
RC24361 (W0709-128) September 28, 2007
Computer Science

IBM Research Report

Almost Peer-to-Peer Clock Synchronization

Ahmed Sobeih
University of Illinois at Urbana-Champaign

Department of Computer Science
Urbana, IL 61801 USA

Michel Hack, Zhen Liu, Li Zhang
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598 USA

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Almost Peer-to-Peer Clock Synchronization

Ahmed Sobeih1, Michel Hack2, Zhen Liu2, and Li Zhang2

1University of Illinois at Urbana-Champaign 2IBM T.J. Watson Research Center
Department of Computer Science 19 Skyline Drive

Urbana, IL 61801 USA Hawthorne, NY 10532 USA
sobeih@uiuc.edu {hack,zhenl,zhangli}@us.ibm.com

“All animals are equal, but some animals are more equal than others.” George Orwell (1945)

Abstract

In this paper, an almost peer-to-peer (AP2P) clock syn-
chronization protocol is proposed. AP2P is almost peer-to-
peer in the sense that it provides the desirable features of
a purely hierarchical (client/server) clock synchronization
protocol while avoiding the undesirable consequences of a
purely peer-to-peer one. In AP2P, a unique node is elected
as a leader in a distributed manner. Each non-leader node
adjusts its clock rate based on message exchanges with its
neighbors, taking into consideration that neighbors that are
closer to the leader have more effect on the adjustment than
the neighbors that are further away from the leader. We
compare the performance of AP2P with that of the Server
Time Protocol (STP), which is a purely hierarchical clock
synchronization protocol. Simulation results, which have
been conducted on several network topologies, have shown
that AP2P can provide a clock synchronization accuracy
that is indistinguishable from that of STP. Furthermore,
AP2P is more fault-tolerant because it can recover from
certain types of failures that STP cannot recover from.

1. Introduction

Clock synchronization is important for a wide variety of
applications, e.g. banking transactions, log management,
bandwidth usage and network fault detection. For instance,
Cisco routers use the Network Time Protocol (NTP) [15]
to compare time logs, which is essential for tracking se-
curity incidents, analyzing faults and troubleshooting [1].
In multi-hop wireless ad hoc networks, clock synchroniza-
tion is necessary for several operations, such as power man-

agement and frequency hopping in the IEEE 802.11 stan-
dard [3]. In wireless sensor networks, information dissemi-
nation paradigms (e.g., [11]) require time synchronization.

In this paper, clock synchronization refers to the mech-
anisms and protocols used to maintain mutually consistent
time-of-day clocks in a coordinated network of computers.
The intent is to provide the illusion of a global time-of-day
clock that is strictly monotonic as observed by any node in
the network: if, at time T1, node A asks node B to report its
current time T2, and the reply is received at node A at time
T3, then we would like to guarantee that T1 < T2 < T3.
(For this concept to make physical sense, we shall rule out
interplanetary networks with nodes moving about at rela-
tivistic speeds.)1

The consistency requirement stated above is stronger
than the need to provide the “correct” time to within some
specified error bounds, since the inequalities are supposed
to be strict. What really matters is not the offset of each
clock to true time, but whether the relative offset between
any pair of clocks is smaller than the minimum commu-
nication delay between the corresponding nodes: if that is
achieved, programs will not be able to observe inconsistent
timestamps.

The consistency requirement is in fact so strong that it is
difficult to guarantee (i.e. prove that it holds, given reason-
able constraints on external steering and delay variance).
When data integrity depends on it, a separate mechanism
is needed to enforce consistency. For example, IBM’s Mes-
sage Time Ordering facility (MTOF [2]) delays delivery of a
message (if necessary) until the receiver’s clock has caught
up with the sender’s timestamp. The goal of clock synchro-
nization is then to avoid triggering MTOF (which does have

1If the resolution is high enough, relativistic effects can in fact be ob-
served for practical earthbound systems: the Global Positioning System
(GPS) takes these effects into account.

an effect on performance) as much as possible.
One solution is for every node to get its time from a

single source, using stable delay-compensated links (after
an initial tuning sequence, programmable delay lines are
adjusted so that timing pulses arrive at each node within
microseconds of each other): this is the Sysplex Timer R©
mechanism used in IBM’s zSeries Parallel Sysplex R©. This
solution is fairly expensive, and does not scale well to geo-
graphically distributed clusters.

Another solution would be for each node to be attached
to a GPS receiver. For a fixed location, with at least four
Global Positioning System satellites in view for a sufficient
settling period, microsecond accuracy can be achieved. Un-
fortunately signal outages are common, and it does not take
long for ordinary oscillators to drift by tens of microsec-
onds.

A distributed way to achieve mutual synchronization
is to use timestamped message exchanges over the same
(or better) links than are used for communication. The
usual four-timestamp method of NTP (Network Time Proto-
col [15]) permits the offset between sender and receiver to
be computed, assuming symmetric forward and backward
communication delays. One node can then steer its clock
to absorb any offset (adjust to its clock source). The lit-
erature ([4, 15]) warns sternly against clock dependency
loops, however, which is why most synchronization net-
works use a stratified approach starting from a Primary Ref-
erence Clock (called “Stratum-1”), using “Peer” mode at
best to obtain a smoother clock in an environment with high
link delay variance. Indeed, one can construct pathological
cases of clock dependency loops where each clock thinks
it is slower than its neighbor (it caught its neighbor during
overshoot of a correction phase to react to an earlier per-
ceived slowness), with the net effect that the entire network
“takes off” (at least until a saturation point is reached).

