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On Approximating the Ideal Random Access Machine

by Physical Machines

Gianfranco Bilardi† Kattamuri Ekanadham‡ Pratap Pattnaik‡

Abstract

The capability of the Random Access Machine (RAM) to execute any instruction in constant
time is not realizable, due to fundamental physical constraints on the minimum size of devices
and on the maximum speed of signals. This work explores how well the ideal RAM performance
can be approximated, for significant classes of computations, by machines whose building blocks
have constant size and are connected at a constant distance.

A novel memory structure is proposed, which is pipelined (can accept a new request at each
cycle) and hierarchical, exhibiting optimal latency a(x) = O(x1/d) to address x, in d-dimensional
realizations.

In spite of block-transfer or other memory-pipeline capabilities, a number of previous machine
models do not achieve a full overlap of memory accesses. These are examples of machines with
explicit data movement. It is shown that there are direct-flow computations (without branches
and indirect accesses), which require time super-linear in number of instructions, on all such
machines.

To circumvent the explicit-data-movement constraints, the Speculative Prefetcher (SP) and
the Speculative Prefetcher and Evaluator (SPE) processors are developed. Both processors can
execute any direct-flow program in linear time. The SPE also executes in linear time a class of
loop programs that includes many significant algorithms. Even quicksort, a somewhat irregular,
recursive algorithm admits a linear-time SPE implementation. A relation between instructions
called address dependence is introduced, which limits memory-access overlap and can lead to
superlinear time, as illustrated with the classical merging algorithm.

†Dipartimento di Ingegneria dell’Informazione Università di Padova, Italy. bilardi@dei.unipd.it
‡T.J. Watson Research Center, IBM, Yorktown Heights, NY, USA. {eknath,pratap}@us.ibm.com



1 Introduction

The Random Access Machine (RAM) [20] is an abstract model of computation, which has provided
the basis for much design and analysis of sequential algorithms over the last several decades. The
RAM can also be viewed as a rather idealized version of the von Neumann architecture [32], which
has provided the basis for the design of many experimental and commercial computers for over half
a century.

A central feature of the RAM is that any memory location can be accessed in just one basic
step of the machine, no matter how large is the number of available memory locations. It is
also customary to define the execution time of a RAM computation as the number of basic steps
occurring in such a computation. The underlying assumption is that a basic step of the RAM can
be carried out in an amount of time independent of the memory size, an assumption that appears
impossible to meet in any physical machine. Specifically, the seeming impossibility arises from
the conjunction of two principles: the principle of maximum information density, stating that a
minimum volume of space is needed to store one bit of information, and the principle of maximum
information speed, stating that there is a maximum velocity at which a bit of information can travel
[16]. The first principle implies that, in a d-dimensional space, storing M bits requires a region
whose linear dimension grows proportionally with M1/d which, by the second principle, translates
into a similarly growing access time. In summary, one step of a RAM with M bits of memory can
take, in the worst case, physical time Ω(M1/d). It is, on the other hand, rather straightforward
to conceive of a memory organization where access time is bounded above by O(M1/d), allowing
a RAM step to be executed within the same time bound. Thus, a suitable d-dimensional physical
machine can execute an arbitrary RAM computation of N steps in time T = O(NM1/d). The broad
question studied in this paper is whether this time bound can be improved, by more sophisticated
machine organizations, for significant classes of RAM computations.

While our primary focus is on how fundamental physical constraints limit the performance
of asymptotically large machines, the performance bottleneck arising from slow memory access
relative to processor speeds has been a major concern in the design of actual machines. The issue
has become particularly acute over the last decade or so, as conveyed by terms such as the memory
wall, gap, or barrier [42, 40]. However, the issue had not escaped von Neumann’s attention, even
in the early stages of automatic computing.§ Although, in current systems, the memory wall may
be more closely related to present technological constraints such as I/O bandwidth limitations
of silicon chips, than to speed of light or integration density, the structure of the problem faced
by computer engineers is not essentially different from the structure of the problem that we are
formulating in this paper. Correspondingly, approaches adopted in engineering practice can prove
valuable in our context and vice versa.

There are two main avenues to mitigate the impact of memory latency on overall execution time.
The first avenue consists in organizing the storage as a hierarchy of levels, from small and fast to
large and slow, and in structuring the computation so that fast levels are accessed more frequently
than slow levels. Computations that are so structured are commonly said to exhibit temporal
locality. The second avenue consists in organizing the storage so as to enable concurrency of memory
accesses, and in structuring the computation so as to take advantage of this concurrency. The two
avenues can also interplay, as it happens in most computer systems where memory is partitioned

§See [32], Section 12.4: “... It shows in a most striking way where the real difficulty, the main bottleneck, of an
automatic very high speed computing device lies: At the memory.”
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into sets of words with consecutive addresses, called blocks or lines, and transfers between levels of
the hierarchy occur in blocks, concurrently for all the words of the block. This feature results in a
performance advantage when computations tend to access consecutive addresses in near consecutive
steps, a property referred to as spatial locality.

In this paper, we systematically explore the interplay between hierarchy and concurrency.
Specifically, we show how to organize the storage as a pipelined hierarchy, where at each step
a new read or write request can be submitted to memory, and is serviced with a latency corre-
sponding to the level of memory involved in the request. Intuitively, such a powerful memory has
a considerable performance potential, but it also calls for a processor capable of managing a large
number of outstanding memory requests. Thus, we are led to study possible organizations of the
processor side of the machine and, ultimately, to some interesting findings. Indeed, a third avenue
emerges to mitigate the impact of memory latency, which could be called memory bypass: some
of the information transfer between instructions, which in the RAM would take place via memory,
is instead managed directly within the processor, with smaller latencies. Memory bypass can be
viewed as a way to partially circumvent what Backus ([8], Sec. 3) calls the von Neumann bottleneck,
that is the “tube” between the store and the central processing unit.

We underline that all our proposed organizations for both memory and processor are scalable
to arbitrary machine size, under the fundamental physical constraints on minimum device size and
maximum signal speed [16, 19]. This is established by exhibiting, for any given number of space
dimensions d, designs that can be laid out in d-dimensional space so that the number of logic gates
as well as the geometric distance to be traversed by each signal during one (logical) time step are
independent of global machine size. Thus, physical time is actually proportional to the number of
logical steps. Two-dimensional and three-dimensional layouts (d = 2, 3) are of particular interest in
practice. One-dimensional layouts (d = 1) are also worth considering, as they capture the essence
of several key issues in a simpler setting.

In the context of improving the performance of physical realizations of the RAM, we evaluate
a specific machine M by establishing results of the following form: If P is a RAM program in
class Π, which runs for N RAM steps on a given input, then P is executed by machine M in time
T ≤ Ns(M). The factor s(M) can be viewed as the slowdown of M with respect to the RAM or, in
the parlance of computer architecture, as the cycles-per-instruction (CPI) metric for M. Clearly,
for a result to be of interest, s(M) must grow more slowly than M1/d, as the latter slowdown
is rather straightforward to achieve, for any program that uses space at most M . Furthermore,
the interest of the result increases with the extent and the relevance of the class of programs Π,
although these aspects are not easily translated into a quantitative metric.

It is generally understood that the potential concurrency of a program is constrained by depen-
dences between instructions. One key notion is that of data dependence [25], which holds between
an instruction producing a value and another instruction using it. Within the course of this work,
it has become apparent that a crucial distinction must be made between two cases of data de-
pendence. In one case, which we call functional dependence, the output of the first instruction
is used by the second one as an operand. In the other case, which we call address dependence,
the output of the first instruction is used by the second one as the address of an operand. As we
shall see, address dependences are a more serious obstacle to memory concurrency than functional
dependences. An even greater obstacle arises from control dependence, whereby one instruction
determines whether another one is executed or not. To allow for a gradual introduction of ideas,
we will consider machines for the the execution of RAM programs with dependences of increasing
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complexity. This approach will also help clarify which aspects of the memory and of the processor
organization are needed to handle different types of dependences.

Next, we provide a roadmap of the paper. In Section 2, we review the definition of the Random
Access Machine and introduce the key dependence relations among instructions. In Section 3, for
any number of space dimensions d ≥ 1, we develop pipelined, hierarchical memory organizations
that can accept read or write requests at a constant rate and respond to a request involving address
x in time a(x) = O(x1/d). In Section 4, we develop a lower bound technique that applies to a
wide class of machines, called machines with explicit data movement (EDM). In this class, data
movement takes place only as explicitly specified by instructions. A consequence of this constraint is
that any memory access latency can only be masked by overlap and cannot be eliminated altogether
(as is done in bypass mechanisms). By making all data movements explicit, one can examine which
of them can be overlapped and estimate time bounds more accurately. This class includes several
previously proposed models of machines with hierarchical memory, in some case, as powerful as the
organizations of Section 3. It is shown that there are direct-flow programs, i.e., programs with no
indirect addresses and no branches, any implementation of which will run in time superlinear in the
number of instructions on any EDM machine. This analysis indicates, among other things, that
a powerful memory by itself is not sufficient to achieve optimal performance. This motivates an
investigation of processor organizations that engage in implicit data movements and can efficiently
take advantage of the memory pipeline.

The investigation of non-EDM processors is carried out in Section 5, where an organization is
developed with two variants: the Speculative Prefetcher (SP) and the Speculative Prefetcher and
Evaluator (SPE). Both processors can execute arbitrary RAM programs. In the special case of
direct-flow programs, the execution time is proportional to the number of executed instructions, as
for the ideal RAM and unlike the other models previously considered in the literature. Both the SP
and the SPE include a number of features that have become common in current microprocessors
and make use of various forms of speculation, on data prefetch, on instruction operands, and on
branch targets. The contribution of this work lies, in part, in the way these known mechanisms
are combined and in part in the methodology that allows asymptotic analysis of algorithms on the
proposed machines, in spite of the rather complex processor and memory structure. In particular,
Section 6 is devoted to some case studies of algorithmic performance. It is shown that a class
of loop programs can be automatically restructured to run in time proportional to the number of
instructions on the SPE. This class includes matrix addition and multiplication, FFT, bitonic merg-
ing and sorting, finite difference solutions of some PDEs, and digital filtering. Recursive algorithms
can also be programmed efficiently for the SPE, as illustrated with an optimal implementation
of quicksort. A careful implementation of the standard algorithm to merge two sorted sequences
is also considered: due to address dependences, the running time is superlinear in the number of
executed instructions.

Finally, in Section 7, we put the results of the paper in some perspective and outline some
directions for further investigation of the questions studied here.

The developments of this paper naturally relate to a vast amount of previous work, on models
of computation, on algorithms, and on computer architecture. A full review of such work is beyond
the scope and limits of this paper; however, a number of directly relevant references are reported
in the subsequent sections.
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2 The Random Access Machine and Related Concepts

In this section we formulate the framework of our investigation by (i) defining the abstract machine
model for which we seek physical implementations; (ii) introducing the concepts of dependence
between dynamic instructions of a program that are crucial to performance optimization, both
when designing machines and when designing algorithms; and (iii) stating rules for our machine
design that guarantee arbitrary scalability under physical constraints.

2.1 The RAM Model

The Random Access Machine (RAM) is a well known model of sequential computing [20], inspired
by the von Neumann architecture [32]. In this section, we introduce a variant suitable to our
purposes. In the theory of computation, the RAM is typically defined as a machine with a countably
infinite number of storage locations, each capable of holding an arbitrary integer number. Instead,
we define a finite version, RAM(M,P ), a machine equipped with M locations of data memory
and P locations of program memory; memory locations can hold strings with a bounded number
of bits, as discussed later in the section. Indeed, we are interested in studying the performance
and the cost of physical implementations as a function of machine size, as characterized by M and
P . Accounting separately for program and data memory exposes more clearly the origins of the
complexity in the implementation.

Data locations have addresses 0, 1, . . . ,M − 1; the content of location x is denoted by m[x].
Similarly, program locations have addresses 0, 1, . . . , P − 1; the content of location x is denoted by
p[x]. In addition, there is a special location, called the program counter and denoted pc.

The contents of locations pc, m[0], . . . ,m[M − 1], and p[0], . . . , p[P − 1] represent the state of
RAM(M,P ), viewed as a discrete-time dynamical system. The transition function is naturally
interpreted as the execution of the “current instruction”, defined by the contents of location p[pc].
The set of possible instructions and their meaning, i.e., the type of state transition caused by their
execution, is considered next.

An instruction set IS is a finite set {J1, . . . ,Js} of objects called instructions, whose format
and meaning is discussed next. Instructions refer to data using the operand format (x̂, x), where
x̂ ∈ {−1, 0, 1} specifies the so called addressing mode. Based on the mode, the function value(x̂, x)
defines the value of data as follows: value(−1, x) = x (literal mode); value(0, x) = m[x] (direct
mode); value(1, x) = m[m[x]] (indirect mode). When x̂ 6= −1, we will sometimes find it useful to
denote the address of operand location as x̃, defined as x̃ = x for x̂ = 0 and x̃ = m[x] for x̂ = 1.

Instructions are either of data-processing type or of control-flow type.
Data-processing instructions are of the form 〈op, (x̂, x), (ŷ, y), (ẑ, z)〉, where the instruction

opcode op, denoting a binary operation, is followed by two source operand specifiers and one desti-
nation operand specifier (with ẑ 6= −1). The semantics of the instruction is to transform a current
state, m0, of the data memory into a next state, m1, where m1[z̃] = value(x̂, x) op value(ŷ, y).
For all w 6= z̃, location m[w] is unchanged, i.e., m1[w] = m0[w]. After a data-processing instruction
is executed, control flows to the next instruction in program memory (pc1 = pc0 + 1).

The main control-flow instruction is the branch, 〈branch, (ĉ, condition), (t̂, target)〉. When
such an instruction is executed, if value(ĉ, condition) 6= 0, then control flows to the instruction at
program memory position pc1 = value(t̂, target), else it flows to position pc1 = pc0+1. The memory
remains unchanged. When ĉ = −1, the branch is unconditional and otherwise it is conditional.
We shall also assume the existence of a speculated branch instruction to support static speculation.
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The format is 〈spbranch, (ĉ, condition), (t̂, target), ( ˆspt, sptarget)〉, where sptarget specifies
the speculated address of the next instruction to be executed after the branch. The value of the
speculated target does not affect the semantics of a program, but can be helpful for performance.
A halt instruction 〈halt〉 is also provided, which we assume to be always present in p[0], and simply
causes pc1 = 0.

We also assume that, for any instruction, there is a corresponding predicated version, with an
additional operand (p̂, predicate). The instruction is equivalent to its non-predicated version when
value(p̂, predicate) is non-zero, and has no effect otherwise.

Finally, we introduce a performance-oriented segment-size instruction, 〈ss, (ŝ, segmentsize)〉,
which does not alter the semantics of the program. Informally, it is meant to encode an indication
of the number of instructions that could profitably be executed in an overlapped manner. The
motivation for this instruction will be more clear in Section 6.

Remark. Technically, since a data-memory location must be capable of holding the address of
an arbitrary data-memory location, it must be capable of storing at least log2 M bits. Similarly,
a program-memory location must be able to hold an instruction. A branch instruction can have
a maximum of one data memory address and two program memory addresses. A non-branch
instruction can have a maximum of 4 operands. Thus, each location in the program memory
requires at least max(4 ∗ log2 M, log2 M + 2 ∗ log2 P ) bits. However, in most of our analysis, we
will ignore the dependence of location size upon M and P , essentially considering it as a constant.
This greatly simplifies many details, without compromising the main thrust of our considerations.

2.2 Instruction-Stream Dependences

A program P is a sequence of instructions, i.e., P = (J1, J2, . . . , Jq), where Ji ∈ IS. In order to
be executed, a program must be loaded into the program memory, with p[i] containing the binary
code for instruction Ji, for i = 1, . . . , q.

It is generally understood that efficient execution of programs is constrained by various forms of
dependences between their instructions. The dependence relations introduced below are similar in
spirit to those that are standard in the field of compilers [25, 4], but they are also different in signif-
icant ways. Most notably, in the compiler context, relations are defined between static instructions
in the program (the Ji’s, in the above notation). In contrast, in our context, dependence relations
are defined between instructions in the dynamic stream generated by executing the program on a
given input.

