one can pad the last block row and column with
zeros and with ones on the diagonal. The storage requirement of the DSBP format
in words is thus

Nbnb(Nbnb + nb)
2

=

⌈
N
nb

⌉
nb

(⌈
N
nb

⌉
nb + nb

)

2
.

State-of-the-art kernels for routines such as GEMM in implementations of the BLAS
usually reformat all or parts of their operands [Goto and van de Geijn 2007; Gus-
tavson et al. 2006a]. Memory streams, vector registers, and other features typically
require register blocking. In [Gustavson et al. 2006a] it is shown that the amount
of data copying performed in dense matrix factorization is O (

N3
)
but could po-

tentially be reduced to O (
N2

)
by using SBP with non-simple storage formats for

the blocks together with kernel routines.
The four kernels (POTRF, TRSM, GEMM, and SYRK) used in our implementations

take as input one (POTRF), two (TRSM, SYRK) or three (GEMM) blocks, all of which
are contiguous on account of the DSBP format. Each operand will thus map into
all levels of the memory hierarchy without conflict misses (assuming the capacity
is sufficient to hold the operand).
The message passing library (in this case an implementation of MPI) must mar-

shal (unmarshal) messages when sending (receiving), a process which is more ex-
pensive for non-contiguous messages. An m×n submatrix in column-major format
generally consists of n contiguous vectors of length m, each separated by LDA ≥ m
elements. On the other hand, our Cholesky variants send/receive single contiguous
blocks.

4. DSBP ALGORITHM VARIANTS OF THE CHOLESKY FACTORIZATION

There are various ways to implement Cholesky factorization, such as left/right-
looking and Crout’s method. We have chosen the variant commonly called blocked
right-looking Cholesky factorization [Dongarra et al. 1984]. Algorithm 1 describes
this variant on a high level.
The DSBP format partitions the matrix into square blocks with padding for any

incomplete blocks. To limit the communication overhead and simplify the code, we
also use nb as the algorithmic block size.

6 · F. Gustavson, L. Karlsson and B. Kågström

Algorithm 1 High-Level Right-Looking Cholesky
1: while N , order of A 6= 0 do
2: Block size b = min(nb, N).

3: Partition A =
(

A11 AT
21

A21 A22

)
where A11 ∈ Rb×b.

4: Compute the Cholesky factorization A11 = L11L
T
11 in-place.

5: Scale A21 ← A21L
−T
11 .

6: Update the trailing matrix A22 ← A22 −A21A
T
21.

7: Continue with A = A22.
8: end while

4.1 Abstraction of the Parallel Algorithms

A description of a DMC algorithm quickly becomes very technical and detailed.
Our algorithms are implemented using the Single Program Multiple Data (SPMD)
model, i.e., each processor is running the same program. Processors own pieces
of the global matrix A in accordance with the DSBP format and the block cyclic
layout. An SPMD implementation accesses local data and decisions on the actual
operations to be performed are part of the node program logic.
However, we keep to a global view when presenting the parallel algorithms, which

means that all operations, computations as well as communications, are expressed
as global operations. Indeed, in practice such approaches already exist and we
anticipate that they will be more common in future programming languages. By
knowing the data layout and the required communication it would be possible
to (semi-)automatically transform a global program view to a corresponding local
SPMD program.
It is important to keep in mind that the global view is purely notational and that

each processor only performs operations relevant to its local data and only loops
over indices relevant to these operations.
Communication is indicated in the algorithms (in italics) and the details are

presented in Section 4.7. Of course, communication operations are only performed
on the relevant subset of processors.

4.2 Kernels

There are four computational kernels in each variant. In the presentation of the
algorithm variants, we use a simplified notation based on parameterized routines.
Each kernel routine is purely local with no communication involved. The details of
these routines are given below.

—factor(s): compute a Cholesky factorization of the (s, s) diagonal block,

Ass = LLT , Ass ← L (POTRF).

—scale(s, i): the (i, s) off-diagonal block is scaled with the contents of the R-
buffer,

XRT = Ais, Ais ← X (TRSM).

Parallel Cholesky using Minimum Block Storage · 7

—updateDiagonal(s, j): the symmetric (j, j) diagonal block is updated via a
symmetric rank-k update with the jth block of the west buffer,

Ajj ← Ajj −WjW
T
j (SYRK).

—updateInterior(s, i, j): updates the (i, j) interior block with the ith block
of the west buffer and the transpose of the jth block of the south buffer,

Aij ← Aij −WiS
T
j (GEMM).