Stratified systems require explicit configuration, how-
ever, at least with respect to designating the Stratum-1. In
order to deal with node failures, a recovery mechanism (typ-
ically also preconfigured) must be in place to avoid global
failure. In a Peer-to-Peer system, as long as the network re-
mains connected, surviving nodes can still synchronize with
each other. Does this resilience always come at the expense
of possible instability problems?

In this paper we propose an approach that retains the re-
silience of a fully distributed peer-to-peer synchronization
network with the stability guarantees of a hierarchical syn-
chronization network.

Section 2 describes the hierarchical system STP that
serves as our reference. Section 3 presents our alternative,
the Almost Peer-to-Peer (AP2P) clock synchronization pro-
tocol. Section 4 evaluates the performance of AP2P relative
to STP. Related work is discussed in Section 5. Section 6
concludes the paper.

2. Server Time Protocol (STP) – a hierarchical
protocol

The successor to IBM’s Sysplex Timer R© solution is
the Server Time Protocol (STP) [16], announced in July
2005. It uses a stratified message-based mechanism simi-
lar to NTP, using Coupling-Facility links (the links used in
a zSeries Parallel Sysplex R©). Clock steering is available
at the zSeries hardware level, and sophisticated filtering al-
gorithms are used to extract relative clock offset and skew,
from which a clock steering rate is derived. Recoverabil-
ity is achieved by pre-configuring an alternate Stratum-1
server, and enhanced by a so-called “triad” configuration
where a third server is designated as an arbiter that can as-
sist in discriminating link failures from node failures, so as
to permit a swift Stratum-1 takeover when warranted.

Unlike NTP, the communication paradigm is that of a
direct response to a command. In STP, a node periodically
exchanges timing packets with each of its neighbors, i.e. the
other nodes that it is directly connected to. Each exchange
provides a set of four timestamps, the first (A:sent) and last
(A:rcvd) derived from the local clock, and the middle two
(B:rcvd and B:sent) derived from the remote clock. Round-
trip delay and Offset samples are derived from this, but un-
like NTP, the reported values are based on filtering applied
to a sliding window of recent exchanges, using an algorithm
based on the Convex Hull method described in [23]. This
also provides a good estimate of the skew between nodes A
and B.

A clock selection algorithm selects exactly one of the at-
tached servers to be the clock source, taking stratum into
account, so as to eliminate clock dependency loops. From
the skew and offset relative to the clock source, a node com-
putes a steering rate adjustment so as to steer the local clock
towards agreement with the clock source.

3. Almost Peer-to-Peer (AP2P) clock synchro-
nization

In contrast to the hierarchical approach of STP, we
propose the “Almost Peer-to-Peer” clock synchronization
mechanism, which we will call AP2P for short. We assume
that each node, n, has a unique numeric ID, IDn. We also
assume that each node knows the set of its neighbors, Gn;
i.e., the other nodes that it is directly connected to. A node
does not need to know the entire network topology. We do
however assume that the network is connected.

As in STP, each node periodically exchanges timing
packets with its immediate neighbors, from which it obtains
the four timestamps and four other items, described below.
Offset and Skew are determined by clock filtering, but un-
like STP, the steering correction takes all neighbors into ac-
count (like Peer-to-Peer), but not necessarily uniformly, and

there is a specific difference from pure Peer-to-Peer (hence
“Almost”): A node which considers itself to be the Leader
does not adjust its clock rate.

Leadership election is therefore a critical component of
AP2P. It is however quite different from traditional Lead-
ership Election ([9, 14, 21]) because transient states with
no Leader, or with more than one, are benign (as long as
they don’t last too long). The main difference is the fact
that, in AP2P, it is not required that everybody should know
that everybody knows the new leader. This greatly reduces
the complexity of the algorithm, and completely avoids the
non-linear communication overhead in many of the tradi-
tional mechanisms.

Synchronization per se (e.g. clock steering, sampling
interval selection to achieve desired synchronization accu-
racy) is not addressed in great detail here, as it would be the
same as in STP (see Section 3.2).

3.1. Leader election mechanism

Exactly one of the nodes is the correct leader. In the
steady-state case, all of the nodes agree on the identity of
the unique correct leader. Transient states may exist where
either (i) only a subset of the nodes agree on the identity of
the unique correct leader, or (ii) the “old” correct leader has
failed, and no node has taken over the leadership yet. Note
that link failures, which do not disconnect the leader from
the rest of the network, do not lead to transient states (see
Section 3.3).

In what follows, the t, t′, n or p in “time t”, “node n”, or
“packet p” etc. are just labels to denote specific entities, not
variables or numeric indices.

A leader plays a role that is similar to a stratum-1 node in
STP in the sense that it does not adjust its clock rate based
on the timing message exchanges. The other nodes adjust
their clock rates in order to remain as synchronized as pos-
sible; this is described in Section 3.2.

Let CL(t) denote the correct leader at time t. Each node,
n, maintains the following four fields at time t:

1. Ln(t): the ID of the node which n thinks is the leader
at time t. Note that n considers itself a leader if and
only if Ln(t) = IDn, and n knows the identity of the
correct leader if and only if Ln(t) = CL(t).

2. seqn(t): a sequence number for Ln(t). It indicates
how “up-to-date” the leadership information Ln(t) is.

3. dn(t): the shortest distance (in terms of the number of
links) from Ln(t). If n considers itself a leader (i.e.,
Ln(t) = IDn), then dn(t) = 0. (This field is not used
for leader election, but is used in the clock synchro-
nization mechanism explained in Section 3.2).

4. stampn(t): the current local timestamp inserted by
Ln(t) in its outgoing Timing packets, according to

Ln(t)’s clock. (This field is not used for leader elec-
tion, but is used in recovery from node and link failures
as will be explained in Section 3.3).