When a program P = (J1, J2, . . . , Jq) is executed for N steps, starting from an initial memory
state m0 and program counter pc0 = 1, control will flow through a sequence of instructions, called
the instruction stream I = I(P,mo, N) = (I1, I2, . . . , IN ), where Ik = Jpck−1

. Correspondingly,
the data memory will go through a sequence of states, m0,m1,m2, . . . ,mN , where mk results from
mk−1 by executing Ik.

We want to capture the situation in which an instruction Ij produces information used directly
by a subsequent instruction Ik (j < k). This happens when Ij produces the result vj and stores it
into location w, from which vj is later read by Ik, with no intermediate instruction Ih (j < h < k)
writing into w. This situation is similar to data dependence in compiler theory. However, for
our developments, it will prove crucial to further distinguish between the case where vj is used
by Ik as an operand value (functional dependence) and the case where it is used as an address
(address dependence). For simplicity, in the next definition we assume that both Ij and Ik are
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unpredicated data-processing instructions. The cases where Ik is a branch or predicated can be
dealt with similarly.

Definition 1 Let Ij = 〈opj , (x̂j , xj), (ŷj , yj), (ẑj , zj)〉 and Ik = 〈opk, (x̂k, xk), (ŷk, yk), (ẑk, zk)〉
be the j-th and k-th instructions in the instruction stream, respectively, and let w be a data-memory
address. FunctionalDependence, j

w−→k, and AddressDependence, j
∗w−→k, are defined

as:

produce(j,w,k) ≡ (0 < j < k) ∧ (z̃j = w) ∧ (z̃h 6= w, ∀h : j < h < k)
consumeValue(w,k) ≡ w = x̃k ∨ w = ỹk ∨ (zk = w ∧ ẑk = 1)
consumeAddr(w,k) ≡ (w = xk ∧ x̂k = 1) ∨ (w = yk ∧ ŷk = 1)
j

w−→k ≡ produce(j,w,k) ∧ consumeValue(w,k)
j

∗w−→k ≡ produce(j,w,k) ∧ consumeAddr(w,k)

The dependence relation is conveniently extended to a fictitious instruction, I0, to reflect that
reading an unmodified location gets the value from the initial state of memory.

Definition 2 Functional Dependence, 0 w−→k, and Address Dependence, 0 ∗w−→k, are
defined as:

produceInit(w,k) ≡ (0 < k) ∧ (z̃h 6= w,∀ 0 < h < k)
0 w−→k ≡ produceInit(w,k) ∧ consumeValue(w,k)
0 ∗w−→k ≡ produceInit(w,k) ∧ consumeAddr(w,k)

Consider a chain of instructions where each instruction has a functional or an address depen-
dence upon the previous one. It is intuitively clear that the indirect accesses generating the address
dependences cannot easily¶ be overlapped, since all the predecessors of an address-dependent in-
struction I must execute before the address needed by I can be even computed. These informal
considerations motivate the definition of the address dependence depth of a program, which will
play a significant role in subsequent sections.

Definition 3 Consider an execution of program P on a particular input, resulting in the instruc-
tion stream I = (I1, . . . , IN ). A subsequence Ij0 , Ij1 , . . . , IjL, with j0 < j1 < . . . < jL, forms a
dependence chain if Ij`

has a functional or an address dependence upon Ij`−1
, for ` = 1, 2, . . . , L.

The address dependence depth (AD-depth) of a chain is the number of pairs of consecutive
instructions in the chain related by address dependence. The address dependence depth D of an
execution is the maximum AD-depth of any chain. The AD-depth D(K) of P is the maximum
AD-depth of any execution corresponding to an input of size K.

The following types of program are often useful for conceptual developments.

Definition 4 A program P is straight-line if all of its instructions are of the data-processing
type, except for the last instruction which is a halt. A straight-line program using only literal or
direct addressing is called a direct-flow program.

To relate the preceding definitions, we may observe that a direct-flow program is characterized by
lack of branches and AD-depth D = 0.

¶We cautiously use the qualifier “easily,” because one cannot rule out a priori the possibility of predicting addresses
and overlapping the corresponding (speculative) accesses.
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2.3 Extensibility under Physical Constraints

We explore machine design and performance under very fundamental implementation constraints,
likely to remain in force as technology evolves and larger systems are built. Thus, we focus on
systems that are extensible, as specified by the following properties:

1. The system is formulated as an interconnection of modules of relatively simple functionality,
specifying its mapping onto a physical system, including a placement in physical space of the
modules and their interconnections.

2. The system design is parameterized with the size of the system, so that the same design can
be instantiated in physical space for different sizes.

3. The execution time of a computation on the system is expressed in number of steps, as a
function of the size, where each step is a state transition of the physical implementation.

4. The time taken for a state transition must remain invariant as the system grows in size.

Systems must be implemented ultimately in a d-dimensional space (typically with d = 2, 3),
where physics sets lower bounds on device size and upper bounds on signal speed. (For models of
computations incorporating such constraints see, e.g., [19, 16]). Then, extensibility can be ensured
by organizations formulated in terms of cells that can be realized with a constant amount of logic
and can be embedded in a d-dimensional array with direct links between cells spanning at most a
constant number of array edges. Our designs fall in this class.

3 Pipelined and Hierarchical Memory Organizations

In this section, we introduce novel memory organizations that, together with processor organizations
developed in later sections, will lead to machines for efficient execution of RAM programs.

Traditionally, to reduce the memory bottleneck, designers have resorted to memory organiza-
tions that are hierarchical (to exploit the temporal locality of the computation), that support block
transfer (to take advantage of the spatial locality of the computation), and that are pipelinable (to
exploit concurrency of memory accesses). Memory hierarchies with block transfer capabilities have
received a great deal of attention, from the perspective of architectures, compilers, algorithms, and
libraries (see, e.g., [21, 29, 2, 3, 34, 5, 41, 35, 38, 22, 31, 7, 15, 39]).

In contrast, relatively few studies have focussed on memory pipelining. Indeed, until recently,
memories of most commercial machines were scarcely pipelinable, perhaps with the notable excep-
tion of vector processors. However, the number of simultaneous outstanding memory references
has been increasing and is currently of the order of 10. Overlapping of memory references as
a systematic approach to hide memory latency has been strongly advocated by Burton Smith,
originally with the proposal of the HEP computer [36] and more recently in the context of the
Tera computer [6]. Similar ideas have been later utilized in theoretical studies of shared memory
simulations by fixed topology networks [37] and have subsequently inspired the realization of the
SB-PRAM machine [1]. Speedups enabled by parallelism among operations are considered by [28],
in uniprocessors with non-hierarchical pipelinable memories. Lower bound arguments developed in
[16] show that, in parallel machines where performance is limited by speed of light (rather than
by less fundamental overheads), concurrency of accesses cannot fully mask latency if locality of
reference is not simultaneously exploited. Hardware and software prefetching techniques (see, e.g.,
[30]) can be viewed as efforts to take advantage of concurrency among memory references, in a
hierarchical context. The algorithmic advantages of pipelining the memory hierarchy have been
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explored in [9], based on a model called the Pipelined Hierarchical RAM (PH-RAM).
The above cited studies and others provide strong motivations of both a practical and a the-

oretical nature to consider the pipelining of accesses in a hierarchical memory and to study the
combined effects of concurrency and locality. The remainder of this section will focus on physical
realizations of the following type of memory.

Definition 5 A pipelined hierarchical memory satisfies the following properties.

• Memory consists of M locations with addresses 0, 1, . . . ,M − 1. The content of location x
(at an implicitly understood time) is a word, denoted by m[x].

• Memory has a single input port through which it accepts read and write requests and a
constant number of output ports through which it delivers any responses. (Multiple output
ports can simplify congestion management.)

• A read request is a packet of the form load(x; tag); in response, the memory will deliver
a packet at an output port, with the information (x,m[x]; tag). The tag field, which is not
modified by the memory, provides a convenient mechanism for the processor to associate with
the request information that will be useful in processing the response.

• A write request is a packet of the form store(x, v) and will cause the content m[x] of
location x to be set to value v.

• Request packets (RPs) directed to the same memory location take effect in the same order
as they are submitted to the input port.

• The input port and the output ports are placed within a constant distance of each other, at
one corner of the memory layout.

• In each time step, the input port can accept one RP and each output port can deliver one RP
(with the response to an earlier read request).

• Memory performance is characterized by two metrics. The access function a(x) denotes
(an upper bound to) the time that elapses between submission at the input port of a read RP for
address x and delivery at an output port of the corresponding result. The pipeline period
p(M) denotes the minimum time between subsequent submissions of RPs, in a sustained
fashion.

Without loss of generality, we assume that a(x+1) ≥ a(x), i.e., that the locations are numbered
in order of non-decreasing access time. The restriction on the number of ports is in no way imposed
by physical constraints and, as we will discuss, ought to be lifted in further investigations.

For a memory physically laid out in d dimensions, it is straightforward to see that constraints
on minimum device size imply that location x must be at distance Ω(x1/d) from the memory
ports. Then, the constraint on maximum signal speed implies that a(x) = Ω(x1/d). It is quite
straightforward to devise a memory organization with a(x) = O(x1/d), if distinct accesses are
not overlapped. It is more challenging to attain the same bound if accesses are pipelined. In
fact, responses to different addresses submitted at different times will generally compete for the
bandwidth toward the output ports. The problem then becomes to control congestion in such a
way that each individual memory request does not get delayed by more than a constant factor, due
to routing conflicts with other requests.

The main contribution of this section is a novel pipelined, hierarchical memory organization
scheme that can be specialized to yield optimal access time a(x) = O(x1/d), with p(M) = O(1),
that is, requests are accepted at a constant rate. The result holds for any d ≥ 1. Two-dimensional
and three-dimensional layouts (d = 2, 3) are of particular interest in practice. One-dimensional
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Figure 1: A non-hierarchical, pipelined memory organization.

layouts (d = 1) are also worth considering, as they capture the essence of several key issues in a
simpler setting. Regardless of its potential significance, the case d > 3 is included in this study
without effort, since our constructions are naturally uniform with respect to d.

As a building block for the pipelined hierarchy, Section 3.1 introduces a non-hierarchical,
pipelined memory. This block is of independent interest for a number of results in this paper,
which rely only on the pipelinability of the memory and not on its hierarchical nature.

3.1 A Pipelined Memory

We describe a δ-dimensional pipelined non-hierarchical memory of size M , for simplicity a power
of δ, organized as a δ-dimensional array of memory cells, whose dimensions can be expressed as
[0..M1/δ−1, . . . , 0..M1/δ−1]. The input port is placed near the origin [0, . . . , 0]. All requests enter
at the origin, traverse a path that goes through the target cell, exit at the diagonally opposite
end of the δ-dimensional array, and return to the origin via a path external to the array, as
illustrated by Figure 1, for δ = 2. Specifically, a read request for the cell [x1, x2, . . . , xδ], first
travels for x1 units along the first dimension, i.e., [0..x1, 0, 0, . . . , 0], then x2 units along the second
dimension, i.e., [x1, 0..x2, 0, 0, . . . , 0], and so on until it reaches the target at [x1, x2, . . . , xδ]. It
collects the data from the cell and travels along [x1, x2, . . . , xδ−1, xδ + 1..M1/δ − 1] and then along
[x1, x2, . . . , xδ−1 + 1..M1/δ − 1,M1/δ − 1] and so on until the last node [M1/δ − 1, . . . ,M1/δ − 1] is
reached. The total path length from the origin to the diagonally opposite node is δM1/δ. Thus,
including the return path, access to any location in this array takes time µ = 2δM1/δ. A write
request is handled similarly, with the path stopping at the target cell.

The proposed organization is highly pipelinable, as it can accept one request in each time step,
i.e., p(M) = 1. In fact, assuming each step in the traversal described above takes the same amount
of time, no two requests collide at any point in their traversal. It is also clear that requests to a
given cell arrive at the cell in the order they are submitted. The memory is not hierarchical as
access to any location in the array takes the same amount of time, that is a(x) = 2δM1/δ, for
x = 0, . . . ,M − 1. We summarize the result next.
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Figure 2: A pipelined hierarchical memory organization. Memory locations are organized into
J levels, M1, . . . ,MJ . Each Mj is a pipelined memory with M j cells and µj response time.
Responses from Mj are output into a FIFO queue Qj . A backbone organized as a linear array
of controllers C1, . . . , CJ routes the requests to the appropriate memory levels (along the U-path)
and the responses back to an output queue MQ (along the D-path).

Proposition 1 For δ ≥ 1, the preceding construction yields a memory organization of M cells that
can be laid out in δ dimensions and achieves period p(M) = 1 and access time a(x) = O(δM1/δ).

3.2 Pipelined Hierarchical Memory: Overview

The memory M developed in this section consists of a sequence of levels M1,M2, . . . ,MJ , inter-
connected by a backbone (see Figure 2). For each level, 1 ≤ j ≤ J , Mj is a pipelined memory of
M j locations (j is a superscript, not an exponent), which can accept one request packet (RP) per
time step and complete the memory operation after a fixed number, µj , of time steps. If the RP is
for a read, then is loaded with the value of the target location and sent into an output queue Qj .
This is a FIFO queue which can accept one RP per step and output up to a fixed number of the
enqueued RPs. A systolic implementation of the queue is feasible, in the spirit of [27].

The backbone, fully described in Section 3.3, consists of a bidirectional linear array of controllers
Cj (j = 1, . . . , J). An RP directed to a location x in level Mj is submitted to controller C1, routed
“upwards” on the U-path by the backbone to controller Cj , and submitted to Mj . For a read,
the RP with the memory response goes to Qj , eventually enters the backbone at Cj , is routed
“downwards” on the D-path to controller C1, and is finally inserted into a queue, MQ, described in
Section 3.5. Ultimately, when we specialize the organization for d-dimensional layouts, the Mj ’s
will be organized as the δ = (d− 1)-dimensional arrays described in Section 3.1. However, for most
of our developments, we will refer to arbitrary level parameters M j and µj . Memory locations are
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assigned consecutive addresses, starting at 0, in level order. Therefore, the level `(x) containing
address x is uniquely determined by the relation M1 + . . . + M `(x)−1 ≤ x < M1 + . . . + M `(x). Let
us now define a(x), the access time to location x, as the worst-case duration of the interval from
the time when an RP targeted to location x is submitted to M to the time when the response to
that RP is inserted into MQ. Clearly, for the RP to travel up to level `(x), to be serviced once
at level `(x), and to travel down to MQ it takes at least time `(x), µ`(x), and `(x), respectively,
so that a(x) = Ω(`(x) + µ`(x)). Our objective is to achieve a(x) = O(`(x) + µ`(x)). The challenge
lies in designing the downward routing algorithm of the backbone so that the time spent by an
RP both in Q`(x) and in the backbone are suitably bounded. Routing on a linear array has been
widely investigated; however, the version of the problem arising here differs from previously studied
scenarios in two key respects: (i) the objective is to bound the routing time to within a constant
factor of source-destination distance for individual messages (not to within a constant factor of the
network diameter as, e.g., in most studies of permutation routing) and (ii) submission of messages
is continuous, although subject to some constraints (most routing analysis has been developed for
batch mode).

The next subsection is devoted to a detailed description of the backbone. The subsequent
subsection is devoted to performance analysis and establishes that a(x) = O(`(x) + µ`(x)). In d
dimensions, level Mj can be realized as a (d − 1)-dimensional pipelined memory of size M j =
(j)d−1, with µj = O((d − 1) ∗ j), as in Proposition 1, with δ = d − 1. One can easily see that
M1 + M2 + . . . + M j−1 = θ(jd), whence `(x) = O(x1/d). Therefore, optimal access time a(x) =
O(`(x) + µ`(x)) = O(dx1/d) is achieved.

3.3 Structure and Routing Algorithm of Backbone

The memory backbone is structured as a linear array of controllers C1, C2, . . . , CJ , where signals
between near neighbors can be exchanged in one time step. Request packets (RPs) are submitted
to C1. Each Cj , with j < J , is connected to Cj+1 by an upward link. Upward links establish a
path, referred to as the U-path, along which an RP directed at location x travels up to controller
C`(x) and is submitted to level M`(x). Since RPs enter only at C1 and require only constant amount
of processing at each level, the U-path can be trivially pipelined to accept one RP per time step
(p(M) = 1, independent of M). The logic required at each controller to implement the U-path is
indeed straightforward.

