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Abstract

We present polynomial-time algorithms for some directed network design problems with degree
bounds on vertices. In particular,

1. Degree bounded arborescence problem. Given out-degree bounds bv on vertices, our algorithm
either computes an (out-)arborescence with out-degrees bv +2 or gives a certificate of infeasibility.
This is the first result with additive constant violation in the directed setting. This improves a recent
result of Lau et al. [11] that incurs a factor 2 multiplicative violation, and a result of Klein et al. [9]
that gives a (1 + ε)bv + O(log1+ε n) bound on the degree for any ε > 0. Our result is almost best
possible: assuming P �= NP , one can not obtain a guarantee better than bv + 1 (even in the case
of undirected graphs).

2. Minimum cost degree bounded arborescence problem. When arcs have non-negative costs, for any
0 < ε ≤ 1

2 , our algorithm computes an arborescence with out-degrees � bv

1−ε�+ 4 and cost at most
1
ε times that of the optimal degree-bounded arborescence.

3. Lower bounds on the integrality gap. Interestingly, we also prove that the above ( bv

1−ε + O(1), 1
ε )

tradeoff is near-optimal for the natural LP relaxation. For every ε > 0, we show an instance where
any arborescence with out-degrees at most bv

1−ε + O(1) has cost at least 1−o(1)
ε times the optimal

LP value.

4. Intersecting supermodular connectivity with degree bounds. We extend the above results (both
unweighted and cost versions) to intersecting supermodular connectivity requirements with in-
degree and out-degree bounds. In the unweighted case, we obtain the first additive constant ap-
proximation for the problem. Our algorithm violates the degrees by +4. In the weighted case,
for any 0 < ε ≤ 1/2, our algorithm computes a solution with out-degrees and in-degrees at most
� bv

1−ε�+4, and cost at most 1/ε times the optimum cost. This extends and improves the (3bv+6, 4)-
approximation of Lau et al. [11, 12]. This includes, as a special case, the problem of packing the
maximum number of edge-disjoint arborescences.

Our algorithms use the iterative rounding technique of Jain [8], which was recently used by Lau et
al. [11] and Singh and Lau [16] in the context of degree bounded network design. It is, however, non-
trivial to extend these techniques to the directed setting without incurring a multiplicative violation in
the degree bounds. This is due to a fact that known polyhedral characterization of arborescences has the
set-boundary covering constraints which, along with degree bound constraints, are unsuitable for arguing
the existence of integral variables in a basic feasible solution. We overcome this difficulty by enhancing
the iterative rounding steps and by means of more careful counting arguments.

Our counting technique also gives a substantially easier proof of the recent +1 approximation of
Singh and Lau [16] for computing the (undirected) bounded-degree minimum cost spanning tree. More
generally, we give a +(r − 1) additive approximation for the minimum crossing spanning tree problem
where each edge lies in at most r-sets which substantially improves a result of Bilò et al. [1].

∗IBM T.J. Watson Research, P.O. Box 218, Yorktown Heights, NY. {nikhil,rohitk}@us.ibm.com.
†Tepper School of Business, Tech & Frew Street, Pittsburgh, PA. viswa@cmu.edu.
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1 Introduction

The problem of finding a minimum spanning tree that satisfies given degree bounds on vertices has
received much attention in the field of combinatorial optimization recently. This problem was first con-
sidered by Fürer and Raghavachari [6]. Their motivation was to find a broadcast tree in a communica-
tion network along which the maximum overload of any node, proportional to its degree, is minimized.
Assuming unit edge-costs, they gave a local-search based polynomial-time algorithm for computing a
spanning tree with maximum degree at most Δ∗+1 as long as there exists a spanning tree with maximum
degree at most Δ∗. This is essentially the best possible since computing the optimum is NP-hard.

Earlier in this decade, variety of techniques were developed in attempts to generalize this result to the
case of arbitrary edge-weights. Ravi et al. [15], using a matching-based augmentation technique, gave a
bi-criteria approximation algorithm that violates both the cost and the degree bounds by a multiplicative
logarithmic factor. Könemann and Ravi [10] used a Lagrangian relaxation based method to get O(1)
approximation on the cost while violating the degrees by a constant factor plus an additive logarithmic
term. Chaudhuri et al. [2] based their algorithms on the augmenting-path and push-relabel frameworks
from the maximum flow problem and obtained either logarithmic additive violation or constant multi-
plicative violation on degrees. In a recent break-through result, Goemans [7] presented an algorithm,
based on matroid intersection techniques, that computes a spanning tree with cost at most that of the
optimum and with degrees at most the bounds plus 2. This line of research recently culminated in the
“best possible” plus 1 result of Singh and Lau [16]. Their algorithm used an iterative rounding approach
of Jain [8] while obtaining a spanning tree with cost at most that of the optimum while violating the
degrees by at most an additive +1 term.

1.1 Directed network design with degree bounds

In this paper, we consider directed network design problems with either in-degree or out-degree (or
both) constraints on the vertices. Directed graphs naturally arise in communication networks. In fact our
original motivation was a problem that arose at IBM in the context of maximizing throughput in peer to
peer networks. Here, we are given a network where a root node r wishes to transmit packets to all the
nodes in the network. However, each node has limited network resources which determines how many
packets it can transmit per unit time. It turns out that computing the maximum achievable throughput
of this network is exactly equal to determining the number of r-arborescences that can be packed in the
network subject to out-degree bounds at each node.

As we shall discuss below, the directed setting turns out to be substantially harder than the undirected
setting, and much fewer results are known in this case. Below we discuss the relevant related work for
each of the problems that we consider in this paper.

1.2 Our results and previous work

Degree bounded arborescence problem (without costs). Let G = (V,E) be a directed graph with
root r, and let bv be the bounds on out-degree for each vertex v (since every vertex except the root has
indegree exactly one in any arborescence, we do not consider bounds on indegree here). This problem
was first considered by Fürer and Raghavachari [6] who gave a polynomial time algorithm to compute an
arborescence that violates the degree bound by at most logarithmic multiplicative factor. Klein et al. [9]
gave a quasi-polynomial time algorithm with degree violation (1 + ε)bv + O(log1+ε n) for any ε > 0.
Their algorithm starts with a solution and successively applies local improvement steps to reduce high
degrees. Recently, Lau et al. [11], using an iterative rounding technique, obtained a polynomial-time
algorithm that computes an arborescence with degrees at most 2 · bv + 21 (their algorithm additionally

1Strictly speaking, the conference version [11] only shows a bound of 4bv + 6 on the degree and a bound of 4 on cost. These
improved results were communicated to us recently [12].
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guarantees that the cost is violated by a factor of at most 2). We obtain the first result with only additive
violation in the degree bounds. In fact, assuming P �= NP , our result is almost best possible.

Theorem 1 There is a polynomial time algorithm that constructs an (out-)arborescence rooted at r such
that any vertex v has out-degree at most bv + 2 or else gives a certificate showing that no arborescence
exists satisfying the degree bounds exactly.

Minimum cost degree bounded arborescence problem. Suppose there is a cost function c : E → R
+

on the arcs (or edges). Let us assume that there exists an arborescence T that satisfies all the out-degree
bounds exactly. Consider the problem of computing minimum cost arborescence that satisfies all the
out-degree bounds exactly. The algorithm of Lau et al. [11] computes an arborescence with degrees at
most 2·bv +2 for all v and also ensures that the cost of the solution is at most 2 times that of the optimum.
We extend their result as follows.

Consider the following natural integer programming formulation of the minimum cost degree bounded
arborescence problem.

min
∑

e∈E ce · xe

s.t.
x(δ−(S)) ≥ 1 ∀S ⊆ V \ {r}
x(δ+(v)) ≤ bv ∀v ∈W
xe ∈ {0, 1} ∀e ∈ E

(1)

Let OPT be the optimum value of the above integer program and let FRAC be the value of its linear
programming relaxation in which the constraints xe ∈ {0, 1} are replaced with 0 ≤ xe ≤ 1 for e ∈ E.
Clearly we have FRAC ≤ OPT. We prove the following theorem.

Theorem 2 There is a polynomial-time algorithm that, given any ε ∈ (0, 1
2 ], constructs an arborescence

rooted at r with cost at most 1
ε · FRAC and such that any vertex v has out-degree less than � bv

1−ε�+ 4.

Surprisingly, it also turns out that the above (1
ε , bv

1−ε + O(1)) tradeoff between the cost blowup and
the degree-bound violation, is near-optimal for the above LP relaxation. The following theorem captures
this more formally (the O(1) terms below are independent of ε).

Theorem 3 For any ε > 0, there is an instance of the minimum cost degree bounded arborescence
problem such that, any arborescence with out-degrees at most bv

(1−ε) +O(1) for all vertices v has cost at

least (1−o(1)
ε ) · FRAC.

Note that our dependence on ε in Theorems 2 and 3 is identical, (i.e. we do not have any hidden
constant factors using the big-O or Ω notation), and hence we obtain the optimum possible tradeoff
between cost and degree violation (modulo some additive terms). Theorem 3 suggests that computing
low-cost arborescences subject to degree bounds might be an inherently harder problem in the directed
case as compared with the undirected case.

Intersecting supermodular connectivity requirements with degree bounds. We also consider the
network design problem in directed graphs where the connectivity requirement is specified by an ar-
bitrary intersecting supermodular function [5], and there are both in-degree and out-degree bounds
{(av, bv)}v∈V on vertices. The intersecting supermodular requirements (defined formally later) are gen-
eral enough to include the problem of packing k-edge disjoint arborescences, and choosing the minimum
cost edges to increase the rooted connectivity of a digraph [5, 14]. The goal here is to find a subgraph (if
it exists) that satisfies the connectivity requirement and degree bounds on vertices. We show that:

Theorem 4 Given a directed network design problem where the connectivity requirement is specified by
an intersecting supermodular function, and upper bounds on the in-degree and out-degree of vertices,
there is a polynomial time algorithm that either shows that the instance is infeasible or else finds a
subgraph satisfying the connectivity requirement while violating any degree bound by at most an additive
constant +4.
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The above theorem improves upon the result of Lau et al. [11] that obtains a feasible solution with in-
degree at most 3 · av +6 and out-degrees at most 3 · bv +6. Additionally their result also guarantees that
the cost is at most 3 times the optimum2. Moreover, their result also holds in the more general case of
crossing supermodular connectivity requirements.