Each timing packet, p, identifies its sender, sender(p),
and carries < Lp, seqp, dp, stampp > which is a copy of
the corresponding four-tuple stored at sender(p) at the time
the packet is sent. If the sender considers itself to be the
leader, it refreshes its stamp from its local Logical Clock
before copying it to stampp.

The initial values of the sequence numbers (i.e., ∀i ∈
N, seqi(t0), where N is the set of nodes and t0 is the system
initialization time) can be either chosen randomly from a
certain domain of valid sequence numbers or configured by
a system administrator. We assume that initially at least one
node considers itself a leader (i.e., ∃i ∈ N,Li(t0) = IDi).
A node, i, which does not initially consider itself a leader,
sets its Li(t0) to ∞ (practically, any value that is guaran-
teed to be larger than any valid node ID) and its seqi(t0) to
−∞ (practically, any value that is guaranteed to be smaller
than any valid sequence number). Afterwards, Li(t) and
seqi(t) are updated in only two cases: (1) receiving an in-
coming packet (this case is covered in this section), and (2)
recovering from node failures (this case will be covered in
Section 3.3).

The correct leader CL(t) at time t is: CL(t) = Li∗(t),
where i∗ = arg maxi∈Nseqi(t). In other words, the high-
est sequence number “wins”, and the unique node IDs are
used as tie-breakers to assure global uniqueness. Given that
nodes are assumed to exchange timing packets on a regu-
lar basis, and that each timing packet includes the fixed-
size (four-item) information used for leader determination,
a simple algorithm permits all nodes to end up agreeing
on a common leader from any starting condition that in-
cludes at least one leader. There is no specific “election”
phase – leadership determination is an ongoing distributed
process, so it can quickly react to any changes. Procedure
HandleTimingPacket(p) (shown in Figure 1) runs when-
ever a node n receives a timing packet p from a neigh-
bor sender(p). The node will compute a new four-tuple
< Ln(t′), seqn(t′), dn(t′), stampn(t′) > from the current
four-tuple < Ln(t), seqn(t), dn(t), stampn(t) > and the
four-tuple included in the packet < Lp, seqp, dp, stampp >

(sent by sender(p)).
Figure 1 gives a detailed description for procedure Han-

dleTimingPacket(p). The first part of HandleTiming-
Packet(p) implements the propagation of leadership infor-
mation: if the packet’s sequence number is larger than the
node’s current sequence number, or if the numbers are equal
but the packet’s leader ID is lower than the node’s recorded
leader ID, the packet’s sequence number and leader ID are
accepted as the new values to be recorded at this node. It is
important to note that a node does not voluntarily claim that
another node is the leader.

Procedure HandleTimingPacket(p) {
/* Part 1 – update Leader info */
if (seqp > seqn(t)) { Ln(t′) = Lp; seqn(t′) = seqp; }
else if (seqp == seqn(t)) { Ln(t′) = min(Ln(t), Lp);

seqn(t′) = seqn(t); }
else { Ln(t′) = Ln(t); seqn(t′) = seqn(t); }

/* Part 2 – maintain timestamp */
if (Ln(t′) == IDn) { stampn(t′) = LogicalClockn(t′);

dn(t′) = 0; }
else if (Ln(t′) == sender(p)) { stampn(t′) = stampp;

dn(t′) = 1; }
else if (Ln(t′) == Lp) {

if (Ln(t′) == Ln(t)) {
if (stampp ≥ stampn(t)) { stampn(t′) = stampp;

dn(t′) = min(dn(t), dp + 1)); }
} else { stampn(t′) = stampp; dn(t′) = dp + 1; }

} else { stampn(t′) = stampn(t); dn(t′) = dn(t); }
}

Figure 1. Handling a Timing packet p by node
n.

Theorem 1: All the nodes in the network will eventually
agree on the identity of the unique correct leader.

Proof: Define f(t) as the number of nodes whose leader
ID is equal to the identity of the correct leader at time
t. We shall prove that this function is non-decreasing and
will reach |N |, the number of nodes in the timing network.
Specifically, f(t) = | { i ∈ N,Li(t) = CL(t) } |.

Note that 1 ≤ f(t) ≤ |N | (we assumed that initially
at least one node considers itself a leader). Exactly one
of those nodes that initially consider themselves as leaders
(namely the one with the largest sequence number and, in
case of ties, smallest leader ID) is the correct leader; hence,
initially there exists exactly one node, i∗ ∈ N , such that
Li∗(t0) = IDi∗ = CL(t0).

Every timing packet reception either increases f(t) or
keeps it constant. To see why, consider the following two
cases for a node n that has sent Timing Request packets
to all its neighbors, Gn, at time t and has received Timing
Response packets from all of them at time t′:

Case A: If neither n nor any of its neighbors has its
leader ID set to CL(t), then neither n nor any of its neigh-
bors will discover the identity of the correct leader after the
Timing message exchange. Hence, f(t) remains constant,
i.e. f(t′) = f(t).

Case B: If either n or at least one of its neighbors has its
leader ID set to CL(t), then there are two subcases:

Case B-1: If Ln(t) = CL(t), and k of n’s neighbors do
not know the identity of the correct leader, then all of the
k neighbors will set their leader IDs to CL(t) after they

receive the Timing Request packets from n; hence, f(t′) =
f(t) + k.

Case B-2: If Ln(t) 6= CL(t), and at least one of n’s
neighbors has its leader ID set to CL(t), then n will set its
leader ID to CL(t) after it receives the Timing Response
packet from that neighbor; hence, f(t′) = f(t) + 1.

