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Abstract 
We develop a point model of the cardiac myofilament (MF) to simulate wide variety of 
experimental muscle characterizations including Force-Ca relations and twitches under 
isometric, isosarcometric, isotonic and auxotonic conditions.  Complex MF behaviors are 
difficult to model because spatial interactions cannot be directly implemented as ordinary 
differential equations (ODEs).  We therefore allow phenomenological approximations 
with careful consideration to the relationships with the underlying biophysical 
mechanisms.    We describe new formulations that avoid mean-field approximations 
found in most existing MF models. To increase the scope and applicability of the model, 
we include length- and temperature-dependent effects that play important roles in MF 
response.  We have also included a representation of passive restoring forces to simulate 
isolated cell shortening protocols. Possessing both computational efficiency and the 
ability to simulate a wide variety of muscle responses, the MF representation is well-
suited for coupling to existing cardiac cell models of electrophysiology and Ca-handling 
mechanisms.  To illustrate this suitability, the MF model is coupled to the Chicago rabbit 
cardiomyocyte model.  The combined model generates realistic appearing action 
potentials, intracellular Ca transients, and cell shortening signals.  The combined model 
also demonstrates that the feedback effects of force on Ca binding to troponin can modify 
the cystolic Ca transient. 
 
Introduction- 
This paper describes an approximate model of activation and force generation in cardiac 
myofilament that recapitulates many experimental characterizations.  Specifically, the 
experimental characterizations that weighed most heavily in model development are 
described below: 

1) Steady-state force-sarcomere length relations (F-SL relations) 
2) Steady-state force-Ca relations (F-Ca relations) including SL effects 
3) Steady-state SL-Ca relations (SL-Ca relations) for unloaded cells 
4) Steady-state force-velocity relations (F-V relations) 
5) Isometric twitches including Ca activation and SL effects 
6) Ktr including Ca activation and temperature effects 
7) Cell shortening twitches as function of activator Ca 
8) Effects of SL control on the intracellular Ca transients 

 
The last quarter century has seen the development of models to understand many aspects 
of myofilament responses.  As described in a previous review (Rice and de Tombe, 
2004), there are still difficulties in developing predictive models given that the 
underlying muscle biophysics have yet to be fully resolved.  Another difficulty lies in 
trying to compress the spatial aspects of myofilaments at the molecular level into a 
tractable system of equations.  Moreover, if computational speed is desired, then the 
system must be fairly simple and implemented with ordinary differential equations 
(ODEs) instead of partial differential equations or Monte Carlo approaches typically 
required for explicit consideration of the spatial aspects.  Much of the following work 
involves making approximations to maintain a system of ODEs, so emphasis is placed on 
the simplifying assumptions and their inherent limitations.  Much of the model derives 
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squarely on the past work in the last half century, however new approximations are 
developed in the Ca-activation and mean crossbridge strains that differ from previous 
work.  These approximations help bridge the spatial scales where local interactions are 
critical to emergent behavior but cannot be directly implemented in mass-action or mean-
field approaches. 
 
We develop this model in the middle ground where phenomenological approximations 
are allowed with careful consideration to the relationships of the underlying mechanisms 
that cannot be explicitly modeled.  We have also attempted to strike a reasonable balance 
between mechanistic detail and model parsimony while including sufficient cellular 
machinery to recapitulate a wide range of experimental protocols.  For example, length- 
and temperature-dependent effects are included, and the passive restoring force is 
represented so that experimental protocols in isolated cell shortening can be simulated.  
Ultimately, we hope that this model will provide the community with an approximate and 
predictive representation that retains enough mechanistic underpinnings to provide 
flexibility and extensibility that existing models do not.   
 

Methods -  
Description of sarcomere geometry –  
The lengths assumed for the thick and thin filaments are shown in Fig. 1A.  The fraction 
of crossbridges (XBs) that can strongly bind and generate force depends on the overlap of 
the thick filament (myosin) and the thin filament (actin and regulatory proteins).  To 
implement length dependence, we define the single overlap fraction of the thick filament 
(referred to as SOVthick) that reports the fraction of thick filament that is apposed to single 
overlap thin filament.  The assumption is that the only effective strongly-bound XBs 
occur in the single overlap region. Hence the thick filament single overlap fraction is 
used in calculations for maximally activated force.  This assumption comes directly from 
classic sliding filament theory (Gordon et al., 1966).   
 
The single overlap function for the thick filament is shown in Fig. 1B (see Appendix - 
Eqn. A1-A5 for mathematical formulation).  The maximal possible force corresponds to 
SLs in the range 2.3-2.4 µm for which the whole thick filament is in the single overlap 
region so that SOVthick = 1.  Between 1.65-2.3 µm, the SOVthick decreases at a constant rate 
as the thin filaments crossover in the center region of the sarcomere.  In the range 1.4-
1.65 µm, the SOVthick decreases at an even faster rate as the thick filament is assumed to 
cross the z-line, and crossbridges are assumed not to form in the region past the z-line.  
This aspect to the model is speculative as the actual interaction between the thick 
filament and z-line are not currently understood.  However, some experimental 
characterizations in trabeculae contract down to SLs of about 1.5 µm (Kentish et al., 
1986), which supports this assumption.  The maximal Ca activated force linearly 
decreases with SL from 2.15 to about 1.7 µm where a faster rate of decrease is seen, 
similar to the model prediction.  Moreover, experimental protocols in isolated cells show 
SLs in the range 1.4-1.5 µm under maximal shortening (Bassani et al., 1995). Afterwards 
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the cells recover normal function after relaxation, suggesting a nondestructive interaction 
between the thick filaments and the z-disk for SLs below the thick filament length.   
 
A second overlap fraction is defined for interactions along the length of the thin filament 
(referred to as SOVthin).  The single overlap function for the thin filament is shown in Fig. 
1B.  Note that the single overlap function for the thin filament varies between 0.17 at 1.4 
µm and 0.64 at 2.4 µm.  Hence, roughly one third of the thin filament does not participate 
in actin-myosin interactions, even at sarcomere lengths that produce maximal force (2.3-
2.4 µm) where 100% of the thick filament can participate (SOVthick=1).  The difference in 
the single overlap function for the thin filament and the thick filament is attributed solely 
to the geometry of the sarcomere (see Appendix - Eqns. A4-A5).  The single overlap 
fraction for the thin filament is used to calculate the Ca binding to troponin that depends 
on crossbridge interaction.  Specifically, higher affinity binding can occur in the vicinity 
of crossbridges, and as such, the thin filament single overlap function is used to calculate 
the Ca binding and activation of the thin filament. 
 
While active force of muscles is attributed to the action of cycling crossbridges, the 
complete muscle response involves contributions of other entities including passive force 
and other visco-elastic elements as shown in Fig. 1D.  We assume a rest length of 1.9 µm 
that corresponds to the point of no passive force as shown in Fig. 1C.  Above the rest 
length, the passive force is positive and increases total muscle force.  Below the rest 
length, the passive force is negative and hence acts as a restoring force to decrease total 
force.  As shown in Fig. 1C, the passive force for cells is assumed to be reflected around 
the resting length.  The justification for this is that titin is thought to contribute to passive 
force, and passive force will be roughly symmetric around the rest length of titin (as 
assumed elsewhere, see Fig. 6 in (Preetha et al., 2005)).  For this reason, this component 
is named for titin, although other sources such as cytoskeletal components could also 
contribute. For trabeculae, the passive force has an additional component so that force 
increases steeply above 2.2 µm and effectively limits the maximal length of cells to 2.3 
µm.  This feature is assumed to correspond to the effects of collagen with convolutions 
that can initially unfurl easily, but once taut, become very stiff.  With both components, 
the passive force curve matches the curvature and steepness of experimental 
characterizations (de Tombe and ter Keurs, 1992; Kentish et al., 1986), although there is 
variability in the zerocrossing that corresponds to the rest length (e.g. 1.9-2.0 µm in (de 
Tombe and ter Keurs, 1992) vs. in 2.0-2.1 µm in (Kentish et al., 1986)).  
 
Other visco-elastic elements are also included.  The muscle is assumed to have a 
Newtonian viscosity element set to the mean value found experimentally (0.3 % Fmax µm-

1 s-1 from (de Tombe and ter Keurs, 1992)).  A small mass term is also included.  The 
effect of the mass is to prevent instantaneous changes in muscle shortening velocity for 
quick release protocols, a feature that improves the stability of the integration of the 
model equations. Tuning this parameter can also improve response times.  Specifically, 
large values can generate underdamped responses that overshoot and ring.  On the other 
extreme, small mass values can produce overdamped responses.  We choose a midrange 
value between these extremes. Finally, a linear series elastic element can be included to 
simulate the effects of compliant end connections that occur in real muscle preparations.  
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Hence the muscle can shorten internally at the active force element even through the total 
muscle length is fixed.  No fixed value is assumed for the elastic element, but instead 
parametric studies are used to illustrate the effect on muscle responses. 
 
 
Regulatory Ca-binding to troponin –  
The presence of strongly-bound crossbridges is assumed to increase the binding affinity 
of the nearby regulatory units (RU).  This is embodied by assuming Ca binding to two 
populations of troponin regulatory sites that correspond to the higher affinity (TropH) 
with strongly-bound crossbridges and to lower affinity sites (TropL) without strongly-
bound crossbridges. Here, “high” and “low” refer to the single regulatory binding site and 
should not be confused with the two high-affinity, non-regulatory sites on cardiac 
Troponin C (TnC).  Both are calculated as the fractional population with Ca bound, as 
shown below: 
 

  Tropk   )Trop-[Ca](1kTrop HoffHTHonTH −=
dt
d  (1) 

 
 

  Tropk   )Trop-[Ca](1kTrop LoffLTLonTL −=
dt
d  (2) 

 
where konT is the complete rate constant for binding, [Ca] is the concentration of Ca, 
koffHT  is the complete rate constant for unbinding from high affinity sites and koffLT is the 
complete rate constant for unbinding the low affinity sites.   
 
While the rates in the model represent a diverse set of state transitions, a standard 
definition format is maintained.  The format is explained using the following example for 
generic total rate constant kxT : 
 
  (3) 37)/10)-((TmpC

xspeciesxxT Qkkxmodkxmodkk ×××=
 
where kx is the base rate constant under default conditions; kxmod is a modifier based on 
other parameters or states (e.g., crossbridge strain); kxmodspecies is modifier based on 
species (e.g., rat or rabbit); and Qkx is the Q10 value for 10° changes in the temperature 
as specified by TmpC.  All transition rates can be represented in the above form although 
not all rates have explicit kxmod and kxmodspecies terms.  The net effect of the Q10 
terms to decrease the rate below the default values is defined as 37° C.  The T in the 
subscript differentiates the total transition rate kxT from the base rate value under default 
conditions denoted by kx. 
 
For these specific examples, the total Ca binding is assumed to be diffusion limited and is 
the same for high- and low-affinity cases.  We assume a relatively low temperature 
dependence so that  
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  (4) 37)/10)-((TmpC
onononT Qkkk ×=

 
where kon is 50 µM-1 s-1  and Qkon is 1.5. 
 

The corresponding total rate for unbinding rate for the high- and low-affinity cases are 
defined below: 
 
 

  
  (5) 37)/10)-((TmpC

offspeciesoffHoffHT Qkkoffmodkk ××=
 
  (6)  37)/10.-((TmpC

offspeciesoffLoffLT Qkkoffmodkk ××=
 
 
where koffH is 25 s-1; koffL is 250 s-1; kxmodspecies is 1.0 for rat and 0.9 for rabbit; and 
Qkoff is 1.2.  The off rate koffH is smaller than koffL by a factor of 10 to account for the 
higher affinity of troponin associated with strongly-bound crossbridges.  The 10 fold 
increase is similar to experimental estimates of ~8.6 fold (Davis et al., 2007) and ≥10 fold 
(Guth and Potter, 1987).  Note that Qkon > Qkoff so that Ca sensitivity decreases with 
lower temperature as suggested by experimental results (de Tombe and Stienen, 1997; de 
Tombe and Stienen, 2007; Harrison and Bers, 1989). 
 