Our algorithm for minimum cost degree bounded arborescence also generalizes to intersecting su-
permodular case (in fact it strictly improves their guarantee stated above), and in particular we obtain:

Theorem 5 Given a directed network design problem with edge-costs, an intersecting supermodular
connectivity requirement, and upper bounds on the in-degree and out-degree of vertices, for any ε ∈
(0, 1

2 ], there is a polynomial time algorithm that either shows that the instance is infeasible or else finds
a subgraph satisfying the connectivity requirement, having cost at most 1

ε times the optimum, and with
each vertex v having degree at most � bv

1−ε�+ 4.

Again the lower bound in Theorem 3 obviously applies to this case, and hence our dependence on ε is
optimum, based on the natural linear program.

Finally, using our counting arguments, we also give a substantially simpler proof of the +1 guarantee
for the bounded degree minimum cost (undirected) spanning tree problem due to Singh and Lau [16]. In
fact, the proof readily extends to the more general minimum crossing spanning tree problem defined as
follows.

Minimum crossing spanning tree problem (MCSP). Given an undirected graph G = (V,E), costs
ce ≥ 0 on the edges e ∈ E, subsets of edges Ei ⊆ E for 1 ≤ i ≤ k, and integers bi ≥ 0 for 1 ≤ i ≤ k,
the MCSP is to find a minimum cost spanning tree (if it exists) in G that contains at most bi edges from
set Ei for 1 ≤ i ≤ k. We show the following result.

Theorem 6 Consider an instance of the MCSP problem. Let r be an integer such that any edge belongs
to at most r subsets Ei, e.g., r = maxe∈E |{i | e ∈ Ei, 1 ≤ i ≤ k}|. There is a polynomial-time
algorithm that either computes a spanning tree with cost at most that of the optimum and which contains
at most bi + r − 1 edges from set Ei for 1 ≤ i ≤ k; or else gives a certificate that the instance is
infeasible.

This significantly improves on the results of Bilò et al. [1], who consider an unweighted instance in
which all bi are equal to b and find a spanning tree which contains at most O(b · r log n) edges in the set
Ei for 1 ≤ i ≤ k.

Note that if Ei denotes the set of edges incident to vertex i and bi denotes the degree bound on vertex
i, we get the bounded degree minimum spanning tree problem. Our algorithm matches the +1 bounds
recently obtained by Singh and Lau [16].

1.3 Our approach

Our algorithms are based on the iterative rounding technique of Jain [8] which was recently used by Lau
et al. [11] and Singh and Lau [16] in the context of degree bounded network design problems.

The iterative rounding technique, which has been extensively used in network design problems,
proceeds as follows. First the problem is formulated as an integer program; relaxing the integrality
constraints one then obtains a linear program. An extreme point solution, a.k.a. basic feasible solution,
to this linear program is then computed by standard linear programming algorithms. This extreme point
solution is proved to exhibit useful structural properties, for example, an existence of an integral variable.
Such variables are then fixed to their integral values and the residual problem is solved iteratively. For
example, Singh and Lau [16] use a clever counting argument to show that in any extreme point solution to
their LP formulation of degree bounded spanning tree problem, either there is an integral edge-variable,
or the degree bound constraint of some vertex can be dropped without violating it by more than +1 in

2Personal communication, strictly speaking [11] showed (4, 4bv + 6, 4av + 6) guarantee
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the subsequent steps. The algorithm then either sets such an edge to its integral value or drops such a
constraint; thereby reducing the size of the linear program and repeats.

Challenges in extension to the directed case. Consider a basic feasible solution x to the LP relaxation
of (1). A basic feasible solution is uniquely defined by a basis of |E| linearly independent constraints
which are satisfied as equalities. By a standard uncrossing argument [3, 8], one can assume that the sets
S which contribute constraints x(δ−(S)) = 1 to the basis form a laminar family. This laminar family
may have up to 2|V | − 1 sets. Although degree bounds are also present, some additional arguments can
be used to show (Lau et al. [11]) that either there exists e ∈ E such that xe ≥ 1

2 or there is a vertex
v with small degree in the support. Based on this, the algorithm iteratively does one of the following:
rounds an edge e to 1 or drop the degree constraint of vertex v. Since we round 1

2 -edges to 1, we may
violate the degree bounds by a multiplicative factor of 2, as in [11].

To overcome this problem in the undirected setting, Singh and Lau [16] use the following formulation
of the spanning tree polytope.

x(E(V )) = |V | − 1
x(E(S)) ≤ |S| − 1 ∀ S : 2 ≤ |S| ≤ |V | − 1

xe ≥ 0 ∀ e ∈ E
(2)

Here E(S) = {(u, v) ∈ E | u, v ∈ S}. The laminar family of sets corresponding to a basic feasible
solution x of this polytope can be shown to have at most |V | − 1 sets. This is crucial for them to argue
that there exists e ∈ E such that xe = 1.

Unfortunately, in the directed setting, the arborescence polytope is not known to have a formulation
similar to (2) and one has to use the set-boundary covering constraints as in (1). However even in this
case, using additional steps in iterative rounding and better counting arguments, we obtain improved
guarantees based on the same LP (1). In fact the guarantees we obtain are (almost) best possible using
the LP. We continue to use the idea of dropping degree constraints (Lau et al. [11]); so at any iteration the
degree bounds are present only at a subset W of the vertices. Our degree-bound relaxation step involves
considering vertices that have small ‘spare’ (i.e. difference of support degree and fractional degree).
In addition, we also use some new relaxation steps that involve treating edges leaving W vertices and
non-W vertices differently. Finally, as is the case with iterative rounding algorithms, we need a careful
counting argument to show that an improvement is possible at every iteration. We note that the counting
arguments we use are global in nature.

1.4 Preliminaries

A set function f : 2V → R on ground set V is called supermodular if for any two subsets S, T ⊆
V , it holds that f(S ∪ T ) + f(S ∩ T ) ≥ f(S) + f(T ). Similarly set function f is submodular if
f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ). The set function f is said to be intersecting supermodular if for
every S, T ⊆ V such that S ∩ T �= φ, we have f(S ∪ T ) + f(S ∩ T ) ≥ f(S) + f(T ).

Given a directed graph G = (V,E) and a subset S of vertices, we use δ−G(S) (resp. δ+
G(S)) to

denote the set of edges entering (resp. leaving) S. When the graph G is clear from the context, we drop
the subscript G. Consider any non-negative real-value assignment x : E → R

+ to the edges; we use
x(δ−(S)) (resp. x(δ+(S))) to denote the total x-value of the edges coming into (resp. leaving) S. The
functions x(δ−) and x(δ+) are always submodular.

Given a directed graph G = (V,E) and a set function f : 2V → Z
+, a subgraph H = (V,E′) of G

is said to be f -connected if δ−H(S) ≥ f(S) for every subset S ⊆ V . In the basic directed network design
problem, we are given an edge-weighted graph and a set function f , and the goal is to compute the min-
imum cost f -connected subgraph. In the degree bounded variant of network design, there are additional
constraints bounding the out-degree and in-degree at each vertex. The degree bounded directed network
design problem is the following: given an edge-weighted graph G = (V,E), a set function f : 2V → Z

+

and degree bounds {av, bb}v∈V , compute a minimum cost f -connected subgraph where each vertex v
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has in-degree at most av and out-degree at most bv . In this paper, we only consider problems where the
set function f is intersecting supermodular.

A family of sets {S1, . . . , Sk} is called laminar if for every two sets they are either disjoint or one is
contained in the other; i.e. for every 1 ≤ i, j ≤ k, either Si ∩ Sj = ∅ or Si ⊂ Sj or Sj ⊂ Si.

1.5 Organization

The rest of the paper is organized as follows. In Section 2, we consider the minimum degree arbores-
cence problem and prove Theorem 1. This result contains many of the ideas used in the rest of the paper
as well. In Section 3, we generalize the arborescence result to any arbitrary intersecting supermodular
connectivity requirement (Theorem 4). Then in Section 4, we consider the bounded degree arborescence
problem in the presence of edge-costs, and prove Theorem 2. We also complement this approximation
guarantee by showing a tight integrality gap of the natural LP relaxation for this problem (Theorem 3).
In Section 5, we extend our algorithm to handle the cost version of any intersecting supermodular con-
nectivity requirement (Theorem 5). Note that the arborescence result (Theorem 2) is implied by the
intersecting supermodular result (Theorem 5). However we present them separately since the proof of
Theorem 2 is simpler and contains essentially all the ideas need for the general case. Finally, in Section 6
we consider the undirected minimum crossing spanning tree problem.

2 The degree bounded arborescence problem

Given a directed graph G = (V,E) with a root r ∈ V and bounds bv ≥ 0 on the out-degrees of
the vertices v ∈ V , the degree bounded arborescence problem is to find an (out-)arborescence T (if it
exists) rooted at r such that the out-degree in T of any vertex v is at most bv . In this section, we prove
Theorem 1. This unweighted case is relatively simple and will introduce many of the ideas that we use
later. Consider the following linear programming relaxation of the problem. Find xe for each e ∈ E
such that

x(δ−(S)) ≥ 1 ∀S ⊆ V \ {r} (cut constraints)
x(δ+(v)) ≤ bv ∀v ∈ V (degree constraints)

xe ≤ 1 ∀e ∈ E
xe ≥ 0 ∀e ∈ E

Our algorithm, given in Figure 1, proceeds in several iterations. In a general iteration of the algo-
rithm, we denote E to be the candidate set of edges, initially containing all the edges. The set F ⊆ E
denotes the edges that we have already picked in our solution and the out-degree bounds constraints are
present only for a subset W ⊆ V of vertices. In such an iteration, we work with the following linear
program with variables xe for e ∈ E \ F . Let E′ = E \ F . For brevity, we use δ− (resp. δ+) to denote
δ−E′ (resp. δ+

E′).

x(δ−(S)) ≥ 1− |δ−F (S)| ∀S ⊆ V \ {r} ( cut constraints)
P (E,F,W ) : x(δ+(v)) ≤ bv − |δ+

F (v)| ∀v ∈W (degree constraints)
xe ≤ 1 ∀e ∈ E′ = E \ F
xe ≥ 0 ∀e ∈ E′ = E \ F

In the beginning of the iteration, we first compute a basic feasible solution x in the polytope P (E,F,W )
using standard linear programming techniques. We then update the sets E, F , and W as explained in
Figure 1. The algorithm, in the end, outputs any arborescence contained in the set of edges F .

