
RC24346 (C0709-003) September 10, 2007
Electrical Engineering

IBM Research Report

SIP Application Composition Framework
Based on Business Rules

Lina Ren, Jia Jia Wen, Qi Yu
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, 100094

P.R.C.

Lee Longmore
IBM S&D Communication Sector

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

SIP Application Composition Framework Based on
Business Rules

Lina Ren, Jia Jia Wen, Qi Yu
IBM China Research Lab

E-mail: {renlina, wenjj, yuqi}@cn.ibm.com

Lee Longmore
IBM S&D Communication Sector

lee.longmore@uk.ibm.com

Abstract- This paper presents a new SIP application composition
framework, which can enable service operators to manage SIP
application compositions using intuitive business rules. The
framework supports complex conditions and feature interaction
management when making application composition decisions.
The requirements of SIP application composition is studied from
service operator’s point of view, and possible extensions to
current JSR 289 SIP application composition mechanism are
discussed. We give example implementations to illustrate how the
rule-based framework can be integrated to SIP Servlet
environment.

Keywords-Telecommunication System Software, Voice over IP
Services, Application Composition, Rule Engine Technologies

I. INTRODUCTION
Session Initiation Protocol (SIP) [1] is an application-layer

control (signaling) protocol designed for creating, modifying,
and terminating communication sessions with one or more
participants. SIP has been chosen as the core signaling protocol
in IMS [2] network for its simplicity and extensibility. The SIP
Servlet standard is a popular Java application programming
interface (API) for developing and deploying SIP applications
in Voice over IP (VoIP) environments. It is built on the base of
the programming model of HTTP Servlets, and is well
supported in industry implementations. A number of
commercial container implementations conforming to the
specification are available.

Generally speaking, application composition in
telecommunications means the situation that several software
applications are actively serving one or more participants
involved in a communication session or related sessions. While
the applications are independent of each other, providing their
features separately, their functionalities are actually combined
during the communication, and are experienced as a whole by
service users. For example, an Outgoing Call Barring
application and Speed Dial application can be both triggered to
serve the same user in a voice call, and thus the two
applications form a composition.

Application composition is inevitable in present and future
telecom networks, for it is mainstream trend that telecom
network opens its functionality and telecom applications are

created by different parties. The “separation-of-concerns”
design of IMS service layer provides the complete framework
for developers to plug various telecom applications serving end
users, and it is sure that those applications would form
application compositions easily in most of communication
sessions.

It is well known that application composition sometimes is
sometimes a trouble to users and telecom operators. Unwanted
feature interaction [3] between different applications is an
outstanding problem, which has no perfect solutions.

It is also noted that the benefits of application composition
are obvious. Through the well-coordinated cooperation of
multiple applications, end users can get better experiences. To
operators, appropriate application composition helps them to
provide new set of features with low costs, by just reusing their
existing “old” services and integrating them in new ways. Thus,
a service in operation is not only a service it is designed for,
but a functional component that can be weaved into other
services. Moreover, if telecom operators give end users such
flexibility to customize their own application compositions,
service quality would be greatly improved.

As a result, the ability to manage application composition
in telecom network is of growing importance to today’s
telecom service providers.

However, current SIP Servlet environment has not provided
enough support in this area yet. SIP Servlet API 1.0
specification JSR116 [4] stated the goal that several
applications can possibly execute on the same request or
response independently in a “well-defined and orderly” fashion.
But the specification didn’t standardize such approach in detail.
Since there is the need for enhancement, people are working
around the specification of JSR 289 [5] since 2006 to author a
new SIP Servlet API 1.1 specification, mainly to address the
application composition support. In the new specification draft,
a new component called application router is proposed to
control the application selection/compositions inside one
application server as well as among different application
servers. This application router should be controlled by
application deployer, so application developers can focus on
implementing individual applications. Unfortunately, although
the new specification presented the entity of application router,

it does not specify how application router decide the
application selection and composition process, only indicates
that this is left to application deployers.