4.3 Buffers

The buffers relate to the matrix A as follows:

—R holds factored Ass,
—Wi holds scaled Ais, and
—Si holds scaled Ais.

Note that the Static and Dynamic variants described below use two sets of W - and
S-buffers in order to work on two iterations simultaneously. One set each for even
and odd iterations.
The three buffers are used for replicating data needed for local operations. The

Wi block is replicated on processors (i mod Pr, ∗) and the Si block is replicated
on processors (∗, i mod Pc). Since communication and computation are concurrent
in both the Static and Dynamic variants we have chosen to separately describe
the communication (see Section 4.7). The W - and S-buffers are called “west” and
“south”, respectively. This is logical considering that the W -buffer is replicated
in the west to east direction and the S-buffer is replicated in the north to south
direction.

4.4 Basic Variant

The high-level blocked right-looking Cholesky factorization is adapted to DSBP in
Algorithm 2. The factored diagonal block is copied to the R-buffer for communica-
tion. Each scale kernel produces a block which corresponds to a block in the W -
and S-buffers. These blocks are replicated following Algorithm 4 and used by the
update* kernels. All factor and scale kernel operations in an iteration are col-
lectively called a panel factorization since they operate on a block column (panel)
of A. The updateDiagonal and updateInterior kernel operations in an iteration
are called a trailing matrix update since they update the A22 trailing part of A.

4.5 Static Variant

The Basic variant (Algorithm 2) is divided into distinct communication and compu-
tation phases and is therefore unable to overlap communication with computation.
A technique called look-ahead [Agarwal and Gustavson 1988; 1989; Dackland et al.
1992; Dackland et al. 1993; Strazdins 1998] reorders the loop body to perform
panel factorization before all of the previous trailing matrix updates have com-
pleted. Algorithm 3 outlines this approach when it is applied to the DSBP format.
Note that this algorithm needs two sets of W and S buffers to avoid artificial data
dependencies.

8 · F. Gustavson, L. Karlsson and B. Kågström

Algorithm 2 Basic
1: for s = 0, Nb − 1 do
2: factor(s) and copy to R
3: Start to replicate R
4: Wait for R
5: for i = s + 1, Nb − 1 do
6: scale(s, i) and copy to Wi

7: Start to replicate W (i) and S(i)
8: end for
9: Wait for all W and S
10: for j = s + 1, Nb − 1 do
11: updateDiagonal(s, j)
12: for i = j + 1, Nb − 1 do
13: updateInterior(s, i, j)
14: end for
15: end for
16: end for

Updates are dependent on scaling which in turn depends on the factoring. Per-
forming the factor and scale operations early allows initiation of the communica-
tion and consequently updates become available to other processors more quickly.
That is why, in the Static variant, scaling is interleaved with the update of the
previous iteration (see lines 19 and 20).

4.6 Dynamic Variant

A careful examination of Algorithm 3 or a Gantt-chart of its execution reveals two
situations where a processor becomes idle although in principle it still has work to
do.

��
��
��
��

��
��
��
��

��
��
��

��
��
��

Unavailable update

Performed update

Available update

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Arrived

Pending

��
��
��
��

Not used

��
��
��

��
��
��

Fig. 2. Availability of updates is determined by the arrival of blocks in both the west and south
buffers.

(1) Updates become available in random order (see Figure 2) due to messages ar-
riving randomly. The static schedule enforces a strict order on the independent

Parallel Cholesky using Minimum Block Storage · 9

Algorithm 3 Static
1: if Nb > 0 then
2: factor(0)
3: Start to replicate R
4: Wait for R
5: for i = 1, Nb − 1 do
6: scale(0, i)
7: Start to replicate Wi and Si

8: end for
9: end if
10: for s = 1, Nb − 1 do
11: Wait for Ws from iteration s− 1
12: Wait for Ss from iteration s− 1
13: updateDiagonal(s− 1, s)
14: factor(s)
15: Start to replicate R
16: Wait for R
17: for i = s + 1, Nb − 1 do
18: Wait for Wi from iteration s− 1
19: updateInterior(s− 1, i, s)
20: scale(s, i)
21: Start to replicate Wi and Si

22: end for
23: for j = s + 1, Nb − 1 do
24: Wait for Sj from iteration s− 1
25: updateDiagonal(s− 1, j)
26: for i = j + 1, Nb − 1 do
27: updateInterior(s− 1, i, j)
28: end for
29: end for
30: end for

kernel operations that form a trailing matrix update.