The following lemma is simple to note.

Lemma 1 Assume that P (E,F,W ) is feasible at the beginning of the algorithm. If the algorithm ter-
minates, it outputs an arborescence T that |T (δ+(v))| ≤ bv + 2 for all v ∈ V .
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• Set F ← ∅ and W ← V .

• If P (E, F, W ) is infeasible, output “infeasible”.

• Repeat while E \ F �= ∅
1. Compute a basic feasible solution x to P (E, F, W ).
2. Remove from E all edges e ∈ E \ F with xe = 0.

3. Add to F all edges e ∈ E \ F with xe = 1.

4. For all v ∈ W such that there are at most bv − |δ+
F (v)| + 2 edges leaving v in

E \ F ,

(a) Remove v from W .

(b) Add to F all the out-going edges from v in E \ F .

• Output any (out-)arborescence rooted at r in F .

Figure 1: Algorithm for the degree bounded arborescence problem

Proof : Since we remove edges e from E only if xe = 0 and add edges e to F only if xe = 1, a
feasible solution x in an iteration induces a feasible fractional solution for the linear program in the next
iteration. Therefore, by induction, if P (E,F,W ) is feasible in the beginning, it continues to be feasible
throughout the algorithm. Since E \ F = ∅ at the end, we conclude that the set F at the end of the
algorithm indeed contains an (out-)arborescence rooted at r.

Now it is enough to argue that the set F , at the end, satisfies |δ+
F (v)| ≤ bv + 2 for all v. Note that we

remove a vertex v from W (thereby effectively removing its degree-bound constraint from P (E,F,W ))
only if the total number of edges in E \F leaving v is at most bv−|δ+

F (v)|+2. Thus the total number of
edges in E leaving v is at most bv + 2. Thus even if all edges leaving v get picked in F in the remainder
of the algorithm, we have |δ+

F (v)| ≤ bv + 2, at the end, as desired. �

The rest of the section is devoted to proving that the algorithm indeed terminates. We show this by
proving that in each iteration either |E| decreases, |F | increases, or |W | decreases. Since none of these
three can happen an unbounded number of times, the algorithm must terminate. It in fact terminates in
m + n iterations where m and n are the number of edges and vertices in the given graph.

We now argue that if |E| and |F | do not change in Steps 2 and 3, |W | must decrease in this iteration.
Assume that the conditions in Steps 2 and 3 do not hold, i.e., all e ∈ E′ satisfy that 0 < xe < 1. In
such a case, all the tight constraints in the basic feasible solution x come from the cut-conditions and
the degree constraints. Moreover, since all edges leaving v are added to F as soon as v is removed from
W , every edge in E \ F must be out-going from a vertex in W . The following lemma is standard and
obtained by using the fact that the RHS of the cut-constraints is a supermodular set function.

Lemma 2 ([11]) For any basic solution x to P (E,F,W ) such that 0 < xe < 1 for all e ∈ E′, there
exists a set T ⊆ W and a laminar family L of subsets of V such that x is the unique solution to the
linear system:

x(δ−(S)) = 1 ∀S ∈ L
x(δ+(v)) = bv − |δ+

F (v)| ∀v ∈ T

Furthermore, the following two conditions are satisfied

1. The (|E′|-dimensional) characteristic vectors {χδ−(S) | S ∈ L} ∪ {χδ+(v) | v ∈ T} are linearly
independent.

2. The size of the support is equal to |E′| = |T |+ |L|.
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For v ∈W , we define the spare of a vertex Sp(v) as

Sp(v) =
∑

e∈δ+(v)

(1− xe) = |δ+(v)| −
∑

e∈δ+(v)

xe.

For v ∈ W , let dv = bv − |δ+
F (v)| be the current degree bounds on v. Clearly we have Sp(v) ≥

|δ+(v)| − dv . Note that Sp(v) is an upper bound on the degree violation of vertex v if its degree bound
is dropped.

To complete the proof of Theorem 1, we prove the following lemma that states that if neither Step 2
or Step 3 in the algorithm is applicable, then there exists a vertex v ∈ W that satisfies the conditions in
Step 4.

Claim 1 If neither tep 2 or Step 3 is applicable, then there exists v ∈W such that |δ+(v)| − dv ≤ 2.

Proof : We first argue that it is enough to show that

|L| <
∑

e∈E′
xe + 2|W |. (3)

Consider the quantity
∑

v∈W Sp(v). As each (u, v) in E′ has its tail u in W , it follows that
∑

v∈W Sp(v) =
|E′| −

∑
e∈E′ xe. Since Sp(v) ≥ δ+(v)− dv this implies that

∑

v∈W

(δ+(v)− dv) ≤ |E′| −
∑

e∈E′
xe

= |L|+ |T | −
∑

e∈E′
xe ( by Lemma 2)

≤ |L|+ |W | −
∑

e∈E′
xe

< 3|W | (by (3))

This in turn implies that there exists v ∈W such that |δ+(v)|−dv < 3. Since |δ+(v)|−dv is an integer,
it must be at most 2.

The proof of (3) is based on a counting argument, as is common in iterative rounding. We assign xe

units of “tokens” to each e ∈ E′ and two “tokens” to each v ∈W . We will show that all but one of these
tokens can be “assigned” to sets S ∈ L such that each token gets assigned to at most one set in L and
each set in L gets at least one token, thereby proving that |L| is strictly smaller than the total number of
tokens

∑
e∈E′ xe + 2|W |.

The laminar family L naturally defines a forest T with S ∈ L as nodes. We call a node S ∈ L
marked if there is some vertex w ∈W ∩ S; otherwise we call S unmarked. Recall that every edge in E′

leaves a W -vertex; hence if S is an unmarked node, no edge of E′ leaves a vertex in S and in particular,
no edge of E′ is contained in S. From Lemma 2, for any set S ∈ L, x(δ−(S)) = 1. The assignment of
tokens to nodes of T is done as follows.

1. Leaf nodes in T . Let S ∈ L be a leaf in T . Recall that x(δ−(S)) = 1. The tokens of edges
e ∈ δ−(S), which sum up to 1, are assigned to S. Clearly in this case no token is assigned to more
than one set.

2. Unmarked non-leaf nodes in T . We in fact show that unmarked non-leaves do not exist in T at all.
Let on the contrary, S ∈ L be such a node, and C1, · · · , Ct ⊂ S with t ≥ 1 be its children in T .
Since S is unmarked, there is no edge of E′ inside S, which implies that δ−(Ci) ⊆ δ−(S) for all i.
Recall that x(δ−(S)) = x(δ−(Ci)) = 1 for all i. This implies that t = 1 and χδ−(S) = χδ−(C1).
This contradicts that they are linearly independent as given in Lemma 2.
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3. Marked nodes in T . LetM⊆ T denote the sub-forest consisting of only marked nodes in T . Call
a node S ∈ M high-degree if S has at least 2 children inM; low-degree if S has exactly 1 child
inM; all other nodes are leaves inM.

Since leaves inM correspond to disjoint sets, every such node contains at least one distinct vertex
of W . We next argue that each low-degree node inM also contains a distinct vertex of W , distinct
also from the vertices of W contained in the leaves ofM. Let S ∈ M be a low-degree node in
M, and C ∈ M be its unique child inM. To establish the above property, it is enough to show
that W ∩ (S \ C) �= ∅. Assume on the contrary that this is not the case. As S \ C does not
contain any vertex of W , there are no edges from S \ C to C; so δ−(C) ⊆ δ−(S). Recalling that
x(δ−(C)) = x(δ−(S)) = 1, we get χδ−(S) = χE′(δ−(C)) contradicting the linear independence
condition in Lemma 2.

Thus we proved that the total number of leaves and low-degree vertices inM is at most |W |.
Now observe that the number of high-degree nodes inM is strictly less than the number of leaves
inM. Therefore the total number of nodes inM is strictly less than twice the number of leaves
and low-degree nodes inM, and hence strictly less than 2|W |. Assign each node inM a distinct
token out of 2|W | tokens from vertices in W leaving at least one token unassigned.

By the token assignment given above, each set in L gets at least one token with one token unassigned.
Thus the proof is complete.

�

3 General connectivity requirements with degree bounds

We now consider the network design problem in directed graphs where the connectivity requirement is
specified by an arbitrary intersecting supermodular function [5], and there are upper bounds on in-degree
and out-degree {(av, bv)}v∈V on the vertices. The goal here is to find a subgraph (if it exists) that satisfies
the connectivity requirement and degree bounds on vertices. In this section, we prove Theorem 4.

We work with the following linear relaxation P (E,F,A,B) in each iteration. In a generic iteration,
E denotes the current set of edges in the graph, F ⊆ E the set of edges that have been fixed to value 1,
A ⊆ V the vertices for which there is an in-degree bound, and B ⊆ V the vertices for which there is an
out-degree bound. Again we abbreviate E′ = E \ F , δ+(·) = δ+

E′(·) and δ−(·) = δ−E′(·).

x(δ−(S)) ≥ f(S)− |δ−F (S)| ∀S ⊆ V
x(δ+(v)) ≤ bv − |δ+

F (v)| ∀v ∈ B
P (E,F,A,B) : x(δ−(v)) ≤ av − |δ−F (v)| ∀v ∈ A

xe ≤ 1 ∀e ∈ E \ F
xe ≥ 0 ∀e ∈ E \ F

In any iteration, let x denote an optimal basic feasible solution. The algorithm is similar to the one for
minimum degree arborescence, and performs one of the following steps in each iteration where E′ �= φ:

1. If there is an edge e ∈ E′ with xe = 0, set E ← E \ {e}.
2. If there is an edge e ∈ E′ with xe = 1, set F ← F ∪ {e}.
3. If there is an edge (u, v) ∈ E′ with u /∈ B and v /∈ A, set F ← F ∪ {(u, v)}.
4. If there is a vertex v ∈ B with at most bv−|δ+

F (v)|+4 support edges leaving it, set B ← B−{v}.
5. If there is a vertex v ∈ A with at most av−|δ−F (v)|+4 support edges entering it, set A← A−{v}.

