
RC24344 (W0709-023) September 7, 2007
Computer Science

IBM Research Report

Modeling and Managing Pervasive Computing Spaces
Using RESTful Data Services

D. Coffman, S. McFaddin, C. Narayanaswami, D. Soroker
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

J. H. Han, H. K. Jang, J. H. Kim, J. K. Lee, M. C. Lee,
Y. S. Moon, Y. S. Paik, J. W. Park

IBM Ubiquitous Computing Laboratory

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Modeling and Managing Pervasive Computing Spaces using RESTful Data
Services

D. Coffman, S. McFaddin, C. Narayanaswami, D. Soroker

IBM T.J. Watson Research Center
mcfaddin@us.ibm.com

J.H. Han, H.K. Jang, J.H. Kim, J.K Lee, M.C. Lee, Y.S. Moon, Y.S. Paik, J.W. Park

IBM Ubiquitous Computing Laboratory

Abstract

This paper advocates the use of RESTful data

services in pervasive computing environments.
REST is a restriction of web services to a simple
protocol centered on a limited set of access
operations against data resources. This paper
outlines how REST may be used as a general design
principle for pervasive computing environments. It
additionally describes our implementation of a
pervasive computing environment, called Celadon,
which uses these design principles.

1. Introduction

Use of mobile devices has increased dramatically
in the past decade. Voice, e-mail, and text
messaging were the first applications to be widely
adopted. Advocates project that “mobile commerce”
functions, which include location and context
sensitive functions such as shopping, payment and
customized advertisement, will enjoy significant
growth in coming years. In fact, recent surveys show
that over 50 percent of all mobile device users
would purchase devices that offer these functions
and would pay a premium to both the device
manufacturer and the service provider [1].

While this is an encouraging outlook for
pervasive computing, its success hinges on the
ability to address the associated issue of growing
complexity in building mobile commerce and
similar environments. Voice, e-mail, and text
applications are generally based on fixed interfaces
with well known service points: though the device
may move around, the services do not. In contrast,

the emergence of mobile commerce applications
will require dynamic association of mobile devices
and their users with a wide variety of other devices
and services in local environments. Mobile
commerce will require devices and environments to
quickly recognize each other, do some business, and
then say goodbye.

This transient usage pattern renders significant
information modeling challenges. Web services
offer a good substrate by providing a uniform model
for discovery and usage of arbitrary object types and
their interfaces. However, at the broader design
level, substantial challenges remain. Notice that a
single mobile commerce enabled device could travel
through dozens of localized web services
environments within a single day of usage. Each
localized environment could offer dozens of
different services, each bearing dozens of object
types and their interfaces. This compounded
complexity offers a challenge in the modeling,
implementation and management of both the devices
and the environments. In particular, the multitude of
service interfaces should be managed by a simple
and commonly accepted design pattern.

This paper presents an approach to managing
information in pervasive computing domains based
upon the design principles of “Representational
State Transfer” (commonly called “REST”) [3].
According to REST, which is becoming increasingly
popular, a web service is viewed as a set of simple
and common operations against a well understood
set of resources. REST is a restriction of the more
general remote procedure call (RPC) design style.
With RPC, the application domain is analyzed into
an arbitrary collection of object types, with each
object type exposing customized (and possibly

dissimilar) interfaces. The core weight of the design
is carried by the interface analysis. In contrast,
REST requires the same interface to be supported by
each object type, throwing the weight of the design
on the object-type decomposition itself.

The main contribution of this paper is a new
methodology for designing pervasive computing
spaces based on REST principles. Our methodology
enables systematic construction of many different
services that easily integrate into the space and are
accessible by both mobile and non-mobile devices.
We extract several general design principles for
such an approach, which could be applied across
many pervasive computing domains. We describe an
extensive architecture and tooling platform we have
built for modeling and implementing RESTful data
services called Celadon. Celadon is presently being
deployed in the Incheon Free Economic Zone
(IFEZ), a “Ubiquitous City” [7] under construction
in the suburbs of Seoul, Korea. We then offer an
outline for applying this approach and architecture
to other popular pervasive computing domains. We
conclude with lessons learned and suggest several
areas of future work.

