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ABSTRACT
We consider the problem of diagnosing performance problems in
distributed system and networks given end-to-end performance mea-
surements provided by test transactions, or probes. Common tech-
niques for problem diagnosis such as, for example, codebook and
network tomography usually assume a known dependency (e.g.,
routing) matrix that describes how each probe depends on the sys-
tems components. However, collecting full information about rout-
ing and/or probe dependencies on all systems components can be
very costly, if not impossible, in large-scale, dynamic networks
and distributed systems. We propose an approach to problem di-
agnosis and dependency discovery from end-to-end performance
measurements in cases when the dependency/routing information
is unknown or partially known. Our method is based on Blind
Source Separation (BSS) approach that aims at reconstructing un-
observed input signals and the mixing-weights matrix from the ob-
served mixtures of signals. Particularly, we apply sparse non-negative
matrix factorization techniques that appear particularly fitted to the
problem of recovering network bottlenecks and dependency (rout-
ing) matrix, and show promising experimental results on several
realistic network topologies.

Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]: Measurement Techniques

General Terms: Algorithms, experimentation, measurement, per-
formance

Keywords: End-to-end probes, network tomography, blind source
separation, matrix factorization, sparse optimization

1. INTRODUCTION
Monitoring and diagnosis of distributed computer systems and

networks is an important issue in systems management that be-
comes increasingly challenging with growing size and complex-
ity of such systems. Given the heterogeneous, decentralized and
often noncooperative nature of today’s large-scale networks, it is
impractical to assume that all statistics related to an individual sys-
tem’s components such as link, routers, or application-layer com-
ponents can be indeed collected for monitoring purposes. On the

other hand, other type of measurements, such as end-to-end trans-
actions, or probes, are typically cheap and easy to obtain. This
realization gave rise to the field of network tomography [13] which
focuses on inference-based approaches to estimate unavailable net-
work characteristics from available measurements.

Most of existing work on network tomography and problem di-
agnosis, such as commonly used codebook-based approaches [5, 9]
assume known dependencies between the observations (e.g., end-
to-end delays, system events) and their unobserved causes (e.g.,
link or node delays, component failures). Such knowledge is repre-
sented by routing matrices in network tomography or dependency
matrices in problem diagnosis, where rows and columns corre-
spond to observations and causes (components) respectively. How-
ever, obtaining dependency information can be too costly or just
infeasible in many situations: network topology and routing infor-
mation may be unavailable due to noncooperative administrative
domains blocking the access to topology discovery tools, compo-
nents that affect probe’s performance may be hard to discover (e.g.,
low-level network elements or high-level application components
such as particular set of database tables crucial for transaction per-
formance), maintaining up-to-date information about dynamically
changing routing (especially in wireless and mobile networks) may
get costly, and constructing dependency matrices for application-
level transactions is typically quite a laborious process requiring
expert knowledge of system components that may affect probe’s
performance. Even in cases when the dependency or routing infor-
mation is available, this knowledge is often only partial, and also
dynamically changing.

Therefore the questions are: how much can we infer from only
end-to-end observations? Can we infer “hidden causes” of perfor-
mance degradations? Can we conclude that there exist, say, three
common components that would explain most of the end-to-end
delays? Can we say whether the performance degradations are due
to a single bottleneck or due to an overall performance degradation
that affected the whole network? And, if we think it is due to a bot-
tleneck or a few of them, can we identify which probes go through
which subset of such bottlenecks?

In this paper, we propose a general framework that attempts to
answer the above questions by performing simultaneous depen-
dency discovery and problem diagnosis. We use the Blind Source
Separation (BSS) approach that aims at reconstructing both unob-
served input signals and the mixing-weights matrix from the com-
bined signals received at a given sequence of time points1. A classi-

1Note that assuming complete absence of information about de-
pendency (routing) information is the opposite extreme of assum-
ing the full knowledge, and in reality we hope to have some partial
information available. However, in this paper, we investigate the
most ”pessimistic” scenario first, and leave combination of BSS



cal example of BSS is the “cocktail party" problem where n speak-
ers are present in the room with m microphones and the task is to
reconstruct what each one was saying (n signals) and how close
to the microphones they were located (m × n mixing matrix). In
our application, causes of performance problems such as delays at
individual components (nodes, links) correspond to the unobserved
input signals, while dependency (routing) matrix corresponds to the
mixing-weights matrix, and the end-to-end probes to the observed
output signals.