These considerations motivated our work in this paper. We
believe that it is crucial to think through the requirements of
composing the applications in their networks, the required
flexibilities, influencing factors, changing conditions, and
dynamic monitoring of application composition. These issues
should impact application composition collectively. We also
believe that providing a mechanism to cover those
requirements is important, for application composition is a very
practical problem that service operators will face when they try
to provide flexible and componentized services. So we
discussed these issues and proposed a solution in this paper.

This paper is organized as follows. Section II overviews the
operational requirements of SIP application composition and
presents the idea of rule-based application composition in SIP
Servlet environment. Section III gives the example
implementation of the proposed application composition
framework and analyses the system from different perspectives.
Section VI reviews some related works. Finally, the paper
concludes in Section V.

II. RULE-BASED APPLICATION COMPOSITION
In this section, we introduce our rule-based approach to

instruct JSR 289 application composition. First, let us look at
the design of JSR289 application composition, as the basis for
our discussion.

A. JSR 289 Application Composition
JSR289 specification defines version 1.1 of the SIP Servlet

API. It enhances version 1.0(JSR116) especially in the area of
application selection and composition. The enhancement can
be summarized as follows:

Figure 1. JSR289 Application Composition Architecture

1) Application Selection. JSR289 introduces the concept of
application regions: originating, terminating and neutral. AR
will select the originating applications for calling party, and the
terminating applications for called party; neutral applications
shall be invoked for both calling party and called party.
JSR289 does not define how one should derive the session case
from the request received from an application or the core
network.

2) Application Composition. Application Router (AR)
decides the order of application composition - it is noted that

the specification outlines the high-level requirements of the AR
only; the design and implementation is not specified. The
Container invokes AR to select the next application name, and
dispatches the request to the selected application.

3) Container and Application Router.
a) Container: The JSR289 Container is responsible for

creating and maintaining application selection state associated
with each initial request it receives externally or from
applications. It also invokes the AR with the application
selection state information to obtain the name of the application
to service the initial request, selects the SIP Servlet within the
application, and dispatches the request to that SIP Servlet. The
JSR289 Container should also maintain application selection
state and invoke the AR to obtain the next application name.
The application selection state includes the following
information: (1) the routing directive used to create this request;
(2) region of invocation (originating or terminating); (3) the
URI that the selected application is invoked to serve; (4)
arbitrary application router state information.

b) Application Router: The AR plays a central role in the
application selection process. It is logically separated from the
Container and an API is defined for the communication
between the Container and the AR. The Container calls upon
the AR to choose which applications to invoke in response to
an initial request. The AR decides the application composition
order. It does not invoke the applications directly. The
Container is responsible for invoking the AR and dispatching
the request to the application. Although AR is a very important
component in JSR289, the specification does not describe the
architecture of AR in detail, and it is logically separate from
the container. So the JSR289 AR can have many different
implementations, as long as the interface with Container is
supported.

The major AR functional responsibilities include: (1)
Dynamically maintain the current list of applications deployed
in the Container. This is achieved by getting names of
deployed applications during initiation and getting notifications
from Container afterwards. It should be noted that according to
JSR289, it is the responsibility of Container to notify AR what
applications has been deployed locally, but the specification
does not specify explicitly how the AR should be informed
about external applications. (2) By utilizing a range of
information sources - user and service profile, received initial
Servlet request, routing region, routing directive, state
information – the AR selects the next application (local or
external) to invoke, and provides information in support of
application selection to the container (for local application: the
application name, subscriber URI, and state information; for
external application: the external route). JSR289 does not
specify in detail how applications should be selected and
composed.

4) Application Composition Process: On receiving an
initial request (from the external network or an application
hosted by the Container), the Container invokes the AR to
obtain the next application to invoke.

If the next application is local to the Container, the AR
returns the application name, subscriber URI, and some state

information to the Container, which in turn dispatches the
request to specified SIP Servlet of the application;

If the next application is external to the Container, the AR
returns the external route which points to the location of the
next application to the Container, which in turn adds the
external route to the top Route header and sends the request out.

It should be noted that JSR289 does not specify in detail the
requirements around inter-Container application routing; for
example, the manner in which an AR should select external
applications is not detailed.