(2) Scaling is done early (line 20) in order to maximize the overlap possibilities.
However, data for the independent updates (lines 19 and 23–29) might be avail-
able before scaling can be performed (due to waiting for the arrival of R).

In both cases, the static schedule ensures that some processor idling will occur.
An example of the second type of idling obtained from an execution of the Static

variant is illustrated in Figure 3. Note that the figure provides only partial timelines
for two of the four processors and that time flows from left to right. The updates
on processor (0, 1) labeled A depend on operations prior to the ones labeled B. The
second group of updates labeled B are the updates following the panel factorization
partially performed in the first group labeled B. Scheduling any of the updates
labeled A before B is allowed but since the idle time is dependent on several factors,
including the iteration number, static scheduling to fill this gap is not practical.

10 · F. Gustavson, L. Karlsson and B. Kågström

Fig. 3. A partial view of the timelines for the second processor column of a 2× 2 mesh executing
the Static variant on a 16×16 block matrix. Black boxes are factor invocations, dark gray boxes
are scale invocations, and the light gray boxes are the update* invocations. The Static schedule
introduces a gap on the (0, 1) processor although any of the updates labeled A (rotated) could be
scheduled.

A more flexible dynamic local scheduling would not suffer from these problems,
but, as we will see in Section 6, it may have little impact on the overall running time.
In order to investigate if removing these inefficiencies reduces overall execution time,
we designed and implemented a scheduling mechanism which addresses these issues.
Here, we give a brief description of the dynamic scheduling mechanism which we
refer to as our Dynamic variant. At the start of each iteration a list is created
with information about all the kernel operations (the tasks) that will execute in
this iteration. The tasks are ordered in the list in exactly the same order as they
would be executed by the Static variant. A pointer to the first not yet executed
task is kept. The list is scanned sequentially for the first ready task, starting from
the first not yet executed task. Figure 4 visualizes an example task list (acronyms
used in the figure: Scale, Update Interior, Update Diagonal). One sees that the

First not yet executed task

Ui S Ui S Ui S Ud Ui Ui Ud . . .
Done Ready Ready Ready Ready Ready

Fig. 4. Data structure for efficient dynamic scheduling.

next task to fetch would be the first ready updateInterior since the data for the
scale task has not arrived.

4.7 Node Communication

Replication of Wi and Si for iteration s (see Algorithms 2 and 3) is conceptually
controlled by the global Algorithm 4. Blocks of W flow west to east in the mesh
from the root processor (pw, qw). At the processor (pw, qs) the communication of a
W -buffer block is additionally divided into a communication of the corresponding
S-buffer block.
This implementation uses ring broadcasts to transfer the blocks of W and S.

This is based on an effort to minimize idle time but other schemes are of course
possible, e.g., a bi-directional ring broadcast or tree-based algorithms on switched
networks. All communication operations are non-blocking and multiple invocations

Parallel Cholesky using Minimum Block Storage · 11

Algorithm 4 Communicate Wi and Si for iteration s

1: Let processor (pw, qw) be the processor that holds block Ais.
2: if I am on row pw and need Wi then
3: if I am processor (pw, qw) then
4: Wi ← Ais.
5: else
6: receive(Wi, WEST).
7: end if
8: send(Wi, EAST) if needed.
9: end if
10: Let processor (pw, qs) be the processor that holds block Aii.
11: if I am on column qs and need Si then
12: if I am processor (pw, qs) then
13: Si ← Wi.
14: else
15: receive(Si, NORTH).
16: end if
17: send(Si, SOUTH) if needed.
18: end if

of this algorithm are concurrently running by keeping information about the state
of progress for each invocation. When a request completes (tested by polling the
MPI library) the corresponding algorithm is resumed. Ring broadcasts end early
when a processor does not need a particular block (hence the condition “if needed”
in Algorithm 4).
We remark that communication of the R-buffer proceeds in an analogous way

and is therefore not discussed further.

4.8 Multi-Core Considerations

If the nodes of the distributed memory system are multi-core, an additional level of
scheduling is required. The work mapped to a node must be partitioned onto the
different cores and this secondary scheduling problem is referred to here as node-
level scheduling. A common technique used to address the node-level scheduling
problem is to structure the computation into BLAS operations. Parallel versions
of these operations are then applied, resulting in what is typically called fork-join
parallelism. This is how LAPACK extracts performance from SMP machines and
one way in which ScaLAPACK can be used on hybrid systems (by linking the
PBLAS to a parallel BLAS implementation).
For the variants presented here it is obviously not efficient to parallelize the

kernels, especially if nb is small. So a dynamic scheduling approach appears to be a
good choice since it exposes parallelism and removes the artificial synchronizations
inherent in an operation-abstraction such as the parallel BLAS.

