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Abstract

Collaborative prediction (CP) is a problem of predicting unobserved entries in
sparsely observed matrices, e.g. product ratings by different users in online rec-
ommender systems. However, the quality of prediction may be quite sensitive to
the choice of available samples, which motivates active sampling approaches. In
this paper, we suggest an active sampling method based on the recently proposed
Maximum-Margin Matrix Factorization (MMMF) [7], a linear factor model that
was shown to outperform state-of-art collaborative prediction techniques. MMMF
is formulated as a semi-definite program (SDP) that finds a low-norm (rather than
traditional low-rank) matrix factorization, and is also closely related to learning
max-margin linear discriminants (SVMs). This relation to SVMs inspires several
margin-based active sampling heuristics that augment MMMF and demonstrate
promising results in a variety of practical domains, including both traditional rec-
ommender systems and novel systems-management applications such as predict-
ing latency and bandwidth in computer networks.

1 Introduction

Given a large but sparsely sampled matrix, the collaborative prediction (CP) problem is to predict
the unobserved entries from the observed samples, assuming the entries are dependent. Typical ap-
plication include online recommendation systems that attempt to predict user’s preferences towards
different products (e.g., movies, books), based on previously obtained product ratings from different
users. Collaborative prediction can be also applied to non-traditional domains such as distributed
systems management applications considered in this paper. In such applications, we wish to pre-
dict the end-to-end performance, such as latency in computer networks or bandwidth in peer-to-peer
content-distribution systems, based on a limited number of available measurements between pairs
of nodes. Moreover, collaborative prediction tasks may arise in various other domains, e.g. in image
processing, where we may want to reconstruct unobserved (occluded) parts of an image from the
observed pieces.

A typical assumption that leads to various collaborative prediction techniques is a factorial model
that assumes the presence of some hidden factors that affect user’s preferences towards the prod-
ucts. For example, genre of a movie, its comic factor, and its violence factors may affect user’s
preferences. Similarly, two nodes that are located in same part of the network may share several
“hidden factors” such as intermediate nodes on their path to a third node; moreover, even distant
nodes can share some other hidden factors which determine a quality of service they provide: e.g., a
high-bandwidth can be achieved by downloading from a remote but powerful server instead of local
laptop with a wireless connection. In this paper, we will focus on linear factor models which result
into a matrix-factorization approach to collaborative prediction.



The predictive accuracy of such models can improve dramatically when more samples become avail-
able; however, sampling can be costly: a user may become annoyed if she is asked to rate many
products or a network may become congested if too many measurements are performed. Besides,
suggesting a product to buy or a server to download from has a high cost if the user does not like the
product, or the download bandwidth turns out to be low. Therefore, a cost-efficient active sampling
becomes an important component of any successful collaborative prediction approach.

In this paper, we propose an active-learning extension of the recently proposed Maximum Mar-
gin Matrix Factorization (MMMF) approach to collaborative prediction that was shown to outper-
form state-of-art collaborative prediction methods and has some nice theoretical guarantees [7, 6].
MMMF is a matrix factorization approach formulated as a convex optimization problem that uses
low-norm constraints, unlike previous non-convex approaches, such as low-rank (SVD-like) or non-
negative matrix factorizations [4]. Besides, MMMF is closely related to maximum-margin linear
discriminants (SVMs), i.e. it can be viewed as simultaneous learning of multiple SVMs and a set
of features common to to all SVMs. This insight is directly exploited by our active learning ap-
proach that extends MMMF with margin-based active-learning heuristics, where the margin is used
to estimate informativeness of a candidate sample, as suggested in [8]. Besides the straightforward
“most-uncertain” (min-margin) sample selection, we also investigate alternatives that take into ac-
count the cost of sampling.