 
Ca-based activation–  
We assume that steep Ca sensitivity in activation results from nearest-neighbor 
interactions of troponin and tropomyosin along the thin filament. Indeed, explicit 
modeling of this process underscores the plausibility of this assumption (Rice and de 
Tombe, 2004; Rice et al., 2003).  For the modeling here, we seek to avoid explicit spatial 
representation of nearest-neighbor interactions as these cannot be represented as ODEs.  
Instead we assume that thin filament activation is a steeply nonlinear function of [Ca] as 
a phenomenological representation of the effects of nearest-neighbor interactions.  
Similar nonlinear functions have been employed in previous modeling efforts to capture 
the assumed effects end-to-end interactions of RUs (Katsnelson and Markhasin, 1996; 
Niederer et al., 2006; Rice et al., 1999; Schneider et al., 2006).  
 
To implement Ca-based activation, we assume that troponin and tropomyosin act as RUs 
that exist in one of two states, N or P (see Fig. 2).  State N represents a nonpermissive 
state that prevents the formation of strongly-bound crossbridges.  State P represents a 
permissive conformation of the regulatory proteins that can permit transitions to strongly-
bound crossbridge states.  First we can consider the case in which no crossbridges can 
form (outside of the single overlap region between the thick and thin filaments) and use 
the notation NNoXB and PNoXB to indicate the absence of nearby crossbridges.  In this 
region, the following Eqns. hold: 
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  Pk   N-kN NoXBp_nTNoXBn_pTNoXB ×+×=
dt
d  (7) 

 

 Pk   NkP NoXBp_nTNoXBn_pTNoXB ×−×=
dt
d  (8) 

 
The transition rates kn_pT and kp_nT are set so that the fraction of permissive RUs is a 
nonlinear function of the fraction of RUs with Ca bound and not directly to intracellular 
[Ca] itself.  Mathematically, the nonlinearity is incorporated using the following 
formulation: 
  
  TropCa*(x)SOVF  TropCa*(x))SOVF-(1(x)Trop H thinL thinRegulatory +=  (9) 
 
where  is the fraction of thin filament RUs that have Ca bound; x is the 
SL; and  is the single overlap function for the thin filament.  We assume 
nearest-neighbor cooperativity so that the shift of an RU to a permissive state is 
represented by a nonlinear function called permtot defined below: 

(x)TropRegulatory

(x)SOVF  thin

 
  (10)  0.5n

Regulatory50 ))(x))/Trop(perm(1/(1permtot perm+=
 
where the half-activation constant = 0.5 and the Hill coefficient nperm = 15.   50perm
Then permtot modifies the forward rate for nonpermissive to permissive transitions 
shown below: 
 
  (11)  Qkpermtotkk 37)/10)-((TmpC

n_pn_pn_pT ××=
 
where =  50 s-1 and = 1.6.  Working in the opposite direction, the permissive to 
nonpermissive transition rate is reduced by the inverse of permtot in the following 
formulation 

n_pk n_pQk

 

 ,100)
permtot

1min(mtotinverseper =  (12) 

 
  (13) 37)/10)-((TmpC

p_np_np_nT Qkmtotinverseperkk ××=
 
where =  500 s-1 and = 1.6.  Note that a maximum value is placed on 
inversepermtot in order to insure that  is not greater than 

p_nk p_nQk

p_nTk 100×p_nk = 50 000 s-1.  
This limit is set to prevent the numerical integrator from requiring very small time steps 
that result when transition rates are very large.  Note that the limit has very minor effects 
on model behavior as << , and all RUs are effectively nonpermissive when 
the limit is reached.  

n_pTk p_nTk
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Crossbridge cycling – computing state occupancy 
For the case of RU activation with subsequent crossbridge formation, the situation is 
somewhat more complicated. Ca-induced changes in the regulatory proteins are generally 
assumed to permit actin-myosin interactions.  However, strongly-bound crossbridges are 
also found to produce thin filament activation, even in the absence of activator Ca 
(Bremel and Weber, 1972; Trybus and Taylor, 1980).  To best capture such interactions, 
activation and crossbridge cycling are combined in a coupled system (Fig. 2) that is 
adapted from the work of Razumova et al. (Razumova et al., 1999).  This set of states 
represents an ensemble of myosin heads and the associated actin and regulatory proteins. 
 
State NXB represents a nonpermissive state that prevents the formation of strongly-bound 
crossbridges.  State PXB represents a permissive conformation of the regulatory proteins, 
and the nearest myosin is assumed to be in a detached or weakly-bound state. In this 
model, the detached and weakly bound crossbridge states are lumped together.  These 
states are analogous to states NNoXB and PNoXB described above for the case of no nearby 
myosin.  The XBPreR state is strongly-bound, but the myosin head has not isomerized to 
rotate and induce strain in the neck region.  Hence this state contributes to stiffness but 
does not generate force in the absence of net motion.  The XBPostR state is a strongly-
bound, post-isomerization state in which the crossbridge head has rotated to put distortion 
equal to x0 in the extensible link. Returning to the weakly bound state is unidirectional 
and is assumed to consume ATP. In contrast, the other transitions are bi-directional and 
do not involve ATP hydrolysis.  The complete set of equations is shown below: 
 

  Pk   N-kN XBp_nTXBn_pTXB ×+×=
dt
d  (14) 

 

  XBgXBg Pf (k  NkP PostRxbTPreRappTXBappTp_nTXBn_pTXB ×+×+×+−×= )
dt
d  (15) 

 
 

  XBh XB)hgPf  XB PostRbTPreRfTappTXBappTPreR ×+×+−×= (
dt
d  (16) 

 
 

 PostRxbTbTPreRfTPostR XB)gh XBh XB ×+−×= (
dt
d  (17) 

 
As in the work of Razumova et al. (Razumova et al., 1999), the force is proportional to 
the fractional occupancy of the strongly-bound states multiplied by the respective mean 
distortion of these states.  The mean distortion states XBPreR and XBPostR are tracked by 
variables xXBPreR and xXBPostR, respectively.  While the full mathematical formulation is 
presented below, a brief description suffices for now.  Crossbridges become strongly 
bound with a transition from PXB to XBPreR with an assumed distortion of 0. The rotation 
of the myosin from XBPreR to XBPostR is assumed to induce an increase in distortion 
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equal to x0. Hence, in the absence of net motion between the thick and thin filaments, 
xXBPreR is 0 and xXBPostR is x0.  
 
While the basic framework derives from Razumova et al. (1999), the transition rates have 
been modified in both general and specific ways.  In general, the base rates are larger in 
the current formulation that corresponds to 37° C.  The current model also includes a 
term xbmodspecies (1.0 for rat or 0.2 for rabbit) that scales all crossbridge cycling rates to 
account for species based differences.  For specific changes, the crossbridge attachment 
rate to the first strongly-bound state XBPreR is now given by: 
 
  (18) 37)/10)-((TmpC

appspeciesappappT Qfxbmodff ××=
 
where = 500 s-1 and is defined at the end of this section.  Note that except for 
the species and temperature dependence, the rate is fixed.  The original formulation in 
Razumova et al. (1999) has a cooperative attachment term that is not retained.   

appf appQf

 
The reverse rate is similar except for a modifier  that increases the 
detachment rate at shorter SLs. The exact definition is below: 

slmodgapp

 
  (19) 37)/10)-((TmpC

appspeciesappappappT Qgxbmodslmodggg ×××=
 
 gslmod(x))SOVF-(11  slmodg  thickapp ×+=  (20) 
 
where = 70 s-1; is defined at the end of this section; x is the SL; and the 
constant gslmod  = 6  is used to scale the effects of the thick filament single overlap 
fraction on the strongly- to weakly-bound transition rate.   

appg appQg

 
The construction of  that increases the detachment rate at shorter SLs is 
speculative and ad hoc but has some justification.  One or two strongly-bound 
crossbridges anywhere along the thin filament may suffice to hold the whole thin 
filament permissive even in the absence of activator Ca.  We represent this effect by 
decreasing detachment rates for conditions for which more crossbridges can be recruited 
(i.e., as  increases at longer SL).  In terms of model responses, the 
construction produces isometric twitches for which the final relaxation has faster time 
rates of force decline as SL decreases, as seen experimentally (Janssen and Hunter, 1995; 
Sys and Brutsaert, 1989).  Note however, that SL has been shown not to affect the tension 
cost (ATPase rate/force) in experimental studies (Wannenburg et al., 1997), so a similar 
SL-dependence is not applied to , the ATP-consuming detachment transition rate. 

slmodgapp

(x)SOVF  thick

xbTg
 
The forward transition rate  between the strongly-bound states XBPreR to XBPostR is 
defined below: 

fTh
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  (21) 37)/10)-((TmpC
fspeciesfffT Qhxbmodmodhhh ×××=

 

 )2

0

PreR
PreRf )

x
xXB

(hfmdc)xXBexp(-sign(modh ××=  (22) 

 
where = 2000 s-1; is defined at the end of this section; and the constant  = 
5 sets the extent to which mean strain of the pre-rotated state affects the isomerization 
rate.  The net effect is to increase the forward rate as xXBPreR becomes more negative as 
occurs during muscle shortening.  Conversely, a lengthening muscle will produce a 
positive xXBPreR to decrease the isomerization rate.  The backward transition rate  
from XBPostR to XBPreR. is defined by: 

fh fQh hfmdc

bTh

  
  (23) 37)/10)-((TmpC

bspeciesbbT Qhxbmodhh ××=
 
where = 400 s-1 and is defined at the end of this section.  bh bQh
 
In the original work of Razumova et al. (Razumova et al., 1999), the isomerization 
transition rates (corresponding to and ) had no strain dependence. We found that 
strain dependence on forward transition rate was needed to produce shortening 
velocities comparable to experimental measures.  In principle, similar effects could be 
produced by a strain-dependent decrease in reverse rate ,  However, in this model, 
strain dependence on backward transition rate produces instabilities.  Hence, no strain 
dependence is included in .  As discussed later, the full system of equations can show 
instability and oscillations under some parameter choices.  

fTh bTh

fTh

bTh

bTh

bTh

  
In the original work of Razumova et al. (Razumova et al., 1999), the isomerization 
transition rates play a much smaller role in shaping responses as compared to the ATP-
consuming detachment transition rate, at least for the protocols simulated in that study.  
Hence, only the ATP-consuming detachment transition rate is assumed to have strain-
dependent terms in the Razumova et al. study.  For the current study, we carry over the 
strain-dependence in that study in the rate modifier  defined below: gxbmd
  
  (24)  

x xXBif)))/xxXB-((xexp(
x xXBif)))/xxXB-((xexp(

 
0PostR

2
0PostR0n

0PostR
2

0PostR0p

⎩
⎨
⎧

≥
<

=
σ
σ

gxbmd

 
where constants pσ = 8 and nσ = 1 set the effects of strain for positive and negative 
shortening velocities, respectively.  The effect of pσ > nσ  is to increase the ATPase rate 
more for shortening than for lengthening protocols.  Note that the values chosen differ 
from those in the original study which would have corresponded to pσ = 1 and nσ = 8.  
The total rate is below: 
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  (25) )10)/37((TmpC-
xbspeciesxbxbT Qgxbgxbmdgg ×××= mod

 
where = 70 s-1 and is defined below. xbg xbQg
 
The temperature dependence of the crossbridge cycling transition rates are uniformly 
(except for one case) set to a default Q10 value of 6.25.  Specifically, =  = 

= = 6.25.  By setting the Q10 values to be equal, the relative population of 
states should be roughly constant as temperature changes.  While this is an obvious 
simplification, the values produce reasonable temperature induced changes in maximal 
shortening velocity, twitch duration and Ktr.  While 6.25 appears large, values as large as 
6.7 have been reported for reactions in the crossbridge cycle (Wang and Kawai, 2001).  
Note that there is one exception in our model in that = 2.5.  There are two 
justifications.  One is that and best correspond to k4 and k-4 in  (Wang and 
Kawai, 2001) with Q10 values equal to 6.7 and 2.5, respectively.  In addition, the 
differential in Q10 values in the model produces a maximal Ca-activated force the 
increases with temperature as seen in experimental studies (de Tombe and Stienen, 1997; 
de Tombe and Stienen, 2007; Harrison and Bers, 1989).   

appQf fQh

bQh xbQg

appQg

appQf appQg

 
Crossbridge cycling – computing force and mean strain 
As in the work of Razumova et al. (Razumova et al., 1999), the force is proportional to 
the fraction of occupancy of the strongly-bound states (XBPreR. and XBPostR) multiplied 
by the average distortion of these states (xXBPreR. and xXBPostR).  Mathematically, one 
can write 
 
 [ PostRPostRPreRPreR XBxXBXBxXB ]+∝activeF . (26)  
 
The fractional occupancies of the strongly-bound states are computed as described 
previously. Note that Eqn. 26 constitutes a mean-field approximation, while spatially 
explicit approaches calculate force as the expected value of developed force for all 
strongly-bound crossbridges.  Specifically, in a spatially explicit model, we could write 
the following for the population of crossbridges 
 
 dx)x(PDF)x(FF XBactive   xXBk XB =×=><∝ ∫   (27) 
 
where the first term in the integral is the force of an attached crossbridge as a linear 
spring constant kXB multiplied by the distortion x.  The second term in the integral is the 
probability density function of an attached strongly-bound crossbridge with distortion x.  
This representation is derived from the classic modeling work of Huxley (Huxley, 1957) 
and is used in more current models with explicit spatial representations that require 
partial differential equations (e.g., (Pate and Cooke, 1986; Smith, 2003)). 
 