Assuming that each node gets a chance to participate in
the leader election mechanism (this assumption is reason-
able because the leadership information is carried in the
Timing packets that nodes are exchanging periodically in
order to achieve clock synchronization), this ensures that
neither Case A nor Case B-1 with k = 0 will be the case
forever; hence, f(t) will increase until it eventually reaches
|N |. f(t) = |N | means that ∀i ∈ N,Li(t) = CL(t). Hence,
after f(t) = |N |, neither Case A nor Case B-2 may happen.
The only possible case will be Case B-1 with k = 0 (because
all of n’s neighbors already know the identity of the correct
leader). Therefore, once f(t) reaches |N |, f(t) will remain
constant. This completes the proof. �

It should be mentioned that using sequence numbers
gives system administrators the ability to pre-determine the
leader of a network (e.g., because this node has access to
a good external time reference). A system administrator
simply needs to assign this node a sequence number that is
strictly larger than the sequence number of any other node
in the network, and configure this node to initially consider
itself a leader. (We make use of this nice feature in some
of our experimental results in Section 4.) Similarly, in or-
der to prohibit a node from being the leader of a network,
a system administrator simply needs to assign this node a
sequence number that is strictly smaller than the sequence
number of at least one other node in the network.

To accelerate propagation of leadership change, a node
that just updated its recorded Leader ID will immediately
send a LEADER packet to each of its neighbors (instead
of waiting for the next scheduled timing exchange). Such
a packet p contains only its sender ID and the four lead-
ership information fields: < Lp, seqp, dp, stampp >. It
is processed just like any other packet with regard to this
information. System Initialization time counts as a change
in Leadership for those nodes that initially consider them-
selves to be a leader (there is at least one).

Theorem 2: Regardless of how many nodes initially
declare themselves as leaders, all the nodes in the net-
work will agree on the identity of the unique correct
leader after delay D × P from the system initialization
time t0, where D is the maximum shortest distance (in
terms of the number of links) from the correct leader to
any node, and P is the maximum propagation delay of
a link.

Proof: Recall that, regardless of how many nodes ini-
tially declare themselves as leaders, exactly one of them

(namely the one with the largest sequence number and, in
case of ties, smallest leader ID) is the correct leader. We
only need to consider the LEADER packets sent by this cor-
rect leader (identified as i∗ below).

After delay P from the time i∗ sends the LEADER
packet, all of the nodes that are direct neighbors of (i.e.,
one link away from) i∗ will have received the LEADER
packet. All of these direct neighbors will accept the lead-
ership information contained in the LEADER packet. This
is because i∗ has a larger sequence number (or, in case of
ties, a smaller leader ID) than that of any other node in the
network (that is the definition of the correct leader). Fur-
thermore, for each node j ∈ Gi∗ , node j’s leader ID will
change after handling the LEADER packet. This is because
j has no other way of previously knowing that i∗ is a leader
(recall that no node voluntarily claims that another node is
the leader). Hence, node j will forward a LEADER packet
to each of its neighbors.

After 2×P from the time i∗ sends the LEADER packet,
a similar argument can be stated for all the nodes whose
shortest distance (in terms of the number of links) from i∗

is 2. In general, after d × P , all the nodes whose shortest
distance from i∗ is d will agree on the identity of the correct
leader i∗. Hence, if D is the maximum shortest distance
from i∗ to any node, all the nodes in the network will agree
on the identity of the unique correct leader after D × P .
This completes the proof. �

Note that at t0 +D×P , ∀n ∈ N,Ln(t0 +D×P) = i∗;
hence, the forwarding of LEADER packets will stop be-
cause no node will have its leader ID changed after han-
dling a LEADER packet. In fact, it is easy to see that each
node will send a LEADER packet, declaring i∗ as a leader,
to each of its neighbors exactly once. Hence, the overhead
caused by broadcasting LEADER packets is insignificant.

It should also be noted that if LEADER packets are lost,
agreement on the identity of the unique correct leader will
only be delayed, but will eventually be achieved (as we
proved in Theorem 1) because leadership information is car-
ried in all Timing packets that are exchanged between the
nodes.

3.2. Clock synchronization mechanism

Node n sends a Timing Request packet to each of its
neighbors at regular intervals τ .2 Upon receiving a Tim-
ing Response packet from a neighbor, n runs the convex
hull filtering algorithm to compute a suggested change in its
steering rate, and records it in a small history array. It then
computes the total change in its steering rate as a weighted

2Recall that in STP, a node exchanges Timing packets with each of its
neighbors too. Therefore, given the same network topology and the same
outgoing message interval τ , the number of Timing packets in AP2P is the
same as that of STP.

average of the recent steering rate changes computed for
its neighbors. (If a neighbor does not reply after a rea-
sonable timeout, e.g. three times the estimated round-trip
delay (available from the filter computation), the steering
correction can be computed from the remaining informa-
tion, and the age of the current leadership information can
be checked.)

The weight assigned to each suggested steering rate
change depends on the distance d to leader (reported as dp in
a Timing Response packet p), and on whether the reported
Leader ID Lp agrees with the node’s own view thereof, Ln:
if not equal, a weight of zero is assigned (the information is
not believed), otherwise a weight of b−d is assigned, where
the base b ≥ 1 can be tuned to control the ratio between the
weight assigned to a closer node to that assigned to a further
node. In fact, an exponentially-weighted moving average is
used for each neighbor, so that more recent steering sugges-
tions have more effect than older ones.