5. COMPUTATION-COMMUNICATION OVERLAP EVALUATION

In what follows, we assume the reader is familiar with concepts such as (non-
)blocking, send/receive requests, and other basic MPI terminology. For definitions

12 · F. Gustavson, L. Karlsson and B. Kågström

see the MPI standard documents ([MPI Forum 1995]).
On many systems there is different hardware for communication and computa-

tion, meaning the two can concurrently execute. The extent to which this paral-
lelism can be exploited is highly dependent on the machine and system software.
Therefore, we evaluate the overlap capabilities of our target machine in this section.
With MPI, overlap is primarily controlled by using non-blocking primitives for

point-to-point communication since the interface does not define any non-blocking
collective operation. One key issue when implementing message passing is where to
put incoming messages. If a receive request has been posted the system has access
to the final buffer space. On the other hand, if a receive request has not been posted
by the time a message arrives, the MPI implementation has only two options:

(1) Allocate a temporary buffer into which the message is received, and copy from
the temporary buffer to the receive buffer when the receive is posted. This
technique is often called an eager protocol, and it is used to improve latency at
the cost of reduced bandwidth due to the extra memory copy operations. It is
typically used for small messages and/or only for a few messages at a time.

(2) Force the sender and receiver to handshake when the receive is posted. After
this handshake transfer of data directly into the receive buffer can start, cir-
cumventing any need for a temporary buffer. It is often called a rendezvous
protocol and it is used for long messages where high bandwidth is important.

The eager protocol allows for hardware parallelism but costs at least an extra
memory copy. The rendezvous protocol, however, does not allow for overlap on the
receiving side if the receive is blocking. We therefore conclude that the use of both
non-blocking send and receive is critical as only then is overlap practically possible
on both sides of the communication.
An important feature of an MPI implementation is independent progress [Brightwell

and Underwood 2004], which is the capability of an MPI implementation to perform
communication while the user process is not executing an MPI routine.
We designed two micro-benchmarks to investigate which protocol, eager or ren-

dezvous, was used and when it was used and also to measure the amount of speedup
that we could realistically achieve on our target machine.
A micro-benchmark to decide if and when the MPI implementation uses an eager

protocol is graphically described in Figure 5 (left). The computation performed is
a matrix multiply of two 100 × 100 matrices and this takes approximately 544µs.
The time for the processors to both compute and synchronize is theoretically, in
the presence of an eager protocol, the maximum of the compute time and the
communication time. This theoretical expectation is marked with a dashed graph
in Figure 6 together with the measured times for both sender and receiver. It is
evident that an eager protocol was used for messages up to approximately 32 KB,
or a 64× 64 double precision matrix. For larger messages the transfer is evidently
postponed until the receive is posted, so a rendezvous-type protocol is used.
Our second micro-benchmark was designed to test for independent progress as

well as to measure the effect on computational speed for both sender and receiver.
This micro-benchmark is described in Figure 5 (right). If a rendezvous-type proto-

Parallel Cholesky using Minimum Block Storage · 13

T
im

e

Receive

SendSend

Wait Receive

Eager

Wait Wait

C
om

pu
te

C
om

pu
te

C
om

pu
te

C
om

pu
te

C
om

pu
te

C
om

pu
te

Transfer

Handshake
T

im
e

Fig. 5. Two micro-benchmarks to evaluate the MPI library overlap capabilities. Left: a test for
the use of an eager protocol. Right: a test for independent progress.

0 20 40 60 80 100 120 140 160
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Sender

Message size (KB)

Compute + Wait
Theoretical

0 20 40 60 80 100 120 140 160
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Receiver

Message size (KB)

T
im

e
(m

s)

Compute + Wait
Theoretical

Fig. 6. Results for the eager micro-benchmark.

col is used the theoretical time for both sender and receiver should be

Trendezvous = max(2Tcompute, Tcompute + Tcommunicate).

In Figure 7, Trendezvous is marked with a dashed graph together with measured
results. Figure 7 shows clearly that both sender and receiver are able to take
advantage of this form of hardware parallelism and hence eliminate most of the
communication overhead. This elimination is not perfect since the compute time
has increased slightly. The data suggests that 90 − 95% of the communication
overhead is eliminated (for both sender and receiver) when the rendezvous protocol
is used.