Previous work on active sampling for collaborative filtering includes a value-of-information ap-
proach of [1] and Bayesian model averaging method of [3]. Both approaches are based on prob-
abilistic hidden-factor models and computationally expensive procedures for choosing next active
sample that require minimization of expected cost (or uncertainty). On the contrary, our active sam-
pling is quite simple and inexpensive as it only compares the margin values produced by MMMF.
Another related work proposes an active-sampling method for low-rank matrix factorizations [2]
that requires a small number of users to provide the ratings of ALL products – a clearly unrealistic
assumption in any large enough, practical recommendation system. Although our heuristic active
sampling lacks theoretical guarantees associated with the above approach, it is much more practi-
cal since it does not impose any unrealistic sampling assumptions. Empirical evaluation on several
application domains, from recommender systems to computer networks and peer-to-peer files dis-
tribution systems, demonstrate the advantages of our active sampling methods.

In summary, this paper makes following contributions. It proposes a simple, computationally ef-
ficient active sampling extension of the state-of-art MMMMF method for collaborative predic-
tion, compares several active-sampling strategies, both on traditional collaborative filtering domain
(movie rating prediction) and on novel application domain – distributed computer systems manage-
ment, and demonstrates a noticeable improvement in prediction accuracy over random sampling.

2 Collaborative Prediction as Matrix Factorization

Collaborative prediction problem can be stated as follows. Given a partially observed n×m matrix
Y , let us find a matrix X of the same size that provides “best” approximation for unobserved entries
of Y with respect to a particular loss function, such as sum-squared loss for real-valued matrices,
0/1 loss or its surrogates such as hinge loss for binary and ordinal matrices, and so on.

Linear factor models, a particular type of factor models for collaborative prediction, assume that
each factor is a preference vector, and actual user’s preferences correspond to a weighted linear
combination of these factor vectors with user-specific weights. Let k be the number of such factors,
then the matrix Y can be approximated by a matrix factorization X = UV , where U is a n × k
coefficient matrix (where each row represents the extent to which each factor is used) and V is a
k × m factor matrix where the rows represent the “expression level” of the factors in each of m
“products”. Since the rank of the approximation matrix X is clearly bounded by k, fixing k to some
small value leads to a low-rank matrix factorization approaches.

For example, a standard matrix-factorization approach is singular value decomposition (SVD) which
finds a low-rank approximation that minimizes the sum-squared distance between X and a fully
observed Y . The problem is, when Y is not fully observed, as in collaborative prediction and
particularly in end-to-end performance prediction, SVD is not directly applicable and finding a low-
rank approximation to a partially observed function using a sum-squared loss becomes a difficult



non-convex optimization problem, for which no exact solution method is known. Also, even for
completely known matrix Y , approximating it with respect to other losses that the sum-squared loss
(e.g., expected classification error) is still a non-convex optimization problem with multiple local
minima [7].

In order to overcome such limitations, a novel Maximum Margin Matrix Factorization (MMMF)
approach was proposed by [7]. This approach replaces the bounded-rank with the bounded norm
constraint on U and V and yields a convex optimization problem. Namely, Lemma 1 in [7] shows
that finding the matrices U and V having low Frobenius norms ‖U‖Fro and ‖V ‖Fro is equivalent
to minimizing the trace-norm (the sum of singular values) ‖X‖P of X , since

‖X‖P = min
X=UV

‖U‖Fro‖V ‖Fro = min
X=UV

1
2
(‖U‖2Fro + ‖V ‖2Fro) (1)

Since the trace-norm is a convex function [7], minimizing it together with any convex loss function
or constraint results into a convex problem.

For simplicity, we focus herein on binary-valued matrices Y ∈ {−1, 1}n×m, and thus use the
MMMF with hinge-loss, as in max-margin linear discriminant (SVM) learning. The MMMF opti-
mization problem can be then stated as:

min
X
‖X‖P + c

∑

ij∈S

h(YijXij), (2)

where c is a trade-off constraint and h(z) = max(0, 1 − z) is the hinge-loss, minimizing which is
equivalent to minimizing slack variables ξij ≥ 0 in soft-margin constraints YijXij ≥ 1− ξij .