2. Principles of REST
REST is not a strict discipline, nor is it embodied

by a rigid standard or specification. Instead, it is a
general design approach for the simplification of
web services. Services which adhere to this design
approach are said to be “RESTful” web services [4].
A wide variety of service types can be addressed
through the REST approach, including graphics-
oriented services (e.g.,, Yahoo maps [6]), data-
oriented services (e.g., Amazon S3 [�8]), and others.

In general, the REST design approach has the
following three elements:
• Resources: The domain is analyzed and

decomposed into a core set of fundamental
resources. For data-oriented web services, this
involves an identification of the core data types
to be managed by the service.

• Representations: A form of representing and
naming the core resources is identified.
Representation for graphical services may be as
visual diagrams. For data-oriented service,
resources might be represented as documents
with an agreed-upon structure. As far as naming,
one scheme is to statically name all resources

with fixed identifiers. Another approach is to
offer resource identification through query–like
representation.

• Operations. A small set of common operations
against the resource types are identified; these
comprise the common interface. For data-
oriented services, the core operations might be
simply: add, delete, update, and find.

This paper describes a data-oriented approach to
modeling, managing and monitoring pervasive
computing domains using REST principles. This
approach is motivated by the zone-based services
sub-domain of pervasive computing, which will be
described in the next section. We will use this
domain as an example to illustrate the data oriented
REST approach.

3. Zone-based services: A data-driven
pervasive computing domain

This section provides a detailed description of the
zone-based services environment. This description
will be used to motivate the design approach
provided in subsequent sections of this paper.

In a zone-based services environment, businesses
and other institutions offer localized services and
interactions to mobile users. Zone based services are
designed to be deployed in public spaces in which
members of the public carry mobile devices, and
transiently become users of the space. Examples of
zone based services environments are shopping
malls, sports stadiums, train stations, or hospitals.

Physically, a zone-based services environment is
decomposed into different logical regions, called
zones, cells, and locations. Zones are generally
regions the size of a room – for example, a small
store or a department within a larger store. Cells are
generally individual areas within a zone in which a
particular type of activity occurs, for example, a
particular shopping aisle in a store. Locations are
generally individual points – for example, a particular
shelf within an aisle (cell), within a store (zone). The
overall environment may be on the scale of a
shopping mall, a hospital, or a city block.

As users enter the environment, they are
registered with the system as members. Membership
is a transient concept, lasting only for the duration of
the user’s visit. Various data about the member are
collected, including credential data, which prove the
identity and status of the user, as well as preference

data, which describe the characteristics of the user
and his intentions within the environment (e.g. a
shopping list). As the member moves throughout the
environment, his location is tracked. Based upon the
member’s location, correlations are triggered which
match the characteristics of the member (e.g.
categories within a shopping list) with the
characteristics of the location (e.g. products offered
along a particular aisle), and customized services and
interactions are constructed and offered to the
member. These services span a wide range, including
alerts delivered to the member’s device, customized
advertisements that appear on displays at the
member’s location, interactions that allow the
member to interact with the data provided in the
environment (e.g. to query for restaurant locations
and menus), and transactions that enable the member
to participate in a business process (e.g. make
payments, check inventories, schedule a home
delivery). Figure 1 illustrates such an interaction.

Figure 1: Restaurant search interaction between
query service on member device and display service on
facility device (large screen display).

We constructed a substantial system based on the
Celadon architecture, for managing zone-based services
environments. To support the types of scenarios described
above, it was necessary to provide a distributed
implementation that manages the various types of
information such an environment entails.

This information must be made available across
a wide variety of devices in the zone-based services
environment. This includes the member’s device,
which carries member information and offers
interaction services on the device’s display, location
sensing devices, which monitor user movement,
business process servers where business logic

decisions are made, as well as various displays and
facility devices. Rather than adopting a different
architectural approach for each device, we looked for
a simple information management approach that
would apply in a common way to all of the
architectural elements.

The first step in constructing this system was to
analyze the core information to be managed,
regardless of its method of management and
deployment on particular elements of the distributed
architecture. Our analysis yielded the following
categories of data:

Member Information: The environment must
provide information about the members who have
entered. This includes non only credentials and
preferences, as provided by the member, but also
data that is generated by the local environment
based on reasoning about the needs of the member.
Additionally, the member information must carry
associations that correlate the member to various
services offered to and consumed by the member.