Each Cj , with j > 1, is also connected to Cj−1 by a downward link and C1 is connected to
a global memory queue, MQ, in order to establish a D-path along which an RP serviced at Mj

travels from the output of Qj to MQ. Designing an efficient pipelined D-path is a more challenging
task, since RPs can enter at any level. Our objective is to bound both the waiting time in Qj and
the time spent to travel from level j to MQ once in the D-path. Indeed, we will bound the D-path
time by O(j) and the waiting time in Qj by a function of the level latencies µ1, . . . , µj , a function
which becomes O(j) when the latencies are suitably chosen.

Our design of the D-path carefully controls the available bandwidth to ensure finite progress,
both for the “new” RPs that are injected into the D-path at various levels and for the “old” RPs
that are already traveling down the D-path. For injection of new RPs into the D-path, lower
levels are designed to have precedence over higher levels, to balance the response times. This is
accomplished by adjusting two integer parameters, w and b, with w > b > 0, as depicted in Figure 3.
Each downward link has bandwidth w, in RPs per time step. Every Cj is equipped with two sets of
buffers Bj0 and Bj1, each capable of holding b RPs. Set Bj0 will be updated only in time steps of
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Figure 3: Schematic view of the D-Path within controller Cj , with its input, state, and output
variables. The switching logic implements Equations (1)-(5).

even parity, while set Bj1 will be updated only in time steps of odd parity. Each buffer is organized
as a FIFO queue; if, during the same time step, RPs are received both from Qj and from Cj+1, the
RPs from Cj+1 are enqueued first. Informally, the performance role of the two parameters is as
follows: at least b units of bandwidth are used to guarantee access of “new” RPs into the D-path
and at least w− b units are used to guarantee progress to the “old” RPs within the D-path. When
the old RPs do not use up all of their bandwidth allowance, the excess can be used by the new ones
and vice versa. This behavior is achieved with the help of a control signal, f j

t , sent to Cj by Cj−1,
representing the bandwidth guaranteed for new RPs.

At any time step t, the following quantities determine the behavior of Cj : the number bj
t of

occupied buffers in set Bj,t mod 2, the number wj
t of RPs received from Cj+1, the control variable

f j
t , set by Cj−1 at time t − 1 with f1

t = b for all t′s, and qj
t defined as the number of RPs ready

to enter the D-path, which include those left in Qj at the end of time step t− 1 as well as the RP
exiting Mj at t−1, if any. As a function of these variables, the following quantities are set by Cj at
time t: the number rj

t of RPs to be accepted from Qj ; the number wj−1
t+1 of RPs to be sent down to

Cj−1; the control signal f j+1
t+1 to be sent up to Cj+1, and the number bj

t+2 of RPs to be occupied in
set Bj,t mod 2. Note that, since each Bj,t mod 2 is accessed in alternate steps, the updated number
is bj

t+2, rather than bj
t+1. We assume that at t = 0 the D-path is empty, that is, bj

0 = bj
1 = 0 and

wj
0 = 0 for all j’s. In addition, we let f j

0 = b, for all j’s. The rules governing the behavior of Cj ,
for t ≥ 0, are stated next and discussed below.

rj
max,t = f j

t + [w − (wj
t + bj

t )], (1)

rj
t = min(qj

t , r
j
max,t), (2)

wj−1
t+1 = min(rj

t + wj
t + bj

t , w − b + f j
t ), (3)

bj
t+2 = rj

t + wj
t + bj

t − wj−1
t+1 , (4)

f j+1
t+1 = b− bj

t+2. (5)

To illustrate the role played by the above rules, it is helpful to realize that they preserve the
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following two invariants, which trivially hold at times t = 0, 1:

Invariant 1 : w − (wj
t + bj

t ) ≥ 0, (6)
Invariant 2 : 0 ≤ f j

t ≤ b. (7)

Rule (1) sets a threshold rj
max,t to the number of RPs that can transfer from Qj into the D-path.

The term f j
t represents the bandwidth reserved to new RPs; the term in square brackets, which

due to Invariant 1 is never negative, represents the bandwidth not used by old RPs that is made
available to the new ones. Rule (2) states that number of RPs that actually transfer from Qj into
the D-path is determined by the threshold or by the size of Qj , whichever is smaller.

Rule (3) states that up to w − b + f j
t of the RPs that Cj respectively holds in the buffers (bj

t ),
receives from above (wj

t ), and accepts from the queue (rj
t ) are sent below to Cj−1. The remainder,

if any, are stored in the buffers, as reflected by Rule (4).
It is easy to see (from Rules (3) and (4)) that when rj

t + wj
t + bj

t ≤ w − b + f j
t , one has

wj−1
t+1 = rj

t + wj
t + bj

t and bj
t+2 = 0. Otherwise, wj−1

t+1 = w − b + f j
t and, by Rules (4) and (1),

bj
t+2 = rj

t + wj
t + bj

t − w + b− f j
t ≤ rj

max,t + wj
t + bj

t − w + b− f j
t = b.

Thus, bj
t+2 ≤ b, which both ensures that the buffers can hold the required number of RPs and, in

view of Rule (5), preserves Invariant 2.
Finally, Rule (3) for Cj+1 at time t + 1 and Rule (5) for Cj at time t yield

wj
t+2 ≤ w − b + f j+1

t+1 = w − bj
t+2,

thus establishing Invariant 1 at time t + 2 for Cj .
The property established next sheds some light on the behavior of the D-path by showing that

a decrement f j
t − f j+1

t+1 of what we have intuitively indicated as the bandwidth guarantee for new
RPs does indeed correspond to at least that many RPs entering the D-path from Qj at time t.

Proposition 2 For any t and j, we have

rj
t ≥ f j

t − f j+1
t+1 . (8)

Proof: Bound (8) is obtained by the following chain of relations, starting from (5) and making subsequent
use of (4), (3), some algebra, Invariant 1, and Invariant 2.

f j+1
t+1 = b− bj

t+2

= b− (rj
t + wj

t + bj
t ) + wj−1

t+1

= b− (rj
t + wj

t + bj
t ) + min(rj

t + wj
t + bj

t , w − b + f j
t )

= min(b, w + f j
t − rj

t − wj
t − bj

t )
≥ min(b, f j

t − rj
t )

= f j
t − rj

t .

2
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Figure 4: Space-time diagram depicting waves of RPs entering the D-path.

3.4 Analysis of Access Time

Next, we analyze the access time, λj , for a read RP whose target location is at level Mj . This time
can be divided into four components: (i) the time, upj = j, spent to go up the U-path to reach Mj ;
(ii) the service time, µj , spent in Mj ; (iii) the queueing time, τ j , spent in Qj before entering the
D-path, which we will bound below; and (iv) the time, downj , spent in the D-path. Component
(iv) is bounded by 2d b

w−bej. To see this, consider that the RP must go through j controllers in
the D-path, each controller has a pair of buffers operated in alternate time steps, and each buffer
contains at most b RPs, at least w − b of which move to the next controller every second step.
Thus, we are lead to the bound

λj = upj + µj + τ j + downj (9)

≤ j + µj + τ j + 2d b

w − b
ej. (10)

Our next goal is to bound τ j . Let us consider a time-space diagram of Figure 4, where a point
(t, i) is associated with time step t and level i. With reference to a fixed level j, the diagonal line
in Figure 4 connecting the points (t + i, i), i = 1, . . . , j, is called the wavefront based at time step t.
We let Rj

t =
∑j

i=1 ri
t+i denote the total number of RPs that enter the D-path along the points of

the wavefront. We say that a wavefront is congested if for some level h, with 1 ≤ h ≤ j, the queue
Qh does not get emptied at time t+h, i.e., not all the qh

t+h RPs left over in Qh from time t+h− 1
or just arrived at time t + h manage to enter the D-path at time t + h. We now show that, on a
congested wavefront, at least b RP’s enter the D-path. Formally, we have:

Proposition 3 For any t, if the wavefront based at time t is congested, then Rj
t ≥ b.

Proof: Let h ≤ j be a level where the queue does not get emptied at time t+h. By summing Equations
(8) for i = 1, . . . , h, and recalling that f1

t = b, for all t, we get

Rj
t ≥ Rh

t ≥ f1
t+1 − fh+1

t+h+1 = b− fh+1
t+h+1. (11)

15



The fact that Qh does not get emptied implies that, in Equation (2), we have rh
t+h = rh

max,t+h; substi-
tuting this in Equations (3), (4), and (5), we get fh+1

t+h+1 = 0. Combining this with Equation (11) we
obtain the stated result. 2

For a given level j, a run of length τ j
run is a sequence of congested wavefronts based at times

(t + 1, . . . , t + τ j
run), preceded by a non-congested wavefront based at time t. It is clear that the

τ j time steps during which an RP is queued in Qj must be part of a run, whence an upper bound
on the length of any run is also an upper bound on the waiting time τ j . Therefore, we turn our
attention to the length of a run.

Let RPrun be the set of RPs entering the D-path on any of the τ j
run congested wavefronts of a

run based at times in the interval (t + 1, t + τ j
run). By the definition of run and by Proposition 3,

we have |RPrun| ≥ bτ j
run. Denoting µj

max = maxj
i=1 µi, any RP entering the D-path on any of the

above congested wavefronts must have been submitted in the time interval, (t+1−µj
max, t+ τ j

run),
which is of length µj

max + τ j
run as depicted in Figure 4. This is because if an RP is submitted earlier

than this interval, then it must have entered the D-path on or before the non-congested wavefront
based at t. Similarly if it is submitted later than the interval, it cannot enter the D-path on any
of the wavefronts of the run. Since only one RP can be submitted in any time step, we conclude
µj

max + τ j
run ≥ |RPrun| ≥ bτ j

run, which gives us τ j
run ≤ µj

max/(b − 1). Thus, we get the following
bound for queueing delay:

Proposition 4 The time spent by any RP in queue Qj satisfies

τ j ≤ µj
max/(b− 1). (12)

Combining this proposition with relation (9), we arrive at the key result of this section.

Theorem 1 In the proposed pipelined hierarchical memory organization read and write
requests can be submitted one per step, that is, p(M) = 1. A read request directed to level j is
satisfied in time

λj ≤ j + µj + µj
max/(b− 1) + 2d b

w − b
ej. (13)

Of particular interest to us is the case of d-dimensional geometries, considered in the next corollary.

Corollary 1 For a d-dimensional memory where the level Mj is realized as in Section 3.1, with
size M j = (j)d−1 and latency µj = (d−1)j, and choosing for the backbone w = 4 and b = 2, a read
RP directed to location x is satisfied at most in time

a(x) = O(dx1/d). (14)

Proof: First, notice that with the choice of parameters under consideration, (13) can be rewritten as

λj ≤ j + 2(d− 1)j + 2(d− 1)j + 2j = (4d− 1)j. (15)

Since the collective size of the first j memory levels is
∑j

i=1 jd−1 = θ(jd), clearly location x is at a level
`(x) = O(x1/d). Using the latter relation in (15) yields (14). 2

While the choice w = 4 and b = 2 for the D-path parameters yields the desired proportionality of
a(x) to x1/d, other choices are possible, yielding different bandwidth/access-time tradeoffs. Simi-
larly, there are different choices for the memory levels M1,M2, . . . To mention just one example,
one could choose to let Mj be empty except when j is a power of two and, in such case, let Mj

be a d-dimensional memory of size M j = jd. The exploration of the corresponding tradeoffs would
definitely be of interest in a phase of engineering optimization of the system.
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3.5 Memory Queue

Referring to Figure 2, the incoming packets on the U-path can be either read or write requests
generated by an instruction, whereas the outgoing packets on the D-path can only be read packets.
The latter packets are shown to be entered into a queue called MQ. In a complete machine, they will
be subsequently consumed by the processor. We assume that MQ has the following properties: (i)
it implements a FIFO policy; (ii) it can accept up to w packets per step (as many as can be output
by the D-path); (iii) it can output one packet per step, as long as it is not empty. Implementations
of MQ that are extensible under physical constraints, as specified in Section 2.3, can be developed,
for example with a systolic-like approach [27]. The detailed design is an exercise, although not
completely trivial.

One issue that arises is the maximum size of the queue for which the physical implementation
must be tailored. In general, this size depends upon how the processor extracts entries from the
queue. As an illustration, let us consider the case of a processor that always extracts the head
of the queue if the latter is not empty. Further assume that the pipelined hierarchical memory
(PHM) has size M , period p(M) = 1, and access function a(x). Then, we claim that (1) the time
spent by an RP waiting in MQ equals the size of the queue upon the arrival of the RP, and (2)
the size of MQ is bounded above by a(M), at any time. Property (1) is an obvious consequence of
the queue being depleted at the rate of one entry per step. To establish Property (2), consider the
combined packet population in both the PHM and the MQ. At time steps when MQ is non-empty,
the population does not increase, since one packet is definitely dequeued from MQ and at most
one packet can be submitted to the PHM. On the other hand, at times when MQ is empty, the
population is completely contributed by the PHM and cannot be larger than a(M), since at most
one packet per step can enter the PHM and no packet stays in the PHM longer than a(M) steps.

4 Time Lower Bounds for a Class of Machines

It is well known that, for machines with a hierarchical memory that does not support any access
concurrency, some computations of N instructions do require time superlinear in N , for many
reasonable access functions. Results of this type, for computations such as semi-ring matrix multi-
plication, Fast Fourier Transform, and sorting, can be found in [2], where the Hierarchical Memory
Model (HMM) of computation is introduced. The arguments are based on a lower bound technique
pioneered by [24] and further developed in [35, 15].

The ability to support concurrent accesses is clearly beneficial to performance. The Block Trans-
fer (BT) model of [3] goes in this direction, assuming the availability of a block-move instruction
that can copy the content of a set of k consecutive memory locations into another such set, in
time a(xmax) + k, where xmax is the largest address of any source or target location. A number
of algorithms can be implemented considerably faster in BT than in HMM. Yet, some very basic
computations, e.g., incrementing all the components of a given array, do take superlinear time in
the number of instructions in BT, as established in Theorems 2.1 and 5.1 of [3]. It is interesting
to observe that the cited lower bounds apply to computations with no data (functional or address)
dependences, thus essentially exposing a limitation of the ability to pipeline accesses only from and
to consecutive addresses.

The Pipelined Hierarchical RAM (PH-RAM) was proposed in [9] to circumvent the limitations
of block transfer. The PH-RAM supports pipelined moves even when the source (or destination)
addresses are not consecutive. It also allows concurrency among memory accesses performed by
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different data-processing instructions. The PH-RAM can simulate the BT model with constant
slowdown and is also faster than BT on some computations. As an example, it can increment all
the components of a given array in linear time.

However, even the availability of a memory with constant pipeline period, postulated by the PH-
RAM and shown to be feasible in Section 3, is not sufficient to guarantee full access overlap, even
for the restricted case of direct-flow programs, whose accesses are all statically determined. While
high memory concurrency is a crucial factor, overall machine performance also requires suitable
processor organizations capable to take advantage of the memory pipeline. We will propose two
such processor organizations in Section 5.

To develop insights into the issues involved, in this section, we explore a class of system orga-
nizations satisfying a few assumptions which, while quite natural, ultimately limit the achievable
performance. We establish that certain computations require time superlinear in the number of
executed instructions, on any system of the defined class.

The definition of our class of machines involves a number of conditions, and their relevance may
not be immediately clear. However, the class does include several computational models previously
considered in the literature, as well as some models for commercial machines, as discussed below.