Matrix factorization can be also viewed as a simultaneous learning of feature vectors and linear
classifiers. Assume a factorization X = UV is found, the rows of the n × k matrix U can be
viewed as a set of n feature vectors, while the columns of V can be viewed as linear classifiers,
and the entries of the matrix X are the results of classification using these classifiers. The original
entries in the matrix Y can be viewed as labels for the corresponding feature vectors, and the matrix
factorization task can be interpreted as finding simultaneously a collection of feature vectors (rows
in U ) and a set of linear classifiers (columns in V ), given a set of labeled samples (columns in the
original matrix Y ), such that a good prediction of unobserved entries can be made. Particulary, the
MMMF formulation above can be viewed as learning a collection of maximum-margin classifiers
(SVMs) simultaneously with learning a common set of features.

3 Active Learning with MMMF

Standard collaborative prediction approaches, including MMMF, assumed no control over the data
collection process. However, we have a choice between different actions that provide us with new
samples. For example, in online recommendation systems, we choose a product suggested to the
current user; in network latency prediction, we can request a probe (e.g., ping) between a particular
pair of nodes; in content distribution systems, we can suggest a mirror site for a file download, and
so on. Such additional measurements can greatly improve the predictive accuracy of our model,
but they also have a cost (e.g., potentially low bandwidth or high network latency if a server is not
selected carefully). One one hand, we wish to choose the next sample which is most-informative and
leads to greatest improvement in the predictive accuracy in the future (i.e., yields better exploration),
while on the other hand we want to avoid choosing samples which might be too costly by exploiting
our current predictions about the sample costs (i.e., the corresponding predicted performance). Such
exploration vs exploitation trade-offs must be considered as a part of our decision-making.

As mentioned in the previous section, MMMF approach can be viewed as learning a collection of
SVMs, which provides a natural way for combining MMMF with various active learning approaches
developed for SVMs. In this paper, we a simple heuristic margin-based approach, that uses the
margin as our confidence estimate in the predictions made, similarly to active learning approach
of [8]. Namely, [8] suggest to choose next the the minimum-margin sample, i.e. the one which is



closest to the separating hyperplane, and can be viewed as the one we are least confident about. This
heuristic was shown to be successful in practice, and is very efficient computationally1.

The active sampling algorithm (active MMMF, or A-MMMF), works as follows:

A-MMMF
1. Given a sparse matrix Y,

learn approximation X = MMMF(Y)
2. Using current predictions, actively

select S minimum-margin samples and
request their labels

3. Add new samples to Y
4. Repeat 1-3 until no significant improvement in prediction is likely

The idea of min-margin active sampling is also demonstrated in Figure 1.

Figure 1: Main idea of active learning in MMMF: choose the most “uncertain” sample next, where the margin
measures the confidence in the prediction (i.e. we are least confident in predictions made for the instances
closest to separating line between positive and negative examples).

Besides the “aggressive” most-uncertain sampling we also tried several other active sampling ap-
proaches that take into account the cost of sampling and may decide to be more “conservative”
about sample choice, e.g., when sampling also means providing a service such as file download,
where besides improving the future accuracy we are also concerned with the immediate cost of
sampling. We assume binary prediction problems (e.g., the performance over or under a speci-
fied threshold) and assume that positive samples (e.g., high bandwidth or product ratings) have less
cost than the negative samples. We then explore several “cost-conscious” active learning heuristics,
such as most-uncertain-positive heuristic that chooses positive min-margin sample, as well as least-
uncertain (max-margin) and least-uncertain-positive heuristics, which which should corresponds to
prediction we are most confident about. However, such sample selection may lead to a less accurate
model, as we show in the empirical section where the different sampling heuristics are compared on
several data sets.

4 Empirical Evaluation

We tested active learning approaches described above on the data from various practical applica-
tions. We select a subset of most populated rows and columns, to increase matrix density for testing
purposes. We then split each dataset into a training, testing and active subsets, where active subset

1Although min-margin heuristic may be ineffective for problems with large label noise close to the separat-
ing hyperplane, as noticed by [?], in many collaborative prediction settings there is little or no noise in labeling:
e.g., user’s preferences for a movie typically do not change.
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Figure 2: results on Movie dataset: (a) prediction accuracy and (b) total cost of sampling.

simulates the source of active samples. A training set is typically selected to be quite small (e.g., 5%
of the whole dataset), to imitate learning “almost from scratch”. We plot the prediction error on the
training dataset, for each of the active strategies compared random sampling of the same number of
instances.