6. PERFORMANCE RESULTS

The performance and scalability of the three algorithm variants were evaluated on
the Sarek cluster at the High-Performance Computing Center North (HPC2N) in
Umeå, Sweden. The Sarek cluster has 192 nodes with dual AMD Opteron 248
(2.2 GHz) processors. The nodes are connected via a Myrinet 2000 high speed

14 · F. Gustavson, L. Karlsson and B. Kågström

0 20 40 60 80 100 120 140 160
1.05

1.1

1.15

1.2

1.25

1.3
Sender

Message size (KB)

Compute + Wait
Theoretical

0 20 40 60 80 100 120 140 160
1.05

1.1

1.15

1.2

1.25

1.3
Receiver

Message size (KB)

T
im

e
(m

s)

Compute + Wait
Theoretical

Fig. 7. Results for the independent progress micro-benchmark.

interconnect with the MPI library MPICH-MX version 1.2.5..12 capable of point-
to-point communication at a speed of roughly 230 MB/s. Each node has 8 GB
of memory and the BLAS library we used was GotoBLAS version r0.94. All the
tests were performed with a distribution and algorithmic block size of nb = 100 and
only one processor per node was used. The Dynamic variant resulted in execution
times that were very close to the Static variant. Therefore, the Dynamic variant’s
performance and scalability results are not presented.
For very large problems the GEMM operations dominate the communication and

idle times introduced by panel factorization. Thus these two combined times can be
safely neglected. However, as the ratio between node performance and inter-node
bandwidth continues to increase, ever larger problems are needed for this effect to
come into play. Since our DSBP algorithms are mainly right-looking variants they
roughly have the same performance for large-scale problems. However, as we will
see, the performance of our Basic and Static variants differ greatly for these very
small to medium sized problems. Therefore, we consider such problems to highlight
these differences.
Below, the performance of each kernel is examined. In addition, the communi-

cation system’s characteristics are determined and discussed. The section ends by
comparing our measured performance to our models of execution showing that the
Static variant already is near to optimal for medium sized problems.

6.1 Kernel Performance

Since the operands to each of the four kernels are stored as contiguous blocks
of a known size, the execution time of these kernel routines can be accurately
approximated by a simple benchmark. There is little variability in the performance
of a kernel routine except for where in the memory hierarchy the operands are at
the time of the invocation.
To get a fair estimate of the performance of each kernel under a realistic scenario

(e.g., the operands are not optimally placed in the memory hierarchy), the time
spent in each kernel during the execution of the Basic variant was measured and
averaged over the total number of invocations. Results of these tests are reported
in Table I. Note the relatively poor performance of POTRF. The reason for this is

Parallel Cholesky using Minimum Block Storage · 15

Kernel flops Time (µs) Gflops/s
POTRF n3

b/3 192 1.74
TRSM n3

b 350 2.86
SYRK n3

b + n2
b 318 3.18

GEMM 2n3
b 565 3.54

Table I. Kernel performance figures.

that LAPACK uses a level 2 kernel factorization routine POTF2. Furthermore, the
early flattening of the performance is indicative of a mismatch between the blocksize
and/or algorithm with the BLAS implementation.

20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

4

Block Size NB

P
er

fo
rm

an
ce

 (
G

flo
ps

/s
)

GEMM
SYRK
TRSM
POTRF

Fig. 8. Performance of kernels with respect to block size.

As of yet we have not optimized the kernels to take advantage of the memory
layout. This would include using a full level 3 algorithm for POTRF. Instead we
use standard LAPACK and BLAS routines and it is therefore important for us to
investigate the performance of each of the four kernel routines. Figure 8 shows
a detailed view of the performance for each kernel. It also justifies the choice of
nb = 100 for the other tests, because at this block size the performance of the major
kernels is almost flat. Our results here show that the data format and algorithms
are practically useful even without optimized kernels.

6.2 Communication Performance

We use the common communication model

ts + twm

for an m-word message. The startup cost (ts) and inverse bandwidth (tw) were
determined by fitting this model to a simple ping-pong benchmark (see Table II
for results). Note that the latency is almost 1000 times higher than the inverse
bandwidth. Even so, for the chosen block size of nb = 100 the block transmission
time will be approximately 10 times the latency.

16 · F. Gustavson, L. Karlsson and B. Kågström

ts 29.6 µs
tw 34.6 ns

Table II. The communication parameters for the Sarek cluster.

6.3 Modeled Versus Measured Performance

In this section, we use our models of execution of the Basic and Static variants to
support our claim of the near-optimality of the Static schedule.