4.1 Machines with Explicit Data Movement

We now introduce and discuss the assumptions that define the class of machine organizations for
which lower bound arguments are developed in the next subsection. We refer to this class as explicit
data movement or EDM machines.
A1. Physical Addressing. At any time, the data-state of the program is stored in a set of physical
locations addressable by the non-negative integers (x = 0, 1, . . .). The instruction set is of the type
specified in Section 2.1. Instructions refer to data using physical addresses.
A2. Memory Management by Program Only. The state of the physical locations is modified
exclusively by the execution of data-processing instructions of the form < opcode, x, y, z >, whereby
the content of location z is updated with the value of a suitable function (specified by opcode) of
the contents of locations x and y. Data-processing instructions can be either ALU-instructions or
copy-instructions. The former require an arithmetic/logical unit (ALU) to transform the source
operands into a result operand, whereas a copy-instruction simply copies a single source operand
to the destination. Thus, a copy instruction is of the form < copy, x, z >, with the obvious
interpretation.
A3. Literal Execution. The execution of an instruction with an operand (or condition, or target)
specified by a direct or an indirect addressing mode does generate the submission of the corre-
sponding read request(s) to the memory. Similarly, the execution of an instruction with a result
does generate the submission of the corresponding write request to the memory. We say that an
instruction is issued when it submits the first request to fetch its input operands and committed
when it submits the request to store its result into memory. We say that an instruction is in
flight from the time it is issued to the time it commits. There is a non-decreasing, positive integer
function a(x), called the access function of the system, such that an instruction < opcode, x, y, z >
is in flight for at least max(a(x), a(y)) time.
A4. Memory Sequential Consistency. A read request submitted to memory for a given location
always returns the value written by the most recent write request submitted to that location prior
to the read in question.
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A5. Serial, Inorder Issue. Instructions submit the read requests corresponding to their operands
one at the time, to memory, in program order.
A6. Read-after-Write. An instruction with an operand at location x can be issued only after all the
instructions preceding it in program order that write into location x have committed their result
to their target location.
A7. Memory Concurrency. At any given time, at most s copy-instructions are in flight.
A8. ALU Concurrency. At any given time, at most f ALU-instructions are in flight.

Assumptions A1-A3 essentially constrain the components of the physical state of the machine
reflecting the architectural state of storage to be tightly controlled by the program. In particular, A3
models the fact that, when executing an instruction, the operand information is actually retrieved
from the physical locations literally specified by that instruction. In contrast, one may observe that
Assumptions A1-A3 are not typically satisfied by machines where addresses are regarded as names
of virtual locations and get dynamically mapped to physical locations. Examples of such machines
are those with cache management and register renaming mechanisms. While, for simplicity, the
lower bounds below will be derived under assumptions A1-A3, we will also briefly indicate how the
argument could be adapted to cover forms of virtual memory management not too different from
those encountered in most current commercial systems.

Assumptions A4-A6 are sufficient, although not necessary, to correctly implement the program
semantics. The following simple corollary of A5 and A6 has far reaching consequences for perfor-
mance:

Principle of Non-Overlapping Flight. Let us say that a write operation performed by an instruction
is useful if the written value is read by at least one subsequent instruction. Then, two instructions
that perform useful writes to the same location cannot be in flight at the same time.

Assumptions A7 and A8 are simply introducing parameters that allow us to investigate the
impact of limiting the concurrency of data movement between physical locations (s) and toward
the ALU (f). For example, consider a RISC architecture, where all data copies must go through
registers (which, in terms of Assumption A1, are part of the set of physical locations). Then, owing
to the principle of non-overlapping flight, s is upper bounded by the size of the register file.

The Assumptions A1-A8 are satisfied by a number of computational models, for suitable choices
of a(x), s and f . These include the HMM [2] and the PH-RAM [9]. The BT model [3] does not
strictly fall in our machine class, as its block-transfer instruction is outside the instruction set in-
troduced in Section 2, since it can affect a non constant number of memory locations. Nevertheless,
it is straightforward to simulate BT by the PH-RAM with constant slowdown. Hence, the lower
bounds to be derived next apply to all of these models.

4.2 A Lower Bound Technique

We will formulate our lower bounds for computations specified as computation directed acyclic
graphs (CDAGs), where nodes model operations as well as input data (nodes with no incoming
arc) and arcs model functional dependence. For a more formal definition, the reader can refer, e.g.,
to [14]; however, the informal notion ought to be sufficient here. CDAGs can be implemented as
direct-flow programs. One degree of freedom of the implementation is the schedule of the operations,
which can be chosen according to any topological sorting of the DAG. Another degree is the memory
map, that is, the assignment of a memory location to inputs and to results of instructions. This

19



assignment can vary dynamically, by means of copy operations, to take advantage of the hierarchical
nature of memory.

The time lower bound we will derive for a CDAG G applies to any program implementing G.
The lower bound depends upon a CDAG metric c, introduced in the next proposition, which limits
the amount of parallelism available at any stage of the execution of G.

Proposition 5 Let G = (V,E) be a CDAG. We say that G is c- coverable if its operation nodes
can be covered (possibly, with overlap) by c directed linear chains. Then, throughout the execution
of any program that computes a c-coverable G on any EDM machine, at most c ALU instructions
can be concurrently in flight.

Proof: Given a set of more than c ALU instructions, by the pigeon-hole principle, at least two of them,
say Ih and Ik (with h < k), must correspond to CDAG nodes that lie in the same chain, γ.

Suppose first that the nodes corresponding to Ih and Ik are consecutive on γ. Then, there is a
value v written by Ih in some location x0, possibly copied by intermediate instructions Ih1 , . . . , Ihj

into
locations x1, . . . , xj , and finally read by Ik from location xj . Except for Ih, each instruction in the
subsequence Ih, Ih1 , . . . , Ihj

, Ik reads a location written by the previous one. Then, by Assumption A6,
each instruction can be issued only after the previous one has committed. We conclude that no two
instructions in the subsequence, in particular Ih and Ik, can be simultaneously in flight.

A simple inductive argument on d extends the proof to the general case when Ih and Ik are at
distance d on chain γ. 2

The exact technical formulation of the lower bound derived below is rather involved, due to
(a) the number of parameters that play a role, (b) the generality of the access function, and (c)
the nature of the underlying counting argument. However, the main thrust is that EDM machines
cannot always execute a computation in time proportional to the number of required operations,
even when the memory is fully pipelinable. Limitations to the amount of pipelinability can further
reduce performance. The fact that some direct-flow programs satisfy superlinear lower bounds
indicates how the performance bottleneck is due to inherent limitations in orchestrating the data
movement under Assumptions A1-A8.

To help the reader follow the technical developments, we first provide some intuition behind
the lower bound proof. If the computation has N input values, at least N/2 of them will initially
be placed at addresses not smaller than N/2. These “distant” inputs must eventually arrive at the
processor, possibly after being copied into temporary intermediate memory locations. In view of
Proposition 5, at most c operation instructions can be concurrently in flight; since c could be as
small as 1 for suitable computation graphs, a program based only on ALU instructions can result
in N/2 non-overlapping accesses each taking time at least a(N/2). The advantage of intermediate
copying stems from the capability of pipelining many copy instructions, with a substantial overlap
of their access latencies; thus, many, say k, values can be brought in a faster memory region, say
within the g smallest locations, in a relatively short time, and accessed later at a smaller cost. Since
the flight time of two copy instructions with the same target location cannot overlap, one must have
k ≤ g. Then, the larger is the number k of values concurrently copied, the larger is the latency of
subsequent accesses to (a substantial fraction of) these values at the new locations. On the other
hand, intuitively, k ought to be chosen to be of the same order as the maximum latency of the
source addresses involved in the bulk copy so that k values can be moved in O(k) time. The bulk
copy approach can be deployed recursively, until the input values are brought at a suitably small
distance from the processor, which can then access them directly. As the number of levels in this
recursive process increases, the total amount of non-overlapped latency tends to decrease at the
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expense of a larger number of copy instructions which, owing to rule A5 on serial issue, sets a lower
bound to the computation time.‖ To capture this tradeoff for a program implementing a given
computation graph, we consider an arbitrary partition of the memory into regions of consecutive
addresses. We then develop lower bounds to the execution time both for the case when each region
is the target of copy operations for many input values (here, the bound stems from the total number
of copy instructions) and for the complementary case when there is at least one region not targeted
by many copy operations (here the bound stems from the total memory latency that cannot be
overlapped). The resulting lower bound depends upon the number of regions in the partition as well
as upon their boundaries. The partition that yields the best bound varies with the a(x) function, as
illustrated in a few corollaries of the main theorem. Next, we introduce some notation instrumental
to a concise statement of the lower bound.

Definition 6 For any positive integer k, let Y (k) denote the set of the increasing sequences of
positive integers not greater than k, i.e.:

Y (k) = ∪k
L=1{(y1, . . . , yL) : 0 < y1 < . . . < yL ≤ k}.

Given access function a(·), y = (y1, . . . , yL) ∈ Y (k), and positive integers s and q, we let

λa(·)(y; s, q) = min{2L, 2a(y1), a(y2)/ max(q, min(s, y1)), . . . , a(yL)/ max(q, min(s, yL−1))},

Λa(·)(k; s, q) = max
y∈Y (k)

λa(·)(y; s, q).

Informally, the notation will be used as follows. The integer vector y = (y1, . . . , yL) defines
the boundaries of the regions in a memory partition. The set Y (k) encodes a set of partitions;
the proof will focus on Y (N/2). For y ∈ Y (N/2), the function λa(·)(y; s, q), the shape of which
emerges from the structure of the counting argument, denotes a lower bound to T/N , based on
the memory partition defined by y. The parameters s and q respectively denote the memory
and the alu concurrency afforded by the machine as well as by the computation. Since the lower
bound holds for any y ∈ Y (N/2), one is interested in maximizing with respect to y, whence the
role of Λa(·)(k; s, q). In spite of its apparent intricacy, the function Λa(·)(N/2; s, q) can be actually
evaluated for a number of interesting cases, as illustrated by a few corollaries, following the main
theorem.

Theorem 2 Let M be a machine satisfying Assumptions A1-A8, with parameters a(·), s, and f .
Let G be a c-coverable CDAG with N inputs, u1, u2, . . . , uN , available in memory at the beginning
of execution. Let q = min(c, f). The time to execute G on M satisfies the bound

T s,q
a(·)(G) ≥ (N/8) max(4a(N/2)/(s + 2q),Λa(·)(N/2; s, q)). (16)

Proof: As a preliminary observation, we consider that q = min(c, f) is an upper bound on the number
of ALU-instructions that can be simultaneously in flight, where the limit c arises from the nature of the
computation (Proposition 5) and the limit f arises from a machine constraint (A8).

‖The interested reader can find these ideas applied to the design of efficient algorithms for the BT model [3] and
for the PH-RAM model [9]. A systematic technique to optimize the number and the size of bulk copying at various
levels of recursion is also presented in [9].
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Figure 5: Illustration of the counting argument for lower-bound analysis.

We first argue that T s,q
a(·)(G) ≥ (N/8)4a(N/2)/(s + 2q) = (N/2)a(N/2)/(s + 2q). Simply consider

the (N/2) inputs initially located at the highest addresses. All of them must be accessed at least once,
for a total latency non smaller than (N/2)a(N/2). It remains to observe that at most (s + 2q) accesses
can overlap: at most s due to copy-instructions (which have only one operand) and at most q due to
ALU-instructions (which may have up to two operands).

We next argue that T s,q
a(·)(G) ≥ (N/8)Λa(·)(N/2; s, q). Consider any y = (y1, . . . , yL) ∈ Y (N/2) and

ideally partition the address space into the L + 1 regions Rj = [yj−1, yj), for j = 1, . . . , L + 1, with the
convention that y0 = 0 and yL+1 = ∞. At the beginning of the execution, a set I ′ of at least N/2 input
values must reside in region RL+1, since at most N/2 of the N input values can be stored in regions
R1, . . . , RL, (by definition, yL ≤ N/2). During execution, each ui ∈ I ′ is accessed at least once during
the computation, since it is the operand of at least one operation. Other accesses involving value ui can
also occur, for instance because of copy instructions. For j = 1, . . . , L, let cj be the number of elements in
I ′ such that (a) a copy of the element is written into a location within Rj at some stage of the execution
and (b) that copy is subsequently read from that location. Consider the following two complementary
cases.

Case 1: Many copies in each region. If for each j = 1, . . . , L we have cj ≥ N/4, then there must
have been at least N/4 copy instructions with target in each region Rj , taking a total of at least (N/4)L
time steps, in view of Assumption A5. Thus, the time taken for case 1 must be at least

T1 ≥ (N/8)(2L). (17)

Case 2: Few copies in at least one region. Otherwise, let j be such that cj < N/4. Then, more
than N/4 of the elements of I ′ are read at least once from a location x ≥ yj . These readings are said
to be of category (i) when the element is an operand of an ALU-instruction and of category (ii) when
the element is the operand of a copy-instruction with target in R1 ∪ R2 . . . ∪ Rj−1. Let us say that hj

elements fall in category (i) and kj fall in category (ii), where obviously hj + kj > N/4. (Observe that
k1 = 0.) Next, we consider the time needed to process each category.

Claim 1. The time spent to process category (i) satisfies

t′j ≥ hja(yj)/q.
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Indeed, each of the hj operations reading an input from a location x ≥ yj will take at least a(x) ≥ a(yj)
units of time, by Assumption A3. Then, the bound stated on t′j follows considering that at most q such
operations can be simultaneously in flight.

Claim 2. The time spent to process category (ii), which only arises for j ≥ 2, since k1 = 0, satisfies

t′′j ≥ kja(yj)/ min(s, yj−1).

In any execution of CDAG G, at any given time, of the kj copy-instructions with target in R1 ∪R2 . . .∪
Rj−1, there can be at most one in flight having as target a given location x. This is simply an application
of the non-overlapping flight principle, derived earlier in the section from Assumptions A5 and A6.
Since there are yj−1 distinct locations in R1 ∪ R2 . . . ∪ Rj−1, the number of category (ii) instructions
simultaneously in flight is at most yj−1. But, by A7, the same number is also at most s, hence it is at
most min(s, yj−1).

Since each of the kj copy instructions under consideration reads the input from a location w ≥ yj ,
it will be in flight for at least a(w) ≥ a(yj) units of time (by Assumption A3) which, together with the
upper bound on concurrency just derived, yields the bound stated on t′′j .

Let T2j denote the time for case 2 when Rj is the region having cj < N/4. Combining the bounds
of the two claims, for j = 1, considering that h1 > N/4, we have

T21 > (N/4)a(y1)/q = (N/8)2a(y1)/q,

while for j = 2, 3, . . . , L we have

T2j ≥ max(t′j , t
′′
j ) ≥ max(hja(yj)/q, kja(yj)/ min(s, yj−1))

≥ [(hj + kj)/2] [min(a(yj)/q, a(yj)/ min(s, yj−1))]
> [N/8] [a(yj)/ max(q, min(s, yj−1))].

Since either Case 1 occurs or else Case 2 must occur for some j ∈ {1, 2, · · · , L}, the execution time of G
satisfies at least one of the corresponding bounds, that is:

T s,q
a(·)(G) ≥ min(T1, T21, . . . , T2L) ≥ (N/8)λa(·)(y; s, q),

where we have used the preceding bounds on the various T ′s, as well as Definition 6 for λa(·)(y; s, q).
Finally, since the derived bound holds for every y ∈ Y (N/2), it holds in particular for the choice of y
that maximizes the right hand side which, recalling Definition 6 for Λa(·)(N/2; s, q), yields the desired
bound. 2

The meaning of bound (16) is not immediately intuitive. In general, the max term can give rise
to superlinear time. If the CDAG G has θ(N) nodes, then, to within constant factors, the max
term in (16) is a lower bound to the CPI. An appreciation for the lower bound can be developed
by considering a number of interesting special cases, where a simple closed form expression can be
derived. A few such examples are developed in the following corollaries, with the notation and the
assumptions of Theorem 2.

Corollary 2 If q = θ(a(N)) and s = O(1), then T = Ω(N).

Informally, this straightforward corollary states that, if the operation concurrency is of the same
order as the maximum memory latency, no superlinear effect arises, even if copy concurrency is
limited to a constant level.

Corollary 3 If q = O(1) and s = θ(a(N)), we have:
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1. If a(x) = θ(x), then T = Ω(N log N/ log log N).