The first dataset, called Movies, includes movie ratings collected through user interactions with the
site www.movielens.org. This includes ratings on the scale of 1 (worst) to 5 (best) by 500 users of
1000 movies. We selected a subset of 50 users and 50 movies that correspond to most-populated
rows and columns. We then impose a threshold to make the data binary, i.e. we assume that the
rating larger than 3 is considered “good”. The results are presented in Figure 2a. We can see that
the most-uncertain sampling provides a significant improvement over the random sampling, while
the max-margin sampling, as expected, is not very informative and practically does not improve
the error. We also computed the actual cost of sampling, assuming no cost for positive samples
selected and unit cost of the negative ones, and plotted it in Figure 2b. Clearly, random sampling
would roughly have the slope of the cost curve equal to the proportion of negative samples in the
data. Surprisingly, the alternative strategies did not deviate significantly from this random-sampling
linear cost growth, although we can see some deviation for larger number of samples. We can see
that the most-uncertain and most-uncertain-positive strategies are actually better not just in terms of
future predictive error, but also in terms of total sampling cost.

Similar results were observed in multiple systems management applications. We used several net-
work latency datasets obtained from PlanetLab pairwise ping project, the NLANR Active Measure-
ment (AMP) project, and P2PSim project – the datasets used previously by [5]. We also used the
data we obtained from an IBM-internal content distribution systems called downloadGrid. Down-
loadGrid architecture has some similarities with the Internet-based Gnutella, Napster and BitTorrent
file distribution systems as it allows peer-to-peer file downloading; however, it combines the peer-to-
peer approach with centralized decision-making architecture for matching ”clients” and ”servers”.
Centralized architecture is mainly motivated by security issues, but can also provide opportunities
for optimization of the overall system’s performance: for example, it allows to collect system-wide
historic data about the previous file downloads which can be used later for predicting the end-to-end
performance for previously unobserved client-server pairs, and for (nearly) optimal selection of a
server(s) for a particular client file request.

All data sets were transformed to binary (discretized) by imposing a certain threshold on the perfor-
mance, such as 50, 70 or 90% (e.g., 50% threshold corresponds to a median). We also used subsets
of each dataset, including only most “active” nodes that yield most populated rows and columns (see
for details the corresponding Figures). We started with initial training set which contained only 5%
of non-zero entries in each of the matrices, and set aside a test set containing 50% of the non-zero
entries. The rest was used as a pool for sampling. The results are presented in Figures 2b and ??.
The Y axis shows the prediction accuracy, while the X-axis shows the number of additional samples
selected. As expected, we observe that active min-margin sampling results into consistently more
accurate predictions than the random sampling using same number of samples. The active most-
uncertain-positive heuristic comes close to the most-uncertain one, although a bit less accurate, and
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Figure 3: Prediction results on (a) NLANR-AMP and (b) P2PSim data
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Figure 4: Prediction results on (a) dGrid2005 and (b) PL-RTT2003 data

may provide a safer alternative if the cost of sampling depends on the value of sample (positive
being ”good”).

5 Conclusions and Future Work

We proposed a simple, computationally efficient active sampling extension of the state-of-art MM-
MMF method for collaborative prediction and compares several active-sampling strategies, both on
traditional collaborative filtering domain (movie rating prediction) and on novel application domain
– distributed computer systems management. Promising empirical results are demonstrated on all
applications considered.

There are multiple directions for future work. One includes incorporating more advanced active sam-
pling approaches into MMMF, that will come closer to more rigorous value-of-information (VOI)
analysis, and can hopefully provide some theoretical guarantees. Another direction is extending
the (cost-sensitive) active learning to exploration vs exploitation methods for sequential decision
making that will trade active sampling versus choosing already known good actions. Finally, an
important future direction is to further improve the computational efficiency of active MMMF by
making it incremental, i.e. reusing the solution obtained on the previous sampling iteration without
having to solve the MMMF optimization from scratch. Unfortunately, existing incremental approach
to solving SVMs, such as, for example, the active set approach [Scheinberg], cannot be directly ex-
tended to the MMMF and require devising incremental optimization particularly tailored to MMMF
formulation.
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