However, for our spatially compressed model, we assume that  
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 ∑ >><<≈><
i

iiXB xXXF XBk  (28) 

where <Xi>  is the occupancy of state Xi, <xXi>  is the mean distortion of state Xi,  and 
the summation is over all strongly-bound states. A similar mean-field approximation is 
made in previous modeling to decrease the computation complexity and produces 
reasonable results under many conditions (for a more in depth discussion, see (Razumova 
et al., 1999)).  Understanding the mean-field approximation is key for understanding the 
model construction that follows.  
 
The mean strain of crossbridge states are computed by assuming full activation of the thin 
filament.  Hence, all RUs are assumed to be permissive, and Ca-based activation events 
plays no role in the strain calculation.  Note that assuming full thin filament activation 
leads to a different formulation for mean distortion of states than that of earlier work 
from which the model is based.  In the earlier study (Razumova et al., 1999), mean 
distortion is assumed to depend on both the fractional occupancy of states as well as the 
transitions between states.  To carry this approach over to the model here, then mean 
distortion would include the state-occupancy terms (PXB, XBPreR. and XBPostR).  
However, the occupancy of these states is strongly influenced by Ca-based activation, 
and as a result, the kinetics of computing crossbridge strain become strongly Ca 
dependent.  We avoided this construction to ensure that the mean distortion of the states 
would depend only on the relative sliding of the filaments and the intrinsic cycling rates 
of crossbridges.  The rational for the construction depends on the assumption that strong 
nearest-neighbor coupling between RUs will produce large stretches of thin filament that 
are permissive.  These effects are assumed to be local and not affected by bulk fraction of 
cycling crossbridges that are represented by the state-occupancy terms. The arguments 
are somewhat involved and are deferred to the Discussion section.   
 
With the assumption of full thin filament activation, the mean distortion xXBPreR. and 
xXBPostR are calculated as shown: 
 
 [ ])()(

dt
d

dt
d

PreR0PostRbTPreRappTDutyFract
PreR

PreR xXB- x-xXBhxXBf
XB

SLxXB ×+−×+=
φ

2
1  (29)  

 
 
 

 [ ])xXBx(xXBh
XB

SLxXB PostR0PreRfTDutyFract
PostR

PostR −+×+=
φ

dt
d

dt
d

2
1   (30) 

   

where 
dt

dSL is the velocity of sarcomere length (note that SL is a model variable while SL 

is the general abbreviation for sarcomere length); φ  is an empirically derived scaling 
term; and  and  are the fraction of units in states XBPreR. and 
XBPostR  assuming full thin filament activation.   

DutyFract
PreRXB DutyFract

PostRXB
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The motivation for the mean distortion follows from considering the interplay of two 
effects: net motion between the thin and thick filaments and the gain or loss of distortion 
as crossbridges change states.  The first effect is embodied in the first terms on the right 

hand sides of Eqns. 29 and 30.  Namely, the 
dt

dSL terms generate a proportional change in 

mean crossbridge distortions that track the net sliding of the thick and thin filaments.  The 

2
1 scaling term accounts for the effects of sarcomere geometry in which the thick 

filaments are symmetric, and the full sarcomere shortening velocity is double the net rate 
of change between half-thick filaments and the associated thin filament.  
 
The gain or loss of distortion as crossbridges change state during cycling is embodied in 
the second quantities on the right hand sides of Eqns. 29 and 30.  Consider first Eqn. 30 
that is the simpler of the two. Here xXBPostR assumes a value similar to 

when the forward transition rate is large.  Hence a high forward rate of 
isomerization will tend to produce xXBPostR that tracks xXBPreR. with added strain .  
Turning to Eqn. 29, the backward transition for isomerization is represented by the 
term .  In computing , another factor is the effect 
of the transition from a weakly-bound to a strongly-bound state (from state PXB to state 
XBPreR ).  These new strongly-bound crossbridges are assumed to attach with 0 mean 
distortion, so that a high rate of attachment should decrease xXBPreR.  This effect is 
incorporated by the  term that will force xXBPreR  toward 0 with a rate 
proportional to . 

0PreR xxXB +

0x

)( PreR0PostRbT xXB- x-xXBh × PreRxXB

)( PreRappT xXBf −×

appTf
 
So far we have used only attachment rates to compute mean strains.  Intuitively, any 
change in mean distortion as a result of crossbridge cycling should also depend on 
detachment rates.  In the current formulation, we consider detachment rate indirectly by 
calculating  and  which are the fraction (or alternatively, duty 
cycle) of units in states XBPostR  and XBPreR assuming full thin filament activation.  These 
values are calculated by assuming that >>  so that only states PXB, XBPreR , 

and XBPostR are populated.  Using the King-Altmam rule (King and Altman, 1956), the 
steady-state population of states can be determined from the transition rates as shown:   

DutyFract
PreRXB DutyFract

PostRXB

n_pTk p_nTk

   

 
xbTappTbTappTxbTappTbTappTfTappTfTxbT

xbTappTbTappTDutyFract
PreR gfhfgghghfhg

gfhf
XB

+++++

+
=  (31)  

 

xbTappTbTappTxbTappTbTappTfTappTfTxbT

fTappTDutyFract
PostR gfhfgghghfhg

 hf
XB

+++++
= . (32)  

 
In Eqns. 29 and 30, the inverses of  and  are used as scaling factors 
for second terms on the right-hand sides to represent the dependence on the length of 
time a crossbridge remains in a given state.  If crossbridges are cycling quickly through 

DutyFract
PreRXB DutyFract

PostRXB

13 



8/9/2007 

the crossbridge cycle, then one can assume that the rates into the strongly-bound states 
will be high while the total occupancy can be low as result of fast turnover.  The 
inclusion of the inverses of  and in the calculation of mean strain 
captures the effect of turnover rate on how quick crossbridge can refresh strain. 

DutyFract
PreRXB DutyFract

PostRXB

 
With the above definitions in place, Eqns. 29 and 30 can be interpreted as 
phenomenological formulations to compute mean distortion as the interplay of the net 
motion of thick and thin filament and the effect of crossbridge cycling.  Consider two 
simple cases.  If crossbridges are slowly cycling by assuming small values for fappT, hfT 

and hbT, then the 
dt

dSL term will dominate.  Then the mean distortion is determined 

primarily by the net motion of thick and thin filament.  In contrast, when there is no 

motion between the thick and thin filaments (
dt

dSL = 0), crossbridge cycling dominates.  

One can easily see that xXBPreR will tend to 0 as the weak to strong transition will 
generate new crossbridges with net distortions of 0.  In contrast, xXBPostR will tend to 
xXBPreR +  and hence .  Such results are consistent with current theories for 
crossbridge dynamics.  In our phenomenological approach, 

0x 0x
φ  is an empirically derived 

scaling term that weighs the relative contribution of the 
dt

dSL term with the contribution 

of the crossbridge turnover terms.  Withφ  = 2, the model generates a reasonable, albeit 
phenomenological, values for mean distortions over a wide range of velocities and 
crossbridge cycling rates. 
 
Calculation of normalized active force –  
One complication in developing myofilament models is the method to report output 
force.  Similar to previous work in this area (Rice et al., 1999), we report a normalized 
force with a maximum value of 1 with no assumptions on the exact choice of transition 
rates.  With such an approach, competing models can be developed and compared 
without having to constantly renormalize results.  The approach can be implemented by 
choosing scaling factors such that state occupancies are normalized to the maximum 
values possible under optimal conditions.  In the model generated here, this situation 
occurs for high Ca activation, isosarcometric, physiological temperature, and maximal 
single overlap of thick and thin filaments.  These conditions can be simulated by 
assuming >>  so that the system is fully activated.  Isosarcometric conditions 

(

n_pTk p_nTk

dt
dSL =0) and physiological temperature (37° C) produce the largest values for the 

transition rates and the maximal steady-state occupancies for force generating states.  
Assuming SL equal 2.3 µm generates that SOVthick = 1 and SOVthin = 0.64.   
 
The two scaling factors for state occupancy computed under optimal conditions are 

 and  which are the fraction of strongly-bound crossbridges under the 
optimal conditions above.  In this case, Eqns. 31 and 32 simplify to:  

Max
PrerRXB Max

PosrRXB
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xbappbappxbappbappfappfxb

xbappbappMax
PrerR gfhfgghghfhg

gfhf
XB

+++++

+
=  (33)  

  
 

 
xbappbappxbappbappfappfxb

fappMax
PosrR gfhfgghghfhg

 hf
XB

+++++
= .  (34) 

 
 
Note that Eqns. 33 and 34 are very similar to Eqns. 31 and 32 with the important change 
that the default rate values are used in the latter versus the total rate values in the former 
(e.g., versus ).   appf appTf
 
The full definition of normalized active force is: 
 

 Max
PostR

PostReRPr

XBx
 XBxXBXBxXB

(x)SOVF(x)F
0

PostRPreR
 thickactive ×

×+×
×=  (45) 

 
where x is the SL.  The  term is a scaling factor for the contribution of 
sarcomere geometry to the number of recruitable crossbridges.  Note that no   term 
exists in the denominator on the right hand side of Eqn. 45.  Under isosarcometric 
conditions, will be 0 so there is no contribution by the  state under the 
optimal conditions defined above. 

(x)SOVF  thick
Max
PreRXB

PreRxXB PreRXB

 
Apparent Ca-binding to troponin –  
For the regulatory Ca binding as described in Eqn. 9, the ratio of low- and high-affinity 
troponin units is set by thick and thin filament overlap as determined by SL.  Hence, the 
regulatory Ca binding assumes a higher affinity if thin filament is in the single overlap 
region and does not depend on whether the crossbridges are strongly bound.  In contrast, 
the apparent Ca binding that is assumed to be sensed by a cell is calculated by assuming 
that the affinity of troponin increases only if nearby crossbridges are in strongly-bound 
states.  In other words, the force-dependent Ca binding to troponin that affects the 
intracellular [Ca] transient is computed differently from the assumed “regulatory” 
binding of Ca to troponin that switches on and off the attachment of crossbridges  (see 
Eqns. 1, 2 and 9).  The apparent Ca binding is formulated below. 
 
The fraction of strongly-bound crossbridges is  
 

 
Max
PostR

Max
PrerR

PostRPrerR
SBXB XBXB

XBXB
Fract

+
+

= . (46) 
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Then the apparent Ca binding is calculated by assuming that troponin in the single 
overlap region exhibits high affinity in proportion to  as follows: SBXBFract
 
   ×+×−= (x)SOVF Trop(x)SOVF(x)Trop  thinL thinApparent )(1
 ))(( LSBXBHSBXB TropFractTropFract ×−+× 1 . (47) 
 
The motivation of separately calculating regulatory and apparent binding is described in 
detail in the Discussion section.  
 
Running the complete muscle model – 
The model is complete with the set of equations.  If the simulation is assumed to be 

isosarcometric, then 
dt

dSL = 0 and SL  is fixed at its initial value .  If the sarcomere is 

assumed to contract or expand, then the following ODE is solved to computeSL : 

0SL

  
 

 
mass

viscositySL)-(SL  Integral 0Force ×+
=SL

dt
d  (48) 

 
where viscosity and massare defined as shown in Fig. 1D.  is defined so 
that normalized forces are summed and integrated over time in the following formulation: 
 

 IntegralForce

  (49) ( )∫ −−+= 1

0

t

t
dt (x)FF(x)F(x)F Integral afterloadpreloadpassiveactiveForce

 
where is defined in Eqn. 45; and is shown in Fig. 1C (and defined in 
the Appendix).  The term is a constant force that corresponds to an applied force 
that would induce an initial SL that is larger than the resting length.  Hence, this term 
balances the passive force so that = .  The afterload term is used in 
one of two ways.  For an isotonic contraction, the afterload term is fixed after the release.  
For a fixed muscle length (isometric) contraction, the afterload is computed as a series of 
elastic elements (see Fig. 1C) used to simulate compliant ends of the muscle.  The exact 
formulation is 

(x)Factive (x)Fpassive

preloadF

preloadF )( 0SLFpassive

 
 )( 0SLxKSE(x)Fafterload −×=  (50) 
 
where x is the SL and KSE is the stiffness in units of normalized force per µm. 
  