2. If a(x) = θ(xα), with 0 < α < 1, then T = Ω(N log log N).

3. If a(x) = θ(log x), then T = Ω(N log∗ N).

Proof: First, we derive from Bound 16 the simpler bound

T ≥ Ω(Nλa(·)(y; s, q)), (18)

holding for any y ∈ Y (N/2). Second, we observe that q = O(1) yields max(q, min(s, yj)) = O(min(s, yj)).
Below, we will choose a y such that yL−1 = O(a(N)). With such a choice, in view of the assumption
s = θ(a(N)), for j ≤ L− 1, we have that min(s, yj) = O(yj). Using the foregoing relations in Definition
6, we obtain

λa(·)(y; θ(a(N)), O(1)) = Ω(min{2L, 2a(y1), a(y2)/y1, . . . , a(yL)/yL−1}). (19)

Below, for each access function a(x) considered in the statement, we define the yj ’s as functions of
N and j and, correspondingly, let L = max{j : yj ≤ N/2}. Plugging the consequent bounds for
L, a(y1), a(yj)/yj−1 in Relations 19 and 18, yields the stated time lower bounds.

1. yj = (log N/ log log N)j , which implies

L, a(y1), a(yj)/yj−1 = Ω(log N/ log log N).

2. yj = (log log N)ej where ej = ((1/α)j − 1)/(1− α), which implies

L, a(y1), a(yj)/yj−1 = Ω(log log N).

3. yj = 2yi−1 log∗ N , with y1 = 2log∗ N , which implies

L, a(y1), a(yj)/yj−1 = Ω(log∗ N).

The tedious, but straightforward calculations needed to verify the stated bounds on L, a(y1), a(yj)/yj−1

and the above claimed relation yL−1 = O(a(N)) are omitted. 2

Informally, the preceding corollary tells us that, if the operation concurrency is limited to a constant
level, then, even if the maximum copy concurrency is allowed, there is a superlinear effect for all
non-constant access functions, the effect being larger for faster growing functions.

The corollary applies, for example, to a CDAG consisting of just one chain, where the first
operation takes as operands input values u1 and u2 and, for i = 2, . . . , N − 1, the i-th operation
takes as operands the result of the (i − 1)-st and input value ui+1. This CDAG is 1-coverable
(c = 1). Matching upper bounds for computing a chain graph in the PH-RAM model (a machine
satisfying assumptions A1-A8) are given in [9].

Corollary 4 If q = O(1) and s = O(1), then T = Ω(Na(N)).

Informally, this straightforward corollary provides the bound for non-pipelinable memory hierar-
chies.

As already observed, some of the Assumptions A1-A8 are not typically satisfied by commercial
machines, where data movement operated by various virtual storage mechanisms do not comply
with literal execution (A3). Nevertheless, often, the departure from literal execution is not sufficient
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to elude the bottlenecks captured by the lower bound arguments in the proof of Theorem 2. For
example, cache systems typically move data to addresses with lower latency only in response to
an instruction that misses. Therefore, the argument leading to Bound 17 on T1 applies. Before
data are requested from slower levels of the hierarchy, room must be reserved in the faster one. If
no room is available, then the memory instruction causing the miss cannot be submitted. Thus,
the principle of non-overlapping flight essentially applies and so does the argument leading to the
bounds on T2j . We ought to realize that, due to evictions, a move per cache level could take place
on a single miss. Since the number of levels could reasonably grow logarithmically with N , one
needs to be careful when relating number of moves to number of instructions. This issue is taken
care of by the fact that, in the proof of Theorem 2, only moves of the elements in I ′ toward locations
with smaller latency really need to be counted. Technically, the bounds for both T1 and T2j ’s must
be divided by the cache line length. Thus, constant length must be assumed, to ensure that the
asymptotic nature of the bounds is not affected. Similar, and in fact simpler, arguments can be
developed for register renaming in modern processors.

Ultimately, we are interested in machines that can actually achieve better performance than
those constrained by Assumptions A1-A8. This will be the focus of the next section.

5 Processor Organizations

In this section, we turn our attention to the processor side of the machine. To set the stage, we
first discuss a straightforward organization, called the canonical processor. We then develop two
novel processor organizations, respectively called the Speculative Prefetcher and the Speculative
Prefetcher and Evaluator, which will yield the first machines capable of executing all direct-flow
programs with constant CPI, thus going beyond what can be achieved by EDM machines. The
main performance metric we target in the processor design is the execution time of programs. We
also consider the “cost” of a processor, in terms of the space occupied by its layout. For time and
space estimates, we assume the availability of a functional unit F , that can be laid out in constant
space and that can apply any operator included in the instruction set, in constant time.

5.1 The Canonical Processor

In this subsection, we consider a simple organization, called the canonical processor, which exe-
cutes programs one instruction at a time, with no memory concurrency among accesses made by
different instructions. For such a processor, the main avenue for performance optimization con-
sists in exploiting locality of references, to reduce the latency of individual memory accesses. The
performance of the canonical processor provides a baseline against which we can measure other
processors, like the one proposed in the next section, where performance is pursued also by exploit-
ing concurrency of memory accesses. The canonical processor is easily realized in constant space,
regardless of the size M and P of data and program memory, respectively.

Consider at first the execution of just one instruction I, say of data-processing type: I =
〈op, (x̂, x), (ŷ, y), (ẑ, z)〉, using direct or indirect addressing modes. Execution completes when
the processor submits the store request for its destination. Since the memory and the processor
operate concurrently, the time for actual storing of data in the memory is not relevant here. Ob-
serving that the loads for the two source operands and the load for an indirect destination address
(if present) can be submitted one after the other, so that the corresponding fetches are performed
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concurrently, the time bound for the execution I when the data memory is in state m, is given by

T (I, m) = max{a(x) + x̂ ∗ a(m[x]), a(y) + ŷ ∗ a(m[y]), ẑ ∗ a(m[z])}+ O(1) (20)
= O(a(µ)), (21)

where the constant additive term O(1) accounts for the time steps required to submit the load/store
commands to the memory one at a time and the constant time required to perform the operation.
Here, µ denotes the maximum address of a location from which instruction I is loading, whether
directly or indirectly. Observe that the dependence upon m is effective only when operands are
read indirectly.

Consider now a program execution resulting in the instruction stream I = (I1, I2, . . . IN ), where
Ij = 〈opj , (x̂j , xj), (ŷj , yj), (ẑj , zj)〉. The canonical processor will execute the stream sequentially,
taking memory through the sequence of states, m0,m1,m2, . . . ,mN , producing mj from mj−1 by
executing Ij . The total execution time is then

Tcan(I,m0) =
N∑

j=1

T (Ij ,mj−1) = O(
N∑

j=1

a(µj)). (22)

If all addresses accessed by the program are smaller than µ, then Tcan(I,m0) = O(Na(µ)). In
terms of the CPI metric, we can rewrite Equation (22) as

CPIcan(I,m0) = O(
1
N

N∑
j=1

a(µj)). (23)

Thus, the CPI is proportional to the average access latency over all the program, reiterating that
performance improvements are tied to locality of references (low µj ’s). To conclude this subsection,
we observe that, as a model of computation, the canonical processor with hierarchical memory
closely resembles the Hierarchical Memory Model (HMM) of [2].

5.2 Machines with Speculative Prefetching

We now introduce an approach based on speculative prefetching of memory values into the proces-
sor. Within this approach, we will develop two specific processor designs, the Speculative Prefetcher
(SP) and the Speculative Prefetcher and Evaluator (SPE). The present subsection presents the fea-
tures that are common to the SP and the SPE processors. Subsequent subsections develop the
features that distinguish the two designs.

5.2.1 Overview of the Organization

Figure 6 shows the top level structure of a machine organization aimed at providing an efficient,
extensible physical realization of the ideal RAM(M,P ). At this level, the structure is common to
both the SP and the SPE processors. The main components are an Instruction Generator Unit,
IGU(n), connected to a pipelined hierarchical program memory of size P and access function a(x),
denoted by a(x)-PHM(P ), and an Instruction Execution Unit, IEU(n), connected to a pipelined
hierarchical data memory of size M and access function a(x), denoted as a(x)-PHM(M). Parameter,
n, called the processor size, determines the resources present in the IGU and in the IEU, as described
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Figure 6: Top level organization of machines with speculative prefetching. Machine parameters P ,
M , and n respectively denote program-memory, data-memory, and processor size. The latency to
access address x is a(x). Segments of at most n instructions are composed by the IGU and executed
by the IEU.

later. The value of n will typically be chosen to be proportional to the maximum latency a(M) of
the data memory.

The execution of an arbitrary program is organized as a sequence of stages. In each stage, a
segment of the dynamic stream of instructions is processed. Each segment is restricted to have
at most n instructions. The general objectives of the processor design are (i) to overlap memory
accesses of different instructions within the same segment and (ii) to manage the flow of information
between instructions in the same segment within the processor itself, thus eliminating some memory
accesses.

In each stage, the IGU forms the next segment and feeds it to the IEU for processing. The
operation of IGU is illustrated in Figure 7. Given an initial value for the program counter, pc1,
the IGU reads instructions starting at that address, and forms segment 1, consisting of instruc-
tions G1

i , i = 1, 2, . . ., where the superscript indicates segment number and the subscript indicates
instruction number. When it reads a branch instruction, the IEU obtains the predicted target
address of the branch, using some prediction mechanism, and continues to fetch instructions from
that address. In the illustration of Figure 7, the instruction G1

r1 is a branch and the next instruc-
tion, Gr1+1, is from its predicted target address. This continues until the desired number, q1, of
instructions are composed into the segment. The segment is then passed to IEU, which executes the
sequence of instructions in the segment and terminates it when it reaches the end or encounters a
mispredicted branch. In the illustration, the IEU terminates segment 1 after it determines that the
branch, G1

r1 , is mispredicted and returns indicating that the real target after instruction r1 is pc2.
Thereupon, the IGU reads instructions from that address and forms segment 2 of desired length
q2. The figure illustrates complete execution of segment 2 till the end, as all branches are correctly
predicted and the IEU indicates this. In the next step, the IGU computes the third segment, from
where it left off at the end of segment 2 and this process continues. At the end, as illustrated in
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Figure 7: Instruction segments generated by IGU(n) and executed by IEU(n). For segment s,
qs ≤ n instructions are generated and rs ≤ qs are committed.

Figure 7, the instruction sequence executed, G1
i , i = 1 . . . r1, G2

i , i = 1 . . . r2, . . . corresponds to the
sequence in canonical execution. Specifically, if k = r1 + r2 + . . . rs−1 + i, with i < rs, the Gs

i = Ik.
The degree of freedom IGU has in choosing the lengths, q1, q2, . . . for the segments (rather than
choosing the maximum n, each time) can be helpful, as illustrated in later sections.

The general structure of an IEU is depicted in Figure 8. It consists of a control unit (CU) and
n stations. The CU interfaces with the data memory and coordinates all requests submitted to
the memory and all responses coming out of memory. It also controls information flow into the
stations. Each station is capable of storing a template of an instruction from the program segment.
A template contains a number of “program” fields and a number of “auxiliary” fields. Program
fields include opcode, operand addresses, addressing modes, and instruction address (for verification
of branch speculation). Auxiliary fields include values of operands and result, as well as of addresses
in the case of indirect mode, and the identification (number within the segment) of instructions
that fetched or created source values for this instruction (to properly manage values based on
speculation). Each field has indicators to specify whether the field is valid/invalid/expected etc.
Auxiliary fields are updated as part of the execution process. The CU will also orchestrate the
appropriate shift of the instruction templates between the stations. The CU is equipped with a
functional unit. Optionally each station may also contain a functional unit.

The interconnections between the CU and the stations of processor are design-specific. Fig-
ure 8 shows some common communication operations used. Two commands describe the desired
communication patterns: The Send command can be used to send a message between two agents,
where each agent can be either CU or some station. Starting from the source, the message hops
one intermediate station per time step and reaches the destination. Only the receiver will read the
content and act on it. The Forward command is used by a source agent to send a message to all
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Figure 8: Structure of the instruction execution unit IEU(n).

stations to its right. The message being forwarded moves unchanged by one station per cycle and
is read by all stations it traverses.

5.2.2 Strategy for Instruction Execution

When a segment is submitted to the IEU, it is processed in two non-overlapping phases: the
initialization phase and the execution phase. The initialization phase will be common to the SP
and the SPE processors, thus it will be completely described here. The execution phases of the SP
and the SPE are different, thus their details will be developed in subsequent subsections.

Without loss of generality, we describe the processing of a segment, of size q, consisting of the
sequence of instructions, G1 . . . Gq, which is submitted to the IEU when the state of memory is
m0 and the execution commits the initial subsequence G1 . . . Gr, where Gr is the first mispredicted
branch in the segment, if any, or r = q.

Initialization phase. In the initialization phase, the control unit initializes the stations with
templates of instructions from the segment, in program order, using the send command. That is,
for j = 1, . . . , q, station j will hold the template for instruction Gj . A speculative version of the
instruction operands is also obtained from memory and sent to the corresponding station. That
is, for each operand, the value from the initial memory state m0 is obtained and stored in the
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corresponding template. This is accomplished in three sub-phases, executed one after the other, as
described below:

Sub-phase 1: reading the instructions. For j = 1, 2, . . . , q, the CU reads each instruction Gj in the
segment, composes the template for Gj with the program fields initialized, sends this template to the
jth station, and submits to the memory a (speculative) load request for the locations corresponding
to the direct addresses in all source operands and the direct address of an indirect destination
operand (if present). Each load request is tagged with information identifying the instruction and
the addressing mode. Since a constant number of time steps are spent for each instruction, this
sub-phase takes time (the second subscript indicates subphase number)

Tinit,1 = O(q).

Sub-phase 2: reading directly-addressed locations. The CU extracts from the memory response
queue the result of each load request of sub-phase 1, which contains an address x, the loaded value
m0[x], and the tag. If the tag indicates the need for indirection, another load request is submitted
to memory, for address m0[x], this time with a tag indicating direct mode. A packet with x and
m0[x] is sent to the station j holding the instruction Gj (j being specified by the tag) for which
the load was performed, so that the appropriate updates can take place. Since the latencies for
directly-addressed locations are overlapped, this sub-phase takes time

Tinit,2 = O(q +
q

max
j=1

{a(xj), a(yj), ẑj ∗ a(zj)}),

where, strictly speaking, the notation refers to data-processing instructions, but can be naturally
adapted to branch instructions as well. To see the role of term ẑj ∗ a(zj), recall that ẑj = 0 when
the result is written direclty and ẑj = 1 when the result is written indirectly. Clearly, during
initialization, the value of m0[zj ] is (speculatively) loaded only in the latter case.

Sub-phase 3: reading indirectly-addressed locations. The CU extracts from the memory response
queue the result of each load request of sub-phase 2 and sends the corresponding (m0[x],m0[m0[x]])
pair to the appropriate station. Since only indirectly addressed operands are involved, this sub-
phase takes time

Tinit,3 = O(q +
q

max
j=1

{x̂j ∗ a(x̃j), ŷj ∗ a(ỹj)}),

where, as defined in Section 2.1, x̃ denotes the actual data address.
At the end of this phase, all the templates are initialized with operand values from initial state

of the memory. If all addresses accessed by the segment are smaller than Minit, then the total time
for the initialization phase can be bounded as

Tinit = Tinit,1 + Tinit,2 + Tinit,3 = O(q + a(Minit)).

Execution phase. In the execution phase, the instructions placed in the stations are executed
and, at the end, the resulting memory state (consistent with canonical execution) is updated.
Many variants are possible in accomplishing this task, depending upon the extent to which the
processor indulges in speculation. The greater the amount of speculation, the greater will be the
performance benefit when speculations are correct and the greater will be the performance loss
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when the speculations are incorrect. This tradeoff will be illustrated by contrasting the SP and the
SPE designs.

The primary exploration here is to speculate on the assumption that the initial memory state
obtained in the initialization phase is sufficient to process all the instructions from the segment,
without further access to the memory. Furthermore, if the results of store operations performed in
the segment are directly used by other instructions in the same segment (functional dependence),
memory accesses to these locations can be avoided by internally forwarding the results within the
stations. Such speculation fails only when an instruction stores into a location, x, which is used as
an indirect operand (x̂ = 1, x) by some later instruction in the segment (address dependence). The
SP and the SPE differ in how they deal with such failures, due to address dependence. When the
speculated operands of an instruction are detected to be invalid, the latest contents of the desired
memory locations are obtained and the instruction is correctly executed. However, the result of this
instruction might render the speculation made by some succeeding instruction as invalid. Thus, in
general, an instruction might speculate more than once in its life time. The SP does not permit
an instruction to speculate more than once, whereas the SPE entertains instructions to speculate
many times. As mentioned before, the initial phases are identical for these two designs. Their
execution phases are different and are discussed separately, in Sections 5.3 and 5.4.