B. Extending Application Composition with Rules
As discussed in JSR 289 application composition

introduction, the problem of how to instruct application
selection and composition in an flexible way is not addressed,
while in practice such support is vital for operators to manage
their services. We introduce the use of intuitive rules to aid
operators at this point.

Rule engine technologies are evolved from rule-based
expert system. They represent knowledge with rules, and use
its set of rules to reason and reach a conclusion (often take
some actions). A rule engine may be viewed as a sophisticated
if/then statement interpreter. The if/then statements that are
interpreted are called rules. A rule is typically composed of two
parts: a condition and an action. Simply put, when the
condition is met, the action is executed.

Rule engines have been widely used as embeddable
components in software systems in order to extract business
policies out from codes, so non-technical people like business
analysts can access, understand, and manipulate business
policies of the system with little effort and quick response time.
People can use pre-defined semantics to write business policies,
the engine accepts data input, reasons through its rules, and
make comprehensive decisions.

As we have discussed in Section II, the application
selection/composition decision also falls into the category of
business policies, and those decisions may need to be changed
under different situations, according to external information. It
can be achieved by applying rule engine technologies.

We would first discuss the detail requirements of flexible
business policies in application composition with examples.
Then we would explain the rule-based approach to satisfy those
requirements.

For any initial request received, the goal of application
composition is first to derive a set of ordered applications to
invoke, then to decide in what order should the applications be
invoked, also consider the need to cut some application in the
chain or append some more applications if necessary,
according to subscriber preferences and operator needs.

We base our discussion on the assumption that the initial
set of applications that should be triggered is known to
application composer. This is because current service
triggering mechanisms (S-CSCF, SIP Application Server, etc.)
provide a lot of means to determine an initial set of services for

a user, for example, using user service profile, using protocol
headers in the initial message. This paper focuses on adjusting
the invocation order and application removal/appending based
on business conditions, as discussed below:

1. Management of invocation order of selected applications.

Figure 2. Order of Applications in Composition

When the list of selected applications is known, the order to
invoke them is very important. Inappropriate order between
multiple invoked applications may result in malfunctioning of
applications and bad user experience.

For example, if a subscriber has two services which are
SpeedDial and OutgoingCallBarring, when the subscriber dial
an abbreviated number, different order of the two applications
may bring different execution result. If SpeedDial Service is
triggered before OutgoingCallBarring, it can replace the callee
number with real callee number, so when afterwards
OutgoingCallBarring service is triggered, the service can
function as expected. However, if OutgoingCallBarring is
triggered before SpeedDial, then OutgoingCallBarring service
would have no way to decide whether to let the call passes.

Another example would be the interaction between
CallForwarding service and OutgoingCallBarring service.
Obviously, if CallForwarding service is triggered after
OutgoingCallBarring service, it could redirect the call to a
callee that OutgoingCallBarring wants to block, while
OutgoingCallBarring service would have no chance to stop the
call.

The problem can be solved by categorizing applications
into different groups. For example, one group of applications
would change the callee number, and another group of
applications would be affected by any changes to callee
number. So when selecting applications, add a rule that put the
first group of applications ahead of second one can help a lot.

2. Insertion / removal of applications under certain
conditions

Application composition may not always be the same for a
subscriber request, and it can be influenced by many external
conditions. The composition entity should enable subscriber or
operator to set their conditions of triggering applications.

From subscriber’s point of view, it can be customizing the
way how to compose his/her own set of services under
different scenarios. Figure 3 is an example of such
customization.

Figure 3. Subscriber Customization of Applications Composition

If a subscriber has 3 services (which is A, B and C), he/she
might want to set some rules/policies to control the condition
of service triggering. In this example, the subscriber has a
customization rule that application B would only be triggered
when the current time is night.

When subscribers have many subscribed services to
customize, those services may come from different application
developers, and when subscribers might need to change their
preferences on application composition frequently, it is not
easy for subscriber to access every different service application
provider’s portal or other channels to customize his/her service
chain. A better choice would be to access telecom operator’s
unified interface and to customize subscribed services in a
unified rule-based way.

