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Abstract. Large systems can be constructed out of nodes that consume and produce 
messages representing events. EventScript is a language for specifying the processing 
that is to take place at such a node. The underlying structure of an EventScript pro-
gram is a regular expression for the sequence of events expected to be received. A 
major goal of EventScript was simplicity, so that the language would be easy to learn, 
efficient to execute, and easy to port to new target environments. Numerous event-
processing examples illustrate EventScript programming techniques and the useful-
ness of EventScript for solving a wide variety of programming problems. We have 
developed a compiler, run-time environment, and testing tool for EventScript, as well 
as an API to facilitate the porting of EventScript to new execution environments. 
EventScript has been incorporated as one element of the DRIVE environment for de-
veloping, testing, deploying, and managing sensor/actuator applications. 

1. Introduction 

Unix introduced a simple but powerful model for coordination [Rit74]: Pro-
grams called filters, each reading from a standard input character stream and writing 
to a standard output character stream, can be chained together by pipes connecting the 
standard output of one filter to the standard input of another. Very simple filters, writ-
ten independently of each other and communicating only through standard input and 
standard output, can be composed into powerful pipelines. Details of interleaving and 
buffering are handled automatically by the operating system. The ease of connecting 
filters with pipes encourages a style in which special-purpose filters with few behav-
ioral variations can be composed in countless ways to offer a versatile set of func-
tions. 

Event processing networks, consisting of event-processing agents connected 
by event channels [Luc02], can be thought of as a generalization of filters and pipes. 
Unlike a filter, an event-processing agent may have many input channels and many 
output channels. Furthermore, the elements transmitted over the channel are not char-
acters, but event objects, which may be elaborate data structures. 

Event processing networks have been used for a wide variety of applications, 
such as physical process control, inventory control, and business monitoring. Potential 
sources of events include RFID readers, environmental sensors, point-of-sale termi-
nals, and business-monitoring software. Potential consumers of events include signal 
lights, actuators ranging from process-control valves to door locks, graphical displays, 
messaging systems to send alerts to humans, and business-monitoring software. 
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Because of the narrow interfaces through which event-processing agents 
communicate, the design of an event-processing system can be decomposed into two 
distinct activities, reminiscent of DeRemer and Kron’s programming-in-the large and 
programming-in-the-small [DeR75]. The first activity, corresponding to program-
ming-in-the-large, is the design of the event processing network, in which event-
processing agents with particular functional specifications are connected in a particu-
lar way by event channels. The second activity, corresponding to programming-in-
the-small, is the specification of the behavior of individual event-processing agents. 
This paper describes a language, EventScript, that uses regular expressions to specify 
the behavior of individual event-processing agents. 

Just as powerful and versatile pipelines can be composed from filters perform-
ing very narrow functions, powerful and versatile event-processing networks can be 
composed from event-processing agents performing very narrow functions. These 
functions include: 

• event translation, for example converting physical units, reformatting dates, or 
dropping irrelevant fields 

• composition of data from multiple event streams 
• aggregation (e.g., summing or averaging) over successive events 
• recognition a sequence of events matching a particular pattern, and emission of 

a compound event representing that instance of the pattern at a higher level of 
abstraction  

It is a principal goal of EventScript to support the programming of such narrow func-
tions.  A small, easily learned, efficiently implementable set of primitives is sufficient 
to achieve this goal. When faced with a tradeoff between generality and simplicity, 
we have opted for simplicity. Even if this choice complicates the programming of the 
most intricate event-processing agents, we are confident that it facilitates the use of 
EventScript to program the most common event-processing agents. Because the pro-
grammers of event-processing agents are likely to be performing other tasks as well, 
involving other programming models and languages, they are best served by an unob-
trusive notation that allows them to specify the behavior of the most common event-
processing agents succinctly while learning few new concepts. 

The programming community is familiar with the use of regular expressions to 
specify patterns of characters in text [Fri06]. This paradigm can be found in the awk, 
C#, Java, JavaScript Perl, PHP, Python, Ruby, and Visual Basic languages, for exam-
ple, as well as in tools like grep, sed, and vi. Therefore, we expect that most pro-
grammers will be comfortable with the idea of using regular expressions to specify 
patterns of event occurrences in event streams. 