5.3 The Speculative Prefetcher

We now focus on the specific features of the SP, the simpler of the two processors.

5.3.1 The Execution Phase of the SP

In the SP, the execution phase takes place in a sequence of rounds, until the segment ends or
a branch is detected to have a mispredicted target. In each round, one instruction (in program
order) is committed, i.e., its result is stored into memory. With reference to a segment G1, . . . , Gq

of size q in which the first r instructions are committed (r = q or Gr is a mispredicted branch),
exactly r rounds will be executed. At the beginning of each round j = 1, . . . , r, each station
i = 1, . . . , q − j + 1 has instruction Gj+i−1 in it. Only station 1 actually performs the operation
of its instruction Gj , while all the other stations update any latest information (forwarded by
preceding stations) regarding their operands. At the end of the round, station 1 commits Gj and
all stations shift their instruction templates once to the left. At this point, the data memory reflects
the correct state mj of the canonical execution. In round j = 1, . . . , r, the CU orchestrates the
following sequence of steps, called sub-rounds.

1. Sub-round 1: operand acquisition. The CU extracts from the memory queue (cf. Section
3.5) and forwards to all stations any response packets (to read requests submitted to memory
in previous rounds) until all the operand values for Gj are received. Note that, for j = 1,
the operands for G1 are guaranteed to be ready after the initialization phase. For j > 1,
consider the case when Gj indirectly reads from a location m[x] and some prior instruction
Gi (i < j) modifies the direct address x (vi = x in sub-round 4 of round i). A read request of
m[x] will be submitted in sub-round 6 of round i and all subsequent instructions learn about
this circumstance by the forwarding occurring in sub-round 5 of round i. If the read request
is still pending at the beginning of round j, then this will be reflected in the template for
Gj providing the CU with the necessary information to implement sub-round 1, as described
above.
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2. Sub-round 2: branch handling. If Gj is a branch, then the computed target is compared by
the CU with the speculated target. If the two are equal (correct prediction), then sub-rounds
3-6 are skipped, as they are needed only for data-processing instructions, and sub-round 7
is executed. Else (misprediction), the segment is terminated: the CU records the computed
target (which will provide the pc value for the next segment) and sends a termination signal
to station 1.

3. Sub-round 3: computation of results. The functional unit computes the result value, vj , of
instruction Gj .

4. Sub-round 4: write back. The CU sends to the memory a request to store vj into the location
z̃j specified by the instruction Gj .

5. Sub-round 5: forwarding of results. The CU forwards to all stations (i > 1) a packet with the
information that value vj is being stored in location z̃j by instruction Gj .

6. Sub-round 6: eager prefetching. The CU submits an eager load request to memory location vj ,
tagged with the instruction number j (for the possible benefit of any subsequent instructions
with an indirect operand through location z̃j).

7. Sub-round 7: instruction shifting. The CU requests all stations to shift their template to
thier left.

In each round, j = 1 . . . r, each station i > 1 takes the following actions in each time step.
Initially only station q is marked as the last station.

1. Termination. If a termination signal is received from station i − 1, then if this is not the
last station, then termination signal is sent to station i + 1. This station then marks itself as
inactive.

2. Operand acquisition. If a data value either the result of an instruction (forwarded in sub-
round 5) or the result of a memory request (eagerly submitted in sub-round 6) is received
by this station, then the address and the originating instruction number are examined. If it
is a revised data value for any of the operands of the instruction template currently at this
station, then the operand information is updated accordingly. Otherwise, there is no action.

3. Instruction shifting. If station i − 1 requested a template shift, then the contents of the
current template are sent to station i− 1 along with the indication whether this is currently
the last station. If this is the last station, it marks itself as inactive until initialized again.
If this is not the last station, then in the very next cycle, it must first receive the template
from station i + 1 and overwrite its template with those contents. It marks itself as the last
station when the received template indicates so.

By and large, the implementation of the above sub-rounds is straightforward. However, the full
specification of the details can be cumbersome. Here, we underline only a few main points.

• Clearly, the memory responses to the read requests generated in sub-round 6 arrive somewhat
asynchronously with respect to the round sequence. The CU simply forwards these responses
to all stations. If the location being read is relevant to an instruction, the corresponding
template will be updated accordingly. The auxiliary fields in a template can be suitably
designed to do this operation very efficiently.

• Some subtleties are involved with the implementation of the shift of the instruction templates
involved in sub-round 7. A naive solution would require time proportional to the number of
templates to be shifted. The solution indicated is based on the systolic paradigm and can be
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very efficient. Essentially, the shift operation is pipelined across the stations so that the CU
can operate at a constant rate, even though the commands will reach the stations only after
suitable delays. Some care needs to be exercised in managing the interaction between the
upstream and the downstream flow of information across the stations. The ideas needed are
very similar to those introduced by [27] for systolic implementations of priority queues and
will not be described here.

• Another implementation subtlety arises when, due to a mispredicted branch, sub-phase 2.1
terminates, but some of the eager memory requests (sub-round 6) are still outstanding and
will complete at a later stage. Waiting for all these requests to be satisfied before beginning
with the next stage could result in inefficiencies. A simple solution is to include the stage
number in the memory requests, so that the answer can be simply discarded by the CU, if it
arrives at a later stage.

We observe how direct inputs of an instruction modified by a previous instruction in the segment
are updated by the forwarding mechanism, with no access to memory. Thus, for each round, some
time is spent waiting for the indirect operands (sub-round 1) plus a constant time for the remaining
sub-rounds (2-7). Given the preceding considerations, if all addresses indirectly accessed by the
segment are smaller than Mindirect, then a straightforward bound on the time taken by station to
commit r instructions is

Texec,1 = O(r ∗ a(Mindirect)).

After r instructions are committed, the data memory is in state mr. Furthermore, station 1
holds the last committed instruction of the segment, Gr, which provides the appropriate value for
the program counter from which the next segment starts. If r < q, the terminate signals must still
travel to the last station before all stations become inactive. This propagation takes time

Texec,2 = O(q − r),

so that the total time for the entire execution phase is

Texec = Texec,1 + Texec,2 = O(r ∗ a(Mindirect) + q).

We can observe how the propagation of termination signal could be easily overlapped with the
subsequent stage; the corresponding performance improvement would be limited to constant factors.

5.3.2 Performance Considerations

Combining now the bounds for the initialization and the execution phases of the segment (with r
instructions committed out of q instructions), we can bound the time T for the entire segment as

T = Tinit + Texec = O(q + a(Minit) + ra(Mindirect)).

Finally, considering the whole program having S segments, with each segment s = 1, . . . , S having
the corresponding parameters, rs, qs,M s

init,M
s
indirect, the total execution time for the program can

be written as sum of the times of all segments:

T =
S∑

s=1

T s = O(
S∑

s=1

(qs + a(M s
init) + rs ∗ a(M s

indirect))). (24)
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The preceding bound could be refined by a more accurate analysis. For example, the factor rs could
be lowered if many instructions do not perform indirect accesses. One could also estimate more
precisely accesses occurring at addresses smaller than M s

indirect and the overlap of access latencies
resulting from eager prefetching (sub-round 6). Indeed, in [11], an analysis approach is developed
whereby a suitable latency graph is associated with the execution of a program on the SP processor
and it is shown that the SP execution time is essentially the weight of the heaviest path in such
graph.

Next, we provide some intuition on which properties of a computation are captured by the
terms in the right hand side of the above relation.

• Locality of references is partially captured by the terms M s
init and M s

indirect, which bound the
region of memory accessed during the first and the second phase of the stage, respectively.

• Branch prediction accuracy is reflected by qs. As the bound shows, values of qs larger than
rs, the number of instructions actually committed, increase the time of the segment without
increasing its productivity. As an indirect effect, M s

init can also increase with qs, as later
instructions may access higher addresses.

• Address dependence also has an important impact on performance, as indicated by the last
term of Equation (24). For our current purposes, it suffices to observe that if instruction
Gj is address-dependent upon instruction Gi, then some data for Gj must be fetched again
from the memory, after Gi has executed. This memory latency translates into an unavoidable
delay between the executions of Gi and Gj .

In general, the SP can take advantage of both the pipelined nature and the hierarchical nature
of the memory to which it is connected. For direct-flow programs, the pipeline capability turns out
to be sufficient to obtain the following simple, nevertheless non trivial, result.

Proposition 6 An SP with a pipelined memory with latency at most a(M) can execute any direct-
flow program of N instructions, accessing memory locations with address smaller than M , in time
T = O(N + a(M)), using n = a(M) execution stations.

Proof: The instruction stream can be partitioned into S = dN/ne segments with sizes q1, . . . , qS−1 = n
and qS = N mod n. Since there are no branches, all the instructions generated in a segment are
completed in that segment (rs = qs). Sine there are no indirect addresses, Ms

indirect = 0. By assumption,
Ms

init ≤ M , for any s. Then, straightforward manipulations of Equation (24) yield the stated result. 2

We observe that, for N ≥ a(M), the execution time in Proposition 6 becomes T = O(N)
and correspondingly CPI = O(1). In contrast, for the canonical processor, Tcan = O(Na(M)).
To within a constant factor, the memory latency is successfully hidden by the SP, for direct-flow
programs. That a processor ought to be able to process instructions at a constant rate if all
addresses are known in advance and the memory is pipelinable may deceivingly appear as obvious.
In order to appreciate Proposition 6, its result ought to be contrasted with the superlinear lower
bounds obtained in Section 4 for EDM machines, which include several previously proposed models
of computation with pipelined memory.

The SP is not an EDM machine. Specifically, it violates the read-after-write assumption A6 of
Section 4.1, which disallows overlapping execution of an instruction Ih writing a location x with a
later instruction Ik reading from it. In fact, in the SP, Ih and Ik will be concurrently in flight if they
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fall in the same segment, as both instructions will be issued in the initialization phase, before any
of them commits. While, in this phase, Ik will fetch the incorrect operand value from x, the correct
result of Ih will be later forwarded to Ik inside the IEU, thus preserving the program semantics.

It is interesting to note that, beside A6, the SP does not violate any other EDM assumption, as
one can easily check. In particular, A3 is technically satisfied: since the SP does fetch the (possibly
wrong) contents of x directly from the memory, flight time is at least a(x). As for Assumptions A7
and A8, the corresponding parameters are s = n and f = n, where n is the number of stations of
the SP. We may also observe that the upper bound to ALU concurrency arising for EDM machines
from the c-coverability of the computation (cf. Proposition 5) is based on assumption A6, hence
it does not apply to the SP.

To fully appraise the potential of the SP, we stress that the SP executes any direct-flow program
in time proportional to its number of instructions, without any programmer or compiler effort. In
contrast, in previous EDM models like BT and PH-RAM, most direct-flow programs are quite
inefficient. Generally, faster equivalent programs can be obtained by clever restructuring, involving
the insertion of suitable copy/move instructions. Even then, their performance may fall short of
what is achieved by the SP.

The capabilities of the SP processor go well beyond direct-flow programs. For example, it is
shown in [11] that quicksort can be implemented on the SP, with running time T = O(C), where
C is the number of comparisons executed by the algorithm. Clearly, since at least C instructions
must be executed, we have that CPI = O(1). This result is interesting in view of the fact that the
quicksort algorithm has a significant dependence upon the input data. Indeed, the very number
of instructions can vary considerably, from Ω(K log K) to O(K2), across inputs sequences of a
given size K. At the program level, this variability can be traced to a richness in branches and in
address dependences. However, this result is achieved at the expense of considerable complication,
including an undesirable amount of static loop unrolling, which drastically increases program size.
In the next subsection, we discuss this drawback of the SP processor on a simple example. In
Section 6.2, we will present a simple, optimal quicksort implementation for the SPE processor,
which circumvents the limitations of the SP.

5.3.3 Limitations of the SP and Motivation for the SPE

For programs that are not direct-flow, address dependences pose some performance problems on the
SP. An address dependence relation, j

∗w−→k, between a pair of instructions j and k forces the latency
of access to location w to occur within the interval between completing instruction j and fetching
the correct operand for instruction k. If i and j occur next to each other in a segment, the SP will
not issue any additional memory requests in that interval and the only possibility for overlap would
be any memory requests that may have been issued earlier. Adjacent occurrence of j and k within a
segment could manifest itself in many natural ways of programming, as illustrated by the following
simple example that increments all the elements of an array. Clearly accesses to different elements
of the array are independent of each other and one would expect their latencies to be overlapped. A
naive program is of the form: for i=1 to n; A[i] = A[i]+1. In the SP, using good branch prediction,
the IGU might be able to roll out a segment of instructions in the following form, where the pseudo-
code assumes that a is initialized with the beginning address of array A: a = a + 1; m[m[a]] =
m[m[a]] + 1; a = a + 1; m[m[a]] = m[m[a]] + 1; a = a + 1; m[m[a]] = m[m[a]] + 1 . . .. Notice
the address dependence between the first two instructions, then between the next two instructions
and so on. But, there is only functional dependence between different instances of instruction
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a = a + 1. Hence, potentially, all the addresses can be generated without further memory accesses
and therefore all the elements of the array should be accessible concurrently. However, when
executed on the SP, in the initialization phase, all instructions will get the initial contents of a,
which is the address of the first element of A. Only after each update to a can the correct value of
the corresponding element of the array be loaded from memory. Thus, no concurrency is exploited
among the accesses to different array entries.

The problem just described can be circumvented if the loop is actually unrolled, for example by
a compiler, with the value of a for each iteration directly embedded in the instructions. However,
this solution is not ideal, since the amount of unrolling increases with the problem size. More
importantly, precomputing the addresses statically is not feasible if further levels of indirections
are involved, as in the example for i=1 to n; A[i] = A[B[i]]+1.

In view of the preceding observations, it would be profitable to extend the SP in two ways. In
SP, in each round, only the instruction in station 1 executes and submits new fetch requests to
memory.

1. In each round, we will now permit all stations to execute speculatively with whatever infor-
mation they have at that time and also provide them an opportunity to submit fetch requests
to memory at the end of a round.

2. Furthermore, in each round, we will permit each station to receive the latest result information
from its preceding stations, so that its speculative execution will be based on latest information
available at that time.

The first provision will enable the processor to execute all independent instructions in a segment
concurrently within one round. The second provision will make such execution up-to-date with
respect to latest available information and will permit all instructions along any functional depen-
dence chain within the segment to be executed in one round. For instance, in the array incrementing
example discussed above, all the instances of the instruction a = a+1 can be executed in one round
and fetches for all the correct elements of the array can be issued at the end of that round, over-
lapping their latencies. A disadvantage of the second provision is that a round, now, takes q steps
to execute, where q is the size of the segment. The resulting machine is the SPE, described next.

5.4 The Speculative Prefetcher and Evaluator

The organization of the SPE is very similar to that of the SP, except for a richer set of states
implemented at the stations. For simplicity, we also assume that each station is equipped with
its own functional unit.∗∗ As in the SP, the execution of a segment takes place in the SPE as a
sequence of two phases: an initialization phase followed by an execution phase. The initialization
phase is identical to that of the SP. Given a segment consisting of instructions, G1, . . . , Gq, the IEU
loads q stations with the templates of the q instructions, issues memory fetches to all direct and
indirect operands from the current state of memory, forwards the results coming from the memory
to all the stations, so that the template for each station is initialized with all speculative data from
the current state of memory. The execution phase of SPE differs substantially from that of the SP
and is described in the next subsection.

∗∗In fact, one functional unit in the entire processor would suffice to achieve the same time bounds to within
constant factors, at the price of some complication in the description of the execution process. Ultimately, the ratio
between the number of stations and the number of functional units would be dictated by engineering considerations.
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5.4.1 Execution Phase of the SPE

The execution phase consists of a sequence of one or more rounds, which are substantially different
from those of the SP. In each round, one or more consecutive instructions of the given segment
G1, . . . , Gq are completely executed and their results are committed to memory. Some of the
remaining instructions are speculatively executed: correct speculation generally helps performance,
by reducing the number of rounds R. The latter is in the range 1 ≤ R ≤ q, with the exact value
depending both on the instructions in the segment and on the memory state just before the segment
is executed.