Herein, we apply BSS approaches based on sparse nonnega-
tive matrix factorization and report encouraging empirical results
in both real and simulated settings.

2. RELATED WORK
Most of recent work on network tomography falls into two cate-

gories: (i) estimating link-level performance such as link delays or
losses based on end-to-end performance measurements [6, 12, 10]
and (ii) estimating origin-destination (OD) traffic flows based on
link-level traffic measurements [7, 16, 15] (see [1] for an overview
and an extended list of references). A typical approach to both
problems is to assume a noisy linear model yt = Axt + ε where
yt denotes a vector of observations (e.g., end-to-end delays or link-
level traffic intensities), A denotes a routing matrix, xt is an unob-
served vector (e.g., link delays, or OD flows) and ε is noise. In this
paper, we focus on the first problem, although our method can be
easily applied to the second problem as well. We also generalize
the problem from the network to application level where yt and
xt represent arbitrary end-to-end transactions and corresponding
delays at system components and A corresponds to a dependency
matrix, where aij = 1 if the probe i “goes through” component
j and 0 otherwise. For example, response time of a web-page re-
quest depends not only on network components such as routers and
links, but also on the web server performance, various applications
invoked on the page, database tables that need to be opened in order
to show the content of the page, etc.

There also exists a body of related work in network tomogra-
phy that focuses on discovering (logical) topology of a network
based only on end-to-end measurements (see [1] for a comprehen-
sive summary; a more recent approach was also presented by [11]).
These approaches attempt to reconstruct the routing tree (typically
assuming multicast, although extensions to unicast probes were
also proposed) by comparing the shared loss or delay statistics
on probe packets transmitted from a root to a set of leaf nodes,
and often can be viewed as hierarchical clustering that uses some
similarity measure to group the nodes into a (logical) routing tree.
Note, however, that topology discovery may be an overkill in case
of bottleneck diagnosis problem, since we only need to know the
set rather than the sequence of components involved in each probe,
i.e. only the dependency matrix. Moreover, those approaches are
also quite specific to the network topology discovery and cannot
be directly applied to the application-level dependency matrix re-
construction. On the contrary, our approach is more general as it
applies to arbitrary topologies, does not make multicast assump-
tions, and can be used with any type of end-to-end probes from
network to application layer2.

approaches with some partial dependency knowledge as a topic of
future investigation.
2An interesting direction for future work is combining our method
with a recently proposed approach of [8] that recovers topology
given the information of which subsets of components belong to
each path (i.e. dependency matrix in our terminology).

3. OUR APPROACH
Our method uses an analogy to the BSS problem. In the appli-

cation to the systems performance management, we can view the
delay experienced by a transaction at each component as an un-
observed “signal", the unknown dependency (routing) matrix as a
mixing-weights matrix and the observed end-to-end performance
as the output signal (e.g., corresponding to a “microphone" in the
“cocktail party" problem). The BSS problem is solved by matrix
factorization: given the p × T matrix of end-to-end probe obser-
vations Y where p is the number of probes and T is the number
of time points, find two matrices A and X that provide the best
possible approximation to Y as a factorization Y = A ·X , where
A corresponds to the found p× n dependency matrix (rows corre-
spond to probes, columns correspond to n system components) and
X corresponds to the n× T delay matrix containing reconstructed
delays at each component and at each time point (rows correspond
to system components, columns correspond to the time points).