While the model is essentially defined by the equations alone, a few notes on the 
implementation are in order.  The model comprises a stiff set of non-linear ODEs that can 
be problematic for some numerical integrators.  The model has implemented C code 
using the CVODE integrator (Cohen and Hindmarsh, 1996).  In addition, the model has 
been implemented in XPP for which multiple integrators can be selected 
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(http://www.math.pitt.edu/~bard/xpp/xpp.html).  In XPP, the CVODE integration method 
runs for the widest range of protocols, while other methods often failed for some 
protocols or parameter choices.  When multiple integration methods execute successfully, 
the results are consistent.  However, there are cases where the model can produce ringing 
and low amplitude oscillations that are a property of the equations and not of the 
integrator choice.  This observation should not be too troubling given that the nonlinear 
equations are highly interconnected with feedback terms.  Moreover, the mean-field 
approaches for Ca activation and crossbridge cycling are obvious departures from reality, 
so inherent stability should not be automatically assumed.  Indeed, even real muscle can 
show oscillations that are more prevalent in conditions producing submaximal 
crossbridge cycling (Fukuda and Ishiwata, 1999; Poggesi et al., 2005).  In the modeling 
work here, instabilities are exacerbated by manipulations that lower crossbridge cycling 
rates (e.g., by lower temperatures) as well as certain parameter choices that produce large 
strain dependences on transition rates. 
 
Modification to model rabbit myofilaments – 
The model is adjusted by decreasing transition rates in the crossbridge cycle by a factor 
of 5 to simulate the changes in myosin isoforms (rat is predominately V1 while rabbit is 
V3) and species-based changes in rate.  In the absence of direct experimental data, the 
factor of 5 is set empirically in the model to generate twitch response in rabbit that look 
similar to experimental measures.  The assumed species difference is reasonable 
compared to crossbridge cycling rate differences between rat and guinea pig that has be 
estimated to be a factor of 6 faster in rat  (Palmer and Kentish, 1998). The only other 
changes are a slight increase in Ca sensitivity and a factor of 5 increase in the mass term 
in rabbit which help to improve the rate of relaxation.  These modifications are relatively 
simplistic, and we expect more specific changes in other aspects of the model will be 
needed to better recapitulate all the species differences.  However, a minimal set of 
changes is made as there is much less experimental data to characterize the myofilament 
responses in rabbit as compared to rat. 
 

Coupling to cardiac electrophysiology and Ca-handling 
mechanisms –  
One goal of the work presented here is to develop a model of the myofilaments that is 
suitable for coupling to existing models of cardiac models of cardiac electrophysiology 
and Ca-handling mechanisms that exist in the literature.  To illustrate this purpose, we 
coupled our rabbit-modified myofilament model to the Chicago rabbit ventricular 
myocyte model (Shannon et al., 2004).  These models are coupled by using the cytosolic 
Ca concentration ([Ca]c) from the Chicago model as the input to the myofilament model.  
A feedback pathway exists in that the buffering of the low affinity, regulatory Ca-binding 
site on troponin is assumed to be controlled by the apparent Ca binding of the 
myofilament model as shown in Eqn. 47.  One complication exists in that Eqn. 47 
provides the total Ca bound to the regulatory site on troponin, whereas the Chicago 
model requires calculation of fluxes on to and off of buffers.  To match this construction, 
we differentiate Eqn. 47 with respect to time.  Note that Ca binding to troponin (  HTrop
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and ) , the thin filament overlap ( ),  and the fraction of strongly-
bound crossbridges ( ) can also change with time, so the chain rule is applied to 
terms with these variables (see Appendix for details). 

LTrop (x)SOVF  thin

SBXBFract

 

Results –  
 
F-Ca and SL-Ca responses –  
Figure 3A shows steady-state F-pCa relationships with the response of the model over a 
range of SLs as labeled.  Longer SL increases both Ca sensitivity (leftward shift) and 
maximal plateau force. The steepness as quantified by the Hill coefficient changes little 
with SL.  The SL-dependence of F-Ca relations in Fig. 3A can be compared with 
experimental data under sarcomere length control (Dobesh et al., 2002) with the 
exception that Ca50 values are larger in skinned preparations than what is expected for 
intact fibers (Kentish et al., 1986).  Similar trends are observed in both model and 
experiment: SL increases maximal plateau force while the Ca sensitivity shows little 
change in the Hill coefficient (the dashed traces show true Hill functions with Hill 
coefficient = 7.6 for comparison).  Note however that the shorter SLs cannot be 
experimentally measured, and hence these responses are untestable model predictions.  
The model results at these shorter lengths continue the trends at the longer SL as a result 
of the mechanisms described below. 
 
The observed SL-based changes come from changes in the thick and thin filament 
overlap fractions as SL changes.  The maximal plateau force occurs when the thin 
filaments are fully activated and hence reflect the fractional recruitment of strongly-
bound crossbridges as a function of SL.  This fraction is set by the thick filament overlap 
fraction (specifically by the  term in Eqn. 45).  While the mechanism of 
increased Ca sensitivity in real muscle is under debate, the behavior of the model can be 
mechanistically explained. The increased Ca sensitivity results from a different ratio of 
high- and low-affinity sites as a function of thin filament overlap fraction (see Fig. 2B, 
see the Appendix for the exact formulation).  Activation is derived from the weighted 
sum of binding to high- and low-affinity binding sites as determined by the thin filament 
overlap fraction (see Eqn. 9).   

(x)SOVF  thick

 
The data in Fig. 3A are isosarcometric and hence can be directly compared to 
experimental data with feedback SL control via laser diffraction techniques.  However, 
much of the data in the literature is not SL controlled and can have considerable internal 
shortening as a result of compliant end connections.  Figure 3B shows F-pCa 
relationships that simulate increasing amounts of internal shortening.  Each trace 
corresponds to an increasingly compliant end connection, specified by smaller KSE, that 
permits greater degrees of internal shortening (see Eqn. 50).  As compliance increases, 
internal shortening causes decreases in maximal plateau level and Ca sensitivity.  Note 
that the apparent cooperativity, quantified by the Hill coefficient, also decreases as 
compliance increases.  Here the dashed traces show true Hill functions with Hill 
coefficient = 7.6 for KSE = 50 and a Hill coefficient = 4.0 for KSE = 1.  A similar change 
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with in increasing end compliance is found in a earlier modeling study (see Fig. 2 in 
(Solovyova et al., 2002)).  Such an observation is consistent with experimental 
characterizations that show greater apparent cooperativity with SL control compared to 
fixed total muscle length conditions (Dobesh et al., 2002; Kentish et al., 1986).   
 
A third characterization related to steady-state F-pCa is the SL-pCa relation in unloaded 
isolated cells.  In this characterization, the cardiac cell SL indicates the point at which 
restoring force just balances the actively generated force for the given level of activator 
[Ca].  Figure 3C shows the steady-state SL-pCa response of the model that can compared 
to experimental data from isolated cells (Lim et al., 2001).  The response is similar in 
both the maximal degree of shortening and in the range of activator [Ca] over which the 
cell shortens from rest length to maximal shortening. Note that the apparent cooperativity 
is less in the SL-pCa relations as compared to F-pCa relations under similar conditions 
(e.g., compare Fig. 3C with 3A and B).  In the model, the decrease in apparent 
cooperativity results from the transition to shorter SLs that decrease Ca sensitivity and 
maximal force so that greater activator [Ca] is required to continue cell shortening.  As 
shown in Fig. 3A, a shorter SL requires greater activator [Ca] for any given level of 
active force.   

Force-velocity relations –  
Figure 4A shows the model responses for isotonic contractions against different fixed 
loads.  The muscle is activated to a maximal level ([Ca] = 0.01 M), and length is held 
fixed until a release at 0.65 s.  Directly after release, there is an initial fast transient (an 
example is shown by the small arrow in Fig. 4A), after which the muscle contracts at a 
roughly constant velocity for some period. The velocity is determined by averaging over 
the roughly constant region. When velocity is plotted as a function of afterload in Fig. 
4B, the typical hyperbolic shape emerges that can be fit by a modified Hill equation (de 
Tombe and ter Keurs, 1990) below: 
 

 
aF

)Fb()Va(
V max

Hill +
×−×

=  (51) 

 
where  is the Hill fit velocity, HillV F is normalized force, and a and b are empirically 
derived constants.  The corresponding Hill fit parameters are a = 0.19, 0.19 and 0.16 
normalized force and b  =  0.89, 1.6  and 3.7 µm/s for 20°, 25°, and 30° C, respectively.  
The parameters are chosen to minimize mean square error for the data summed over the 
data points shown at each temperature. 
 
The results in Fig. 4B compare well with real muscle in several respects.  Unloaded 
shortening values are comparable to those measured experimentally.  For example, in the 
model Vmax values are 3.82, 8.03 and 22.7 µm/s for 20°, 25°, and 30° C, respectively. 
Similar mean values of 6.13,  12.7, and 23.4 µm/s are found experimentally for the same 
range of temperatures, although some variability is seen across different preparations (n = 
26-97) (de Tombe and ter Keurs, 1990).  The degree of curvature to the hyperbolic Hill 
fit can be quantified by k = b/ Vmax.  The k values are 0.23, 0.20 and 0.16 for 20°, 25°, 
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and 30° C, respectively.  Experimental values are generally in the range of 0.15-0.25 for a 
wide variety of muscle preparations (McMahon, 1984), and similar values are generally 
reported for cardiac muscle although high variability can be seen depending on 
experimental conditions and fitting procedures (see (Niederer et al., 2006)).   

Twitch responses –  
Another common experiment characterization uses dynamically changing activator [Ca] 
to produce twitches.  The simplest situation to simulate is an isosarcometric contraction 
in which the SL remains fixed throughout the twitch.  This situation is simulated in Fig. 5 
for which either SL (A) or activator Ca (B) is varied.  In Fig. 5A, the SL is varied from 
1.8 to 2.3 µm to show SL-dependent effects.  The Ca transient is the same for each run 
(see inset, the exact mathematical formulation is in the Appendix) and corresponds to 
parameters fit to data at 22.5° C in Janssen et al. (Janssen et al., 2002). Longer SL 
increases both peak force and twitch duration.  The increase in peak force reflects the 
increased Ca sensitivity and maximal developed force as shown in Fig. 3A.  The time to 
peak force is relatively constant while increased SL leads to longer twitches.  These 
features correspond well to experimental characterizations for rat at similar temperature 
(de Tombe and Little, 1994; Janssen and Hunter, 1995; Janssen et al., 2002). 
 
Figure 5B shows isosarcometric twitches for which the activator Ca level is varied while 
holding SL fixed at 2.2 µm.  The Ca transient is a scaled version of that shown in Fig. 
5A.  The decreasing levels of activator Ca produce decreases in twitch force that are 
similar to those seen for decreases in SL in Fig. 5A.  Specifically, the peak force 
decreases, while the time to peak is relatively constant.  The decrease in force is 
accompanied by a decrease in twitch duration, although the relative changes are smaller 
than those for decreases in SL.  This difference can be seen in the inset of Fig. 5B where 
the force traces are self-normalized to have maximum values equal to 1.  The lowest peak 
Ca trace (•) has shorter duration than the largest Ca trace (*).  In comparison, the shortest 
SL trace (†) has the shortest duration.  The additional effect at the shorter SL is that 
crossbridge detachment rates are increased at SL decrease (see Eqn.19). 
 