3.3. Recovery from node and link failures

The most important type of node failure is the failure of
the current leader. In this case, another node has to take over
the leadership by becoming the new leader. Furthermore, it
would be better if one of the nodes that were direct neigh-
bors of the “old” leader became the new leader: such a node
is most likely better synchronized with that leader’s clock
than nodes that are further away. This preference is not
absolute, however, since we would like to handle the case
where a dead leader’s direct neighbors fail before having as-
sumed leadership and propagated that information. Instead,
any node can be the new leader, with the nodes that were
closer to the old leader having a better chance of being the
new leader.

Similarly, the most important type of link failure is the
failure of a link that is connected to the current leader (but
not the last such link – we assume there is enough link re-
dundancy so that the timing network remains connected). In
this case, we do not want a leadership change because the
current leader is still operating and did not fail.

In summary, we need a mechanism that discovers a
leader’s failure and differentiates between a node failure
and a link failure. This is where the leader timestamps
recorded at each node (stampn) and transmitted in each
packet (stampp) come into play. Recall that this timestamp
is updated whenever a node that considers itself to be the
Leader sends out a Timing packet (Request or Response).

Now is the time to examine the second part of Handle-
TimingPacket(p) (Figure 1). When n is a direct neighbor
of the leader, it accepts the new timestamp, which is guar-
anteed to be more up-to-date than that stored at the node,
because it comes from the leader itself. Otherwise, if n is
not a direct neighbor of the leader, it needs first to check

whether the packet timestamp is more up-to-date than its
own. This check is only required if n did not change its
leader ID – if not, the source clocks are not comparable,
and the new timestamp should be accepted unconditionally
(it might be from a node about to become a new leader).

It is now easy to see that if a link that is connected to
the current leader failed, the leader timestamps can still be
propagated in the network as long as the current leader is
still connected to the network. We use these timestamps
to detect the current leader’s failure and trigger a leader-
ship change: If the leader timestamp, stampn(t), is not re-
freshed for dn(t) × T (where T is a parameter of the re-
covery mechanism), n considers the current leader to have
failed, and declares itself as a leader. Specifically, n sets
its leader ID Ln(t) to its own ID IDn, its dn(t) to 0, its
stampn(t) to its local logical clock, and increments its
seqn(t). Incrementing seqn(t) is required so that nodes ac-
cept the new leader’s information and discard that of the
old leader. Furthermore, n broadcasts a LEADER packet
declaring itself as a leader, as described in Section 3.1.

It should be noted that multiple nodes may detect the old
leader’s failure (almost) simultaneously and declare them-
selves as new leaders. In this case, the conflict will be re-
solved by the leader election mechanism explained in Sec-
tion 3.1. As we proved in Theorems 1 and 2, this mecha-
nism guarantees that all the nodes in the network will even-
tually agree, within a finite time, on the identity of a new
unique correct leader.

4. Performance evaluation results

The performance evaluation was carried out using the J-
Sim network simulator [12]. For the most part we use the
traditional measure of maximum offset from a common ref-
erence, but we do include an example of almost-perfect syn-
chronization, where MTOF could induce small extra delays
during sharp steering events.

Different network topologies were used in the experi-
ments. The link delays follow different distributions in-
cluding Pareto, log-Normal and Exponential distributions.
We have observed very similar patterns for different dis-
tributions. In this paper, we will only present results for
Pareto link delay distributions, with parameter k and mini-
mum value 10µs. Smaller values of k correspond to links
with larger delay variations. Details about all the other dis-
tributions can be found in a research report [19].

The most severe challenge to maintaining synchroniza-
tion is when the Leader changes its clock rate – e.g. to track
some external time reference. It may take a few seconds for
the network to adjust – we call this the “steering phase” of
the reaction (as opposed to the “normal phase”).

4.1. Clock synchronization accuracy

We use the maximum deviation between a clock and the
leader’s clock as the measure for the synchronization ac-
curacy. Because each clock in the AP2P mechanism is in-
fluenced by other neighboring clocks who may have less
up-to-date information from the leader, the synchronization
accuracy of AP2P may be worse compared with a hierarchi-
cal approach such as STP.

We first consider the network of a tree topology with
three strata, as shown in Figure 2-(a). Node 0 (the stratum-1
node in the STP case) starts as the leader. This is achieved
by initially assigning node 0 the largest sequence number in
the network, and making node 0 declare itself as a leader. It
changes its steering rate three times: from 0 ppm to 25 ppm
at time 50 second, to -25 ppm at time 100 second and to 0
ppm at time 150 second. A node exchanges 16 messages
per second with each of its neighbors. The steering phase
(see above) starts whenever node 0 changes its steering rate,
and lasts for five seconds thereafter.

Figure 2 shows the maximum deviation from the leader’s
clock for stratum 2 and 3 nodes. The horizontal axis k cor-
responds to the shape parameter for the Pareto distribution.
Each data point is the average of 10 simulation runs, using a
weight-decay base b = 2 (see Section 3.2). We observe that
the synchronization accuracy degrades for smaller k, which
corresponds to more variable link delays. Furthermore, in
normal operation phase, the accuracy is often within the
average link delay. In the steering phase, the accuracy is
roughly d times the average link delay for stratum-(d + 1)
nodes. This corresponds to the propagation delay of the
steering information from node 0 to the stratum 2 and 3
nodes. We observe that AP2P does not perform quite as
well as STP, but not by much. In later experiments, we
show that increasing the value of b resolves this difference
in performance between STP and AP2P.

4.2. Clock dependency loops

To evaluate the performance of various clock synchro-
nization mechanisms for more complex network topologies
with dependency loops, we first compare the performance
of AP2P with that of a purely peer-to-peer clock synchro-
nization protocol (which we call P2P for short). In P2P,
there is no leader, and each node assigns an equal weight
to each of its neighbors (base b = 1). We consider a set
of network topologies; each of which is a 2-D torus of |N |
nodes. In such networks, as |N | increases, the maximum
shortest distance (in terms of the number of links) between
two nodes increases but the number of neighbors of a node
remains constant.