Service Information: The environment must
provide information about the services offered
within a particular zone. In a zone-based services
domain, the concept of service encompasses a
spectrum of offerings ranging from physical
services, such as product information offered at a
retail shelf location, to functional services, such as a
payment web service. Additionally, the service
information must include the underlying data service
offered by the environment itself. Service
information must consist of rich data types,
supporting arbitrary attributes and parameters, and
substructures. The service information must be
active, for example, carrying status information
about service availability (e.g. it should reflect
whether a particular station within the zone is
occupied).

Location Information: The environment must
provide information which correlates zone members
to their physical and logical locations. The location
information must accommodate the presence of the
member in possibly overlapping zones, cells, and
location points. The location information must be
active, meaning that as the member moves
physically throughout the zone, software
components can sense the changes in zone, cell, and
location.

Interaction Information: The environment must
provide information which correlates members to
services and interactions offered throughout the
environment. It must be possible to suggest one or
more interactions to the member through this data.
When an interaction is accepted, either explicitly or
implicitly, the interaction must capture the
correlation of the member with the local service
underlying the interaction such as a physical display
or payment station.

4. Applying the REST design approach to
data-driven pervasive computing domains

This section describes our approach for applying
the REST design principles to the zone based
services domain, and provides guidelines for
applying this approach to other domains.

Resource Analysis: Our approach is based on a
three level decomposition. The first level is a
decomposition of the data space into distinct data
services. These are macroscopic aggregations of the
overall resources of the domain. The decomposition
used in our design corresponds to the above
categories, yielding four core data services. The
second level divides each data service into a set of
resource types – these are the distinct data types that
a data service is responsible for managing. Each
data service must be capable of carrying a
multiplicity of instances of each of its supported
resource types. At the third level each resource type
is described by a data definition which defines the
individual resource elements – these are the data
fields and members that define a resource as a
composite.

 Representational Analysis: In most cases the
base representation will be determined by the
infrastructure – we have chosen to represent
resources as (1) XSD (XML Schema) type
definitions at tooling time, (2) Java and JavaScript
data types at runtime, (3) XML documents during
interchange, with (4) HTTP used as a transport.
Other base representations are possible – for
example, a C-based runtime may be used, and SOAP
may be used for transport. Additionally, the
representation must provide for a naming and access
model – we have chosen to provide a query-oriented
access model. This means that resources are
retrieved by pattern matching against templates,
rather than being retrieved by names. This approach

is important in pervasive computing spaces, whose
transient and ad-hoc natures make fixed naming
schemes impractical.

Operations Analysis: The third step in the
approach is to establish a reasonable set of
operations against the resource set, and which will
range over the representation as its operands. We
have chosen a very simple model based on four
operations – add, delete, update, and find.
Additionally it is important to provide for events –
these are handled by providing a corresponding
event to each of the basic operations, along with
appropriate filtering and subscription capabilities.

The following table summarizes the resource,
representation, and operations analysis for the zone
based services scenario.

Table 1. REST analysis for zone-based services.

Resource
Type

Resource
Elements

Meaning of
Operations

Member Information Service

Member

Information
Records

Basic

information about a
member of the
zone, generally
submitted by the
member
themselves.

Member ID
field

Credential

list
(e.g. X.509

identity, shopper
ID)

Status field

(e.g. “busy”,
“waiting”,
“inactive”)

Add: member
arrival

Delete: member

exit

Update: member

status changed (e.g.
zone activity)

Find: look for

member by ID, look
for all “busy”
members

Role
Information
Records

Each record

correlates a logical
role to a member –
these records are
assigned by
decision making
agents in the zone
environment.

Member ID
field

Role ID field

(e.g. “shopper”,
“premium
shopper”,
“payer”)

Add: zone
assigns role to
member

Delete: zone

withdraws role

Update: zone

changes role

Find: look for all

roles assigned to a
member (search by
ID), look for all
members having a
given role (“premium
shopper”, etc.)

Service Information Service
Service

Information
Records

Each record

registers a service
in the environment
– services can be
registered by
visiting members
or by the zone
itself through
distinct member
IDs. Services can
be dynamically
added, withdrawn,
and have their
status changed.

Service ID
field

Member ID

field

Service Type
field
(e.g. “data

service”,
“display
service”)

Attribute

List

Service

Status field
(“active”,

“available”,
“unavailable)

Add: member or
facility device
registers service

Delete: member

previously
registering service
leaves

Update: service

status changes (e.g.
from “available” to
“active”)

Location Data Service

Location

Information
Records

Each record

correlates a logical
location with a
zone member –
changes in these
records may be
monitored to
trigger business
processes.