Figure 4. Operator Appending Application Applications Composition

Another situation that application composition should be
swayed by various conditions is when telecom operators want
to add some logic to enhance or transform subscriber’s service
chain, for better user experience. They can also do it by
configuring rules. For example, in Figure 4, based on Figure
3’s customized service chain, the operator may want to add a
ring back tone application to the subscriber’s application chain
so as to play a “happy birthday” song as ring back tone for the
caller, only when today is caller’s birthday. It is like a little
present from telecom operator to caller, and supposed to bring
better user experience.

Now after examining the requirements of business policies
in application composition, it is clear that certain mechanism is
needed to support the fast-changing rules that may affect
application composition. Figure 5 shows the proposed rule-
based application composition framework.

Figure 5. Rule-based Application Composition Framework

In Figure 5, there are 3 categories of entities that form the
external environment of Application Composer:

a) AS Container. This is the container where
Application Composer resides in. According to JSR289
application composition paradigm, the container queries
Application Composer on a interface to decide how to
compose applications. On this interface, the received (or
processed by some applications) SIP request is sent to
Application Composer, with some context information that
would help Application Composer to do its job, for example,
the role of subscriber as a caller or callee in this session, and
the composition result (what is the next application name to
trigger) is returned back to Container.

b) Rules from subscribers and operators. These are
rules that defines the preferences/requirements of application
composition from subscribers who manage their own service
chains or from operators who want to control their service
offerings. These rules and update of latest rules may come at
any time, and Application Composer should hot-deploy and
update its rules repository to make them effective almost
instantly.

c) External Data Stores. These data stores can be any
meaningful data store that is of interest to the composition
process, and can be accessed by Application Composer. For
example, the data store of user profile, used to decide the initial
set of services that should be triggered. Other examples would
be user preferences, application server status (high/low load),
etc.

Inside Application Composer, there are 3 main parts:
Application List Fetcher is responsible to provide the initial set
of applications that should be triggered for an incoming request.
It either talks to external data stores (to get user profile on
subscribed services) or derive the application list from
incoming request itself. Then Application List Fetcher supplies
the set of applications as initial input to Rule Engine, which
maintains and applies all related rules to adjust application
invocation order, and to add/remove some applications if
necessary, and finally to get an applicable application name list.
The Controller manages the whole process, from accepting
incoming request and context information to managing and
returning application composition result to AS container.

III. EXAMPLE IMPLEMENTATION & ANALYSIS
In this section we illustrate an example implementation,

based the rule engine of DROOLS [6], and a JSR289 SIP
application server container. We also analyzed some related
issues under this environment.

A. Implementation of Rule-basd AC Framework

Figure 6. Implementation of JSR 289 Application Router

Figure 6 shows the example implementation of JSR 289
Application Router, which is the embodiment of rule-based
application composition framework previously discussed. The
interface between JSR289 container and application router is
getNextApplication method defined in JSR 289 specification,
which is called by container when a SIP Servlet sends or
proxies an initial SIP request. The core to this Application
Router is its Rule Engine component, which decides the
application composition result.

We used the eclipse plug-in of DROOLS rule engine to
design example rules. DROOLS provides the “Domain
Specific Language” support to rule authors, so the business
oriented rules can be expressed by natural language. The author
just needs to define the set of sentences that can appear in a
rule, and specify the corresponding DROOLS “native”rule
language. Then the natural language rules can be used, even by
business person who are familiar with business requirements
but not so familiar with rule engine technologies. Following are
some application composition rules written in natural domain
specific language:

Figure 7. (a) Operator rule of invocation order between 2 groups of apps

Figure 7. (b) Subscriber rule of composition condiction of an app

Figure 7. (c) Opeartor rule of adding birthday song to app list

In Figure 7, 3 example rules are listed. The rule in (a) is an
operator rule that declares all “callee sensitive” applications,
e.g. OutgoingCallBarring, should be moved to positions after
“callee manipulative” applications, e.g. SpeedDial, in the
application composition name list. The rule in (b) is from
subscriber Jack Jones specifying his preference on
CallForwarding service invocation. The rule in (c) is again an
operator rule which inserts birthday song ring back tone to a
subscriber’s application list.

