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Abstract—We present an algorithm for sensor placement with
redundancy where each point in a 2-dimensional space is covered
by at least k sensors under the constraint that all the sensors
are located away from each other. We reduce the problem to
distributing points evenly on the surface of a torus manifold and
solve it computationally by minimizing the Riesz energy. We also
study the case where the coverings are incrementally constructed.
We illustrate our approach with numerical results and compare
it to similar approaches in dispersed dither mask halftoning.

I. INTRODUCTION

Ad-hoc sensor networks is an important area of study and
has generated many challenging problems. One such problem
is to determine how sensors are positioned to maximize
coverage [1]–[4]. In [4] the problem is addressed by using
a geometric approach. The basic framework is the following.
Given a 2-dimensional region R, sensors are placed within this
region. In the sequel, we choose R to be the 2-dimensional
plane. Each sensor a has a coverage region Rc(a) which is
a circular region with radius rc and centered at the sensor.
Without loss of generality we assume that rc = 1. The goal
is to place sensors in the 2-dimensional region (i.e. find a
covering) satisfying the following objectives:

1) The coverage regions of all the sensors cover the entire
region R, i.e. R ⊂ ∪aRc(a).

2) Each point in R is within the coverage region of at least
k sensors. This is called a k-covering of the region R.

3) All the sensors should be placed as much away from
each other as possible.

The first objective ensures that the entire region can be
sensed by the sensor network, i.e. each point is in the cov-
erage region of some sensor. The second objective provides
redundancy and data fusion capabilities by allowing each point
in R to be probed by multiple sensors (of possibly different
modalities). The third objective provides robustness in the
sense that if the sensors are located close to each other, then
a localized disruption can disable multiple sensors.

The optimal placement of the sensors for a 1-covering on
the plane is well known; it is the hexagonal lattice shown in
Fig. 1 [5].

In [4] a 2-covering is proposed by concatenating 2 optimal
1-coverings where there is a translation between the 2 1-
coverings (Fig. 2). This approach satisfies the third objective
listed above well. The question was raised how k-coverings
for higher k can be achieved that also satisfy this last objective
well.

Fig. 1. The hexagonal lattice is the optimal placement for a 1-covering on
the plane.
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Fig. 2. A 2-covering of the plane. Sensors corresponding to the same 1-
covering are labeled with the same number.

II. MINIMIZING RIESZ ENERGY

The purpose of this paper is to propose a solution for k-
coverings for k > 2. As in [4], we construct a k-covering
by concatenating k 1-coverings that are translations from
each other. Because of the lattice structure of the optimal 1-
covering, each sensor within the 1-covering can be assumed
to lie on the surface of a torus, i.e. the 1-covering is reduced
to a single sensor located on the surface of a torus. Since
this lattice is the same for all the 1-coverings, the tori for the
different 1-coverings can be thought of as the same object.
In this case, to satisfy objective 3, this problem is reduced to
dispersing k points on a torus. This problem has been studied



using the approach of Riesz energy minimization [6]. The s-
Riesz energy of a set of points {ai} is defined as

Es =
∑

i�=j

1
d(ai, aj)s

for a distance metric d. For s = 0, the Riesz energy is defined
as

E0 =
∑

i�=j

log
1

d(ai, aj)

By minimizing Es using optimizing algorithms, a distribution
of points is found which appear to satisfy criterion 3. In partic-
ular, for s → ∞, minimizing Es solves the best packing prob-
lem, i.e. the set of points such that dmin = mini�=j d(ai, aj) is
maximized. Algorithms have been developed for cases where
the number of points is in the thousands [6].

The distance metric d on the torus is induced by the distance
metric dR in the region R. Since each point on the torus
corresponds to a lattice in the plane, when unwrapped onto
R, d is the Hausdorff distance between two lattices, i.e. given
two hexagonal lattices {ai}, {bj}, d = mini,j dR(ai, bj).

III. EXPERIMENTAL RESULTS

By minimizing the 10-Riesz energy E10, we obtain con-
figurations of k-coverings for various values of k. In our
experiments, we choose dR(ai, bj) = ‖ai − bj‖2 to be the
Euclidean distance on the plane. For 2-coverings, we obtain
the same result as reported in [4], i.e. Fig. 2. The results for k-
coverings for various values of k > 2 are shown in Figs. 3-6.
In these figures, sensors labeled with the same number belong
to the same hexagonal 1-covering. Note that the union of all
the sensors can form a regular geometric structure, and in some
instances a hexagonal lattice. For instance, for 3-covering, 4-
covering and 7-covering, the union of all the sensors form
a hexagonal lattice, the optimal 1-covering. More generally,
there exists a set Q = {3, 4, 7, 13, 19, 25, · · ·} of integers
such that a hexagonal lattice can be partitioned into q disjoint
hexagonal lattices for each q ∈ Q.
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Fig. 3. A 3-covering of the plane with dmin = 1√
3

. Note that the union of
3 hexagonal 1-coverings forms a hexagonal covering.
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Fig. 4. A 4-covering of the plane with dmin = 1
2

. Note that the union of
the 4 hexagonal 1-coverings is again a hexagonal covering.
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Fig. 5. A 5-covering of the plane with dmin = 0.3937.
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Fig. 6. A 17-covering of the plane with dmin = 0.2198.



IV. SUBLATTICES OF THE HEXAGONAL LATTICE

As discussed in Section III, there exists a set Q of in-
tegers such that a hexagonal lattice can be partitioned into
q disjoint hexagonal sublattices for each q ∈ Q. Thus for
q ∈ Q, the hexagonal 1-covering can be partitioned into a
q-covering after rescaling the distances by a factor of

√
q.