Member ID
field

Zone ID

field

Cell ID field

Location ID

field

X,Y,Z fields

(optional)

Add: member
enters a zone, cell, or
point location.

Delete: member

exits a zone, cell, or
point location.

Update: member

moves.

Access Point
Information
Record

Used for

administration –
this record tracks
the location and
configuration of
access points and is
used by
triangulation
brokers to locate
members through
signal strengths.

SSID field –
identifies the
access point

X, Y, and Z

fields – base
location of
access point for
triangulation.

RSSI field –

relative signal
strength of
access point

Add – used at
zone configuration
time to declare an
access point

Delete – removes

an access point

Update – access

point was moved or
reconfigured.

Interaction Information Service

Interaction

Information
Record

Each record

correlates a zone

Interaction
ID field

Member ID

field – the
member for

Add – an
interaction is
suggested by high
level business logic
in the zone.

member to a set of
services that
aggregate into an
interaction – e.g. a
display service in a
context driven
advertising
scenario.

Note

interactions may be
suggested by the
system and not
activated.

whom the
interaction is
created.

Service ID

list -- the set of
services
aggregated into
the interaction.

Status field

(e.g.
“suggested”,
“active”, “idle”)

Delete – an
active interaction is
completed, or a
suggested interaction
is withdrawn (e.g.
user moves away
from interactive
advertising display).

Update – status

of interaction
changes (e.g. from
“suggested” to
“active” due to user
acceptance)

There is art to the decomposition process. In

general the various components of the
decomposition will be distributed across the
distributed architecture in a way that will have
ramifications both for the logic and performance of
any implementation. For example, instances of data
services will operate on individual platform
instances in the design. In many cases these
instances will be disconnected and also portable
across different environments. Each data service
should comprise a rational collection of information
that makes sense for a device or server to carry. For
example, an instance of a service information data
service could operate on a server as a directory
mechanism. An instance of a service information
service could also be deployed on a device as a way
of storing information about the local services on
board the device. (Note that the underlying
implementations may be radically different – a SQL
database in the first case and a file based XML store
in the second – but the data decomposition and
interfaces would be common. Each resource type
should be defined in a way that it captures the
concept of a locus of data where a reasonable
amount of interrelated changes would be occurring.
This allows the reporting of events to be simplified
to simple notifications that a particular resource has
changed, without requiring further analysis about
which part of the resource changed. If resource
definitions are too “fat” then large amounts of
update data would need to be transferred whenever a
minor change is made. Resource definitions which
are too “thin” would result in data services with a
large number of microscopic resources.

5. Design principles for RESTful data
service implementations

In addition to the above REST design principles
for data analysis, it is also important to establish
design principles for runtime and tooling
implementations for pervasive computing domains.
This section identifies several key implementation
design principles which we have extracted from our
work in the zone based services domain.

5.1 Ease and Ubiquity of Access

The principal motivation for this work is that the
data service be simple and easy to use. The data
service must be easily accessible from all of the
software platforms in the pervasive computing
domain in which the data service operates. It must
make use of existing representations and protocols.
In our zone based services domain, we have used
simple HTTP/XML for network interchanges.
Additionally, we have provided runtime support for
the J2SE and J2ME Java environments as well as
AJAX-style environments (consoles, interactive
displays and kiosks, and script-drive device
environments).

5.2 Ease of Implementation

 It should be simple and easy to implement and
operate a data service for a pervasive computing
environment. It should be easy to add new data
artifacts to the environment as data models change.
It should be possible to implement data services on
devices other than servers. It should also be possible
to integrate the pervasive data services with
commonly available tooling platforms. Toward this
goal we have also implemented a substantial
Eclipse-based tooling environment which generates
object implementations, service runtimes, client
stubs, editor frameworks, translators, parsers and
other components for the target environments listed
above.

5.3 Rich Data

The concept of simplicity, advocated in the above
design principle, should not limit the richness of the
data carried by the data space. The types of data
offered by the space must be allowed to be
arbitrarily rich – it is only the mode of access that
should be simplified. Thus, for example,

implementations should be reasonably agnostic
about the depth and structure of the data records
carried in the representation.