It is noted that all the rules can be reset online and be
effective instantly.

With those rules, operators can transform their service
portfolio to better serve subscribers, also avoid possible
confliction between different services; subscribers can set their
preferences, short term or long term, upon how all of their
subscribed services behave.

B. Some issues explained
1) Inter-AS Composition: We have discussed around

application composition in one SIP AS, where multiple SIP
applications are deployed. However, in real network
deployments, for example IMS network, it is common that
many SIP application servers be triggered consequtively, each
providing some services to a subscriber. Therefore, to achieve
a unified application composition, inter-AS application
composition is an important issue. The ideal mechanism seems
to be let one AS to do the application composition in a logical
domain consisted by multiple SIP application servers. The
composing AS knows the application topology in this logical
main and controls the application triggering process from
beginning to end. Unfortunately, current SIP Servlet
infrastructure still can’t support such master-slave pattern of
SIP AS control. For example, the JSR289 specification does
not allow one AS to control over another AS’s decision on
next triggered application. So currently we focus the rule-
based approach inside one SIP AS.

2) Transactional Application Composition: Transactional
Application Composition may be the next level of composing
different services. It means to dynamically adjust the next
application based on the execution result of previous
applications. For example, if application A is triggered, and
executes successfully, then application B is triggered; but if
application A is failed, then application C should be triggered.
It can be imagined that such composition is more useful if
more complex and fine-grained arrangement among
applications is needed. However, no effective means is
availible for application composer to sense the status of an
application execution, unless through some native extension of

SIP headers. Meanwhile, how to judge the execution result of
an application is still an open question. The simple
“success/fail” information may not always be enough.
Therefore, in this paper, we just focus on adjusting the order /
elements of initial application name list, and assume that in
following interactions within the same session the application
list will be executed blindly, without beging changed anymore,
unless some application terminates the session. This has leaves
some uncertainties to the composed application execution.

3) Confliction Between Operators and Subscribers: There
could be cases when operators and subscribers have different
opinions on how applications should be composed, and this
may reflect to rule conflicts in application composer.
Coordination and priority mechanism is needed in this system.

IV. RELATED WORK
Some pioneering work has been carried out in this area of

SIP application composition framework. The expert group
members of JSR 289 specification introduced the design
pattern of JSR 289 application composition in detail in [7]. But
they did not consider the requirement of flexible business
policies with SIP application composition. With the use of SIP
in large deployment of IMS, the importance of business
flexibility for both subscribers and operators is enormous.

V. CONCLUSIONS
In this paper we analyzed the SIP application composition

problem, especially on the need of flexible business policies.
We found that current SIP application service framework has
not introduced supporting mechanism for such important
requirement. Based on rule engine technology and latest JSR
289 specification of SIP Servlet API, we proposed a new rule-
based application composition framework and give an
implementation, with example rules. Future works may include
practical deployment of the framework, and further
investigation on advanced issues around this area, like
discussed in Section III.

REFERENCES
[1] J. Rosenberg et al, “SIP: Session Initiation Protocol”, IETF RFC3261,

2002.
[2] 3GPP IP Multimedia Subsystem (IMS). http://www.3gpp.org/.
[3] Dirk O. Keck and Paul J. Kuehn, “The Feature and Service Interaction

Problem in Telecommunications Systems: A Survey”, IEEE
Transactions on Software Engineering, VOL. 24, NO. 10, OCTOBER
1998

[4] JSR 116, http://jcp.org/en/jsr/detail?id=116
[5] JSR 289. http://jcp.org/en/jsr/detail?id=289
[6] JBOSS Rules 3.0.4, http://labs.jboss.com/portal/jbossrules/docs
[7] E.Cheung and K.H.Purdy, "Application Composition in the SIP Servlet

Environment", IEEE International Conference on Communications, June
2007