More specifically, in order to find the matrices A and X we
have to solve a constrained optimization problem that minimizes
the reconstruction error between Y and Ŷ where Ŷ = A · X .
There are several choices of loss functions to minimize the error,
for example the squared error or the KL-divergence. The optimiza-
tion is constrained since both delays and dependency matrices have
specific properties. For our application we impose the constraints
of non-negativity since link delays are clearly non-negative and
additive. Matrix factorization with the non-negativity constraint
is called Non-negative matrix factorization (NMF). In addition to
non-negativity, we also require A and X to be sparse. For A, spar-
sity is imposed on each row indicating that each probe goes through
a few nodes3. For X , sparsity is imposed on each column indicat-
ing that at each timepoint the number of simultaneous bottlenecks
causing the delay is typically small.

There exist other approaches to solve the BSS problem like ICA
and PCA/SVD. However, since these approaches may result into
negative values in reconstructed matrices, interpretation of results
is less clear (if not impossible), especially for dependency matrix.
Our approach requires nonnegativity and uses an appropriate NMF
algorithm, and then does some postprocessing to transform the real-
valued solution A into binary dependency matrix.

We used the following sparse NMF problem formulation and al-
gorithm4 proposed by Hoyer [4] (called H-NMF herein):

min
A,X

‚‚‚Y − Ŷ
‚‚‚

2

F

subject to sparsity(a) = sA

sparsity(x) = sX

(1)

where || · ||F is the Frobenius norm and sparsity(·) takes the fol-
lowing form:

sparsity(u) =
1√

d− 1

 √
d−

P |ui|pP
u2

i

!
(2)

where the vector u has d dimensions. The values sA and sX are
user-defined. The above notion of sparsity varies smoothly between
0 (indicating minimum sparsity) and 1 (indicating maximum spar-
sity). It exploits the relation between L1 and L2 norms thus giv-
ing great flexibility to achieve desired sparse solutions. This is a
3For example, a network probe often follows shortest route so the
number of components it depends on is much smaller than the total
number of components.
4We also experimented with an alternative sparse NMF algorithm
proposed by Cichocki et al. [3] (C-NMF), but since the results
produced by the two sparse NMF methods were quite similar, our
discussion will focus only on H-NMF.



marked contrast from previous NMF algorithms that impose spar-
sity by adding either the L1 norm or the L2 norm as a regularization
term to the objective function. The algorithm can be explained by
a two step process: in each iteration, matrices A and X are first up-
dated by taking a step in the direction of the negative gradient and
then each row vector of A and column vector of X is (non-linearly)
projected onto a non-negative vector with desired sparsity.

4. EXPERIMENTS: SIMULATED TRAFFIC
We simulated network traffic on two large network topologies:

one real (Gnutella) and one simulated (INET)5. However, due to
space limitations, we only present the results for the real topol-
ogy, i.e. for the snapshot of the Gnutella network (maintained by
Limewire.org) that contained 127 nodes6. See [2] for an extended
version of this paper that contains empirical results not included
herein.

Given the topology, dependency matrix was constructed as fol-
lows. Assuming that the columns (components) correspond to net-
work nodes and rows correspond to the end-to-end probes: the
shortest path between each pair of nodes was considered as a po-
tential probe7, and a subset of probes was selected using the greedy
information-gain-based approach [9] that ensures uniqueness of each
column and thus identifiability of a single-node fault or bottleneck
in the absence of noise8. The resulting matrix contained 50 rows
(probes) and 127 columns (nodes).

Delay Simulator. We simulated end-to-end delay data using the
dependency matrices constructed above. Herein, AG and XG will
denote the ground truth matrices for their respective estimated coun-
terparts. Given the dependency matrix AG, the following proce-
dure is used to produce the node delays XG and the correspond-
ing end-to-end delays Y . We generate a set of random (nonover-
lapping) intervals {t1, t2, . . . tm} within [1, T ] that correspond to
periods when performance degradations occur in the network. For
each interval ti, k random nodes from {1 . . . n} are selected as cur-
rent bottlenecks. The actual duration of each bottleneck is selected
as another random subinterval of ti, while the delay values for each
bottleneck at each time point within the corresponding time inter-
val are drawn randomly from [200, 250]. The rest of the entries in
XG, corresponding to “low” delays (absence of a bottleneck) are
just set to zero. Finally, the end-to-end delays Y are obtained by
adding linear Gaussian noise with mean 0, standard deviation σ and
a scaling factor of 200, on top of the linear combination AG ·XG

of the node delays.