5.4 Self Describing

A pervasive data service should be self
describing. This means that it must be possible for
an application to contact a pervasive data service
and ask it for the types of data it carries. Based only
on this knowledge it should be possible for an
application to fully interact with all of the
capabilities of the data service, and to handle all of
the data types supported by the service. The self-
description process should use the core protocol of
the service itself and not require additional protocol
implementations simply for discovery.

5.5 Event Driven

Pervasive computing environments are highly
dynamic and generate a lot of events. This is true of
both sensor-oriented environments and human-
oriented environments. The pervasive data space
must be able to accommodate sensing elements in a
physical layer which wish to make frequent changes
to the data space. Monitoring components must be
able to listen for such changes and to periodically
receive events about changes.

5.6 Scalability

The pervasive data space must be scalable. In
particular it must scale both with the number of
artifacts modeled (i.e., the number of data records)
and with the intensity of changes to those artifacts
(i.e., the number of events). This means, in
particular, that applications should be able to filter
their view of a data space both against the types of
operations against the data space and against the
content of the modeled artifacts. For example, it
should be possible for an application to isolate and
monitor the movements of a single user of a data
space in an environment where there are hundreds of
other users. Event processing and other
computational resources should be consumed only
in proportion to the activities of that user. In short,
reasonably powerful filtering capabilities must be
present.

6. Celadon Data Service Implementation
This section describes the RESTful data services

implementation offered by the Celadon
environment. Celadon provides only a design pattern
for a set of operations (methods) and event objects.
Additionally Celadon provides tool-generated
runtime implementations. Celadon may be carried
by any underlying service and event delivery
technologies.

 Celadon data services are based on a set of
simple transactional operations and a set of event
types.

Each Celadon operation is comprised of (1) an
operation name, (2) an operand datum, and (3) a
result datum. Celadon operation names are
constructed from the core operations defined in the
data analysis above plus the name of the resource
type (e.g. “findMemberInformationRecord”). The
operand describes the resources affected by the
operation. As noted above, we use query patterns,
rather than rigid names, in Celadon operands. Query
patterns are given by a single instance of the type of
resource being queried for (e.g. a
MemberInformationRecord) which is used as a
template. Fields which are set in the template are
used to match corresponding fields in candidate
resources on the data service. For example, to find
all member information records having a given
memberID, a caller would instantiate a blank
member information record as a template, set the
memberID field, and pass this instance as the
operand of a findMemberInformationRecord object.

Celadon operations are atomic and have no side
effects, meaning that they are considered to be
committed and completed upon return. Celadon
operations may be accessed either through a
programmatic API (e.g., a Java API) or through
HTTP transactions. For Java access, each data
services is represented by a service object having a
set of methods whose names match the operation
names described below. Each method has zero or
one parameters (the operand datum) and either a
void return value, or a typed return value matching
the type of the operand. The HTTP access is via a
GET or POST operation against an HTTP service
registered at a network location given by a
(protocol, address, port, path) tuple.
The operation name is extracted from a parameter
value called “operation” which may be provided

in either the POST data or in the path suffix in the
case of GET. For example, the URL
http://celadon.ibm.com:9080/Membe

rInformationService?operation=findM
emberInformationRecord

would be used to invoke the
“findMemberInformationRecord” on a data
service operating at the network coordinates:
(“http”,”celadon.ibm.com”,”9080”,”M
emberInformationServiceServlet”).

6.1 Self Description

Celadon data services described themselves
through XML schema records. The following table
describes the operation which accesses the schema:

Table 2. The Celadon self description operation
Operation Name getDataSchema

Operand Datum None
Result Datum <xsd:schema>

element

The returned schema declares the supported data

types as instances of top level <xsd:element>
descriptions. The name of the element is used as the
record name expected in all other operations (e.g.
“XYZRecord”), and the type definition referenced
by the element defines the structure of the data type
carried by the data service. Note that this approach
allows a data service to carry any number of
simultaneous data types and to implicitly define the
operations that may be carried out on those data
types, as described below.

6.2 Core Operations

For each data type supported by a data service,
Celadon provides four fundamental access
operations. The operation names key on the data
record name given by the schema provided above
(e.g. “XYZRecord”).