A node, l, is chosen uniformly at random to be the leader
node in the case of AP2P. In both P2P and AP2P, we mea-

0

1

2

3 4

5

6

(a) A tree of 7 nodes.

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25

Ma
x |

Le
ad

er
’s

Lo
gic

al
Tim

e -
 Lo

gic
al

Tim
e|

(m
icr

os
ec

.)

k

2-STP
2-AP2P

3-STP
3-AP2P

(b) Steering phase.

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25

Ma
x |

Le
ad

er
’s

Lo
gic

al
Tim

e -
 Lo

gic
al

Tim
e|

(m
icr

os
ec

.)

k

2-STP
2-AP2P

3-STP
3-AP2P

(c) Normal operation phase.

Figure 2. Synchronization accuracy for STP and AP2P.

Table 1. Properties of the network topologies
generated using GT-ITM.

Number Number Maximum Average Network
Class of Nodes of Links Node Degree Node Degree Diameter

A 15 31 8 4.13 4
A 30 64 12 4.27 5
A 45 97 18 4.31 5
A 60 142 20 4.73 5
A 75 182 22 4.85 6
A 90 225 22 5.0 6
B 44 60 6 2.73 9
B 84 195 10 4.64 10
B 124 384 12 6.19 10
B 164 678 14 8.27 8
B 204 1033 17 10.13 8

sure the maximum deviation of the logical clocks of all
nodes from the logical clock of node l. As shown in Fig-
ure 3, the synchronization accuracy for P2P is almost two
times worse than AP2P. This result demonstrates the signif-
icant benefit for the leader election mechanism.

Next, we compare the performance of AP2P and STP for
larger size networks. We use the GT-ITM network topology
generator [22] to generate more realistic networks. We con-
sider two types of networks: non-hierarchical (which we
call Class A), and hierarchical (which we call Class B). Ta-
ble 1 shows the properties of these network topologies. The
node degree is the number of neighbors a node has. The av-
erage node degree is 2×|L|

|N | , where |L| is the number of links
and |N | is the number of nodes in the topology. The net-
work diameter is the maximum shortest distance (in terms
of the number of links) between any two nodes. Figure 4
shows the 204-node Class B network topology.

Figure 3 shows the maximum deviation from the leader’s
clock for the stratum-7 nodes for the Class B network
topologies in both the steering and normal operation phases.

Figure 4. 204-node Class B network topology.

The performance of AP2P with b = 2 is considerably worse
than that of STP but, as b increases, the effect of neighbors
further away from the leader diminishes, and accuracy im-
proves. In particular, in the steering phase, the performance
of AP2P with b = 100 is very close to that of STP, and in the
normal operation phase it is already indistinguishable from
that of STP for b = 10. Similar results were obtained at the
other strata and for Class A networks. This result justifies
the need for a weight assignment mechanism that strongly
favors neighbors that are closer to the leader.

4.3. Relative offset between pairs of clocks

We now study the maximum absolute relative offset be-
tween a pair of clocks versus the minimum communication
delay between the corresponding nodes. The network topol-
ogy is a grid of 9 nodes. A node, l, is chosen uniformly at
random to be the stratum-1 (or leader) node for STP (or

 0

 10

 20

 30

 40

 50

 60

 70

 50 100 150 200

M
ax

 |L
ea

de
r’s

 L
og

ica
l T

im
e

- L
og

ica
l T

im
e|

 (m
icr

os
ec

.)

|N|

P2P
AP2P

(a) Torus: P2P vs AP2P (Normal).

 0

 20

 40

 60

 80

 100

 120

 140

 40 60 80 100 120 140 160 180 200 220

M
ax

 |L
ea

de
r’s

 L
og

ica
l T

im
e

- L
og

ica
l T

im
e|

 (m
icr

os
ec

.)

|N|

STP
AP2P b=2
AP2P b=5

AP2P b=10
AP2P b=100

(b) Class B: AP2P vs STP (Steering).

 0

 20

 40

 60

 80

 100

 120

 140

 40 60 80 100 120 140 160 180 200 220

M
ax

 |L
ea

de
r’s

 L
og

ica
l T

im
e

- L
og

ica
l T

im
e|

 (m
icr

os
ec

.)

|N|

STP
AP2P b=2
AP2P b=5

AP2P b=10
AP2P b=100

(c) Class B: AP2P vs STP (Normal).

Figure 3. P2P, AP2P and STP accuracy comparisons.

0 1

3

2

4 5

6 7 8

(a) A 3×3 Grid Network.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 1.5 2 2.5 3 3.5 4

M
ax

 |R
ela

tiv
e

Of
fse

t|
(m

icr
os

ec
.)

d: Distance (in number of links)

STP
AP2P

10 d

(b) Steering phase.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 1.5 2 2.5 3 3.5 4

M
ax

 |R
ela

tiv
e

Of
fse

t|
(m

icr
os

ec
.)

d: Distance (in number of links)

STP
AP2P

10 d

(c) Normal operation phase.

Figure 5. Relative offset versus shortest distance between clocks.