A second type of twitch can be simulated in which the cell contacts against its internal 
restoring force (similar to the case for Fig. 3C).  Here the SL is initially at the rest length 
of 1.9 µm, shortens to smaller length, and then returns to the rest length as shown in Fig.  
6A. The different traces show increasing levels of activator Ca with the same waveform 
as in the inset of Fig. 5A, and the range of peak activator Ca are the same as in Fig. 5B.  
The corresponding force traces are shown in Fig. 6B.  Here the total force is plotted as 
the sum of active and passive forces.  The total instantaneous force is roughly 
proportional to the shortening velocity, so shortening stops near the point where total 
force is 0.  However, that the effect of the mass also contributes (see Fig. 1D), so total 
instantaneous force is not exactly proportional the shortening velocity.  The effect of the 
mass will be greatest when contraction is fast.  For example, the ringing near the bottom 
of the (*) trace in Fig. 6B illustrates that force may differ from 0 when the when dSL/dt = 
0 at the minimum of the (*) trace in Fig. 6A.  The net effect of the mass term is small (< 
0.005 units) even for the case of the fastest shortening rate. 
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Comparing the isosarcometric traces in Fig. 5B with the cell shortening twitches in Fig. 
6, similarities and differences can be observed with respect to changing activator Ca 
levels. Raising the Ca level increases peak force and produces a larger degree of 
shortening.  Note that while the time to peak force is relatively constant in the 
isosarcometric case, the cell shortening case shows a decreased time to peak shortening 
with increasing Ca.  In the shortening case, the decreasing time to peak is accompanied 
by a faster relaxation for higher Ca activation levels. Hence the total duration of the cell 
shortening is roughly the same.  In the inset of Fig. 6A, the smallest (•) and the largest 
traces are self normalized and show similar durations (e.g., compare time duration at 0.5 
normalization).  In contrast, the isosarcometric twitches prolong with slower relaxation 
for higher Ca activation levels as shown the inset of Fig. 5B.  
 
The differences between the isosarcometric and cell shortening twitches can be further 
illustrated by simulating fixed muscle length twitches in which the degree of internal 
shortening is changed.  In Fig. 7, the different traces correspond to increasing end 
compliances and larger degrees of internal shortening.  For the case with the least end 
compliance (KSE = 50), there is a very small amount of internal shortening (* trace in 
Fig. 7A).  The corresponding force transient in Fig. 7B is very similar to the 
isosarcometric twitch in Fig. 5 for SL = 2.2 µm.  As the end compliance increases (KSE 
decreases), the amount of internal shortening increases as shown in Fig. 7A.  With greater 
internal shortening, the total force as measured at the muscle end changes to show a later 
peak and increased rate of relaxation.  The increased time to peak results because 
maximal recorded force coincides with the greatest lengthening of the series elastic 
element.  As the compliance increases, this point occurs at a greater delay from the 
initiation of the twitch.  The twitch duration decreases because relengthening hastens 
relaxation as seen experimentally (Sys and Brutsaert, 1989).  In the model, the 
relengthening increases the mean distortion of the strongly-bound crossbridge state, and 
in turn, decreases the forward rotation rate of the crossbridges (see Eqn. 22) to hasten 
force decline. 

Ktr  –  
Another common characterization of muscle is Ktr, the rate of force development after a 
sudden length change that is thought to detach most crossbridges and drop the force to 
near zero. Simulation of Ktr experiments are carried out in the model by first applying a 
constant level of activator [Ca] until a steady response is obtained (as shown by the fixed 
force level prior to the 2 s window shown in Fig. 8A).  The crossbridge forward transition 
rates are increased ( and are 200 fold slower) and reverse rates are increased 
( and are 200 fold faster) for 2 ms to simulate the rapid removal of strongly-
bound crossbridges by the quick release and restretch that is typical in experimental 
protocols.  Intuitively, one could attempt a more direct mapping in the simulation to the 
mechanical perturbations in the experimental protocol.  However, we want to simulate 
crossbridge attachment and force redevelopment that underlies the main phenomenon of 
Ktr.  Attempting to simulate the fast crossbridge detachment events from the mechanical 
length changes would increase the complexity of the simulation.  Moreover, one can 

appTf fTh
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question the value of simulating the fast force drop for which the theoretical 
underpinnings are less well understood than the force redevelopment steps.   
 
As shown in Fig. 8A, the recovery is well fit by a single exponential (dashed traces) with 
rate Ktr that increase with the activation level. Likewise, experimental results show a 
recovery that is well fit by a single exponential with rate Ktr that increases with Ca-based 
activation level in cardiac muscle (Wolff et al., 1995).  While initial theories proposed 
that Ktr should reflect crossbridge turnover rates only, later interpretations suggest an 
interplay of Ca-based activation and turnover rates that causes Ktr to increases with Ca-
activation level (Campbell, 1997; Hancock et al., 1997).  The results from Fig. 8A are 
plotted as a function of Ca level as the 20° C trace in Fig. 8B. Also shown are 
corresponding results for 15° and 25° C.  Similar to experimental results, the rates 
increase with temperature with the divergence increasing at the highest activation levels 
(de Tombe and Stienen, 1997; de Tombe and Stienen, 2007). 
 

Unloaded cell shortening –  
We coupled the myofilament model to the Chicago model of the rabbit ventricular 
myocyte (Shannon et al., 2004).  Note that all of the myofilament model data shown up to 
this point has been for rat at lower temperature.  Now the myofilament model is adjusted 
to replicate rabbit (see Methods) at physiological temperature (37° C).  Results are shown 
in Fig. 8 for the combined model and the similar experimental data (Bers, 2001).  The 
responses show the action potentials, Ca transients, and cell shortening signals for both 
model (A) and experimental characterizations (B).  Note that the particular experimental 
data set here shows a small and prolonged Ca transient that could be better replicated by 
decreasing L-type Ca influx and the forward rate of SERCA pump to 90% and 40% of 
the default values, respectively. Otherwise default values are used for the Chicago model. 
 

Length effects on the Ca transient –  
The bulk cytosolic Ca transient from the Chicago model is used to compute the binding 
of Ca to the low affinity regulatory sites on troponin in the myofilament model.  This step 
is straightforward, except that the Ca affinity of this site is a function of both SL and the 
fraction of strongly-bound crossbridges (Eqn. 47).  Because of this functional 
dependence, the amount of Ca bound to troponin will change as the fraction of strongly-
bound crossbridges changes and as the SL increases or decreases.   
 
Figure 10 shows simulation of effects of internal shortening on the Ca transient. The 
protocol generates a steady output by stimulating the cell for 9 beats at 1 Hz with fixed 
muscle length with internal shortening.  Default values of the Chicago model are used. 
The protocol and extent of internal shortening is similar that in an experimental study 
(Janssen and de Tombe, 1997).  For beat 10, either the cell is allowed to internally 
shorten as before (•) or held at a fixed SL (*) to simulate length control.  Note that up to 
beat 10, the runs are equivalent so that all states variable such as sarcoplasmic reticulum 
loading and intracellular ion concentrations will be the same.   The panels show the 
resulting SL (A), force (B) and bulk myoplasmic Ca transient (C).  As seen in 
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experimental studies, the isosarcometric case shows increased force and a decrease in the 
Ca transient as compared to the uncontrolled case with internal shortening.  In the model, 
the increased force produces augmented Ca-binding to troponin that initially decreases 
the Ca transient. Later the increased Ca bound to troponin is released so that the later Ca 
transient is slightly above the internal shortening case (compare • and * traces).  In the 
experimental study, uncontrolled shortening also increases the Ca transient, however a 
similar crossover feature cannot be detected as the noise level is too large and presumably 
would obscure such an effect if present.  However, the crossover effect is seen in other 
studies (Backx and Ter Keurs, 1993; Kentish and Wrzosek, 1998) using long and short 
SL twitches which produces larger changes in developed force and more distinct changes 
in the Ca transient.  
 

Discussion -  
An ODE-based model is developed here based on traditional approaches; however, new 
formulations of some aspects are developed to overcome limitations associated with 
traditional mean-field approximations. The approximate and spatially-compressed model 
presented here can recapitulate many of the commonly measured steady-state and 
dynamic responses seen in cardiac muscle. As in all modeling studies, the ability to 
generate realistic responses does not prove that the underlying biophysical mechanisms 
are correctly represented. This veracity of this statement is obvious for this study as we 
have clearly described a number of approximations that do not match the real biophysics.  
Specifically, we cannot directly represent nearest-neighbor interactions of RUs.  Also, 
force is computed using a mean-field approach using the state occupancy multiplied 
mean strain of the strongly-bound states.  We accept these approximations as necessary to 
maintain the system as computationally-efficient ODEs that are suitable for large-scale 
tissue simulations (Rice and de Tombe, 2004; Rice et al., 2007).  In the following 
discussion, we focus on several of the limitations of our approach.  Then our modeling 
approach is compared with existing published models.    

Limitations –  
Assumption of spatially homogeneity- The model implicitly assumes several types of 
homogeneity.  First the model assumes that myofilaments are activated by a uniform Ca 
concentration.  This assumption conflicts with considerable evidence showing that Ca-
induced Ca release is inherently spatial with specialized mechanisms to produce SR Ca 
release in response to local influx via L-type channels.  However, at the level of the 
myofilaments, we expect that Ca is more uniformly distributed over the much longer time 
frame of the force generation. Computational modeling suggests spatial [Ca] gradients in 
the half-sarcomere are largest during the upstroke of the Ca transient, and the spatial 
gradients are small by 15 ms after the peak of the transient (Wier and Yue, 1986).  Hence, 
except for the rapid upstroke, the gradients are generally small, and [Ca] is nearly 
uniform in space although changing with time.   
 
A second homogeneity assumption is that all crossbridges are equally likely to bind and 
contribute equally to force generation in the single overlap region.  These assumptions 
are contradicted by evidence that suggest the intrinsic spacing of myosin and actin sites 
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are different so that binding probabilities can be a function of the location along the thick 
and thin filaments (Daniel et al., 1998). Moreover, this work also suggests that 
compliance in the filaments can produce a realignment of the binding site and can 
introduce cases where crossbridges can contribute different amounts of developed force 
depending on the number and location along the z-disk to m-line direction.  Our model 
cannot capture these types of compliant realignment effects. 
 
Mean-field approximations for crossbridge cycling - As described in the Methods 
section, the crossbridge state representation proposed here considers both the probability 
of strongly-bound states and the mean distortion of the states.  Moreover, the mean strain 
affects the transition rates between crossbridge states.  This representation conflicts with 
most common notions of crossbridge cycling in which strain affects the transitions rates 
on an individual crossbridge basis only.  However, tracking such interactions requires 
partial differential equations (e.g., (Huxley, 1957; Pate and Cooke, 1986; Smith, 2003)) 
or Monte Carlo approaches (e.g., (Chase et al., 2004; Daniel et al., 1998; Hussan et al., 
2006)).  In fact, common notions suggest individual strain strongly affects the transition 
rates, so that mean-field approaches may prove difficult to apply.  Specifically, the mean-
field approach is best suited for conditions in which the population of states and the 
corresponding strains of the states are weakly correlated.  Despite these observations, the 
representation proposed here produces reasonable results for the experimental protocols 
studied.  Hence, the approximation appears useful for the purposes of this research effort. 
 
Simplifications of known complexity - The modeling work contains important 
simplifications that are in conflict with known features of cardiac muscle.  As a 
reasonable first approximation, the passive force is represented as a simple, time-
invariant elastic element that is in series with a Newtonian viscous element.  This 
formulation cannot reproduce experimental data showing more complexity and time 
variation in passive force (de Tombe and ter Keurs, 1992).  Likewise, the representations 
of a mass element and spring-like series elastic elements are other linear simplifications 
that can only approximate reality (McMahon, 1984).  Our three state crossbridge cycle is 
a simplification as many more states can be identified in biochemical studies (e.g., (Pate 
and Cooke, 1986)).  Likewise, we consider only two states for RUs (permissive and 
nonpermissive).  In contrast, other research has suggested three states for thin filament 
activation (McKillop and Geeves, 1993).  
 