If at least one of these conditions holds at each iteration, the algorithm results in a solution satisfying the
connectivity requirement while violating each degree bound by at most an additive 4. The rest of this
section proves that one of the above conditions is always true. In particular, we show that if none of the
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conditions (1)-(3) are satisfied, then at least one of (4) and (5) must be true. We assume henceforth that
none of (1)-(3) are satisfied. As in the previous section, since conditions (1) and (2) do not hold: all the
tight constraints in a basic feasible solution x come from the cut-conditions and the degree constraints.
Based on standard uncrossing arguments, we have the following.

Lemma 3 ([11]) For any basic solution x to (DLP ) with no variable fixed to 0 or 1, there exist sets
T ′ ⊆ A, T ′′ ⊆ B, and a laminar family L of subsets of V such that x is the unique solution to the linear
system:

x(δ−(v)) = av − |δ−F (v)| ∀v ∈ T ′

x(δ+(v)) = bv − |δ+
F (v)| ∀v ∈ T ′′

x(δ−(S)) = f(S)− |δ−F (S)| ∀S ∈ L

Furthermore, the following conditions hold:

1. For every S ∈ L, f(S)− |δ−F (S)| ≥ 1 and integral.

2. The characteristic vectors {χδ−(S) | S ∈ L}∪{χδ−(v) | v ∈ T ′}∪{χδ+(v) | v ∈ T ′′} are linearly
independent; and

3. The size of the support |E′| = |T ′|+ |T ′′|+ |L|.

Let W = A ∪ B. Note that each edge in the support either leaves a B-vertex or enters an A-vertex.
We now classify the various types of edges in the support E′:

1. Let E1 denote the set of edges (u, v) such that u ∈ B and v /∈ W . Note that we only require that
u lie in B, and in particular, (u, v) will lie in E1 even if u lies in both A and B.

2. Let E2 denote that set of edges (u, v) such that v ∈ A and u /∈W (again v is allowed to lie in both
A and B).

3. Let E3 denote the set of edges (u, v) such that u ∈ B and v ∈ A.

4. Let E4 denote the set of edges (u, v) such that u ∈ B and v ∈ A ∩B.

5. Let E5 denote the set of edges (u, v) such that u ∈ A ∩B and v ∈ A.

Observe that the sets E1, . . . , E5 are pairwise disjoint and that each edge in the support must lie
in one of the sets above, and hence E1, . . . , E5 form a disjoint partition of E′. For an edge e, let
Sp(e) = 1− xe. Define

Sp(B) =
∑

(u,v):u∈B

Sp((u, v)) =
∑

(u,v):u∈B

(1− xu,v) =
∑

e∈E1∪E3∪E4

(1− xe)

Sp(A) =
∑

(u,v):v∈A

Sp((u, v)) =
∑

(u,v):v∈A

(1− xu,v) =
∑

e∈E2∪E3∪E5

(1− xe).

For a set H of edges, define

Sp(H) =
∑

e∈H

(1− xe) and Val(H) =
∑

e∈H

xe.

Observe that,

Sp(A) + Sp(B) = Sp(E1) + Sp(E2) + 2Sp(E3) + Sp(E4) + Sp(E5) (4)

The following is the main part of our argument (below we set W = A ∪B).

Claim 2
2|L| < |E1|+ |E2|+ Val(E) + 3|W |. (5)
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We first show how Claim 2 implies Theorem 4. Since |E| = |L|+ |T ′|+ |T ′′|, Claim 2 implies that

2|E| < |E1|+ |E2|+ Val(E) + 3|W |+ 2|T ′|+ 2|T ′′|
≤ |E1|+ |E2|+ Val(E) + 3|W |+ 2|A|+ 2|B|
≤ |E1|+ |E2|+ Val(E) + 5|A|+ 5|B|

The second step follows as |T ′| ≤ |A| and |T ′′| ≤ |B| and the third step follows as |W | ≤ |A|+ |B|. As
|E| = |E1|+ |E2|+ |E3|+ |E4|+ |E5|, and as Sp(X) = |X| −Val(X) for any X ⊆ E′, the inequality
above implies that

Sp(E) + |E3|+ |E4|+ |E5| < 5|A|+ 5|B|.
As Sp(X) ≤ |X| for any subset of edges X , this implies that

Sp(E1) + Sp(E2) + 2Sp(E3) + 2Sp(E4) + 2Sp(E5) < 5|A|+ 5|B|

which together with inequality (4) and the fact that sp(X) ≥ 0 for any X ⊆ E′, implies Sp(A) +
Sp(B) < 5(|A| + |B|). This must imply that either Sp(A) < 5|A| or Sp(B) < 5|B|. We now argue
that at least one of conditions (4) or (5) must hold. Suppose that Sp(A) < 5|A| (the other case is
identical). Rewrite Sp(A) =

∑
v∈A(|δ−(v)| − x(δ−(v))) ≥

∑
v∈A[|δ−(v)| − (av − |δ−F (v)|)]. So

there is some v ∈ A with |δ−(v)| − (av − |δ−F (v)|) < 5, but since the LHS is integral, we have
|δ−(v)| ≤ (av − |δ−F (v)|) + 4 which implies that condition (5) holds.

3.1 Token assignment: Proof of Claim 2

Consider the following token assignment scheme: We assign 1 + xe tokens to each edge e ∈ E1 ∪ E2.
For an edge (u, v) ∈ E1, the 1 + xe tokens lie at the head v. For an edge (u, v) ∈ E2, 1 unit of token
lies at u, and xe units lies at the head v. Each remaining edge e = (u, v) ∈ E3 ∪E4 ∪E5 has xe tokens;
these xe units of token are present at v. We also assign 3 tokens to each vertex in W . We will show that
these tokens can be redistributed to obtain at least 2 tokens for each node S ∈ L, with at least one token
to spare which will imply Claim 2.

We call a node S ∈ L marked if W ∩ S �= ∅; otherwise S is called unmarked. Note that if S is an
unmarked node, there is no edge of E′ contained in S. Also, for any tight set S, x(δ−(S)) ≥ 1 and is an
integer. The assignment of tokens to nodes of L proceeds using the following steps.

1. Assignment to unmarked leaf nodes. Let S ∈ L be such a node. Since S is a tight set, we have
that x(δ−(S)) ≥ 1. Hence there are at least two edges of E′ entering S (as each edge has xe < 1).
Assign the tokens at the heads of these edge to S: note that since S is unmarked, these edges must
be of type E1, and S receives at least 2 + x(δ−(S)) ≥ 3 tokens.

2. Assignment to unmarked non-leaf nodes. Let S ∈ L be such a node, and C1, · · · , Ct ⊂ S its
children. Since S is unmarked, there is no edge of E′ inside S and hence ∪t

i=1δ
−(Ci) ⊆ δ−(S).

But the incidence vectors χδ−(S), χδ−(C1), · · · , χδ−(Ct) are linearly independent, so it must be that

δ−(S) \ (∪t
i=1δ

−(Ci)) �= ∅. This implies that x(δ−(S)) −
∑t

i=1 x(δ−(Ci)) > 0. Moreover, as
the quantities x(δ−(S)), x(δ−(C1)), · · · , x(δ−(Ct)) are all integers (because S,C1, . . . , Ct are all
tight sets), it must be that x(δ−(S)) −

∑t
i=1 x(δ−(Ci)) ≥ 1. Thus |δ−(S) \ ∪t

i=1δ
−(Ci)| ≥ 2

(as all edges have xe < 1) and we assign the tokens of these edges to S. Again, as S is unmarked,
these edges must be of type E1, and S gets at least 3 tokens.

3. Assignment to marked nodes. LetM ⊆ L denote the laminar family consisting of only marked
nodes. Call a node S ∈ M high-degree if it has at least 2 children inM; and low-degree if it has
exactly 1 child inM; all other nodes inM are leaf-nodes (no children). We now show how to
assign tokens to each of these nodes.

(a) High-degree nodes: Note that the number of high-degree nodes inM is strictly less than the
number of leaf-nodes inM. Arbitrarily assign each high-degree node inM two tokens from
a distinct W -vertex (in a distinct leaf node ofM).
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(b) Marked leaf-nodes: For each leaf node S in M we assign 1 token from some W -vertex
contained in it. For the remaining token, we argue as follows: If S is also a leaf in L, then S
has x(δ−(S))) ≥ 1 and hence S receives at least 1 unit of tokens from edges in δ−(S) (since
every edge carries at least xe tokens at its head). If S is not a leaf in L, then consider the
subtree rooted S. This subtree has at least one unmarked node. Since each unmarked node
has at least 3 tokens thus far, S borrows one token arbitrarily from one of these nodes. Note
that an unmarked node cannot be used twice to borrow a token.
Note that each W -vertex has been charged at most 3 tokens so far.

(c) Low-degree marked nodes: Let S ∈M be such a node, and C ∈M be its unique child.
Suppose that W ∩ (S \ C) �= ∅, and w ∈ W ∩ (S \ C) be such a vertex. As no node ofM
is contained in S \ C, S is the smallest set inM that contains w. Assign node S two tokens
from vertex w. Note that this vertex w cannot be charged by more than one such set S in this
step. Moreover, w could not have been used in the earlier charging to W -vertices since it is
not contained in any leaf node ofM.
Henceforth we assume that W ∩ (S \ C) = ∅. Let r denote the total number of unmarked
nodes of L contained in S \ C. We further consider the following cases:

i. r = 0. We claim that there are at least two edges with end-points in S \ C. If there are
none, then we would have δ−(C) = δ−(S), contradicting the linear independence con-
dition. If there is exactly one such edge, we would have 0 < |x(δ−(S))−x(δ−(C))| < 1
which contradicts the integrality of tight cuts. Since these edges have one endpoint in
S \ C which has no W -vertex, they can only be E1 or E2 edges. In either case, each of
these edges contributes at least 1 token to S \ C, and hence S receives at least 2 tokens.

ii. r ≥ 2. Consider the unmarked nodes in L contained in S \C. Note that each of them has
been assigned at least 3 tokens thus far (they could not have given a token to marked node
in step 3b). S is assigned 2 tokens by borrowing 1 token each from some two unmarked
nodes in S \C. Again, it is easily seen that each unmarked node U contributes tokens to
at most one such node S, so every unmarked node is left with at least 2 tokens after this
step.

iii. r = 1. Let D ∈ L be this unmarked child of S in L. Clearly, D is a leaf in the laminar
family L (otherwise we would have r ≥ 2). Moreover, D has at least 3 tokens from
edges in δ−(D), none of which have been used in step (3(c)ii) or (3b). We now show
how to assign 2 tokens to S.