Table 3. Core Celadon operations

Operation Name/
Meaning

Operand
Datum

Result
Datum

findXYZRecord
Filtered Lookup

Pattern
Record

List of
records

addXYZRecord
Record Creation

New Record None

deleteXYZRecord Pattern None

Record Deletion Record
updateXYZRecord
Record Alteration

Updated
Record

None

6.3 Event Subscription

Celadon provides events corresponding to each of

the above core operations. For example,
corresponding to the addMemberInformationRecord
operation is a memberInformationRecordAdded
event type. Subscribers are added through similarly
named operations. A subscription is made by
registering a template object (see the discussion of
the find method above) against which events are
filtered. Subscribers will only receive events for
resources on the data service matching the template
object.

Table 4. Celadon event subscription operations

Operation Name/
Meaning

Operand Datum Result Datum

addXYZRecordListener
Subscriber registration

Listener ID plus
Pattern Record

None

deleteXYZRecordListener
Subscriber deregistration

Listener ID None

getXYZRecordListenerEvent
s Event retrieval – returns list
filtered on pattern record

Listener ID List of events

6.4 Runtime environment

The broader Celadon architecture integrates the
data services into an overall services-oriented eco-
system for zone based services environment. The
overall environment is illustrated in Figure 2.

The Celadon environment integrates the core
REST data services described above with a variety
of other data services and components. This may
include application oriented data services which are
also designed using the REST analysis and
generated using the Celadon data tools (see below).
For example, the shopping example described above
relies upon REST-based data services to manage
restaurant locations as well as product information
stores. In other applications we have used REST-
based data services to support a large RFID item
association service, which associates RFID tag
values with item-wise product descriptions.

 Figure 2: Integration of data services into the overall
Celadon architecture for zone-based services

The Celadon environment also integrates data
services with services on various devices and
display applications. Additionally Celadon provides
a management and monitoring environment, which
is driven by a set of consoles which monitor selected
working sets of resource records in the core data
services layer. Additionally Celadon provides
support for low level activity brokering component
(e.g. a signal strength triangulator which interacts
with the location information service) as well as
high level business process decision components
(e.g. ontology-based classifiers which interact with
the member information service to assign logical
roles to zone members). A full description of the
broader Celadon environment is provided in a
separate paper [5].

7. Tooling for Pervasive Data Services
This section describes a various classes of tools

which may be applied to RESTful data services.

7.1 Celadon Data Tools.

Celadon provides a full service tooling

environment for RESTful data services in pervasive
computing environments. The tool enables a human
designer to carry out the resource analysis at the
core of the REST design approach. This analysis
occurs in a modeling session in which a domain
expert analyzes the core resources of a particular
domain which is to be supported by RESTful data
services. The domain expert does not have to be
familiar with any of the underlying resource
representations, nor an expert in web services or

mobile computing platforms.
The tool operates as a plug-in software suite

which is added to an Eclipse programming
environment. The tool follows the data driven
approach, beginning with data definitions for the
core domain resources. The data types are
represented by XML schema definitions (XSD) and
may be defined using any standard schema editor.
The schema editor defines the resource elements.

Once the resources are defined, the tool
aggregates those resources into a data service
definition. The user provides a name, description,
and namespace for the data service and then selects
resource types which are to be supported by the data
service. The resource types are selected from a

working set which is computed via introspection
across the user’s Eclipse workspace.

The tool generates a variety of runtime classes
which define and support the data service across a
variety of platforms. The tool offers various
implementation options. In particular, the tool
generates data service implementations and
distributes object representations and client stubs
across different platforms. The platforms targeted by
the current implementation of the tools are:
• J2SE platform for the runtime for the core data

services.
• J2ME platform on mobile devices.
• AJAX platform for consoles, facility devices

(kiosks and interactive advertising displays) and
some mobile devices.

• J2EE platform for business process
management.

Output options for the tool include:
• Java interface definitions and object

implementations.
• A high performance SQL-data service

implementation.
• A J2ME client stub which J2ME devices may

use to interact with remote data services (via
HTTP/XML).

• A JavaScript client stub for AJAX based
applications.

• A JavaScript client editor which manages
working sets of resource instances on an AJAX
clients.