Evaluation Objectives. Typical evaluation of matrix-factorization
algorithms focuses on reconstruction error between Y and Ŷ , but
our objective is different as we want to actually reconstruct both the
dependency matrix A and the node delay matrix X . Clearly, it is
impossible to identify actual components (nodes or links) from the

5INET generator [14] simulates an arbitrary-size Internet-like
topology at the Autonomous Systems level by enforcing a power-
law node degree distribution that coincides with the one empirically
observed for the Internet.
6The collection method focused on getting accurate snapshots of
small portions of the network rather than attempting to crawl the
entire network, so severe sampling biases were hopefully avoided.
7For Gnutella network only, we actually generated breadth-first
search trees from a small number of randomly selected sources,
instead of considering all-pairs shortest path.
8Note that optimal dependency matrix design, i.e. selection of the
minimal subset of end-to-end probes over a given topology that
would guarantee the unique diagnosis of a single failure is an NP-
hard problem; however the greedy approach adopted herein was
shown to work well in practice[9].

end-to-end observations only, and thus the reconstructed matrices
A and X will correspond to some (unknown) permutation of the
columns of AG and the corresponding rows of XG, respectively9.

Also, since both sparse NMF algorithms first normalize the data
matrices, dividing them first by their largest element, the recon-
structed delay nodes will estimate the true ones up to a constant
factor. Finally, the evaluation of the reconstruction quality must be
different for A and X , since A will be binarized appropriately and
interpreted as a dependency matrix, while X remains real-valued
delay matrix.

For real-valued X we will use correlation with the ground truth
delays as an evaluation measure. First we must establish a map-
ping between the actual nodes (rows in XG) and rows in X , by
finding the “best match”: namely, each row xG in XG that ever
contained a bottleneck will be matched with a row x in X that has
maximum correlation with xG (in other words, this node is iden-
tified as the bottleneck that is closest in terms of correlation to the
true bottleneck from XG) In our experiments, we report the aver-
age correlation over all such matches, i.e. for all bottlenecks in xG,
which provides a measure of reconstruction quality for the node
delay matrix.

As mentioned above, the evaluation criteria for the dependency
matrix has to be different since the mixing-weight, real-valued ma-
trix A obtained by BSS will be converted to a binary dependency
matrix, using suitable postprocessing. Herein, we simply set the
threshold to the mean of the minimum and maximum of the val-
ues of A, which provides an intuitive threshold point, especially
if the distribution of the values in A is bimodal, which we actu-
ally observed in our experiments. After A is binarized, we reorder
its columns according to the mapping found above for the actual
nodes and their best matches in delay matrix. Now we can com-
pute for each column of A the corresponding reconstruction error
as an average number of 0/1 flips (mistakes made) with respect to
the ground truth dependency matrix, and average the result over all
columns. In the experiments, we will actually report the accuracy
of the reconstruction which is (1− error).

Results. As described above, we measured two types of reconstruc-
tion quality: average correlation for delay matrix X , and recon-
struction accuracy for dependency matrix obtained by binarization
of A. We performed extensive experiments with both H-NMF and
C-NMF algorithms, on both Gnutella and INET networks, evaluat-
ing the effects of various factors such as the number of bottlenecks
k occurring within each performance degradation time interval, the
noise level σ, and the sparsity parameters sA and sX for the matri-
ces A and X , respectively. However, due to space limitations, we
only present the results for H-NMF on Gnutella network, since C-
NMF produced quite similar results in similar settings, and INET
results were also quite similar to the Gnutella results (see [2] for
details). For all the experiments, we set the number of performance
degradation periods m = 4. In all figures below, we varied the
level of noise and the two sparsity parameters along the x-axis,
while plotting different curves for following numbers of bottle-
necks k = 1, 5, 10, 15, 20. All the figures show results averaged
over 20 runs.
Varying noise. First, we explored the effect of noise σ and the num-
ber of bottlenecks k on the reconstruction quality of both matrices.
The noise was varied from σ = 0.01 to 0.51, while both sparsity
parameters sA for dependency matrix and sX for node delay ma-
trix were fixed at 0.5 for H-NMF. Figure 1a shows the correlation
results for reconstructed delay matrix on the Gnutella network. For