A. Suppose there is an edge with an end-point in S \ (C ∪D): then S can be assigned 1
token from edge e and 1 token from D (then D would still have 2 tokens).

B. If there is at least one edge e from D to C, then this edge must be of type E2 and it
contributes 1 token to D in addition to the 3 tokens that D already has. These 4 tokens
can be shared by S and D.

C. If the above two cases do not apply, then it must hold that χδ−(S) = χδ−(C) +
χE′(V \S,D) and χδ−(C) + χδ−(D) = χδ−(S) + χE′(C,D). Due to the linear inde-
pendence, χδ−C �= χδ−(S) and E′(C,D) �= ∅. Further, due to integrality of the tight
cuts, |E′(V \ S,D)| ≥ 2 and |E′(C,D)| ≥ 2. Thus D has at least 4 incoming edges
(of type E1) that contribute at least 6 tokens, which can be shared by S and D together.

Thus the proof of Claim 2 is complete.

4 Minimum-cost bounded-degree arborescence problem

We now consider the minimum cost arborescence problem with out-degree constraints on vertices. We
present an algorithm that attains a constant factor approximation in cost while violating the degrees by
a constant factor that is arbitrarily close to 1 (Theorem 2). This is based on the iterative rounding of
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a natural LP relaxation. In fact, our result is the best possible (up to constant factors) using this LP
(Theorem 3). In a generic iteration of rounding, we would have set some edges F ⊆ E to value 1, and
the out-degree constraints are only present on a subset W ⊆ V of vertices. At such an iteration, we work
with the following linear relaxation. We let E′ = E \ F and δ− (resp. δ+) denote δ−E′ (resp. δ−E′).

min
∑

e∈E ce · xe

s.t.
x(δ−(S)) ≥ 1− |δ−F (S)| ∀S ⊆ V \ {r}

P (E,F,W ) : x(δ+(v)) ≤ bv − (1− ε)|δ+
F (v)| ∀v ∈W

xe ≤ 1 ∀e ∈ E \ F
xe ≥ 0 ∀e ∈ E \ F

In some iteration, let x be an optimal basic feasible solution. The algorithm works for any 0 < ε ≤ 1
2 ,

and performs one of the following steps in each iteration where E′ �= ∅:

1. If there is an edge e ∈ E \ F with xe = 0, set E = E \ {e}.
2. If there is an edge e ∈ E′ with xe ≥ 1− ε, set F ← F ∪ {e}.
3. If there is an edge (u, v) ∈ E′ with u ∈ V \W and xu,v ≥ ε, set F ← F ∪ {(u, v)}.
4. If there is a vertex v ∈ W with strictly less than bv − (1 − ε)|δ+

F (v)| + 5 edges leaving it, set
W ←W − {v}.

We will show that one of these conditions holds at each iteration. In particular, if none of the condi-
tions (1)-(3) above hold, then condition (4) holds. We first see how this implies the result. Whenever an
edge e is included in F , its xe value is at least ε (note that 1 − ε ≥ ε), thus the total cost is at most 1/ε
times the fractional cost. Now consider the out-degrees. Let dv = bv − (1− ε)|δ+

F (v)| be the out-degree
bound of v just before v is removed from W . In the worst case, all edges incident to it in the support
might be chosen, and hence its out-degree might be |δ+F (v)|+dv +5− δ, where 0 < δ ≤ 1 is such that
dv + 5 − δ is an integer. Here δ is strictly greater than 0 because of the strict inequality in condition 4.
This is equal to (bv−dv)/(1− ε)+dv +5− δ which is at most bv/(1− ε)+5− δ, and as the out-degree
is an integer, this is at most �bv/(1− ε)�+ 4.

If conditions (1) and (2) do not hold, all the tight constraints in a basic feasible solution x come from
the cut-conditions and the degree constraints. The following lemma is standard and implied by the fact
that the RHS of the cut-constraints is an intersecting supermodular set function.

Lemma 4 ([11]) For any basic solution x to (DLP ) with no variables set to 0 or 1, there exists a set
T ⊆W and a laminar family L of subsets of V such that x is the unique solution to the linear system:

x(δ+(v)) = bv − (1− ε)|δ+
F (v)| ∀v ∈ T

x(δ−(S)) = 1 ∀S ∈ L

Furthermore, (1) the characteristic vectors {χδ−(S) | S ∈ L} ∪ {χδ+(v) | v ∈ T} are linearly indepen-
dent; and (2) the size of the support |E′| = |T |+ |L|.

Below we assume that none of the conditions (1)-(3) of our iterative rounding holds. Let again
Val(H) =

∑
e∈H xe for a subset H of edges. We call a vertex in W a W -vertex. We call an edge a

W -edge if it leaves a W -vertex, and call it an ordinary edge otherwise. Let EW be the set of W -edges
and EO be the set of ordinary edges. Clearly, |E′| = |EW |+ |EO|. The key component of our proof is
the following.

Claim 3

2|L| < |EW |+ Val(EW ) + 2|EO|+ 3|W |.
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Before proving this claim, we first argue that it implies Theorem 2. Since Sp(EW ) = |EW | −
Val(EW ) and |E′| = |L|+ |T | ≤ |L|+ |W |, the above claim implies that

2|E′| − 2|W | < |EW |+ Val(EW ) + 2|EO|+ 3|W |.

Or equivalently,
|Ew| −Val(EW ) < 5|W | (6)

Let Sp(W ) =
∑

u∈W (1 − xu,v) = |EW | − Val(EW ). Thus (6) implies that Sp(W ) < 5|W |. This in
turn implies that there is a vertex v ∈W satisfying the condition in step 4.

4.1 Token assignment: Proof of Claim 3

Consider the following token assignment scheme. For each W -edge we assign 1 + xe tokens, which
are present at its head. For each ordinary edge, we give 2 tokens, 1 + xe is present at its head. The
remaining 1 − xe token are in its middle (these tokens belong to the smallest set S ∈ L containing e).
Note that either type of edge has 1 + xe tokens at its head. We also assign 3 tokens to each W -vertex.
We will show that the tokens can be redistributed such that each node is the laminar family gets at least
two tokens, with at least one token to spare overall. It is clear that this scheme will imply Claim 3.

We call a node S ∈ L marked if there is some vertex w ∈ W ∩ S; otherwise S is called unmarked.
Note that if S is an unmarked node, each edge of E′ contained in S is ordinary and has x-value at most
ε. Also, for any tight set S, x(δ−(S)) = 1. The assignment of tokens to nodes of L proceeds using the
following steps.

1. Assignment to leaf nodes. Let S ∈ L be a leaf-node. Since x(δ−(S)) corresponds to a tight
constraint, we have x(δ−(S)) = 1. Hence there are at least two edges of E′ entering S (as there
are no 1-edges). So S gets at least 2 + x(δ−(S)) = 3 tokens from the heads of these edges.

2. Assignment to unmarked non-leaf nodes. Let S ∈ L be such a node, and C1, · · · , Ct ⊂ S its
children. Since S,C1, · · · , Ct are tight,

∑t
i=1 x(δ−(Ci)) − x(δ−(S)) = (t − 1). Since edges

lying in S are ordinary and have xe strictly less than ε (and hence strictly less than 1/2 there are
at least 2(t − 1) + 1 edges that belong to S. Thus S obtains at least 2(t − 1) + 1 − (t − 1) = t
middle tokens from these edges which is at least 2 for t ≥ 2.
We now consider the case of t = 1. Let C be the unique child of S in L. Let z =

∑
e∈E′(V \S,C) xe

denote the total x-value entering C from outside S. If z = 1, then as S and C are tight, it follows
that χδ−(S) = χδ−(C) which contradicts linear independence. Thus 1−z units of x-value enters C
from S\C and exactly 1−z units of x-value enters S\C from V \S. The edges in E′(V \S, S\C)
contribute at least 1+(1−z) = 2−z units of tokens to S. The edges in E′(S \C,C) are ordinary
edges and hence contribute at least |E′(S \ C,C)| − x(E′(S \ C,C)) ≥ 1− (1− z) = z tokens.
Thus S receives at least 2− z + z = 2 tokens overall.

3. Assignment to marked nodes. LetM ⊆ L denote the laminar family consisting of only marked
nodes. Call a node S ∈ M high-degree if it has at least 2 children inM; and small-degree if it
has exactly 1 child inM; all other nodes inM are leaf-nodes (no children). Note that the number
of high-degree nodes inM is strictly less than the number of leaves inM. Arbitrarily assign each
high-degree node in M 2 tokens from a distinct W -vertex (in a distinct leaf node of M). Also
assign each leaf node S ∈M, 1 token from some W -vertex contained in it. To see how S obtains
1 additional token, consider the following: If S is also a leaf node in L, then it can get 3 tokens
from incoming edges δ−(S). If not, then this marked leaf node has some unmarked leaf node in
the subtree rooted at it. Since unmarked leaf nodes has been assigned three tokens thus far, we
borrow one of these tokens and give it to S. Note that each unmarked leaf is charged at most once
like this.
Note that each W -vertex has been charged at most 3 tokens so far (with at least one token to spare).
It remains to show how to assign tokens to small-degree nodes ofM. Let S ∈M be such a node,
and C ∈M be its unique child inM. We have the following subcases:
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(a) W ∩ (S \ C) �= ∅. Let w ∈ W ∩ (S \ C) be such a vertex. Note that since there is no node
ofM contained in S \C, S is the smallest set inM that contains w. Assign node S 2 tokens
from vertex w. Note that this vertex w can not be charged by more than one such set S, in this
step. Further vertex w could not have been used in the earlier charging to W -vertices since it
is not contained in any leaf node ofM.