Figure 9: Repeated execution of subrounds in the SPE execution phase.

At the beginning of each round, as a result of either the initialization phase (for the first round)
or of the previous round, templates for the q′ instructions not committed during the previous rounds
are held by the first q′ stations of the IEU, with all the operands suitably initialized. Each round
consists of a sequence of three sub-rounds as depicted in the flow chart of Figure 9.

Sub-round 1: Computation. In the first sub-round, both the order of activation of the stations
and the direction of the information flow is from left to right. The general structure is as follows
where, to be specific, we say that a message is received (rsp., sent or forwarded) by station i at
time t if that message is an input (rsp., output) for the state transition of station i at time t. At
time 0, the CU generates and forwards a start signal which is received by station i at time i, for
i = 1, . . . , q′. During time steps i, . . . , 2i − 2, station i > 1 (a) receives the messages respectively
generated by stations 1, . . . , i − 1 (as part of their forward transition described below) and (b)
undergoes a receive transition (see below). Each station i undergoes a forward transition just once,
at time 2i, the resulting state being its final state for that round. As an output of this transition,
for i < q′, a message is forwarded, which is received by station i + k at time step 2i− 1 + k. The
last activity of the sub-round occurs at time 2q′, at station q′. Hence the time for this sub-round
can be bounded as tcompute = 2q′ = O(q). The states and the transitions are now explained.
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Each station can be in one of four states (see Figure 10) with the following names and meaning.
Ready: the station has all operand data (possibly speculative) for its instruction. NotReady: some
indirect operand value needs to be read from memory. Committed: the result of the instruction
is final and can be committed. Flushed: the instruction will not be executed any more, due to a
branch misprediction earlier in the segment. At the beginning of a round, all states are initialized
to be Ready.

Figure 10: State transitions of stations that can occur during the computation sub-round of the
SPE execution phase.

The stations undergo two types of transitions, as illustrated in Figure 11. Whenever a station
receives a message, it examines the message and undergoes a state change as explained under receive
transitions below. If the transition was a result of a message from the immediate predecessor to its
left, in the next time step it makes another state change described under forward transitions below
and then forwards a message to its successor stations. The dynamics of state changes and message
flow is illustrated for a 4-stage pipeline in Figure 11.

Receive transitions: A message carries the forwarding station number, the current state of the
sender and the address and value of the new result produced by the sender (if any). When station
i receives a message from one of its predecessors, it examines if the result implies a change to its
operands: if so, it updates the appropriate operand values. If the updated data is an indirect
operand address, the station changes its state to NotReady (as that indirect operand must be
obtained from memory). Otherwise, it remains in the Ready state.

Forward transitions: After station i updates its state as a result of a message from its immediate
predecessor, it takes the following actions:

1. If its state is Ready, it executes the instruction and records the result value in its template.
2. If predecessor’s state is Flushed, then it sets its state to be Flushed.
3. If predecessor’s state is Committed and its state is Ready, then it sets its state to be Com-

mitted.
4. Finally it forwards a message to its successors giving its state and result. The only exception

is that if its state is Committed and it detected a branch mispredict in its execution, it
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Figure 11: Illustration of message flow causing state transitions of stations during the computation
sub-round of the SPE execution phase.

communicates a Flushed state to its successors.

From the preceding transition rules, it is an easy exercise to establish that, at end of the compute
sub-round, the general situation is as follows. For some c with 1 ≤ c ≤ q′, stations 1, . . . , c are
in the Committed state. Either all or none of the remaining stations are in the Flushed state. In
the former case (stations c + 1, . . . , q′ Flushed) or if c = q′, all instructions have been completely
processed and the current round will be the last round. Otherwise, among stations c + 1, . . . , q′,
some will be NotReady (in particular, station c + 1) and some may be Ready. With this premise,
we describe the remaining sub-rounds.

Sub-round 2: Write-back. The main goal of this sub-round is to update the memory state to
reflect the Committed instructions and to read the missing operands for the NotReady instructions.
This is accomplished by having each station send to the CU a packet, with the station number and
its current state. In addition, if the state is Committed, the packet contains the address and data to
be stored. If the state is NotReady, the packet contains the operand addresses whose contents are
needed. Upon receiving a packet for a Committed instruction, the CU will submit to the memory
the appropriate write request. If all packets are Committed or if the first non Committed packet
is Flushed, then the current round as well as the entire execution phase terminates. Otherwise,
sub-round 3 will complete the current round and then another round must be started.
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It is straightforward to orchestrate sub-round 2 activities in a pipelined manner, each station
taking constant time, so that the time for the sub-round can be bounded as twrite = O(q′) ≤ O(q).

Sub-round 3: Read. From the above considerations, this sub-round occurs when the first non
Committed instruction is NotReady. Then, the CU submits to memory the read request(s) for all
NotReady instructions. Ready packets will simply be discarded. Once all packets are processed,
the CU extracts from the memory queue the responses to the read requests submitted during
the previous sub-round and sends them to the stations that originated the requests. Then, the
instruction templates are shifted down by c stations, dropping the first c instructions, since they
have been completely processed. Finally, the state of all active stations is set to Ready and a
new round can be started. The time for this step can be bounded as tread = O(q′ + a(Mexec) =
O(q′ + a(Mexec)), where Mexec denotes the maximum address accessed during the execution phase.

The time for an entire round can be written as tround = tcompute + twrite−back + tread = O(q +
a(Mexec)) and the time for the whole execution phase with a total of R rounds is given by

Texec = O(R(tround)) = O(R[q + a(Mexec)]).

Combining now the bounds for the initialization and the execution phases of the segment, we can
bound the time T for the entire first stage as

T = Tinit + Texec = O(R[q + a(Mmax)]),

where Mmax = max(Minit,Mexec).

Next, we provide some intuition on which properties of a computation are captured by the
terms in the right hand side of the above relation.

• Locality of references is partially captured by the term Mmax, which bounds the region of
memory accessed during the stage.

• Branch prediction accuracy is reflected by q. As the bound shows, values of q larger than
r, the number of instructions actually committed, increase the time of the segment without
increasing its productivity. As an indirect effect, Mmax can also increase with q, as later
instructions may access higher addresses.

• Address dependence impacts the number of rounds R, as argued next. Note that, at the end of
the initialization phase, the first instruction has all the correct inputs so that it will execute,
commit, and forward a Committed state. Such a state is propagated during that round as long
as no instruction detects any new address dependences (thus becoming NotReady). Once an
instruction becomes NotReady, no other instruction down-stream is Committed, which will
cause another round. A round during which no new address dependences are discovered
becomes the last round. Thus, R is one plus the maximum number of address dependences
in a chain of (address and functional) dependences††. In other words, R = 1 + D, where D
is the AD-depth of segment, which is in turn at most the AD-depth of the entire instruction
stream of the program execution. Observe how two unrelated chains of address dependences
are executed concurrently.

††However, there is one noteworthy caveat. In the above analysis, we assumed that speculation does not interfere
in an adverse manner, in the following sense. Consider an address dependence, j

∗w−→k. If an intermediate instruc-
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Finally, the total execution time for a program can be written as sum of the times of all stages (i.e.
for a total of S segments)

T =
S∑

s=1

T s = O(
S∑

s=1

Rs[qs + a(M s
max)]). (25)

In principle, the various terms are uniquely determined once the program, its input (the initial state
m0 of the data memory), and the instruction generation policy (which determines which branches
are speculated and the corresponding target, as well as the length qs of a segment) are known.
Analysis might be complex, in general. However, as we will see in the next section, there are
interesting algorithms for which the analysis is manageable and leads to rather interesting results.

6 Algorithmic Performance

In this section, we analyze the performance of the SPE for certain classes of algorithms. On the one
hand, the analysis will provide us with some appraisal of the potential of the proposed processor.
On the other hand, the analysis will yield some insights into the properties of computations that
impact upon their execution time.

The SPE can take advantage of both the pipelined nature and the hierarchical nature of the
memory to which it is connected. When formulating the performance results for the SPE, we will
state the weakest assumptions on memory performance sufficient to obtain the result. Like the SP,
the SPE can execute direct-flow programs optimally, as stated next.

Proposition 7 An SPE with a pipelined memory with latency at most a(M) can execute any
direct-flow program of N instructions accessing memory locations with address smaller than M
in time T = O(N + a(M)), using n = a(M) execution stations.

We omit the proof, since it is a simple adaptation of the proof of Proposition 6, with the observation
that a segment without address dependences and branches is executed by the SPE in one round
(R = 1). The result of Proposition 7 can naturally be extended to straight-line programs, in terms
of their address-dependence depth.

Proposition 8 An SPE with a pipelined memory with latency at most a(M) and n = a(M) sta-
tions can execute any straight−line program of N instructions, with address-dependence depth D,
accessing memory locations with address smaller than M , in time T = O(D(N + a(M))).

Again, the argument is a simple adaptation of the arguments in Proposition 6, considering that the
number of rounds per stage is Rs ≤ D + 1. In contrast, one can construct straight-line programs
with D = 1 whose execution time on the SP processor [11] is TSP = Θ(Na(M)). Thus, the
performance of the SPE can be considerably superior to that of the SP.

tion, Ii, j < i < k, has an indirect destination operand and falsely speculates that its destination address is w,
instruction Ik is forced to discard any speculative contents of location w, even if they are correct. We call this phe-
nomenon interference. Since it is presumably unlikely, it makes sense to analyze the behavior of the SPE assuming
no interference.
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6.1 A Set of Loop Programs

Truly straight-line programs can be useful as conceptual benchmarks, but are of very little sig-
nificance in practice. There are however a number of interesting algorithms that can be coded
naturally as nested loops whose body is essentially straight-line. We introduce a useful class of
such programs in the following definition.

Definition 7 Let L denote the subset of programs consisting of nested for loops, whose only
branches are those determining whether or not a loop must be exited. Let LD be the subset of
programs in L with address dependence depth at most D.

Remark 1. It is noteworthy to observe that the set L1 contains a number of key algorithms. For
example, a simple analysis would show that L1 includes standard addition and multiplication of
rectangular matrices; bitonic merging and sorting; Cooley-Tukey’s FFT; the finite-difference solu-
tions of some important partial differential equations in rectangular domains; and the simulation
of digital filters (discrete-time, linear, time-invariant recurrences).

To develop some intuition, let us first consider an L1 program consisting of just one loop to
be iterated k times, thus executing N = Θ(k) instructions. Let the loop branch be statically
predicted to reenter the loop. Then, it is easy to see that an SPE with n stations will break
the program into dN/ne segments, each of n instructions; the segment where the loop should be
exited will generally include a number of mispredicted instructions. The resulting execution time
is T = O(dN/ne(n + a(M))). If n = a(M) and n = O(N), then T = O(N) and performance is
optimal to within a constant factor. Instead, if N = o(n), then asymptotically (with respect to
the problem size), N becomes much smaller than n. Execution produces only one segment, most
of which consisting of mispeculated instructions, resulting in suboptimal execution. By and large,
useful programs fall in the optimal case, since the number of instructions typically grows at least
with the amount of space used by the program, whence n = a(M) = O(M) = O(N).

Next, let us consider, as an example, the accumulation of the product of two k × k matrices a
and b into a matrix c. Let the program be the straightforward triply nested for-loop, with indices
h, i, j = 0, . . . , k− 1 and innermost body c(h, i) = c(h, i)+a(h, j)b(j, i). Let us further assume that
all loop branches are statically predicted to reenter their respective loops. What is the running time
of this simple program on an SPE? We will assume that the matrices and all auxiliary variables are
stored in the fastest M = O(k2) memory locations and we set n = a(M). Then, we analyze how
the program is broken up into segments and apply Equation (25). Let ξ be the number of machine
instructions executed in each iteration of the innermost loop. (Clearly, ξ is constant w.r.t. k.) The
number of segments S can be bounded as follows:

S ≤ ξk3/n + k2 + k + 1 = O(N/n + k2). (26)

In fact, the term ξk3/n is an upper limit to the number of segments where no branch is mispredicted
and n useful instructions are executed, considering that the instruction stream has length N ≈ ξk3.
The term k2 +k +1 is the number of times a loop is exited and hence an upper limit to the number
of segments with a branch misprediction. Clearly, the size of each segment s is qs = n, with the
possible exception of the very last segment (s = S), where the halt instruction terminates the
segment. Furthermore, we can easily see that the address-dependence depth of the entire program
is D = 1. Indeed, the references to matrix entries are address-dependent upon the computation of
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the array indices, but they do not affect further address computations. Thus, the number of rounds
satisfies Rs ≤ 2, for each segment s. Finally, M s

max = O(k2) and, since we are not interested in
superlinear latency functions, we can assume a(M s

max) = a(O(k2)) = O(a(k2)). By plugging the
relations just derived in Equation (25), we obtain

T = O(S(n + a(k2))) = O(N + Nn/k). (27)

We can easily see that, if k grows at least as fast as n (technically, k = Ω(n)), then T = O(N) =
O(k3), which is asymptotically optimal. Otherwise (k = o(n)), T = O(Nn/k) grows faster than
N , and the result is suboptimal. Using n = a(M) and M = Θ(k2), we can see that optimality is
achieved when a(x) = O(

√
x), while the suboptimal behavior occurs for larger latency functions,

a(x) = Ω(
√

x). Informally, the suboptimal behavior is due to a number of instructions in the inner
loop insufficient to fill the memory pipe; hence latency is not fully hidden.

One solution to the problem just encountered for matrix multiplication consists in transforming
the program from a loop nest to a single loop, bringing the number of branch mispredictions
down to 1, when the loop is finally exited. This can be accomplished, with the help of predicated
instructions, that ensure that the portions of code that are outside the innermost loop are executed
only when appropriate. The technique is introduced in the proof of the following proposition and
is an extension of loop coalescing to loops that are not perfectly nested [33].

Proposition 9 There exists a predicated coalescing procedure that transforms any program
P ∈ LD into an equivalent program P̂ ∈ LD, with just one loop. Furthermore, for any given input,
N̂ = O(N), where N̂ (respectively, N) is the number of instructions executed by P̂ (respectively,
P) and M̂ = O(M), where M̂ (respectively, M) is the number of memory locations accessed by P̂
(respectively, P).

Proof: We begin by showing how to coalesce two (not necessarily perfectly) nested loops into one loop.
In the general case, say with L loops, it is sufficient to repeat the procedure L − 1 times, each time
coalescing the two innermost loops into one. Thus, let P be of the following form, where A1, A2, and B1

are suitable code fragments (since P ∈ LD, from Definition 7, the fragments are straight-line; however,
coalescing does not rely on this property):

for h1 = 0 to H1 − 1 {
A1

for h2 = 0 to H2 − 1 {
A2 }

B1 }

A little reflection will show that the following program P ′, where c1 is a Boolean variable, is indeed
equivalent to P.

c1 = true; h1 = h2 = 0;
for h = 0 to (H1H2 − 1) {

if c1 then A1;
A2;
h2 = (h2 + 1) mod H2;
c1 = (h2 = 0);
if c1 then B1;
if c1 then h1 = (h1 + 1) mod H1}
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If, in P ′, we replace each if-then construct with an equivalent predicated version, we obtain the desired
program P̂, with just one loop with no branch in its body. We can also see that N̂ = O(H1H2) = O(N)
as well as that M̂ = O(M). Finally, we observe that coalescing does not increase the address dependence
depth, whence P̂ ∈ LD. 2

By combining the preceding proposition with the analysis of loop performance given earlier in the
section, we obtain the following theorem.

Theorem 3 A program P ∈ LD accessing memory locations with addresses smaller than M can be
coalesced automatically into an equivalent program P̂ ∈ LD, which an SPE with n = a(M) stations
executes in time T = O(D(N + a(M)), where N is the length of the instruction stream of the
original program P and a(M) is the maximum latency of the pipelined memory.

As a corollary of Theorem 3, all algorithms mentioned in Remark 1 can be implemented on the
SPE, with asymptotically optimal time.