9Clearly, we can only hope to identify the components that “reveal”
themselves, e.g. experience bottlenecks at some points.
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Figure 1: Results on Gnutella network.

low level of noise and small number of bottlenecks (which is a real-
istic assumption since it is not very typical to see many bottlenecks
at once in real networks), the reconstruction of the delay matrix is
pretty good: correlation is between 1 and 0.8 for the number of
bottlenecks not exceeding 10, and approaches 1 for single bottle-
neck and noise less than σ = 0.1. As expected, the reconstruction
quality decreases as the noise level increases, since the noise level
gets closer to the signal level. Also, as expected, accurate recon-
struction becomes more challenging as the number of bottlenecks
increases. Figure 1b shows the corresponding results for the recon-
struction accuracy of the dependency matrix that looks excellent: it
appears to be much less sensitive to noise and remains within 0.9 to
1 even for larger number of bottlenecks, while for small number of
bottlenecks it is practically 100% accurate. An intuitive explana-
tion of such results versus the correlation measure is that accuracy
measure only penalizes incorrect binary decisions about the depen-
dency matrix values that result from thresholding, being more le-
nient than correlation measure about comparing real values.
Varying sparsity parameters. Next, we varied the parameter sX

that imposes sparsity on X . sX was varied from 0.1 to 0.95 for
H-NMF algorithm. We fixed the noise level σ to a low value of
0.01, leaving the parameter sA imposing sparsity on A at the same
value of 0.5 as before. Figures 1c and 1d show the results for the
reconstruction of delay and dependency matrices respectively, sug-
gesting that higher sparsity over delay matrix generally improves
the reconstruction of both matrices, although for the delay matrix,
it might be better to avoid extremely high values, e.g. for sX > 0.9
performance starts to degrade. As before, delay matrix reconstruc-
tion is more sensitive to both sparsity and number of bottlenecks
than the dependency matrix reconstruction, and the accuracy results

for dependency matrix are quickly getting to practically 100% for
higher sparsities.

Finally, we performed the same set of experiments with varying
the second sparsity parameter, sA that imposes sparsity on A, while
keeping fixed sX = 0.5, and observed quite similar behavior in
Figures 1e and 1f.

5. EXPERIMENTS: REAL TRAFFIC
We also evaluated our method on a real network traffic collected

in a controlled environment. We used a small test lab containing
six routers (Cisco and Juniper) and six links, where end-to-end de-
lays were measured using probes such as SAA/rtr on Cisco routers
and RPM on Juniper routers. Note that here we focus on recon-
struction of link (rather than ’node’) delays. Only four probes were
necessary to ensure identifiability of a single link problem. The
topology of the network, and the corresponding dependency ma-
trix are shown in Figure 2a, where each probe name (e.g., 312)
describes the path of that probe through the routers. We performed
a controlled experiment, stressing a particular link (or a combina-
tion of links) with 30K 1400-byte ECHO_REQUEST packets in
order to induce performance bottlenecks10. Particularly, we first
induced a bottleneck on link 16 that only affected the two probes
going through that link, 4216 and 4316 (Figure 2b shows the probe
delay data averaged over one-minute intervals). Then, we stressed

10Note that in our controlled environment we can measure not only
the end-to-end probe delays, but also all individual link delays,
which is hard to do in real, uncontrolled network environments,
and is a common challenge when evaluating approaches to link de-
lay inference from end-to-end measurements.



simultaneously two links, 12 and 13, and observed performance
degradation of probes 1249 and 312.