6.3.1 Models of the Basic and Static Variants. Inter-node data dependencies
are handled via message passing and intra-node data dependencies by the ordering
of the operations. The execution time is determined by the speed of the kernels,
the communication overhead, and the inter-node dependencies. Since the speed
of the kernels are usually optimized, the parallel algorithm should minimize the
impact of the communication overhead and inter-node dependencies. Therefore, we
model the performance of the Basic and Static variants by simulating them. The
model assumes infinite bandwidth and zero latency to remove all communication
overhead. Our model is relevant as we want to compare the implemented parallel
algorithms with an ideal situation (and hence provide an upper bound on best
possible performance).

6.3.2 Comparisons. In Figure 9, a comparison on 36 processors (6 × 6 mesh)
is presented. The measured performance for the Static variant is very close to the

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1

1.5

2

2.5

3

3.5

N

G
flo

ps
/s

 p
er

 p
ro

ce
ss

or

Static
Basic
Static (sim)
Basic (sim)

Fig. 9. Comparisons between the simulated performance and the measured performance for the
Static and Basic variants on 36 processors arranged in a 6× 6 mesh.

simulated performance for medium to large problems. However, the Basic variant
is not close to its simulated performance showing that communication overhead is
not reduced to the same extent as it is in the Static variant.
Let T denote the parallel execution time (assumed equal for p processors due to

synchronization) which can be partitioned into four components for each processor

Parallel Cholesky using Minimum Block Storage · 17

k (1 ≤ k ≤ p):

T = T k
computation + T k

communication + T k
idle + T k

overhead.

Typically, the components of T differ for different processors. All three variants
(Basic, Static, and Dynamic) use the same kernels and the same distribution of
computational work, controlled by the DSBP format and the block cyclic layout.
They are instances of a bigger class of algorithm variants with the same kernels
and distribution of work. We argue that within this class, the Static variant is
near-optimal on our target machine and we conjecture that it will be near-optimal
on other machines as well. Among all the variants of this class, the T k

computation

times are constant (but different for different processors). Assuming no overhead
(i.e., T k

communication = T k
overhead = 0) implies that the execution time for any variant

in the class is bounded below by

max
k

T k
computation = T −min

k
T k

idle.

The distance to optimality of the Static schedule is therefore accurately estimated
by measuring the minimum idle time, which can be done using our Static model.
In Table III, we illustrate the minimum simulated idle times on a 4 × 4 mesh.

Similar negligible idle times for the Static model have been observed for other
meshes as well. These negligible simulated idle times show that the Static schedule

Basic Static
N T mink T k

idle T mink T k
idle

5000 1.0 0.1135 0.9 0.0012
10000 6.8 0.4409 6.4 0.0015
15000 21.9 0.9822 20.9 0.0012
20000 50.7 1.7380 48.9 0.0015
25000 97.5 2.7110 94.8 0.0012
30000 166.9 3.9000 163.0 0.0015

Table III. Simulated execution time and minimum simulated idle time (both in seconds) for the
Basic and Static variants.

is near-optimal.

7. VARIOUS SCALABILITY MEASURES

For some applications the main limitation is the size of the problem that can be
solved. For these applications a suitable characteristic is the memory constrained
scalability. A problem size N1 on a uni-processor is fixed and memory is assumed
to scale linearly with the number of processors p. Since the memory required per
processor is O (

N2
1

)
the memory constrained problem size on p processors is

Np =
√

pN1.

Ideally, the performance per processor should be constant while scaling. In Fig-
ure 10, the uni-processor size N1 is fixed at 2500. The Static variant is close to
constant and the Basic variant is close too, but scales slightly worse.
Another view of scalability is imposed by deadline-driven applications. Here,

time-to-solution is a critical factor and the problem size should be increased to

18 · F. Gustavson, L. Karlsson and B. Kågström

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5
Memory Constrained Scaling with N1 = 2500

of processors

G
flo

ps
/s

 p
er

 p
ro

ce
ss

or

Static
Basic
Static (sim)

Fig. 10. Performance on problem sizes scaled with a memory constraint.