With the notation of Proposition 9, while asymptotically N̂ = O(N), the constant of propor-
tionality can be rather large. This constant grows with the ratio of the number of instructions in
all loops and the number of those in the innermost loop. In practice, this constant can be reduced,
in several ways, all of which can be easily handled by standard compiler techniques. A general ap-
proach consists in statically unrolling the innermost loop (which will also eliminate some branches,
as a side effect). Another approach that works in some cases consists in coalescing only some of
the inner loops, the minimum number sufficient to make the number of iterations in the folded
loop grow at least proportionally to a(M). As an example, the reader can verify that coalescing
two loops is sufficient to get optimal time for the matrix multiplication program discussed above.
When the loop indices have ranges of different size (e.g., multiplication of rectangular matrices), it
might be helpful to perform a loop interchange, so that the range size increases from outermost to
innermost loop, before performing partial coalescing.

It is interesting to observe how, thanks to the high bandwidth of the pipelined memory, the SPE
can execute efficiently the straightforward loop implementation of a number of algorithms, such as
matrix multiplication and FFT, which on current machines do require a non trivial exploitation of
temporal locality, by blocking or other means, to achieve a good fraction of peak performance. In
general, as memory systems provide more bandwidth by supporting larger numbers of simultane-
ously outstanding references, absolute minimization of the number of misses becomes less crucial,
as observed in [43], for matrix multiplication.

6.2 Quicksort

In the algorithms of the previous subsection, one can identify long segments of the instruction
stream with no mispredicted branches, so that they can fully hide the worst-case latency of the
memory. Clearly, not all algorithms exhibit such a behavior. For example, in recursive algorithms,
the number of executed instructions becomes smaller as control goes deeper in the recursion tree,
where subproblems of smaller size are being processed. For these algorithms, one can still obtain
very good performance if data can be moved to faster regions of memory corresponding to calls
where the problem size becomes smaller. Then, access latency becomes smaller and shorter segments
are sufficient to hide it. It is also necessary to keep the segment no longer than it needs to be,
to avoid severe branch misprediction penalties. To help the IGU to properly tailor the length
of the segments that it gives the IEU, we have introduced the semantically neutral segmentsize
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instruction, in Section 2.1. This instruction, written as segmentsize(`) in the pseudo-code below,
provides the IGU with the information that ` is a “safe bet” for the length of segments. Then, the
IGU simply forms segments of length q = min(`, n), since q cannot exceed the number of stations
n. The segmentsize directive is particularly useful when ` < n, as it prevents long segments that
contain an early misprediction.

In this subsection, we illustrate the outlined approach, by studying a recursive implementation
of quicksort. Even when the number K of items to be sorted is fixed, quicksort exhibits a dy-
namic nature, with the number of executed comparisons varying with input data, from an average
θ(K log K) to a worst case θ(K2). It can be shown that the address dependence depth D of the
algorithm is proportional to the depth of the recursion tree, thus ranging between θ(log K) and
θ(K). Nevertheless, the SPE can hide the memory latency and achieve running time proportional
to the number of comparisons (hence, of instructions), for any given input. On average, execution
time will then be θ(K log K), as long as a(x) = O(x). When contrasted with the Ω(K log2 K) time
lower bound established by [3] for sorting in the Block Transfer model with a(x) = O(x), our result
provides further evidence of the advantage of arbitrary pipelined transfer over block transfer.

Theorem 4 The SPE, with memory access function a(x) = O(x) and n = a(K) stations, can
quicksort an array of K elements placed in the first O(K) memory locations in time Tqsort =
O(Cqsort), where Cqsort is the number of comparisons executed by the quicksort algorithm.

Proof: For simplicity, we describe and analyze the algorithm assuming that the number, n, of the SPE
stations is proportional to K rather than to a(K). The adaptation to the latter case is straightforward
and is simply based on naturally breaking up instructions segments longer than n.

Data layout. We will make use of a constant number, s, of arrays, each of K one-word components,
with the understanding that their memory layouts are interleaved. Thus, if X is the j-th such array,
then for i = 1, 2, . . . ,K, X[i] is mapped into memory location j + s(i− 1). This layout guarantees that
the latency for accessing X[i] is a(j + s(i− 1)) = O(i).

Recursive formulation. We define a procedure pivot(k) which uses A[1] as the pivot and reorganizes
A[1], . . . , A[k] so that all the elements smaller than the pivot come before all elements greater than the
pivot. We define a procedure swap(k1, k2) which cyclically shifts A[1], . . . , A[k1 + k2] by an amount k2

(A[1] goes to A[1 + k2]).
We define a procedure qsort(k) which will sort A[1], . . . , A[k], in nondecreasing order:

qsort(k)
if k ≤ 1 then return;
segmentsize(k);
pivot(k);
segmentsize(k1);
qsort(k1);
segmentsize(k);
swap(k1, k2);
segmentsize(k2);
qsort(k2);
segmentsize(k);
swap(k2, k1);

end

Here, k1 denotes the number of elements smaller than or equal to the pivot and k2 = k− k1 denotes the
number of elements larger than the pivot. The segmentsize instruction indicates that the next portion
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of the instruction stream can be profitably split into segments of length proportional to the amount of
data being processed. Indeed, from the implementation of the various procedures, it becomes clear that
they consist of loops that iterate over all data. The segmentsize instructions simply take constant time.
Thus, from the above recursive definition of quicksort one can easily obtain a recurrence relation for its
running time:

Tqsort(k) = Tqsort(k1) + Tqsort(k2) + Tpivot(k)
+ Tswap(k1, k2) + Tswap(k2, k1) + Toverhead(k).

By Toverhead(k) we denote any time not accounted for by the remaining terms, essentially the overhead
to manage the recursion. Our goal is to show to bound the last four terms in the above recurrence by
O(k), to obtain:

Tqsort(k) = Tqsort(k1) + Tqsort(k2) + O(k). (28)

Since, as is well known, the number Cqsort of comparisons performed by quicksort also satisfies a recur-
rence relation of the same type, it is straightforward to conclude that Tqsort = O(Cqsort), as claimed by
the theorem statement.

Pivot. To implement pivot(k) we use an auxiliary array B, where the data are first written as
they are partitioned with respect to the pivot A[1]; then, they are copied back to A. This approach
makes it easier to exploit concurrency than when performing the operation in place. A code fragment
implementing the partition is as follows:

low = 1;
high = k;
for j = k downto 1 {

c = (A[j] ≤ A[1]);
if c then B[low] = A[j];
if (1− c) then B[high] = A[j];
low = low + c;
high = high− (1− c);}

The if statements can be easily translated into predicated write instructions, whereby avoiding actual
branches. A little analysis will show that the instruction segment resulting when executing the for
loop has length θ(k) and has constant address-dependence depth. Copying back B[1...k] into A[1...k]
can be done in a similar way. In conclusion, pivot(k) is accomplished by executing segments of q =
O(k) instructions, involving addresses no greater than M = O(k), with constant AD-depth, whence
Tpivot(k) = O(k). (It might be interesting to observe that, in the global instruction stream generated by
quicksort, there are many address dependences, typically between instruction of one call and instructions
of its children calls. However, these dependences span across segments and are accounted for as part of
the initialization of the segments.)

Swap. Following an approach analogous to the one used for pivot(k), one can show that Tswap(k1 +
k2) = O(k1 + k2).

Recursion stack. Some care has to be exercised in order to manage the recursion stack within the
desired time bounds. For example, if insertions cause the address of the top of the stack to increase, then
the calls handling small subproblems end up suffering a higher stack overhead, resulting in unacceptable
performance. On the other hand, if we let the stack grow toward decreasing addresses, since quicksort
might generate O(K) simultaneous entries in the recursion stack, the bottom of the stack has to be placed
at an O(K) address, which also results in unacceptable performance. One solution is to implement the
stack as a doubly linked list to be stored within a suitable number of arrays (the exact number depending
on the amount of information needed per stack frame). When a call of size k creates the stack entry
for the child call of size k1, this entry is placed at the k1-th component of the stack arrays. Detailed
implementation and analysis show that Toverhead(k) = O(k) is attained, essentially resulting from a
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constant number of accesses performed at addresses O(k) (no concurrency between these accesses is
assumed). 2

6.3 Merging

In this subsection we focus on the implementation of the well-known algorithm for merging two
sorted sequences. While very simple, this algorithm is rather instructive in our context, since it
has a large address-dependence depth, proportional to the number of executed instructions. We
will see how a judicious use of (software) prefetching, which exploits both the hierarchical and the
pipelined nature of the memory, can yield an implementation with a low CPI. However, whether
this basic merging algorithm can be implemented with constant CPI on the SPE remains an open
question.

We assume that the input sequences are monotone non-decreasing and are initially stored in two
arrays A[0 . . .KA − 1] and B[0 . . .KB − 1]. The output is to be written in an array C[0 . . .K − 1],
where K = KA+KB. We will assume that suitable “sentinel” values will be appended at the end of
each input sequence, i.e., A[KA] = B[KB] = +∞. For the data layout, we follow the same approach
of interleaving used for quicksort (see proof of Theorem 4). Then, merging can be accomplished
by the following code:

1. iA = iB = iC = 0;
2. for iC = 0 to KA + KB − 1 {
3. c = (A[iA] ≤ B[iB]);
4. if c then C[iC ] = A[iA];
5. if (1− c) then C[iC ] = B[iB];
6. iA = iA + c;
7. iB = iB + (1− c);}

The if statements 4 and 5 can be easily translated into predicated write instructions, whereby
avoiding actual branches. We observe that statement 3 exhibits (loop-carried) address dependences
upon statements 6 and 7, via the variables iA and iB. Thus, the AD-depth is D = O(K). The
instruction stream can be partitioned into S = O(K/q) segments of size q, each with AD-depth
O(q), thus requiring R = O(q) rounds on the SPE. Clearly, the amount of space used by the
algorithm is bounded as Mmax = O(K). The program exhibits negligible temporal locality: in
fact, for at least a constant fraction of the segments, a constant fraction of the accesses will target
addresses proportional to K. From simple manipulations of Equation (25), the execution time is
then

T = O(SR(q + a(Mmax)) = O(K(q + a(K))),

which is clearly minimized to T = O(K ∗ a(K)), when q = 1, that is, when the SPE behaves
essentially as the canonical processor.

Intuitively, the address dependences prevent any significant overlap of the memory references
that access the operands for the comparisons. However, it is possible to reduce the latency of
such references, by suitably moving the data to a region of the memory with faster access, before
they are needed for the comparisons. The key property of the merging algorithm that is helpful
in this context is the partial predictability of its pattern of data usage. Specifically, with reference
to the above program, after any iteration of the for-loop, we know that the input elements read
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in the next h iterations belong to the subarrays A[iA . . . iA + h − 1] and B[iB . . . iB + h − 1]. By
prefetching these subarrays into O(h) faster memory locations, the latency of subsequent accesses
on account of the comparisons is reduced from a(O(K)) to a(O(h)). The performance advantage
arises from the fact that prefetching essentially consists of a set of copy instructions with no
dependences among themselves, which can therefore be fully pipelined. In summary, the output
array C can be computed in K/h phases, each prefetching h elements from A and h elements from
B and performing h comparisons to obtain h elements of C. The prefetching idea can be applied
recursively, until sequences of constant length are obtained. Some care is required to specify all
the details, particularly to determine the layout of the data at each level of the recursion. We
omit these details here, since they would not contribute new insights. (A systematic treatment of
memory management in the context of pipelined hierarchy can be found in [9].)

The running time for the version of merging with recursive prefetching outlined above satisfies
the following recurrence relation:

Tmerge(K) = O((K/h)[a(K) + h + Tmerge(h)]). (29)

This equation reflects the fact that, for each of K/h phases, there is a prefetching activity involving
O(h) pipelined accesses to data placed at addresses no greater than O(K) and a recursive call with
output size h. To complete the specification of the outlined implementation of merging, we choose
the value of the free parameter h as h = a(K). Informally, we are balancing the “depth” a(K) of
the memory pipe and the number, h, of pipelined accesses. Then, Equation 29 becomes

Tmerge(K) = O(K + K ∗ Tmerge(a(K))/a(K)). (30)

The latter recurrence can be solved by standard techniques for many specific shapes of the memory
access function a(x). The result for a few cases of interest is reported in the next theorem.

Theorem 5 The SPE, with memory access function a(x) = O(x) and n = a(K) stations, can
merge two sorted sequences with a total of K elements with the following performance:

1. If a(x) = O(x), then Tmerge = O(K log K/ log log K).

2. If a(x) = O(xα), with 0 < α < 1, then Tmerge = O(K log log K).

3. If a(x) = O(log x), then Tmerge = O(K log∗ K).

It is natural to wonder whether a more sophisticated implementation of the merging algorithm on
the SPE can achieve Tmerge = O(K). Otherwise, it would be interesting to establish a superlinear
lower bound. This objective, however, does not appear to be straightforward: to the best of our
knowledge, no lower bound techniques have been previously considered that could be easily adapted
to capture the constraints arising from address dependence.

7 Conclusions

As technological evolution leads to machines increasingly constrained by signal speed, the RAM
model becomes increasingly inadequate, even in the context of serial computation. The conse-
quences are twofold. On the one side, computer architectures become more complex, to exploit
concurrency and locality, in order to approximate the constant rate of instruction execution of the
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ideal RAM. On the other side, algorithm design has to be based on new models of computation
that reflect the new architectures, to expose concurrency and locality. In principle, machines and
algorithms ought to be designed jointly, to achieve optimal performance under the relevant con-
straints. In this paper, we have developed a framework bridging machine and algorithm design. In
this framework, algorithmic performance has been analyzed for the proposed processor and memory
organizations, in terms of the problem input size and of the corresponding machine size.

The focus on general-purpose machines poses a methodological question: Which algorithms
or programs should be chosen as the performance benchmarks? Rather than preselecting a set
of benchmarks, we have taken the approach to measure progress by the increase of the class of
programs that the designed machine can execute in time proportional to that of the ideal RAM.
This approach has lead to the successive consideration of direct-flow programs, of programs with
constant address-dependence depth, and of programs whose execution can be partitioned into
segments of constant address-dependence depth and of length at least proportional to the maximum
latency of any memory access within the segment. These classes can be dealt with very efficiently
by the proposed SPE machine. However, there are clearly algorithms whose running time on the
SPE is superlinear in the number of executed instructions. Intuitively, superlinearity can arise from
suitable combinations of long address-dependence chains, a high frequency of poorly predicatable
branches, and a small degree of locality of references. It remains an open challenge to capture this
intuition into a technique to derive lower bounds.

Further algorithmic studies on the SPE could clearly shed further light on the interplay of
address dependence, branches, and temporal locality. However, ample room remains to search
for improved processors as well. For example, there are programs that run faster on the SP
than they run on the SPE and vice versa. Qualitatively speaking, the SP will be more efficient
for segments where address dependence chains contain many instructions indirectly accessing fast
memory. In contrast, the SPE tends to be more efficient in the presence of many chains, each
with few instructions indirectly accessing slow memory. In the latter case, speculative evaluation
enables overlapping memory latencies incurred by different chains. In the former case, there is
little memory concurrency to exploit and the speculative evaluation overheads are incurred with
no performance advantage. It is then plausible that a judicious combination of the ideas behind
the SP and the SPE processors could lead to solutions that are better than both.

More generally, our work is far from exhausting the possibilities afforded by physically realizable
machines. In fact, in order to begin the study of the relevant issues in a relatively simple setting, we
have restricted our attention to machines that exhibit artificial bottlenecks, whose removal should
definitely be explored in further work. Specifically, we observe that while memory pipelining in-
creases the bandwidth of what Backus [8] has dubbed the von Neumann tube, more aggressive
steps can be taken in this direction. Indeed, in d-dimensional machines exhibiting a von Neu-
mann tube (i.e., where processor and memory lie on opposite sides of a suitable geometric cut), the
bandwidth of the tube could grow proportionally to M (1−d)/d, rather than being constant, as in our
designs, or asymptotically vanishing, as in non-pipelined designs. A more radical step eliminates the
bottleneck altogether, with machine organizations that interleave memory and processing regions
throughout the layout. Ultimately, it is natural to extend the entire approach to machines that
execute explicitly parallel programs, combining the insights obtained during the quest for the best
physical realization of the sequential RAM with decades of results in the area of parallel computing.
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