By recursively partitioning this way (and scaling the sensor
locations appropriately), this shows that for k-coverings, where
k is of the form k = Πqi∈Qqmi

i , mi ∈ Z
+
0 , there is an

optimal configuration where the union of all the sensors form
a hexagonal lattice. In this case, dmin = 1√

k
. For any k′, if

k = Πqi∈Qqmi

i is the smallest integer of this form such that
k′ ≤ k, then a subset of the optimal k-covering described
above can serve as a k ′-covering and 1√

k
is a lower bound for

the best dmin for a k′-covering. On the other hand, because of
the optimality of the hexagonal lattice, 1√

k′ is an upper bound
for dmin for a k′-covering.

Similarly, given a k′-covering, we can extend it to a
k′Πqi∈Qqmi

i -covering by replacing recursively 1-coverings
with optimal qi-coverings. In general, this covering is sub-
optimal.

Let Q′ = {Πqi∈Q,mi≥0 qmi

i }. Thus Q′ is the set of
integers k′ for which there is an optimal k ′-covering such that
the union of sensors form a hexagonal lattice. The question
of determining Q′ is equivalent to determining the indices for
which there is a sublattice of a hexagonal lattice which is also
a hexagonal lattice. This question has been solved [7] and
Q′ = {a2 + ab + b2|a, b ∈ Z

+}. Another way to characterize
Q′ is that for k′ ∈ Q′, all prime factors of k ′ which are of
the form 3m+2 have even exponents (http://www.research.att.
com/∼njas/sequences/A003136). We have chosen Q such that
each element in Q is not a product of elements of Q and in
this case Q is the set of the norms of Eisenstein-Jacobi primes
(http://www.research.att.com/∼njas/sequences/A055664).

V. CHOOSING THE EXPONENT s

How large should the value of the exponent s be when
computing the Riesz energy Es? In order to approximate the
energy function that solves the best packing problem, s should
be chosen to be large. However, a large s leads to numerical
problems. On the other hand, in our experiments we found
that choosing small values of s can produce results which are
less optimal. For instance, we show in Fig. 7 the optimal 9-
covering optimized using the Riesz energy for s = 1, and in
Fig. 8 the 9-covering for s = 2. According to the discussion
above, Fig. 8 is the optimal configuration which maximizes
dmin. Numerical experiments show that there is a transition
from one configuration to the other configuration around s =
1.2.

VI. INCREMENTAL k-COVERINGS AND OTHER BASE

COVERINGS

Consider the scenario where a k-covering is in place and we
want to expand the sensor network to a k ′-covering (k ′ > k)
by adding more sensors and the question is where the new
sensors should go. Again the same optimization approach can
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Fig. 7. A 9-covering of the plane optimized using s = 1. dmin = 1
2
√
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Fig. 8. A 9-covering of the plane optimized using s = 2. dmin = 1
3

.

be used, with the additional constraint that the sensors in the
original k-covering remain fixed. In Fig. 9 we show how the
3-covering in Fig. 3 is extended to a 4-covering. Note that it
is suboptimal to the 4-covering in Fig. 4.
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Fig. 9. A 4-covering of the plane with dmin = 1
3

. This covering is obtained
by adding an additional 1-covering to the 3-covering in Fig. 3.

So far we have applied the algorithm to the case where



the underlying 1-covering is the hexagonal lattice (we’ll call
this the base covering). This approach can also be applied
to other base 1-coverings. For instance, Fig. 10 shows a 4-
covering obtained by translating 4 square grid 1-coverings
and optimizing the arrangement by minimizing E10. We see
that the totality of sensors form a hexagonal lattice. A more
irregular looking 6-covering based on 6 squared grid lattices
is shown in Fig. 11.
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Fig. 10. A 4-covering of the plane. The base 1-covering is the square grid
lattice and dmin = 1
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Fig. 11. A 6-covering of the plane. The base 1-covering is the square grid
lattice and dmin = 0.2708.

VII. RELATIONSHIP WITH DITHER ARRAY HALFTONING

There is a close relationship between these k-coverings and
dispersed dither digital halftoning [8]. In dispersed dither, a
pattern is tiled on the plane such that it forms a visually
pleasing pattern. The dispersed ordered dither patterns are
regular patterns that are repeated and are similar to the k-
coverings where all the sensors lie on a regular grid (e.g. Fig.

10) and blue noise dispersed dither [9] looks similar to k-
coverings in other cases (e.g. Fig. 11). The stacking constraint
in these dither patterns dictates that a pattern with more dots
is a superset of a pattern with less dots and this requirement
corresponds to the case of incremental k-coverings. Another
indication of the close relationship between these two areas is
that many algorithms for generating blue noise dither patterns
are based on energy minimization [10]. The main difference
between k-coverings and dither halftoning is that in a k-
covering, the sensors can be positioned at any point on the
plane resulting in a nonlinear programming problem, whereas
in a dispersed dither pattern, the dots are constrained to lie
on the printer addressability grid (e.g. a 600 dpi or a 1200
dpi grid), resulting in an integer programming problem. We
could envision a scenario where the sensors must be placed
on a specific grid in which case the algorithms in [10] can be
useful.

VIII. CONCLUDING REMARKS

We presented a method to generate k-covering of sensors on
the plane using Riesz energy functions. In general the union
of the sensors do not form a regular lattice. For k ∈ Q ′,
they do form a hexagonal lattice which is optimal and such
configurations can be used to recursively generate k-coverings
for large k. We also examine the case where a k-covering is
incrementally constructed by adding 1-coverings and illustrate
the relationship with dispersed dither digital halftoning.
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