(b) W ∩ (S \C) = ∅. Let r denote the total number of unmarked children of S in L (note that r
is not the number all unmarked nodes contains in S \C like the previous sections). Consider
the following cases:

i. r = 0. This case is identical to the t = 1 case for assignment to unmarked non-leaf nodes
in step 2. That argument only used the fact that (S \ C) ∩W = ∅ and not C ∩W = ∅.
So, at least 2 tokens assigned to S.

ii. r ≥ 2. Consider the set of unmarked nodes in L that are contained in S \C. Since r ≥ 2,
there must be at least two unmarked leaf nodes in this set. We borrow 1 token from each
of these leaves and give it to S. Note that these tokens could not have been used in step
3 in the charging for marked leaf nodes, and that each unmarked leaf node is charged at
most once.

iii. r = 1. Let D be the unmarked child of S. We first consider the simpler case when there
is an incoming edge e in S \ (C ∪D). Here, the edge e provides at least 1 token to S.
For the remaining token, we observe that the subtree rooted at D in L has at least one
unmarked leaf node (possibly D). This node has at least 3 tokens since they could not
have been used earlier in steps 3 or 3(b)ii earlier. Thus S obtains at least 2 tokens overall
in this case.
Henceforth, we assume that all edges from V \ S enter C or D. Since S,C,D are all
tight, we have 1 = x(δ−(C)) + x(δ−(D)) − x(δ−(S)). Let z be the total amount of
flow entering from V \S to C. Note that z cannot be 0 or 1, as it would imply that either
χδ−(D) = χδ−(S) or χδ−(C) = χδ−(S), which would violate the linear independence.
Also, it follows directly that x(E′(V \ S,D)) = 1 − z, that x(E′(S \D,D)) = z and
that x(E′(S \ C,C)) = 1− z.
Suppose z ≥ 1 − ε. We claim that S ∪D get at least 4 tokens. Since z ≥ 1 − ε, there
must be at least two edges from S \ D to D (since the x-value of each edge is strictly
less than max(ε, 1− ε) = 1− ε, these edges provide at least 2 + z tokens. Moreover the
edges E′(V \ S,D) provide at least 1 + x(E′(V \ S,D)) = 1 + 1− z = 2− z tokens.
Thus S and D together have at least 4 tokens.
Now if z < 1−ε, we have that x(E′(S\C,C) = 1−z > ε and hence |E′(S\C,C)| ≥ 2
since each such edge is an ordinary edge (S \ C has no W -vertex). Thus S obtains
|E′(S \C,C)|−x(E′(S \C,C)) ≥ 2− (1−z) = 1+z middle tokens form them. Also
the edges from S \D to D contribute |E′(S \D,D)|+ x(E′(S \D,D)) ≥ 1 + z and
edges from V \S to D contribute |E′(V \S,D)|+x(E′(V \S,D)) ≥ 1+(1−z) = 2−z
tokens. Thus S and D together receive at least (1 + z) + (1 + z) + (2− z) = 4 + z ≥ 4
tokens.

Thus the proof is complete.

4.2 Integrality gap

In this section, we show that our result for minimum-cost bounded-degree arborescence is in fact best
possible based on the linear relaxation for this problem. In the following, O(1) denotes a constant
independent of ε.

Theorem 7 For every ε > 0, there exists an instance of minimum cost bounded degree arborescence
problem such that, any arborescence having degree at most bv/(1− ε) + O(1) at each vertex v has cost
at least 1−o(1)

ε times the optimal LP value.
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23kt 1

Heavy dashed arcs have cost 1, and LP value δ.

Dotted arcs have cost 0, and LP value δ.

Normal arcs (on complete t-level k-ary tree T ) have cost 0, and LP value 1− δ.

Figure 2: The integrality gap instance with k = 3, t = 3.

Proof : Given an arbitrarily small but fixed constant ε > 0, set δ = ε + εc where c is arbitrarily large
constant independent of ε. Consider the directed graph G(δ) constructed as follows; we refer the reader
to Figure 2 for clarity. Start with a complete k-ary outward directed tree T rooted at vertex r, with t
levels (the solid edges in Figure 2), where we set k = 1/δ2c and t = cδc+1 ln(2/δ). These tree edges
have cost 0, and we call them T -edges. Consider the natural drawing of the tree on the plane (as in Figure
2) and label the leaves from right to left from 1, . . . , kt. We say the root is at level 0 and the leaves are
at level t. We also label the vertices on level i from 1, . . . , ki in the right to left order. For a vertex v, let
Tv denote the subtree rooted at v and let rv and lv denote the smallest and largest indices of leaves in Tv

(formally if v is the jth node from the right on level i, then lv = jkt−i and rv = (j − 1)kt−i + 1).
We add the following additional edges to obtain G(δ). For each internal vertex v, we add an edge

from the leaf lv to v (these are light dotted edges in Figure 2). All these edges also have cost 0. Finally,
we add the path from the root, visiting the leaves in the order 1, . . . , kt (these edges are denoted by the
heavy dashed edges) and each of these edges has cost 1.

Consider the problem of constructing the minimum cost arborescence rooted at r, where each internal
vertex has an upper bound of b = (1−δ)k on the outdegree. Consider the fractional assignment to edges
where each (solid) edge corresponding to the tree T has value xe = 1− δ and every other edge has value
xe = δ. Observe that each vertex has 1 unit of flow from the root and the fractional out-degree of each
internal vertex is (1− δ)k and hence this a feasible LP solution with cost LP ∗ = δkt.

We now show that any integral solution I where the degree at each internal vertex is at most b/(1−
ε) + O(1) has cost at least (1− o(1))LP ∗/ε. The crucial observation is the following: Suppose a leaf �
does not have a path from root to itself in I using only T -edges, then the edge (�−1, �) must necessarily
lie in I . To see this, consider the unique path from r to � in T and let (u, v) be some edge along this
path that does not lie in I (such an edge must exist since � is unreachable from r using T -edges). Let L
denote the set of leaves {�, . . . , lv}, and let Sv denote the set of all nodes in Tv from which some vertex
in L can be reached using T -edges. We claim that the (thick) edge (� − 1, �) is only edge in I entering
the set Sv . Indeed, no T -edge enters Sv since (u, v) /∈ I , similarly by construction of the graph G(δ)
only one thick edge (�− 1, �) enters Sv . Moreover, no dotted line enters Sv since such edge must be of
the form (�′, w) where �′ is a leaf not in Sv and hence �′ ∈ {rv, . . . , � − 1} and w ∈ Sv. Now by the
construction of dotted edges in G(δ) this means that �′ = �w, and hence �w ∈ {rv, . . . , � − 1}. But the
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only leaves reachable by T -edges from w have indices at most �w which is at most � − 1; this implies
that none of the leaves in L can be reached by w which contradicts that w ∈ Sv . Thus, (� − 1, �) is
unique edge entering Sv and must necessarily lie in I .

To finish the proof, consider the solution I where each internal vertex has degree at most b/(1− ε)+
O(1) = (1−δ)k/(1−ε)+O(1) = (1−(εc/(1−ε)))k+O(1) which is at most (1−δc+1)k.. Thus the total
number of leaves that have a path from root r using T -edges is at most (1−δc+1)tkt ≤ (δ/2)ckt < εckt.
Thus by the above claim, at least (1− εc)kt cost 1 edges must lie in I , which implies that the total cost
is at least (1 − εc)kt = ((1 − εc)LP ∗)/δ = (1 − εc)LP ∗/(ε + εc) ≥ ((1 − 2εc−1)LP ∗/ε). Since c is
arbitrarily large, this implies the result.

�

As a corollary of this theorem, we see that in order to achieve a purely additive O(1) guarantee on
the degree using the LP, the cost would have to be violated by a factor at least Ω(log n), where n is the
number of vertices in the graph.

5 General connectivity requirements with costs

We work with the following linear relaxation (DLP ) in each iteration. Let F ⊆ E denote the set of
edges that have been fixed to value 1, A ⊆ V the vertices for which there is an in-degree bound, and
B ⊆ V the vertices for which there is an out-degree bound at some generic iteration. This section proves
Theorem 5.

min
∑

e∈E\F cexe

s.t.
x(δ−(S)) ≥ f(S)− |δ−F (S)| ∀S ⊆ V
x(δ+(v)) ≤ bv − (1− ε)|δ+

F (v)| ∀v ∈ B
P (E,F,A,B) x(δ−(v)) ≤ av − (1− ε)|δ−F (v)| ∀v ∈ A

xe ≤ 1 ∀e ∈ E \ F
xe ≥ 0 ∀e ∈ E \ F

In any iteration, let x denote an optimal basic feasible solution, and let E′ = E \ F . The algorithm
is similar to the one for minimum cost arborescence with bounded degrees. It works with a parameter
0 < ε ≤ 1/2 and performs one of the following steps in each iteration where E′ �= ∅:

1. If there is an edge e ∈ E′ with xe = 0, set E ← E \ {e}.
2. If there is an edge e ∈ E′ with xe ≥ 1− ε, set F ← F ∪ {e}.
3. If there is an edge e = (u, v) ∈ E′ with u /∈ B and v /∈ A and xe ≥ ε, set F ← F ∪ {(u, v)}.
4. If there is a vertex v ∈ B with strictly less than bv − (1− ε)|δ+

F (v)|+ 5 support edges leaving it,
set B ← B − {v}.

5. If there is a vertex v ∈ A with strictly less than av − (1− ε)|δ−F (v)|+ 5 support edges entering it,
set A← A− {v}.

If at least one of these conditions holds at each iteration, the algorithm results in a solution satisfying the
connectivity requirement, of cost at most 1

ε times the optimal, while having degree at most � bv

1−ε� + 4
at each vertex v ∈ V . The rest of this section proves that one of the above conditions is always true.
In particular, we show that if none of the conditions (1)-(3) are satisfied, then at least one of (4) and
(5) must be true. We assume henceforth that none of (1)-(3) are satisfied. As in the previous section,
since conditions (1) and (2) do not hold: all the tight constraints in a basic feasible solution x come
from the cut-conditions and the degree constraints. Based on standard uncrossing arguments, we have
the following.
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Lemma 5 ([11]) For any basic solution x to (DLP ) with no variable fixed to 0 or 1, there exist sets
T ′ ⊆ A, T ′′ ⊆ B, and a laminar family L of subsets of V such that x is the unique solution to the linear
system:

x(δ−(v)) = av − (1− ε)|δ−F (v)| ∀v ∈ T ′

x(δ+(v)) = bv − (1− ε)|δ+
F (v)| ∀v ∈ T ′′

x(δ−(S)) = f(S)− |δ−F (S)| ∀S ∈ L
Furthermore, the following two conditions hold:

1. For every S ∈ L, f(S)− |δ−F (S)| ≥ 1 and integral.

2. The characteristic vectors {χδ−(S) | S ∈ L}∪{χδ−(v) | v ∈ T ′}∪{χδ+(v) | v ∈ T ′′} are linearly
independent; and

3. The size of the support |E′| = |T ′|+ |T ′′|+ |L|.
Let W = A ∪B. We now classify the various types of edges in the support into subsets E1, . . . , E5

just as in Section 3 with the addition: let E0 denote the set of edges (u, v) such that u /∈ B and v /∈ A.
Observe that the sets E0, E1, . . . , E5 are pairwise disjoint and that each edge in the support must lie

in one of the sets above, and hence E0, E1, . . . , E5 form a disjoint partition of E′. We use the same
notation, in particular definitions of Sp and Val, from Section 3.