AP2P).
Figure 5 shows the maximum absolute relative offset be-

tween a pair of clocks vs. the shortest distance (in number of
links) between the corresponding nodes. As shown in Fig-
ure 5-(c), in the normal operation phase, the maximum ab-
solute relative offset between a pair of clocks, whose nodes
are at a shortest distance of d links from each other, is less
than d ∗ 10µs. In the steering phase (Figure 5-(b)), this
is satisfied except for some immediate neighbors d = 1,
where AP2P just barely manages to avoid MTOF delays,
and STP is likely to incur occasional MTOF delays on the
order of 1 µs at the onset of external steering. (The moral
is to avoid abrupt external steering changes – the desired
effect can usually be achieved by a more gradual approach.)

4.4. Failure recovery

We compare the performance of STP with that of AP2P
in terms of recovery from node failures. The link failure
cases have same types of behavior. We consider the case
of two consecutive stratum-1 (or leader) node failures. The
network topology consists of eight nodes, as shown in Fig-
ure 6-(a), with a link between node 1 (the alternate stratum-
1 server in STP) and node 3 (the arbiter server in STP)

as required by the triad configuration in STP. At time 50
sec., node 0 fails, causing another node to become the new
stratum-1 (or leader) node, as shown in Figure 6-(b) and
Figure 6-(c). At time 100 sec., the new stratum-1 (or leader)
node fails. In the case of STP, the remaining nodes are not
able to maintain synchronization, as shown in Figure 6-(d),
although the network is still connected. In fact, the triad
configuration in STP cannot handle this type of two consec-
utive stratum-1 node failures. In contrast, the leader election
mechanism in AP2P enabled the remaining nodes to elect
a new leader and continue to maintain synchronization, as
shown in Figure 6-(e).

5. Related work

The clock synchronization problem has been extensively
studied before (e.g., [5, 6, 10, 15, 17, 18, 20]).

The Network Time Protocol (NTP) [15] is commonly
used on the Internet to enable the time of a computer to
be synchronized to another server or reference time source.
NTP has four modes of operation. In the client/server mode,
a client announces its willingness to be synchronized by, but
not to synchronize a peer, and sends periodic messages to

0 1

3

2

4 5

6 7

(a) A graph of 8 nodes in a triad
configuration.

-10

-5

 0

 5

 10

 45 50 55 60 65 70 75

Av
er

ag
e

Lo
gi

ca
l T

im
e

- L
og

ica
l T

im
e

(m
icr

os
ec

.)

Universal Time (sec.)

n0 n1 n2 n3 n4 n5 n6 n7

(b) STP: Stratum-1 node (node 0) fails
at time 50 sec.

-10

-5

 0

 5

 10

 45 50 55 60 65 70 75

Av
er

ag
e

Lo
gi

ca
l T

im
e

- L
og

ica
l T

im
e

(m
icr

os
ec

.)

Universal Time (sec.)

n0 n1 n2 n3 n4 n5 n6 n7

(c) AP2P: Leader node (node 0) fails at
time 50 sec.

-10

-5

 0

 5

 10

 95 100 105 110 115 120 125

Av
er

ag
e

Lo
gi

ca
l T

im
e

- L
og

ica
l T

im
e

(m
icr

os
ec

.)

Universal Time (sec.)

n0 n1 n2 n3 n4 n5 n6 n7

(d) STP: New stratum-1 node (node 1)
fails at time 100 sec.

-10

-5

 0

 5

 10

 95 100 105 110 115 120 125

Av
er

ag
e

Lo
gi

ca
l T

im
e

- L
og

ica
l T

im
e

(m
icr

os
ec

.)

Universal Time (sec.)

n0 n1 n2 n3 n4 n5 n6 n7

(e) AP2P: New leader node (node 1)
fails at time 100 sec.

Figure 6. STP vs AP2P (b=100) for two consecutive stratum-1 (or leader) node failures.

that peer, while a server announces its willingness to syn-
chronize, but not to be synchronized by its peer, and replies
to incoming client request messages. This mode of opera-
tion of NTP is similar to STP. In the symmetric active mode,
a node announces its willingness to synchronize and be syn-
chronized by a peer, and sends periodic messages to that
peer. In the symmetric passive mode, a node announces its
willingness to synchronize and be synchronized by a peer,
and replies to request messages received from a peer oper-
ating in the symmetric active mode. The symmetric modes
are similar to AP2P, with the major distinction that the syn-
chronization topology of an NTP-peer subnet must avoid
clock-dependency loops, whereas AP2P has no such restric-
tion.

Cristian’s probabilistic method for synchronizing
clocks [6] uses a strict hierarchical client/server approach,
in which a client polls a server for its time. By measuring
the round-trip delay of a message, the client can synchro-
nize its clock if the round-trip delays between the client
and the server are sufficiently short compared with the
required accuracy. Although Olson and Shin [17] present a
probabilistic clock synchronization scheme that considers
message delay uncertainties and does not depend on a

client/server hierarchy, they do not consider fault tolerance
and require that the system be organized into a number of
overlapping synchronization groups where the groups are
chosen so that there is a cycle which goes through each
node. This requirement may not allow for arbitrary network
topologies.

In [5], Attiya et al. present clock synchronization al-
gorithms for a large family of delay assumptions, but they
do not consider fault tolerance and assume that clocks are
perfect (i.e., do not drift). Although Ostrovsky and Patt-
Shamir [18] consider both message delay uncertainties and
clock drift, they do no not consider fault tolerance.

In [10], Gurewitz et al. propose the Classless Time Pro-
tocol (CTP), which is also a non-hierarchical peer-to-peer
approach for clock synchronization. In CTP, one node is
distinguished as a “reference time node”, and the goal is
to synchronize the nodes in the network with that refer-
ence node. This is achieved by having each node send
and receive probe packets (NTP packets) to and from its
neighbors and adjust its clock accordingly. The clock syn-
chronization problem is then formulated as an optimization
problem, whose input includes all the delay measurements,
and whose output is the set of clock adjustments for all the

nodes. Clock filtering is better than NTP, but CTP still only
considers offset correction, and the analysis assumes there
is no skew. In contrast, AP2P takes skew into account,
which leads to better synchronization.