Comparison to previous modeling work –  
Sarcomere geometry - The length dependence of maximal activated force is assumed to 
reflect the overlap of thick and thin filaments resulting from sarcomere geometry.  This 
basic premise can be traced back to the work Gordon et al. (Gordon et al., 1966) in 
skeletal muscle.  However, such an approach to modeling maximal activated force in 
cardiac muscle requires assumptions about filament lengths that differ from skeletal 
muscle (Rice and de Tombe, 2004).  The traditional assumption has been that skeletal and 
cardiac muscle have equivalent sarcomere geometries and filament lengths, and some 
modeling efforts reflect this premise (Rice et al., 1999; Schneider et al., 2006). Other 
modeling efforts  (Negroni and Lascano, 1996; Niederer et al., 2006) have used fitting 
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parameters to physiological data on maximal activated force rather than attempting to 
model the sarcomere geometry explicitly.  An alternative explanation of the peak of force 
at lengths greater than 2.0-2.2 µm range found for skeletal muscle is SL-dependent 
changes in lattice spacing.  Some recent modeling efforts (Protsenko et al., 2005; 
Schneider et al., 2006) have included the putative effects of lattice spacing to explain 
length-dependent effects.  Similar lattice spacing effects are not included in the model 
here because appropriate length dependent effects could be simulated based on sarcomere 
overlap changes alone.  Moreover, controversy exists as to whether lattice spacing 
changes are large enough to produce length dependent changes in Ca sensitivity and 
maximal force (Konhilas et al., 2002a; Konhilas et al., 2002b; Rice and de Tombe, 2004). 
 
The first modeling work to assume different cardiac sarcomere geometry was that of 
Landesberg and Sideman (Landesberg and Sideman, 1994a); however, their experimental 
justification was mostly lacking.  More recent characterizations (Weiwad et al., 2000) 
have shown that maximal activated force in cardiac muscle does peak at SL at 2.3-2.4 µm 
which is larger than the 2.0-2.2 µm range for skeletal muscle.  In addition, maximal 
activated force is seen to linearly increase up to 2.15 µm in trabeculae (Kentish et al., 
1986) which contradicts the plateau in force expected for skeletal muscle geometry in the 
2.0-2.2 µm range.  Similarly, maximal force and ATPase rates are found to rise linearly 
through the 2.0-2.2 µm range (Wannenburg et al., 1997).  Such findings are most easily 
explained by an increase in recruitable crossbridges as a result of an increased single 
overlap region.   
 
The sarcomere geometry in Fig. 1A is based on physiological data described above, 
although we have not found the exact anatomical data to confirm these assumptions. 
However, recent evidence suggests the plausibility of different thin filament lengths in 
skeletal and cardiac muscles.  While nebulin was initially thought to be absent in cardiac 
muscle, recent measurements show nebulin does exist in cardiac muscle but at a much 
lower concentration than in skeletal muscle (McElhinny et al., 2005).  This study also 
showed that siRNA-based inhibition of nebulin produced elongation of the thin filaments.  
Hence, nebulin appears to play a similar role in acting as a ruler to set the thin filament 
length, although the mechanism must be more transient and dynamic than in skeletal 
muscle where regulation appears to be static with a stoichiometric match between nebulin 
modules and actin monomers (Horowits, 2006).  In addition, nebulin has a modular motif 
structure with alternative splicing products, and the molecular mass correlates with thin 
filament lengths (for review, see (McElhinny et al., 2003)).  Taken together, these 
experimental results suggest the general plausibility that cardiac muscle thin filaments 
could be longer than the classical measurements for skeletal muscle. 
 
Ca-based activation - In the spatially-explicit modeling, activation of RUs 
(troponin/tropomyosin) from a nonpermissive to permissive state will increase the Ca 
affinity by about a factor of 10 for that unit.  In the ODE approach, individual units are 
not tracked, so such an effect on a unit-by-unit basis cannot be directly implemented.  A 
traditional mean-field approximation assumes a uniform increase in the Ca affinity for all 
units.  As described previously (Rice and de Tombe, 2004), traditional mean-field 
approximations with global feedback of developed force on Ca-binding generate 
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unphysiological responses such as F-Ca relations that are not cooperative enough at high 
and low Ca regions and are too cooperative in the middle region.  This effect on F-Ca 
relations is generic and appears in a wide variety of models with different constructions 
and parameter sets (e.g., (Niederer et al., 2006; Rice et al., 1999; Schneider et al., 2006)). 
For a specific example, compare F-Ca results for models with global feedback on Ca 
binding (M1 and M2) with the model without (M5) in Fig. 5 of Schneider et al. 
(Schneider et al., 2006).  Another important issue arises in that strong global feedback of 
developed force on Ca-binding can generate hysteresis that is not seen in real muscle 
responses (Rice et al., 2007).  Small amounts of global feedback of developed force on 
Ca-binding can be used with little deleterious effects (e.g.,  (Rice et al., 1999; Robinson 
et al., 2002)),  However, the resulting F-Ca relations may not be steep enough, and the 
small change in affinity will not produce the force-dependent changes in the intracellular 
Ca transient.   
 
Besides the problems with steady-state responses, global feedback of developed force on 
Ca-binding can produce problems in dynamic responses.  Specifically, Ca activation 
kinetics are generally assumed to be faster, whereas, the crossbridge cycling kinetics are 
slower (e.g., (Janssen et al., 2002; Palmer and Kentish, 1998)).  Including global 
feedback terms of attached crossbridges on Ca binding cause the Ca-based activation 
steps to have slow kinetics that mirror the slower crossbridge attachment (Campbell, 
1997).  The feedback results in unphysiological responses such as isosarcometric twitches 
that show a peak force that occurs later and later as peak force increases (Rice et al., 
1999).  In contrast, the time to peak force shows little change with peak force levels 
under length control conditions (de Tombe and Little, 1994; Janssen and Hunter, 1995).  
Moreover, the positive feedback of developed force on Ca-binding can produce a system 
that can show very long times to reach steady state as well as extreme sensitivity to 
parameters (Rice et al., 2008).  Specifically, extreme sensitivity to parameters arise as 
multiple steady-state solutions can be reached from slightly different initial conditions. 
 
The Ca-based activation in the model developed here requires a steep non-linear relation 
between the binding of Ca to troponin and the shift from nonpermissive to permissive 
RUs.  This construction follows directly from earlier work (Rice et al., 1999) that sought 
a phenomenological approach to capture the putative effects of end-to-end RU 
interactions.  While the approach in the current model is essentially the same and could 
still be considered phenomenological, more recent spatially-explicit models have shown 
that end-to-end interaction of RUs can produce a strong non-linear effect.  Specifically, a 
model using the Ising approach (Rice et al., 2003) shows strongly cooperative activation 
of the thin filament simulated F-Ca relations that are very similar to Hill functions.  
Moreover, the model F-Ca relations show slight deviations from true Hill functions such 
that the low Ca region is somewhat more cooperative than the high Ca region as seen in 
many experimental studies (Brandt et al., 1980; Moss et al., 1985; Moss et al., 1983).  
The spatially explicit approach is carried over to a second study using Monte Carlo 
approaches that include more detail such as crossbridges and the thick and thin filament 
structure of the sarcomere (Hussan et al., 2006).  This study also shows that end-to-end 
interaction of RUs produce steep F-Ca relations that resemble those measured 
experimentally. 
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While the steep non-linearity in the model can produce realistic Ca sensitivity as seen in 
the spatially-explicit models, it is not obvious how to incorporate force-dependent Ca-
affinity in an ODE-based model without generating a traditional mean-field 
approximation.  Our modeling efforts here propose a novel construction that artificially 
separates the Ca binding to troponin that is assumed to control thin filament activation 
(termed “regulatory Ca binding”) and Ca binding that is sensed by the cell (termed 
“apparent Ca binding”).  This approximation produces realistic Ca sensitivity with F-Ca 
relations that are similar to true Hill functions (Fig. 3A).  Also, the attachment of 
strongly-bound crossbridges can increase the apparent Ca binding to troponin that is 
thought to alter the intracellular Ca transient, as simulated in Fig. 10.  However, our 
approach is an approximation because in reality, there is only one pool of troponin that 
plays both regulatory and buffering roles, although the effective roles may depend on the 
spatial and temporal scales that one considers.    
 
To better illustrate the spatial scales, we propose different schematic examples of the thin 
filament as shown in Fig. 11.  Assuming no nearest-neighbor coupling between the RUs, 
a random arrangement of permissive RUs is produced, as depicted in Fig. 11A.  Many 
existing models of the myofilaments have an implicit assumption that the strong binding 
of crossbridges is tightly controlled by the adjacent RUs.  If one assumes little or no 
nearest-neighbor coupling between the RUs, then recruitment of crossbridges is assumed 
to be along the length to the thin filament in location corresponding to permissive RUs.  
In contrast, Fig. 11B shows an example with strong nearest-neighbor coupling between 
RUs so that uniformity is promoted between adjacent RUs.  Now the 50% activation 
point corresponds to continuous run of RUs in the “on” conformation followed by a run 
of RUs in the “off’ conformation.  While this amount of coupling may be stronger than 
common intuition, our spatially explicit results predict correlation of RUs states at 
distances of roughly half the thin filament at 50% activation (Rice et al., 2003).  Figure 
11C shows an example of extreme coupling between RUs in which the whole thin 
filament switches from nonpermissive to permissive in unison as suggested by Brandt et 
al. (Brandt et al., 1987).  In this case, 50% activation can be represented in a cross-
sectional view where whole thin filaments would be either in the “on” or the “off” 
conformation.   
 
We propose that the picture in Fig. 11C may be closer to reality than that of Fig. 11A.  
With such a view, the concepts of spatial averages can change. A spatially compressed 
model computes a single scalar to represent the fraction of permissive RUs, and hence, 
the model cannot directly distinguish recruitment in the direction along the filament from 
recruitment in the cross-sectional plane.  However, we have chosen the model 
construction to favor different views of recruitment for different purposes.  For example, 
early in the activation process, the thin filament shifts to permissive conformation before 
crossbridges attach.  Once the first crossbridge binds, its associated RU and the 
neighboring up- and downstream RUs will be permissive assuming high nearest-neighbor 
cooperativity.  From the point of view of the myosin heads located up- and downstream, 
the thin filament is permissive and attachment is facilitated (similar to the depictions in 
Fig. 11B and C).  Hence we assume thin filament regulation is local to a given filament 
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and not dependent on bulk number of attached crossbridges elsewhere in the sarcomere.  
One additional feature is also important.  The sarcomere single overlap fraction sets the 
number of adjacent myosin heads and the potential number of crossbridges that can form 
on each thin filament. For this reason, we have formulated regulatory Ca binding that 
depends on SL but is not dependent on the bulk fraction of attached crossbridges (see 
Eqn. 9). 
 
Now consider the Ca binding sensed by the cell on the macroscopic scale.  Again 
consider the extreme case for which the whole thin filament switches from nonpermissive 
to permissive in unison.  Clearly a single activated thin filament would not be sensed by 
the cell in terms of Ca buffering.  Hence, the first activated thin filament will have a 
negligible effect on the Ca transient.  However, after a substantial fraction of thin 
filaments are activated, one would predict an effect.  For example, if half of thin 
filaments are activated, then we expect roughly one half of troponin to have high affinity 
in the extreme case.  In our model, we attempt to capture this effect by using the fraction 
of strongly-bound crossbridges as a proxy for the recruitment of thin filaments in the 
cross-sectional plane.  There is an additional effect in that not all RUs are in close 
proximity to a crossbridge because of the sarcomere geometry.  Because of this effect, SL 
also plays a role in determining the number of permissive RUs.  Hence, our formulation 
of apparent Ca binding that is sensed by the cell has contributions from both SL and the 
fraction of strongly-bound crossbridges (see Eqn. 47). 
 
Besides the spatial aspects just described, the difference in time scale can effect how the 
model variables are interpreted.  For example, a typical twitch occurs over a longer time 
scale that reflects crossbridge kinetics more than Ca activation events (Janssen et al., 
2002; Palmer and Kentish, 1998). At this longer time scale, force and thin filament 
activation may track together closely as strongly-bound crossbridges tend to keep the thin 
filaments in a permissive conformation even after Ca has begun to dissociate from 
troponin (Peterson et al., 1991).  Hence on the macroscopic scale over a long timeframe, 
the thin filament activation and affinity for Ca may mirror the bulk population of 
strongly-bound crossbridges, whereas on the microscopic scale or short timeframe, the 
bulk attachment of crossbridges should not be an important variable for local activation 
events. 
 