Claim 4
2|L| < 2|E0|+ |E1|+ |E2|+ Val(E)−Val(E0) + 3|W |. (7)

We first see how this claim implies Theorem 5. Since |E| = |L|+ |T ′|+ |T ′′|, (7) implies that

2|E| < 2|E0|+ |E1|+ |E2|+ Val(E1) + Val(E2) + Val(E3) + Val(E4) + Val(E5)
+3|W |+ 2|T ′|+ 2|T ′′|

≤ 2|E0|+ |E1|+ |E2|+ Val(E1) + Val(E2) + Val(E3) + Val(E4) + Val(E5)
+3|W |+ 2|A|+ 2|B|

≤ 2|E0|+ |E1|+ |E2|+ Val(E1) + Val(E2) + Val(E3) + Val(E4) + Val(E5) + 5|A|+ 5|B|

The second step follows as |T ′| ≤ |A| and |T ′′| ≤ |B| and the third step follows as |W | ≤ |A| + |B|.
As |E| = |E0|+ |E1|+ |E2|+ |E3|+ |E4|+ |E5|, and as Sp(X) = |X| −Val(X), we obtain that

Sp(E1) + Sp(E2) + Sp(E3) + Sp(E4) + Sp(E5) + |E3|+ |E4|+ |E5| < 5|A|+ 5|B|.

As Sp(X) ≤ |X| for any subset of edges X , this implies that

Sp(E1) + Sp(E2) + 2Sp(E3) + 2Sp(E4) + Sp(E5) < 5|A|+ 5|B|

which implies Sp(A) + Sp(B) < 5(|A| + |B|) by inequality (4). This in turn implies that one of
conditions in steps 4 or 5 holds.

5.1 Token assignment: Proof of Claim 4

Consider the following token assignment scheme: We assign 2 tokens to each edge e = (u, v) ∈ E0. Of
these, 1+xe units lie at the head v, and 1−xe tokens lie in the middle (these will belong to the smallest
set in L that contains e). We assign 1 + xe tokens to each edge e ∈ E1 ∪ E2. For an edge (u, v) ∈ E1,
the 1 + xe tokens lie at the head v. For an edge (u, v) ∈ E2, 1 unit of token lies at u, and xe units lies at
the head v. The remaining edges e = (u, v) ∈ E3 ∪ E4 ∪ E5 have xe tokens, that are present at vertex
v. We also assign 3 tokens to each vertex in W .

We will show that these tokens can be redistributed to obtain at least 2 tokens for each node S ∈ L,
with at least one token to spare. We call a node S ∈ L marked if there is some vertex W ∩ S �= ∅;
otherwise S is called unmarked. Note that if S is an unmarked node, there is no edge of E′ is contained
in S. Also, for any tight set S, x(δ−(S)) ≥ 1 and is an integer. The assignment of tokens to nodes of L
proceeds using the following steps.
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1. Assignment to unmarked leaf nodes. Let S ∈ L be such a node. Since S is a tight set, we have
that x(δ−(S)) ≥ 1. Hence there are at least two edges of E′ entering S (as each edge has xe < 1).
Assign the tokens at the heads of these edge to S: note that since S is unmarked, these must be
edges of type E0 or E1 , and S receives at least 2 + x(δ−(S)) ≥ 3 tokens.

2. Assignment to unmarked non-leaf nodes. Let S ∈ L be such a node, and C1, · · · , Ct ⊂ S its
children. Let z = x(E′(V \ S, S \ ∪t

i=1Ci)) denote the total x-value entering S \ ∪t
i=1Ci from

outside S.
We first consider the case when z = 0. By linear independence it follows that

∑
i χδ−(Ci) �=

χδ−(S). By the integrality of connectivity requirements and since z = 0, it follows that (
∑

i x(δ−(Ci)))−
x(δ−(S)) ≥ 1. Consider the edges ∪t

i=1E
′(S \ Ci, Ci). They must lie in E0 and there must be at

least 3 such edges (as each has x-value strictly less than ε, which is at most 1/2), and hence they
contribute at least 2 tokens (this argument has been used earlier).
We now consider the case when z > 0. Note that edges in E′(V \ S, S \ ∪t

i=1Ci) lie either in
E0 or E1, thus if z > 0, then they contribute at least 1 + z tokens to S. Thus, if z ≥ 1, then
S obtains two tokens from them. Now, suppose that z < 1. By integrality of the tight cuts, it
follows that there is at least z amount of x-value in E′(S \ Ci, Ci). Since these are edges in E0,
we obtain a contribution of at least 1 − z middle tokens from them. Thus together S has at least
(1 + z) + (1− z) = 2 tokens.

3. Assignment to marked nodes. LetM ⊆ L denote the laminar family consisting of only marked
nodes. Call a node S ∈ M high-degree if it has at least 2 children inM; and low-degree if it has
exactly 1 child inM; all other nodes inM are leaf-nodes (no children). We now show how to
assign tokens to each of these nodes.

(a) High-degree nodes: Note that the number of high-degree nodes inM is strictly less than the
number of leaf-nodes inM. Arbitrarily assign each high-degree node inM two tokens from
a distinct W -vertex (in a distinct leaf node ofM).

(b) Leaf-nodes: For each leaf node S inM we assign 1 token from some W -vertex contained
in it. For the remaining token, we argue as follows: If S is also a leaf in L, then S has at
x(δ−(S))) ≥ 1 and hence S received at least 1 unit of tokens from edges in δ−(S) (since
every edge carries at least xe tokens at its head). If S is not a leaf in L, then consider the
subtree rooted S. This subtree has at least one unmarked node. Since each unmarked node at
at least 3 tokens thus far, S borrows one token arbitrarily from one of these nodes. Note that
an unmarked node cannot be used twice to borrow a token.
Note that each W -vertex has been charged at most 3 tokens so far.

(c) Low-degree marked nodes: Let S ∈M be such a node, and C ∈M be its unique child.
Suppose that W ∩ (S \ C) �= ∅, and w ∈ W ∩ (S \ C) be such a vertex. As no node ofM
contained in S \ C, S is the smallest set inM that contains w. Assign node S two tokens
from vertex w. Note that this vertex w cannot be charged by more than one such set S in this
step. Moreover, w could not have been used in the earlier charging to W -vertices since it is
not contained in any leaf node ofM.
Henceforth we assume that W ∩ (S \ C) = ∅. Let r denote the total number of unmarked
children of S in L (note that r is not the number all unmarked nodes contained in S \ C like
the previous sections). Consider the following cases:

i. r = 0. Let z = x(E′(V \ S, S \ C) denote the total x-value entering S \ C from
outside S. We first consider the case when z = 0. By linear independence it follows that
χδ−(C) �= χδ−(S). By the integrality of connectivity requirements and since z = 0, it
follows that x(δ−(C)) − x(δ−(S)) ≥ 1. Consider the edges E′(S \ C,C). They must
either lie in E0 or E2. If they all lie in E0 there must be at least 3 such edges, and hence
they contribute at least 2 tokens (this argument has been used earlier). If at least two
of them are E2 edges, we obtain the two tokens from them for S also as each of them
contributes 1 token to S. If exactly one of them is an E2 edge, then this has x-value
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strictly less than 1 − ε, hence we need at least two more edges from E0 to ensure that
x(δ−(C))− x(δ−(S)) ≥ 1. These edges provide the two tokens for S.
We now consider the case when z > 0. Note that edges in E′(V \ S, S \C) lie either in
E0 or E1, thus if z > 0, then they contribute at least 1 + z tokens to S. Thus, if z ≥ 1,
then S obtains two tokens from them. Now, suppose that z < 1. By integrality of the
tight cuts, it follows that at least z amount of x-value must also enter C from S \ C.
Since these are edges in either E0 or E2, we obtain a contribution of at least 1−z tokens
from them. Thus together S has at least (1 + z) + (1− z) = 2 tokens.

ii. r ≥ 2. Consider the unmarked leaf nodes in L contained in S \ C. Note that each of
them has been assigned at least 3 tokens thus far (they could not have given a token to
marked node in previous steps). S is assigned 2 tokens by borrowing 1 token each from
some two unmarked leaf nodes in S \ C (there are at least two since r ≥ 2).