Another peer-to-peer clock synchronization algorithm is
presented in [20]. The algorithm applies Bayesian estima-
tion of time errors, clock rate errors, and the communication
delay between the synchronizing nodes. A (virtual) tree net-
work topology is required, and the actual round-trip time
of a message is assumed to have a Gaussian distribution
(which may not be satisfied by most network connections).

Providing fault-tolerant clock synchronization is not
new. It has been discussed before in several papers (e.g., [7,
8,13]). Compared to a purely hierarchical (client/server) so-
lution such as STP, AP2P achieves superior fault tolerance
while maintaining the high synchronization accuracy.

6. Conclusion

We have presented AP2P, a novel clock synchronization
protocol. AP2P operates in an almost peer-to-peer manner
that combines the high synchronization accuracy of a purely
hierarchical (client/server) clock synchronization protocol,
and the robust fault-tolerance of a purely peer-to-peer one.
In AP2P, a unique node is elected as a leader in a distributed
manner. Each non-leader node adjusts its clock steering
rate based on message exchanges with its neighbors. AP2P
makes use of a weight assignment mechanism that gives
neighbors that are closer to the leader more effect on the
clock adjustment than those that are further away from the
leader.

Simulation results, which have been conducted on sev-
eral network topologies, have shown that AP2P, using an
appropriate weight assignment mechanism, can provide a
clock synchronization accuracy that is indistinguishable
from that of STP, a purely hierarchical protocol.

Commercial hierarchical timing networks (e.g., STP) do
provide fault tolerance, but at the cost of a complicated
pre-configured recovery mechanism, whereas in AP2P, the
recovery mechanism (namely, electing a new leader) does
not require pre-configuration. Furthermore, AP2P is more
fault-tolerant than STP because it can recover from certain
types of multiple failures that STP cannot recover from.

References

[1] Task 4–Using Syslog, NTP, and Modem Call Records to Iso-
late and Troubleshoot Faults.
http://www.cisco.com/univercd/cc/td/doc/cisintwk/intsolns/
dialsol/nmssol/syslog.htm.

[2] Method and system for providing a message-time-ordering
facility.
http://www.freshpatents.com/Method-and-system-
for-providing-a-message-time-ordering-facility-
dt20041118ptan20040230854.php.

[3] IEEE 802.11 Standard. Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
Specifications, 1999.

[4] J. E. Abate, E. W. Butterline, R. A. Carley, P. Greendyk,
A. M. Montenegro, C. D. Near, S. H. Richman, and G. P.
Zampetti. AT&T’s new approach to the synchronization of
telecommunication networks. IEEE Communications Mag-
azine, 27(4):35–45, April 1989.

[5] H. Attiya, A. Herzberg, and S. Rajsbaum. Optimal clock
synchronization under different delay assumptions. SIAM
Journal on Computing, 25(2):369–389, 1996.

[6] F. Cristian. Probabilistic clock synchronization. Distributed
Computing, 3(3):146–158, 1989.

[7] D. Dolev, J. Y. Halpern, B. Simons, and R. Strong. Dynamic
fault-tolerant clock synchronization. J. ACM, 42(1):143–
185, 1995.

[8] S. Dolev and J. L. Welch. Self-stabilizing clock synchro-
nization in the presence of Byzantine faults. J. ACM,
51(5):780–799, 2004.

[9] H. Garcia-Molina. Elections in a distributed computing sys-
tem. IEEE Transactions on Computers, January 1982.

[10] O. Gurewitz, I. Cidon, and M. Sidi. Network time synchro-
nization using clock offset optimization. In Proc. of IEEE
ICNP’03.

[11] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann,
and F. Silva. Directed diffusion for wireless sensor network-
ing. IEEE/ACM Transactions on Networking, 11(1):2–16,
February 2003.

[12] J-Sim. http://www.j-sim.org/.
[13] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks

in the presence of faults. J. ACM, 32(1):52–78, 1985.
[14] D. Malkhi, F. Oprea, and L. Zhou. Omega meets Paxos:

Leader election and stability without eventual timely links.
In Proc. of DISC’05.

[15] D. L. Mills. Network Time Protocol (version 3) speci-
fication, implementation and analysis. Network Working
Group, RFC 1305, March 1992.

[16] B. Ogden, J. Fadel, and B. White. IBM System z9 109
Technical Introduction. IBM Redbooks SG24-6669, July
2005.

[17] A. Olson and K. G. Shin. Probabilistic clock synchroniza-
tion in large distributed systems. IEEE Transactions on
Computers, 43(9):1106–1112, 1994.

[18] R. Ostrovsky and B. Patt-Shamir. Optimal and efficient
clock synchronization under drifting clocks. In Proc. of
ACM PODC’99.

[19] A. Sobeih, M. Hack, Z. Li, and Z. Liu. Almost peer-to-peer
clock synchronization. IBM Research Report, 2007.

[20] M. W. Soijer. Bayesian peer-to-peer clock synchroniza-
tion for accurate interval measurements. Unpublished.
http://soijer.de/features/clock/index.html.

[21] S. D. Stoller. Leader election in distributed systems with
crash failures. Technical Report TR481, Indiana University,
July 1997.

[22] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to
model an internetwork. In Proc. of IEEE INFOCOM’96.

[23] L. Zhang, Z. Liu, and C. Xia. Clock synchronization algo-
rithms for network measurements. In Proc. of IEEE INFO-
COM’02.