Three-state crossbridge scheme-  The model is constructed around a three-state model 
that is adapted from the general approach of Campbell and coworkers (Campbell et al., 
2001; Razumova et al., 1999; Razumova et al., 2000).  While many more crossbridge 
states have been identified biochemically, the three-state model retains enough machinery 
to recapitulate many measured phenomena including force-velocity relations, small step 
responses and harmonic responses (Razumova et al., 1999).  The main differences in the 
work here is that we have added a more cooperative Ca-activation scheme; included more 
strain dependence in the crossbridge transition rates; and reworked the calculation of 
mean strain of the strongly-bound states.  The Ca-activation approach is described above.  
In the model developed here, both the crossbridge forward isomerization rate and the 
ATP consuming transition rate  are very strain dependent.  In contrast, the work of 
Razumova et al. (Razumova et al., 1999) included strain dependence on the ATP 
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consuming transition only (analogous to  in this study).  For the protocols 
investigated in that study, strain-dependence on the ATP consuming transition has the 
dominant effects, and including strain dependence on other transition rates produces 
relatively minor effects.  Another change in the model here is faster transition rates for 
crossbridge cycling that correspond to higher temperatures.  The higher cycling rates are 
also important to recapitulate a rapid unloaded shortening velocity that can be quite large 
even at sub-physiologial temperatures (e.g., 23.4  µm/s at 30° C (de Tombe and ter 
Keurs, 1990)). 

xbTg

 
The modeling work here includes a new formulation of mean strain of the strongly-bound 
states.  In the original model of Campbell and coworkers, calculation of mean strain has a 
dependence on the mean occupancy of the crossbridge states.  Such an approach makes 
intuitive sense given that the model couples Ca-based activation to crossbridge cycling 
steps.  For example, if one envisions the scenario shown in Fig. 11A, then the binding of 
crossbridges and subsequent cycling will closely mirror the Ca-based activation steps.     
In contrast, if one considers the picture in Fig. 11B and C, then crossbridge attachment is 
only effected by the local environment and not by the amount of the activation in the 
cross-sectional plane.  Indeed, on the microscopic scale, consider the first strongly-bound 
crossbridge in a sarcomere.  As the first crossbridge binds, its associated RU and the 
neighboring RUs up- and downstream will be permissive assuming strong nearest-
neighbor coupling.  Neighboring myosins will also sense a permissive environment and 
crossbridges will bind and cycle with rates that are independent of Ca level.  Hence on 
the local scale, the world is permissive and independent of Ca level, and the strain of 
crossbridges should depend only on their own intrinsic cycling rates and on the net 
motion of its thick and thin filaments.  For these reasons, our computation of mean strain 
does not contain a contribution of mean population of the strongly-bound states. 
 
In all modeling efforts, some level of abstraction is chosen as a compromise between 
parsimony and complexity.  We chose a three-state crossbridge cycle and propose that it 
has several advantages over a more parsimonious two-state model for the crossbridge 
cycle as first proposed by Huxley (Huxley, 1957).  In this formulation, crossbridges are 
assumed to be either detached (or equivalently weakly bound) or attached (or 
equivalently strongly bound).  We can outline the advantages moving to the more 
complex three-state crossbridge cycle in the following three areas: 
 
1) ATP utilization - A two-state approach requires that crossbridge detachment proceed 
via an ATP-utilizing path.  However, this step is often characterized as slow, so 
relaxation is inhibited unless an unrealistically high ATP utilization is assumed or 
multiple powerstrokes are assumed per ATP hydrolyzed, a feature at odds with most 
current theories (Rice et al., 1998).  The inability to reconcile faster relaxation with slow 
ATPase rates have led to speculation that a fast reverse powerstoke can predominate 
under some conditions (Palmer and Kentish, 1998; Stehle et al., 2002).  With the three-
state model, the system can relax back from the force generating state to the relaxed state 
via fast reversible reactions that do not require energy usage (ATP hydrolysis) under 
many conditions. For example, during isometric twitches, this pathway will predominate 
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and decrease ATP consumption under conditions where no net work is done, as first 
described by Fenn (Fenn, 1924).    
 
2) Crossbridge strain - Another difficulty associated with a two-state crossbridge 
representation is how to represent crossbridge strain. The Landesberg-Sideman models 
(Landesberg and Sideman, 1994b) and derivatives use an approach where the strain is an 
instantaneous function of velocity implemented with a viscosity-like term for unitary 
crossbridge force.  The viscosity-like effect is also predicted by the Huxley model for 
which the mean-strain of a crossbridge population decreases for a constant shortening 
velocity (de Tombe and ter Keurs, 1992).  However, computing strain as an instantaneous 
function of velocity precludes the interplay of both shortening velocity and crossbridge 
turnover in determining strain.  In comparison, Negroni and Lascano (Negroni and 
Lascano, 1996) employ a construction of a single spring with a movable attachment that 
represents the ensemble of the attached crossbridges.  Here the moving attachment point 
can allow a resetting of strain with time, similar to the contribution of both shortening 
velocity and crossbridge turnover rates proposed here (Eqns. 29 and 30).  In the three-
state crossbridge cycle used here, we hope to provide a more direct mapping to the 
biophysics of crossbridge attachment and strain induction, although admittedly, a mean-
field approximation is still required that is ultimately at odds with a true spatially-explicit 
calculation of strain. 
 
3) Prolongation of relaxation - A side effect of the three-state model is that we found a 
prolongation of twitches at higher force levels (see inset of Fig. 5B).  The prolongation 
occurs as more time is required to transition back from the PostR state to the PreR state 
during the relaxation process.  The prolongation is important to replicate isometric 
twitches for which twitch duration increases with twitch force (Janssen and Hunter, 
1995).  In contrast, previous work with two-state crossbridge model, two and three 
crossbridges were assumed to attach cooperatively to produce similar prolongation 
effects  (Rice et al., 1998).  These model results do not confirm one mechanism over 
others, and indeed, multiple mechanisms could contribute to force-dependent 
prolongation of twitches. 

 
Conclusions –  
An ODE-based model is developed here based on traditional approaches; however, new 
formulations of some aspects were developed to overcome limitations associated with 
mean-field approximations.  Specifically, we propose that cooperative activation of the 
thin filament and the strain-dependent transitions of the crossbridge cycle are inherently 
local phenomena that can only be approximately described by nonspatial, state-variable 
models.  We have attempted to strike a reasonable balance between mechanistic detail 
and model parsimony while including sufficient cellular machinery to recapitulate a wide 
range of the commonly measured steady-state and dynamic responses in cardiac muscle.  
Specifically, the steady-state responses are F-SL, F-Ca, SL-Ca and F-V relations. 
Dynamic responses are isometric and cell-shortening twitches and Ktr including Ca-
activation effects.  The model responses are comparable to a wide range of experimental 
data available in the literature for rat at or near room temperature.  With a small number 
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of parameter changes, the model can be converted to represent rabbit at physiological 
temperature.  This modified version of the myofilament model is coupled to the Chicago 
model of the rabbit ventricular myocyte, and the integrated model recapitulates the 
cellular electrophysiology, Ca handling and myofilament responses.  In the integrated 
model, changing SL and developed force can alter the intracellular Ca transient as seen in 
experimental measure.  In conclusion, while containing many approximations, the model 
can replicate a wide range of experimental data.  We hope that this model will provide 
the community with a relatively simple representation of cardiac myofilaments that 
retains enough mechanistic underpinnings to provide flexibility and extensibility for 
future model development.   
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Appendix - Full set of equations 
 

Sarcomere geometry - 

Note: This is the end of the single overlap region nearest the z-line. 
 
 maxminthickze SLx SL for  x/2)/2,min(length(x)sovr ≤≤=  (A1) 

 
Note: This is the end of the single overlap region nearest the center line. 
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Ca binding to troponin to thin filament regulation - 
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Note: This is the "apparent" Ca binding to interface to cell models. 
 
 ×+×−= (x)SOVF Trop(x)SOVF(x)Trop  thinL thinApparent )(1   
 ))(( LSBXBHSBXB TropFractTropFract ×−+× 1  (A13) 
 

Note: This is the "regulatory" Ca binding for activation of myofilaments. 
 
  TropCa*(x)SOVF  TropCa*(x))SOVF-(1(x)Trop H thinL thinRegulatory +=  (A14) 
 
  (A15)  0.5n

Regulatory50 ))(x))/Trop(perm(1/(1permtot perm+=
 
 

 ,100)
permtot

1min(mtotinverseper =  (A16) 

 
 
  (A17)  Qkpermtotkk 37)/10)-((TmpC

n_pn_pn_pT ××=
 
 
  (A18) 37)/10)-((TmpC

p_np_np_nT Qkmtotinverseperkk ××=
 

Thin filament regulation and crossbridge cycling - rates 
 
 

  (A19)  
⎩
⎨
⎧

=
Rabbit.

Rat
20

1
speciesxbmod

 
 
  (A20) 37)/10)-((TmpC

appspeciesappappT Qfxbmodff ××=
 
 gslmod(x))SOVF-(11  slmodg  thickapp ×+=  (A21) 
 
  (A22) 37)/10)-((TmpC

appspeciesappappappT Qgxbmodslmodggg ×××=
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x
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(hfmdc)xXBexp(-sign(modh ××=  (A23) 
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  (A25) 37)/10)-((TmpC

bspeciesbbT Qhxbmodhh ××=
 
 
  (A26)  
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  (A27) 37)/10)-((TmpC

xbspeciesxbxbT Qgxbmodbmdggg ×××= x
 

Regulation and crossbridge cycling - state equations 
 

  Pk   N-kN NoXBp_nTNoXBn_pTNoXB ×+×=
dt
d  (A28) 

 

 Pk   NkP NoXBp_nTNoXBn_pTNoXB ×−×=
dt
d  (A29) 

 
 

  Pk   N-kN XBp_nTXBn_pTXB ×+×=
dt
d  (A30) 

 

  XBgXBg Pf (k  NkP PostRxbTPreRappTXBappTp_nTXBn_pTXB ×+×+×+−×= )
dt
d  (A31) 

 
 

  XBh XB)hgPf  XB PostRbTPreRfTappTXBappTPreR ×+×+−×= (
dt
d  (A32) 

 
 

 PostRxbTbTPreRfTPostR XB)gh( XBh XB ×+−×=
dt
d  (A33) 

 
 

Mean strain of strongly-bound states - 
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 [ ])xXB- x-xXB(h)xXB(f
XB

SL
2
1xXB PreR0PostRbTPreRappTDutyFract

PreR
PreR ×+−×+=

φ
dt

d
dt
d  (A34)  

 
 
 

 [ ])xXBx(xXBh
XB

SL
2
1xXB PostR0PreRfTDutyFract

PostR
PostR −+×+=

φ
dt

d
dt
d   (A35) 
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gfhf
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+
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XB

+++++
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Normalized active and passive force –  
 

 
xbappbappxbappbappfappfxb
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gfhf
XB

+++++

+
=  (A38)  
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Calculation of complete muscle response –  
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0

 
 
 
Table of parameters for model- 
 
Parameter Value Units 

Sarcomere geometry 
maxSL  2.4 µm 

 SLmin  1.4 µm 

thicklength  1.65 µm 

hbarelength  0.1 µm 

thinlength  1.2 µm 
Temperature Dependence 

TmpC range = 15-37 degrees C 
onQk  1.5 unitless 

offQk  1.3 unitless 
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n_pQk  1.6 unitless 

p_nQk  1.6 unitless 

appQf  6.25 unitless 

appQg  2.5 unitless 

fQh  6.25 unitless 

bQh  6.25 unitless 

xbQg  6.25 unitless 
Ca binding to troponin to thin filament regulation 

onk  50 µM-1s-1 

offLk  250 s-1 

offHk  25 s-1 

50perm  0.5 unitless 

permn  15 unitless 

n_pk  50 s-1 

p_nk  500 s-1 
Thin filament regulation and crossbridge cycling 

appf  500 s-1 

appg  70 s-1 

gslmod  6 unitless 

fh  2000 s-1 
hfmdc  5 unitless 

bh  400 s-1 

xbg  70 s-1 

pσ  8 unitless 

nσ  1 unitless 
Mean strain of strongly-bound states 

0x  0.007 µm 
φ 2 unitless 

Normalized active and passive force 
restSL  1.9 µm 

titinPCon  0.002 (unit normalized force) 

titinPExp  10 unitless 

collagenSL  2.25 µm 

collagenPCon  0.02 (unit normalized force) 

collagenPExp  70 unitless 

Calculation of complete muscle response 
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mass 0.00005 (rat) 
0.00025 (rabbit) 

(unit normalized force) s2 µm-1  

viscosity  0.003  (unit normalized force) s µm-1 
ttancons

afterloadF  range = 0.0-1.0 (unit normalized force) 

KSE  range = 1.0-200.0 (unit normalized force) µm-1 

 
 
 
 
Table of default initial conditions – 
 
Variable Value Units 
SL  range = -   SLmin maxSL µm 

NoXBN  0.99 probability 

NoXBP  0.01 probability 

XBN  0.97 probability 

XBP  0.01 probability 

PreRXB  0.01 probability 

PostRXB  0.01 probability 

PreRxXB  0 µm 

PostRxXB  0x  µm 

 IntegralForce  0 (unit normalized force) s 

 
  
Equation for simulated calcium transient 
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Parameters for default calcium transient - rat, 22.5 degrees C 
 
Parameter Value Units 

1τ  0.02 s 

2τ  0.11 s 
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amplitudeCa  1.45 µM 

diastolicCa  0.09 µM 
 
 
 
Calculation of fluxes of Ca for apparent Ca binding 

Note: "Apparent" Ca binding is multiplied by total buffer concentration 
[Troponin] = 70 µM in the Chicago model. 