iii. r = 1. Let D be the unmarked child of S. We first consider the simpler case when there
is an incoming edge e in S \ (C ∪D). Here, the edge e provides at least 1 token to S.
For the remaining token, we observe that the subtree rooted at D in L has at least one
unmarked leaf node (possibly D). This node has at least 3 tokens since they could not
have been used earlier in steps earlier. Thus S obtains at least 2 tokens overall in this
case.
Henceforth, we assume that all edges from V \ S enter C or D. Since S,C,D are all
tight, we have x(δ−(C)) + x(δ−(D)) − x(δ−(S)) ≥ 1. If x(δ−(D)) ≥ 2, then since
these are only E1 or E0 edges, D obtains at least 4 tokens that can be shared by S and
D. Similarly if x(δ−(D)) = 0, then it must be the case that x(E′(S \ (C ∪D), C)) ≥ 1.
These edges must lie in either E0 or E2. If there are two or more E2 edges, then we
obtain at least 2 tokens. If there are no E2 edges, then all are E0 edges, hence there are
at least three of them and they contribute at least 2 tokens. Finally, if there is exactly one
E2 edge, then there must be at least 2 edges from E0 (since one E0 edge and one E2

cannot have total x-value of at least 1). This gives at least 2 tokens.
Henceforth we assume that x(δ−(D)) = 1. Let z be the total amount of flow entering
from V \ S to D. Note that 0 ≤ z ≤ 1. Also, it follows by integrality of connectivity
requirement for tight cuts that x(E′(S \C,C)) ≥ z and that x(E′(S \D,D)) = 1− z.
Suppose z < ε. We claim that S ∪D get at least 4 tokens. Since z < ε, there must be
at least two edges from S \ D to D (since the x-value of each edge is strictly less than
max(ε, 1 − ε) = 1 − ε, these edges provide at least 2 + z tokens. Moreover the edges
E′(V \ S,D) provide at least 1 + x(E′(V \ S,D)) = 1 + 1− z = 2− z tokens. Thus
S and D together have at least 4 tokens.
Now if z ≥ ε, we have that x(E′(S \C,C)) = z ≥ ε and hence |E′(S \C,C)| consists
of at least two E0 edges or at least one E2 edge. Thus we obtain at least 1 token from
them.
Also the edges from S \ D to D (these must be edges in E0 or E1) contribute |E′(S \
D,D)|+ x(E′(S \D,D)) ≥ 1 + 1− z = 2− z and edges from V \ S to D contribute
|E′(V \ S,D)| + x(E′(V \ S,D)) = 1 + z tokens. Thus S and D together receive at
least 4 tokens.

Thus we have shown that (5) holds which implies the result.

6 Generalized minimum crossing spanning tree problem

Given an undirected graph G = (V,E), costs ce ≥ 0 on the edges e ∈ E, subsets of edges Ei ⊆ E for
1 ≤ i ≤ k, and integers bi ≥ 0 for 1 ≤ i ≤ k, the generalized minimum crossing spanning tree problem
(MCSP) is to find a minimum cost spanning tree (if it exists) in G that contains at most bi edges from set
Ei for 1 ≤ i ≤ k. We prove theorem 6 which gives an additive +(r − 1) approximation with respect to
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crossing, and achieves optimum cost.
Our result significantly improves on the results of Bilò et al. [1]. They consider an unweighted

instance in which all bi are equal to b and find a spanning tree which contains at most O(b · r log n)
edges in the set Ei for 1 ≤ i ≤ k.

Our result contains several interesting special cases.

1. r = 1. If the sets Ei are pairwise-disjoint, the MCSP problem can be cast as finding a minimum
cost basis in the graphic matroid for G that is independent in a partition matroid, in which, an
independent set must have at most bi elements from set Ei. This problem is an instance of the
matroid intersection problem which is known to be solvable in polynomial time [4, 13].

2. r = 2. If Ei denote the set of edges incident to vertex i and bi denote the degree bound on vertex
i, we get the bounded degree minimum spanning tree problem. Our algorithm matches the +1
bounds recently obtained by Singh and Lau [16].

6.1 The algorithm

Our algorithm has several iterations. Consider a general iteration. With a slight abuse of notation we use
E to denote the candidate edges which are not yet discarded, let F ⊆ E denote the set of edges that we
have already picked in our solution, and let W ⊆ {i | 1 ≤ i ≤ k} denote the crossing constraints that
we have not yet dropped. In the beginning E is the entire edge-set, F = ∅, and W = {i | 1 ≤ i ≤ k}. In
a general iteration, we work with the following linear relaxation with variables xe for e ∈ E′ = E \ F .

min
∑

e∈E′ ce · xe

s.t.
x(E′(V )) = V − 1− |F (V )|
x(E′(S)) ≤ S − 1− |F (S)| ∀S : 2 ≤ |S| ≤ |V | − 1

P (E,F,W ) : x(E′ ∩ Ei) ≤ bi − |F ∩ Ei| ∀i ∈W
xe ≤ 1 ∀e ∈ E′ = E − F
xe ≥ 0 ∀e ∈ E′ = E − F

where H(S) (for H ⊆ E and S ⊆ V ) is the set of edges in H with both end-points in S. In this
iteration, the algorithm computes a basic feasible solution x to P (E,F,W ) and performs one of the
following steps while E′ = E \ F �= ∅:

1. If there is an edge e ∈ E′ with xe = 0, set E = E \ {e}.
2. If there is an edge e ∈ E′ with xe = 1, set F ← F ∪ {e}.
3. If for some i ∈W , |E′ ∩Ei| ≤ bi − |F ∩Ei|+ r − 1, or equivalently |E ∩Ei| ≤ bi + r − 1, set

W ←W − {i}.
It is clear that if the algorithm terminates, it terminates with a set F which is a spanning tree with cost at
most the optimum and which contains at most bi + r − 1 edges from Ei for 1 ≤ i ≤ k.

We now argue that in each iteration, one of the above steps is always applicable. The following
lemma follows by uncrossing.

Lemma 6 ( [7, 16]) For any basic solution x to P (E,F,W ), there exists a set T ⊆ W and a laminar
family L of subsets of V such that x is the unique solution to the linear system:

x(E′(S)) = |S| − 1− |F (S)| ∀S ∈ L
x(E′ ∩ Ei) = bi − |F ∩ Ei| ∀i ∈ T

Furthermore, (|E′|-dimensional) characteristic vectors {χE′(S) | S ∈ L} ∪ {χE′∩Ei
| i ∈ T} are

linearly independent, and the size of the support |E′| = |T |+ |L|.
Assume that the conditions in steps (1) and (2) do not hold. The key component of our proof is the

following lemma which is proved by a simple counting argument.
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Claim 5 We have |L| ≤ x(E′(V )). Moreover the equality holds if and only if each edge in E′ is
contained in some inclusion-wise maximal set S ∈ L.

Proof : Suppose each edge e ∈ E′ is given xe tokens. These tokens are assigned to the sets S ∈ L as
follows. Edge e is said to belong to S if S is the inclusion-wise minimal set in L that contains e. If e
belongs to S, then xe tokens are assigned to S. We argue that each set in the laminar family is assigned
a total of unit tokens, thereby proving the claim.

Since xe > 0 for all e ∈ E′, each set S ∈ L has the right-hand-side |S| − 1 − |F (S)| at least
1, and hence x(E′(S)) ≥ 1. This gives every leaf set S ∈ L at least a total of unit tokens. Now
consider a non-leaf set S ∈ L with t children C1, · · · , Ct ∈ L. Now χE′(S) =

∑t
j=1 χE′(Cj) +∑

{χe | e ∈ E′ belongs to S}. Since χE′(S) ∪ {χE′(Cj)}tj=1 is a linearly independent set, we have
{e | e ∈ E′ belongs to S} �= ∅. So, the right-hand-side |S| − 1 − |F (S)| of the constraint for S is at
least 1 more than the sum of the right-hand-sides of constraints of {Cj}tj=1. Thus S gets at least a total
of unit tokens. �

Now for i ∈W , define Sp(i) =
∑

e∈E′∩Ei
(1−xe) = |E′∩Ei|−x(E′∩Ei) and for e ∈ E′, define

r(e) = |{i ∈W | e ∈ E′ ∩ Ei}|.
Lemma 7 We have ∑

i∈W

Sp(i) < r|W |.

Before proving Lemma 7, we argue that it directly implies that the condition in step (3) holds. Lemma 7
implies that there exists i ∈W such that Sp(i) < r. Since x(E′ ∩ Ei) ≤ bi − |F ∩ Ei|, we have

|E′ ∩ Ei| = Sp(i) + x(E′ ∩ Ei) < r + bi − |F ∩ Ei|.

Since |E′ ∩Ei| and |F ∩Ei| are integers, we have |E′ ∩Ei| ≤ r + bi− |F ∩Ei| − 1, i.e., the condition
in step (3) holds for i.

Proof of Lemma 7. Lemma 6 and Claim 5 imply
∑

e∈E′(1 − xe) = |E′| − x(E′(V )) = |L| + |T | −
x(E′(V )) ≤ |T | = |W | − |W \ T |. Therefore

∑

i∈W

Sp(i) =
∑

e∈E′
r(e)(1− xe) = r

∑

e∈E′
(1− xe)−

∑

e∈E′
(r − r(e))(1− xe)

≤ r|W | − r|W \ T | −
∑

e∈E′
(r − r(e))(1− xe).

Moreover, the equality holds if and only if |L| = x(E′(V )). Thus if |L| < x(E′(V )) or if r|W \ T | +∑
e∈E′(r − r(e))(1− xe) > 0, then we obtain that Sp(W ) < r|W | as desired. Assume on the contrary

that this is not the case. This combined with the fact that xe < 1 for all e ∈ E′, we have r(e) = r
for all e ∈ E′, W = T , and by Claim 5 (equality condition)

∑p
i=1 χE′(Si) = χE′ , where S1, . . . , Sp

are the inclusion-wise maximal sets in L. Also since r(e) = r for each e ∈ E′ and W = T , we have∑
i∈T χE′∩Ei

= r · χE′ . This implies that r ·
∑p

i=1 χE′(Si) =
∑

i∈T χE′∩Ei
, contradicting to the fact

that the characteristic vectors {χE′(S) | S ∈ L} ∪ {χE′∩Ei
| i ∈ T} are linearly independent. Thus the

proof is complete.
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The techniques developed in this paper can also be used to solve connectivity problems on undi-
rected graphs with costs. For example, in the case when the connectivity requirement is specified by a
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0-1 proper function, we can give O(1) additive approximations with respect to the degree, and O(1) mul-
tiplicative approximation with respect to cost. However, we have recently learnt that Lau and Singh [12]
have independently obtained similar results for this problem, and hence we do not present them in this
paper. We have also learnt that Lau and Singh [12] have obtained results for a generalization of the
MCSP problem considered in Section 6. In particular they consider the problem of computing a mini-
mum cost basis in a matroid (V, I) subject to ‘degree bounds’ on a family of subsets of V , {Si, bi}ki=1

(where Si ⊆ V , bi ∈ Z
+ for all i); for this problem they obtain an additive +r guarantee on the degree

constraints while achieving optimal cost, where r is the maximum number of sets among {Si}ki=1 that
any element of V appears in.
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