A sample screen using the Celadon data tools is
seen in Figure 3. In this screen the user is defining a
data service (in this case the core “Location Data
Service” described above). The part of the screen at
the left is a data type editor which defines the
elements of a “LocationInformationRecord”
resource data type. The part of the screen at the right
is capturing the various generating options for the
data service at the top and is performing the
resource selection for the data service at the bottom

7.2 Domain Oriented Tools

Celadon also provides a variety of domain centric
tools for zone configuration and monitoring. These
tools operate by attaching to running instances of
data services and generating records that configure
the state of a zone environment. The tool seen in
Figure 4 is a zone configurator - essentially a client

Figure 3: Eclipse-based Celadon data tools for
REST based data services

application which integrates with the location data
service to register, edit, update the data records
which describe the geometries of the underlying
zones, cells, and locations in the zone and configure
the underlying access point in the environment.

8 Related Work
The REST principles date back to Roy Fielding's

Ph.D. thesis from 2000 [3], and have gained
popularity in the Web (e.g., [6], [8]). However, the
application of REST as a design principle for
pervasive spaces is new. Drytkiewicz et. al. [9]
describe a REST-based protocol implementation for
pervasive devices. Their focus is on enabling REST
functionality on very limited devices, rather than
applying REST principles for simplifying the design
of pervasive spaces. Other approaches for improving
efficiency of web service interaction on mobile
devices include optimizations of various parts of the
"traditional" services stack, such as SOAP
messaging [12]. Our pervasive space architecture is
loosely coupled and based on web services.
Approaches for more tightly-coupled systems have
included Active Spaces [11] and Tuple Spaces [10].

9 Summary, Conclusions, and Future Work
This paper has presented a methodology and

design approach for using REST as an organizing
principle in pervasive computing. We have
implemented a real-life metropolitan zone-based

services environment with this approach and have
begun its deployment on a trial basis.

We have drawn several lessons from our
experience. While we have found the
implementation to be simple and scaleable across a
wide variety of devices and clients, proper balancing
of resource elements and data services is key to high
performance. Also we have found that use of “off
the shelf” data modeling tools coupled with
automatic data service generators enable developers
familiar with basic REST design principles to
quickly create and implement new data services and
deploy these throughout a zone-based environment.

In the future, research should be conducted into
applying these design principles to other pervasive
computing domains such as telematics, health care,
sensor and actuator environments, and RFID
application. Another focus area could be extending
tooling support for REST-based domains to non-
experts. Additionally further investigation into run-
time options is needed. We have taken an approach
which relies upon automatic generation of data
services, clients and other handlers. We are also
investigating a dynamic approach in which client
modules work with the self-describing data and
provide handling of data records at run-time. Event
roll-up and security of RESTful services should be
investigated. Adapters for other run times such as
Service Data Objects (SDO) should be pursued.

10 Acknowledgments
This work is partially supported by the Institute

of Information Technology Assessment and
Ministry of Information and Communications of
Republic of Korea.

11 References
1. M. Megna, “Mobile Commerce: Tapping the Untethered

Market”, Ecommerce-Guide.Com, http://www.ecommerce-
guide.com/solutions/secure_pay/article.php/3659656,
February, 2007.

2. M. C Rosu, et al., “Celadon: A Novel Architecture for
Symbiotic Computing,” In Proc. International Symposium
on Ubiquitous Computing Systems (UCS) 2006.

3. R. T. Fielding, “Architectural Styles and
the Design of Network-based Software Architectures”,
Ph.D. Dissertation, UC Irvine, 2000.

4. L. Richardson and S. Ruby, RESTful Web Services,
O’Reilly Media, Inc, 2007.

5. Celadon: Pervasive Computing Meets Business in Public
Spaces, in preparation.

Figure 4: Zone configuration tool

6. http://developer.yahoo.com/maps/rest/V1/geocode.html
7. http://ucityeng.ifez.go.kr/overview/u_outline.asp
8. http://docs.amazonwebservices.com/Amazon

S3/2006-03-01/RESTAPI.html
9. W. Drytkiewicz et. al. "pREST: a REST-based protocol for

pervasive systems", IEEE International Conference on
Mobile Ad-hoc and Sensor Systems, 2004, pp. 340- 348

10. B. Johanson and A. Fox. “Tuplespace-based Coordination
Infrastructures for Interactive Workspaces,” Journal of
Systems & Software, Spring 2003.

11. M. Roman et. al., "A middleware infrastructure for active
spaces" IEEE Pervasive Computing, 2002, v. 1 pp. 74-83

12. Rosu, M., "A-SOAP: Adaptive SOAP Message Processing
and Compression", ICWS 2007. pp. 200-207.