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20
Fixed−Time Scaling with T = 14

of processors

N
 (

x1
,0

00
)

Static
Basic

Fig. 11. Problem size solvable within a fixed amount of time.

consume the available time. This type of scalability is often referred to as time-
constrained scalability. Figure 11 shows graphs of the largest possible problem size
that can be solved within the fixed time of 14 seconds to give an idea of how the
two algorithms compare. Because of the cubic nature of the arithmetic complexity
of the Cholesky factorization, only a modestly larger problem can be solved within
a given fixed amount of time. The relative improvement of Static over Basic at 49
processors is approximately 6% and tends to increase with increasing number of
processors.
The performance point of view applies when a given problem must be solved as

quickly as possible. It is also called “strong scalability” (as opposed to “weak scala-
bility” where the problem size is allowed to grow). Results for this type of scalability
are presented in Figure 12 with a fixed size of N = 10000. The performance per
processor is used as a measure and, ideally, it should be close to constant. From

Parallel Cholesky using Minimum Block Storage · 19

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5
Fixed Size Scaling Comparison with N = 10,000

of processors

G
flo

ps
/s

 p
er

 p
ro

ce
ss

or

Static
Basic
Static (sim)

Fig. 12. Performance on various processors for a fixed problem size.

Figure 12 it appears as if there is a qualitative difference between the Static and
Basic variants. The smaller slope of the graph for Static together with the absolute
difference in performance indicates an advantage for the Static variant.

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20
Fixed Performance Scaling with 2.7 Gflops/s per Processor

of processors

N
 (

x1
,0

00
)

Static
Basic
Static (sim)

Fig. 13. Problem size required to achieve a fixed performance per processor.

While the three scalability metrics examined above focus on particular needs of
different applications there is another view that focuses on the efficient use of a ma-
chine’s resources. A good metric in this case is the performance per processor since
it directly relates to the average efficiency of the floating point units. A machine
centric view could ask for the required problem size on p processors to achieve a
fixed performance per processor (FPU efficiency). In Figure 13, a performance of
2.7 Gflops/s is fixed, which corresponds to roughly 68% of the practical peak. A
clear difference is seen between the two variants, with the Basic variant requiring
consistently more than twice the problem size compared to the Static variant.

20 · F. Gustavson, L. Karlsson and B. Kågström

8. CONCLUSIONS AND FUTURE WORK

We presented the Distributed SBP format and showed that it is possible to achieve
the same or better performance for packed storage Cholesky factorization compared
to full storage. The Static variant had a 5−55% higher performance than the Basic
variant for matrices of size N between 5000 and 10000 on 4 − 49 processors. In
addition, the Static variant is significantly more scalable than the Basic algorithm
for fixed problem sizes and is also much better to maintain a constant FPU efficiency
as the number of processors increase.
Models of execution that assume no parallel overhead except processor idling

support that the Static variant is close to the optimum schedule on the target
DM machine. Based on these models we also conjecture that the Static variant is
capable of nearly completely overlapping the communication with computation.
Since the Static and Dynamic variants give similar performance, the much simpler

Static variant was sufficient and is recommended. A dynamic scheduling similar to
the Dynamic variant would provide efficient scheduling on multi-core nodes.
There is frequent polling of the MPI layer in order for the communication algo-

rithm to detect the completion of requests. This overhead would be avoided if the
MPI interface and various MPI implementations support callbacks when a request
completes.
The scheduling of tasks (kernel invocations) in the Basic variant is described by

an outer control loop and some inner loops to traverse the blocks of the matrix.
The Static variant is more complicated with a necessary preamble (see lines 1–9 of
Algorithm 3) leading to the main control loop. The Dynamic variant is yet more
complicated, with a dynamic rearrangement of the control loop body of the Static
variant. The theoretically optimal schedule would probably need a rearrangement
across several iterations of the control loop, basically forcing a complete loop un-
rolling without producing any substantial performance improvements.
Parallelism on multi-core nodes of a distributed memory machine have so far

mainly been taken advantage of in one of the following two ways:

(1) Consider every core as individual nodes in a distribued memory machine. Com-
munication can be optimized between two cores on the same physical node but
is still expensive and data is often duplicated unnecessarily.

(2) Parallelize the basic building blocks, e.g., the BLAS, with lightweight threads
or OpenMP. This SMP-BLAS approach is an example of fork-join parallelism
and causes significant load unbalance issues and synchronization overhead.

We conjecture that a dynamic approach, similar to the one presented here, will
prove to be superior to both of these two common paradigms since it overcomes
their major drawbacks (unnecessary data duplications and spurious synchroniza-
tions). We will therefore pursue the development and evaluation of such dynamic
approaches.

REFERENCES

Agarwal, R. C. and Gustavson, F. G. 1988. A parallel implementation of matrix multiplica-
tion and LU factorization on the IBM 3090. In Aspects of Computation on Asynchronous and
Parallel Processors, M. Wright, Ed. IFIP, North-Holland, Amsterdam, 217–221.