Results. We used the real data produced in our lab setting. Figures
2c-f show the reconstruction results for the link delays and the de-
pendency matrix in our lab setting, as a function of the sparsity on
the delay and dependency matrices in H-NMF algorithm, averaged
over 50 runs. Particularly, Figure 2c shows for each link (each
column in the true dependency matrix in Figure 2a) the correla-
tion between the true link delay corresponding to row in the known
true delay matrix XG and its best-matching (most correlated) row
in the reconstructed delay matrix X , as a function of varying H-
NMF sparsity parameter on X; Figure 2d shows the accuracy (as
measured before) of reconstructing the dependency-matrix column
corresponding to that link. Similarly, Figures 2e and 2f, show the
correlation and accuracy results as functions of varying sparsity on
the dependency matrix A. Note that the highest correlation (up to
0.65) is observed for the two links (12 and 13) that were stressed
(and thus ”revealed” themselves) for a prolonged period of time;
the link 16 which was also stressed but just for a short time period
comes next achieving the correlation of about 0.3. The remain-
ing unstressed links have lower correlations; note that increasing
sparsity parameters sometimes improves and sometimes hurts the
correlation, depending on a particular link. It is interesting to note
that the highest correlation between the true and reconstructed de-
lay (e.g., for links 12 and 13) does not necessarily imply the best
reconstruction accuracy in dependency matrix. Indeed, the most
accurate dependency reconstruction (around 80%) is achieved for
the link 49 corresponding to the last column in dependency matrix;
note that this link was not stressed and thus did not had a chance
to ”reveal” itself as a bottleneck, however, it appears on the path
of a single probe 1249 which may simplify its reconstruction. In-
terestingly, the reconstruction accuracy does not change much with
varying the sparsity parameters. The next best dependency recon-
struction results are achieved for the bottleneck links 13 and 16, as
well as for 34 (also on the path of only one probe); for those links,
accuracy does change with varying sparsity, but the effects of spar-
sity can be opposite for those links (higher sparsity on both X and
A helps 34 but hurts 13 and 16).

Since the accuracy and especially correlation values were less
impressive in real setting as compared with the Gnutella simula-
tions, we decided to perform the simulated traffic experiment as
well, in order to better understand the sources of inaccuracies. (see
Figure 3). While simulations results, as expected, are somewhat
more accurate then the real experiment, they are still much less ac-
curate (both in terms of delay correlation and dependency matrix
reconstruction accuracy) than the corresponding results for a much
larger Gnutella network. This effect may be particularly due the ra-
tio between the number of bottlenecks and the network size, which
yields a much higher sparsity in large networks; on the contrary,
just two bottlenecks in our lab environment already constitute 1/3
of all links. We conjecture that our method works better in larger
networks with a small number of bottlenecks. However, other prop-
erties of both ”ground truth” dependency and link delay matrices
may also affect the reconstruction quality and require further in-
vestigation.

6. CONCLUSIONS AND OPEN ISSUES
This paper proposes a novel approach to the challenging problem

of the network bottleneck/delay diagnosis in the absence of depen-
dency/routing information. On the Gnutella an INET topologies,
we can conclude that reconstruction quality of our approach was
quite impressive and exceeded our expectations. We learned that

using nonnegative constraint on BSS approach, with sufficiently
high sparsity imposed on both dependency and node delay matri-
ces, is important for obtaining an accurate reconstruction. Clearly,
results deteriorate with increasing noise which might be an issue
in realistic scenarios. Preliminary results on real versus simulated
traffic in small lab settings were somewhat less impressive; how-
ever, since even the simulation results in the same setting were
much less accurate than for larger networks, we conjecture that in-
dication that our approach should be more applicable in larger net-
works with reasonably small number of (more clearly ”pronounced”)
bottlenecks. Further investigation of our approach on real traffic in
large-scale networks is the direction of our ongoing work. Another
interesting directions for future work include investigation of iden-
tifiability and uniqueness conditions for the proposed approaches in
practical scenarios, and applying this approach to other end-to-end
measures, besides the delays, such as jitter (variability), which is
particularly important in VoIP networks. Finally, we plan to extend
our approach to a ”semi-blind” source separation that can incorpo-
rate some partial dependency (routing) information.
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Figure 2: Results in the real lab environment.
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Figure 3: Results for simulated traffic on the lab network from Figure 2a.