 
 (x)Trop[Troponin]Ca][Trop ApparentApparent ×=  (A50) 

Note: Flux of Ca onto the buffer is calculated using time rate of change of 
Eqn. A13 calculated with the chain rule. 

 

 (x)Trop[Troponin]Ca][Trop ApparentApparent dt
d

dt
d

×=  (A51) 

 

+×−+×−= L thinL thinApparent Trop(x)SOVFTrop(x)SOVF(x)Trop
dt
d)(

dt
d

dt
d 1   

 ×+×−+×× (x)SOVFTropFractTropFract(x)SOVF  thinLSBXBHSBXB thin ))((
dt
d 1       

 LSBXBHSBXBHSBXB TropFractTropFractTropFract ×−×+×
dt
d

dt
d

dt
d(   

 )
dt
d)( LSBXB TropFract ×−+ 1   (A52)  
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Figure Captions- 
Figure 1: Modeling Sarcomere Length Effects.  A. The assumed sarcomere geometry 
is defined using the filament lengths as shown. Specific examples are chosen to show the 
maximal length (2.4 µm), start of the plateau region (2.3 µm), rest length (1.9 µm), the 
point where thick filaments contact the z-line (1.65 µm), and the minimal length (1.4 
µm).  B.  The thick filament overlap fraction gives the fraction of myosin heads in the 
single overlap regions that can form effective force-generating actin-myosin interactions.  
Hence this value gives the maximum normalized force given full activation.  The thin 
filament overlap fraction is defined in a similar manner but does not reach unity as the 
whole thin filament never exists in the single overlap zone.  C.  Passive force attributed to 
titin and other cytoskeletal elements is shown as a function of SL.  The passive force for 
cells is assumed to reflect across the abscissa at the rest length.  For trabeculae, the 
passive force has an additional component attributed to collagen so that force increases 
steeply above 2.2 µm and effectively limits SL to 2.3 µm.  D. In addition to active 
crossbridge forces and the passive forces just described, the model contains additional 
components including a viscosity element and a mass element.  The series elastic element 
is optional and is used to simulate experimental protocols with fixed muscle lengths in 
which the internal sarcomeres shorten as compliant end connections are stretched.  
 
Figure 2: Model Construction. States NXB and PXB represent nonpermissive and 
permissive conformations of the regulatory proteins, respectively.  The next transition is 
to the pre-rotated XBPreR state, short for pre-rotated, that is strongly bound with the head 
extended.  The transition to the post-rotated force-generating XBPostR state, short for post-
rotated generating, represents the isomerization to induce strain in the extensible neck 
region. For the activation process, the fraction of troponin with bound Ca (TCa) is used 
to set the transition rate between NXB and PXB using a strong non-linearity function to 
represent cooperativity.  The model assumes that troponin for regulation has affinity set 
by the thin filament overlap (and hence ultimately SL) which tracks the fraction of 
regulatory proteins with nearby crossbridges that can attach (see Fig. 1).  Higher affinity 
is assumed to represent the cooperative effects of attached crossbridges on Ca binding.  
Calculation of apparent Ca binding is similar but uses thin filament overlap fraction and 
also assumes that affinity increases only after crossbridges strongly bind to populate the 
XBPreR and XBPostR states.  The regulatory and apparent Ca binding terms are calculated 
separately to avoid a global feedback from strongly-bound crossbridges to Ca binding.  
Such feedback can produce a non-physiological Ca sensitivity (see text for details). 
 
Figure 3: Steady-state responses as a function of Ca. The plots show isometric force as 
a function of steady-state activator [Ca].  A. Active force is shown for the SLs as labeled 
that simulate isosarcometric conditions.  The relations are similar to Hill functions as 
determined by the Ca-based activation assumed in the model. For comparison, two true 
Hill functions with Hill coefficient = 7.6 are shown by the dashed traces.   B. Total 
muscle force (active plus passive) are shown for fixed muscle length for which internal 
shortening can occur.  The degree of shortening is controlled by the stiffness of the series 
elastic element as labeled for the different traces (units of KSE are normalized force per 
µm extension).  The degree of shortening from the initial length of 2.2 µm is also shown 
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for each trace.  Two true Hill functions are shown by the dashed traces for comparison.  
For KSE = 50, the Hill coefficient = 7.6, and pCa50 = 6.1. For KSE = 1, the Hill 
coefficient = 4.0, and pCa50 = 6.0.  C. The steady-state SL is shown as a function of 
activator Ca.   Here the muscle is shortening from the rest length of 1.9 µm against the 
passive restoring force.  A Hill-like function can be fit to the SL as shown by the dashed 
line.  Here the Hill coefficient = 3.0, and pCa50 = 5.9. 
 
Figure 4: Force-velocity relationships. A. The figure shows a simulation of an 
experiment with a quick release to a fixed afterload.  The length is fixed and then 
released against a fixed afterload at 0.65 s.  The traces correspond to different afterloads 
from 0 to 0.8 in 0.1 increments in normalized force.  One additional trace at 0.85 
represents isosarcometric conditions corresponding to maximal force.  Note that the 
shortening velocity is relatively constant after a fast transient response directly after the 
release (shown by the arrow). Data are shown for rat at 25° C.  B.  Force-velocity 
relations are generated from the protocol shown in A.  The force is the afterload value 
and velocity is computed from the relatively constant value obtained after a transient 
directly after the release.  When plotted in this fashion, the datapoints can be well fit by 
hyperbolic Hill relations as shown by traces as labeled.  See text for details of the fitting 
procedure. 
 
Figure 5: Isometric twitch force as a functions of SL and Ca activation. These plots 
show the active isosarcometric force.  A. SL is varied from 1.8 (†) to 2.3 (*) µm in 
increments of 0.1 µm.  In each case, the activating Ca transient is the same as shown in 
the inset.  B. The SL is held constant at 2.3 µm while the peak activating Ca is scaled 
down.  The traces show the responses for peak values of 1.45 (*), 1.25, 1.15, 1.05, 0.95 
and 0.85 (•) µM.  The inset shows the force transients renormalized to have peak values 
of 1 in each case.  The times from 50% activation to 50% relaxation are 0.140 s (†), 0.187 
s (•) and 0.223 (*).  These traces show that decreasing SL or Ca activation decreases the 
twitch duration.  The SL-dependent effect is larger because the crossbridge detachment 
rate gappT is increased at shorter SLs (see text for details).  Data correspond to rat at 22.5° 
C.    
 
Figure 6: Cell shortening twitches as a function of Ca activation.  A. The cell is 
allowed to shorten from rest length against the passive restoring force.  The SL is shown 
for the same Ca transients as in Fig. 5B with peak values of 1.45 (*), 1.25, 1.15, 1.05, 
0.95 and 0.85 (•) µM.  Note that increased Ca activation decreases the time to peak 
shortening while the relengthening phase shows less dependence on Ca activation.  The 
inset shows self normalized SL (1 = rest length, 0 = minimum length) for peak values of 
1.45 (*) and 0.85 (•) µM.  The times from 50% shortening to 50% relaxation are 0.247 s 
(*) and 0.229 (•). B. The total muscle force (active plus passive) is plotted for the 
corresponding traces in A. Data correspond to rat at 22.5° C.    
 
Figure 7: Fixed muscle twitches with internal shortening.  The cell is held at a fixed 
total length but a series elastic element allows for internal shortening.  The traces 
correspond to different stiffness values of the series elastic element with values of 50 (*), 
10, 5, 3, 2, 1.4 and 1 (•) where units of KSE are normalized force per µm extension.  A. 
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SL is shown to illustrate the degree of internal shortening.  B. The total muscle force is 
shown for the same range of KSE values as in A.  Greater degrees of internal shortening 
produce later times to peak force and also faster relaxation rates as myocyte 
relengthening increases crossbridge strain and effects crossbridge cycling (see text for 
details).   Data correspond to rat at 22.5° C.    
 
Figure 8: Ktr as function of Ca-level and temperature. A. The model is activated by a 
constant level of activator [Ca] for 2 s until a steady response is obtained.  To simulate 
quick release and restretch in real muscle Ktr protocols, the crossbridge transitions rates 
are modified for 2 ms to induce rapid removal of strongly-bound crossbridges in the 
model (see text from details).  The recovery is well fit by a single exponential with rate 
Ktr that increases with the activation level.  The solid gray traces show the model 
responses, while the dashed overlays show the exponential fits.  B.  Ktr is shown as 
function of Ca level for three temperatures as labeled.  The 20° C trace corresponds to the 
data in A. Similar to experimental results (de Tombe and Stienen, 1997; de Tombe and 
Stienen, 2007), the rates increase with temperature with the divergence increasing at the 
highest activations levels.   Data correspond to rat at the temperature labeled. 
 
Figure 9: Simulation of cardiac cell with electrophysiology and Ca-handling 
mechanisms. A. The myofilament model developed here is coupled to the Chicago 
model of the rabbit ventricular myocyte (Shannon et al., 2004).  Results are shown in Fig. 
8 for the combined model (A) and the similar experimental data (B).  The responses show 
the action potentials, bulk myoplasmic Ca transients, and cell shortening signals as 
labeled.  This figure illustrates suitability of the myofilament model for coupling with 
existing models of electrophysiology and Ca-handling mechanisms, and the ensemble 
model recapitulates common experimental characterization such as cell shortening. Data 
correspond to rabbit at 37° C. 
 
Figure 10: Simulation of effects internal shortening on the Ca transient. The 
combined myofilament model and Chicago model of the rabbit ventricular myocyte is 
used to simulate the effects of cell shortening on the Ca transient.  The protocol generates 
a steady output by stimulating the cell for 9 beats with fixed muscle length with internal 
shortening (KSE = 1 normalized force units per µm extension).  Then for beat 10, either 
the cell is allowed to internally shorten as before (•) or held at a fixed SL (*) to simulate 
length control.  The panels show the resulting SL (A), force (B) and bulk myoplasmic Ca 
transient (C).  As seen in experimental studies, the isosarcometric case shows increased 
force and a decrease in the Ca transient.  In the model, the increased force produces 
augmented Ca-binding to troponin that initially decreases the Ca transient. Later, the 
bound Ca is released, and the later Ca transient is slightly above the internal shortening 
case (compare the • and * traces). 
 
Figure 11: Schematic representation of 50% thin filament activation for different 
levels of nearest-neighbor cooperativity between RUs.  A.  With no nearest-neighbor 
coupling between RUs, one predicts a random arrangement of activated RUs (raised) and 
attached, force-generating crossbridges (shown hatched).   B.  With strong nearest-
neighbor coupling between RUs, the 50% activation point can be represented by a 
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continuous run of half the RUs in the “on” conformation followed by a run of half the 
RUs in the “off” conformation.  C. For the extreme amount of nearest-neighbor coupling 
between RUs, the whole thin filament switches from nonpermissive to permissive in 
unison.  In this case, 50% activation can be represented in a cross-sectional view of the 
sarcomere lattice where whole thin filaments would be either in the “on” (•) or the “off” 
(o ) conformation.  Hence recruitment of RUs is at the level of whole thin filaments as 
opposed to along the length of the thin filament. 
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Figure 3
A. Isosarcometric F-Ca
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Figure 3 (cont.)

C. Steady-state SL-Ca relation
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Figure 4
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Figure 9 A. Experimental data - rabbit 
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Figure 11

A. No nearest-neighbor coupling B. Strong nearest-neighbor coupling
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