Parallel Cholesky using Minimum Block Storage · 21

Agarwal, R. C. and Gustavson, F. G. 1989. Vector and Parallel Algorithms for Cholesky
Factorization on IBM 3090. In Supercomputing ’89: Proceedings of the 1989 ACM/IEEE con-
ference on Supercomputing. ACM Press, New York, NY, USA, 225–233.

Agarwal, R. C., Gustavson, F. G., and Zubair, M. 1994. A High Performance Matrix
Multiplication Algorithm on a Distributed Memory Parallel Machine Using Overlapped Com-
munication. IBM Journal of Research and Development 38, 6 (November), 673–681.

Baboulin, M., Giraud, L., Gratton, S., and Langou, J. 2005. A distributed packed storage
for large parallel calculations. Tech. Rep. TR/PA/05/30, CERFACS, Toulouse, France.

Brent, R. P. and Luk, F. T. 1982. Computing the Cholesky Factorization Using a Systolic
Architecture. Tech. Rep. TR 82–H521, Department of Computer Science, Cornell University,
Upson Hall, Cornell University, Ithaca, New York 14853. September.

Brightwell, R. and Underwood, K. D. 2004. An analysis of the impact of MPI overlap and
independent progress. In ICS ’04: Proceedings of the 18th annual international conference on
Supercomputing. ACM Press, New York, NY, USA, 298–305.

Choi, J., Dongarra, J. J., Ostrouchov, S., Petitet, A. P., Walker, D. W., and Wha-
ley, R. C. 1996. Design and implementation of the ScaLAPACK LU, QR, and Cholesky
factorization routines. Scientific Programming 5, 3 (Fall), 173–184.

Dackland, K., Elmroth, E., Kågström, B., and Van Loan, C. 1992. Parallel Block Fac-
torizations on the Shared Memory Multiprocessor IBM 3090 VF/600J. Int. J. Supercomputer
Applications 6.1, 69–97.

Dackland, K., Elmroth, E., and Kågström, B. 1993. A ring–oriented approach for block
matrix factorizations on shared and distributed memory architectures. In SIAM Conference
on Parallel Processing for Scientific Computing, R. S. et al, Ed. SIAM Publications, 330–338.

D’Azevedo, E. and Dongarra, J. 1998. Packed storage extension for ScaLAPACK. Tech.
Rep. UT-CS-98-385.

Dongarra, J. J., Gustavson, F. G., and Karp, A. 1984. Implementing Linear Algebra
Algorithms for Dense Matrices on a Vector Pipeline Machine. SIAM Review 26, 1 (January).

Geist, G. A. and Heath, M. T. 1985. Parallel Cholesky factorization on a hypercube multi-
processor. Tech. Rep. ORNL–6190, Oak Ridge National Lab., TN (USA). August.

Golub, G. H. and van Loan, C. F. 1996. Matrix Computations, third ed. Johns Hopkins
University Press.

Goto, K. and van de Geijn, R. A. 2007. Anatomy of High-Performance Matrix Multiplication.
Accepted for publication in ACM Transactions on Mathematical Software.

Gustavson, F. G. 2003. High-Performance Linear Algebra Algorithms Using new Generalized
Data Structures for Matrices. IBM Journal of Research and Development 47, 1, 31–55.

Gustavson, F. G., Gunnels, J. A., and Sexton, J. C. 2006a. Minimal Data Copy for Dense
Linear Algebra Factorization. In PARA’06: State-of-the-Art in Scientific and Parallel Com-
puting . Lecture Notes in Computer Science, LNCS 4699. Springer. (To appear 2007).

Gustavson, F. G., Karlsson, L., and Kågström, B. 2006b. Three Algorithms for Cholesky
Factorization on Distributed Memory Using Packed Storage. In PARA’06: State-of-the-art in
Scientific and Parallel Computing. Lecture Notes in Computer Science, LNCS 4699. Springer.
(To appear 2007). Also as IBM Technical Report RC24137.

MPI Forum 1995. MPI: A Message Passing Interface Standard. http://www.mpi-forum.org/.
O’Leary, D. P. and Stewart, G. W. 1985. Data-flow algorithms for parallel matrix compu-
tation. Communications of the ACM 28, 840–853.

Strazdins, P. 1998. A Comparison of Lookahead and Algorithmic Blocking Techniques for
Parallel Matrix Factorization. Tech. Rep. TR-CS-98-07, Canberra 0200 ACT, Australia.

van de Geijn, R. A. 1997. Using PLAPACK. MIT Press.