To illustrate the basic structure of EventScript, we present an event-processing 
agent that averages readings from sensors S1, S2, and S3. Each time a new reading is 
received from any one of the sensors, the agent emits an event containing the newly 
computed average: 
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in double S1Input, double S2Input, double S3Input 
out double Average 

{ v1=0.0; v2=0.0; v3=0.0; } 

( 
   ( S1Input(v1) | S2Input(v2) | S3Input(v3) ) 
   { !>Average( (v1+v2+v3)/3.0 ); } 
)* 

The program begins by defining S1Input, S2Input, and S3Input to be names of 
input events (corresponding to readings arriving from S1, S2, and S3, respectively) 
and Average to be the name of an output event. Each of these events carries a value 
of data type double. Next comes the regular expression, within which are interleaved 
actions surrounded by curly braces. The regular expression consists of assignment ac-
tions to initialize variables v1, v2, and v3, which are eventually to hold the latest 
readings received from S1, S2, and S3, respectively, followed by a regular expression 
of the form (...)*, indicating repeated instances of the regular subexpression inside 
the parentheses. This regular subexpression consists of three alternatives (separated 
by the | operator) , followed by an emit action (denoted by the symbol !>). Each al-
ternative matches a different kind of input event and saves the value carried by the 
event in the corresponding variable. The emit action emits an Average event carrying 
the value of the average of v1, v2, and v3. Besides matching event objects that arrive 
on an input event channel, EventScript can match events corresponding to the arrival 
of a specified time. In Section  2.4 we shall illustrate two variations on this example—
one in which the event-processing agent reemits the current average if no average has 
been emitted in ten seconds, and one in which averages are emitted every ten seconds 
independently of the times that sensor readings arrive. 

Besides making EventScript easy to learn, our preference for a sparse lan-
guage over a general language makes EventScript amenable to a very small and fast 
run-time implementation, easily retargeted to new platforms. It will come as no sur-
prise that, since an EventScript program is essentially a regular expression, it can be 
implemented essentially by doing a lookup in a state-machine transition table each 
time an event arrives. Efficiency and retargetability are important, because many 
event-processing applications involve real-time constraints and embedded processors 
with unique characteristics or limited resources.  

The remainder of this paper is structured as follows: Section  2 is an overview 
of the features of the EventScript language. Section  3 addresses subtle issues in the 
language design. Section  4 shows EventScript at work, presenting a number of exam-
ples that illustrate a variety of EventScript programming techniques and idioms. Sec-
tion  5 explains the connection between an EventScript program and real-world pro-
ducers and consumers of event streams. Section  6 describes our implementation of 
EventScript, including the compiler, the run-time platform, and development tools. 
Section  7 describes various directions in which EventScript may evolve. 

2. EventScript features 

Before describing the features of EventScript, we explain the underlying no-
tion of an event, and of the data carried by an event, in Section  2.1. The basic form of 
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an EventScript program is a sequence of declarations followed by a regular expres-
sion. Section  2.2 gives an overview of declarations.  The most basic EventScript regu-
lar expression, an event marker, matches an input event with a specified name. 
EventScript regular expressions may be combined into larger regular expressions us-
ing the operators described in Section  2.3. Event markers themselves are discussed in 
Section  2.4. Section  2.5 describes the actions that may be interleaved in EventScript 
regular expressions. Section  2.6 describes how the value carried by an event can be 
used to determine dynamically the event name that will be assigned to that event, and 
thus which event markers that event will match. Section  0 describes how the values 
carried by events can be used to partition a stream of input events into substreams, 
each of which is matched independently and in parallel against the same regular ex-
pression. 

2.1 Events and data types 

An EventScript program receives a sequence of input events and emits a se-
quence of output events. Each input or output event has an event name and carries a 
value belonging to some EventScript data type. All input events of the same name 
carry values of the same data type, and all output events of the same name carry val-
ues of the same data type. 

The EventScript language itself does not assume anything about the corre-
spondence of input and output events to entities or occurrences in the outside world. 
Each individual EventScript run-time implementation establishes such a correspon-
dence, as described in Section  5, but by keeping consideration of this correspondence 
out of the language itself, we make the language applicable in a wide variety of mi-
lieus. (Typically, the sequence of input events is a merged stream of input events ar-
riving from different external sources, the name of an input event identifies the exter-
nal source from which it arrived, each output event is delivered to an external destina-
tion identified by its event name, and there is a straightforward mapping between 
EventScript data types and the data formats of these external sources and destina-
tions.) 

EventScript has three kinds of data types—primitive data types, array data 
types, and structure data types. There are six primitive data types: 

• boolean (true or false) 
• double (an IEEE-754 double-precision floating-point value) 
• long (a signed 64-bit integer) 
• string (a string of Unicode characters) 
• time (a timestamp corresponding to a particular date and time of day) 
• object (an opaque object reference that can be taken from an input-event 

value or included in an output-event value, but whose internal structure cannot 
be accessed from within the EventScript language) 

The values of an array data type are sequences of elements of a specified element data 
type, indexed starting at zero; the array data type with elements of data type t is de-
noted by t[]. The values of a structure data type are structures each having the same 
sequence of field names and data types; the structure data type with fields named 
n1, ..., nk, having data types t1,...,tk, respectively, is denoted as follows: 
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{ t1 n1; ... tk nk; } 

(Events that serve as pure signals, carrying no information other than the fact that they 
occurred, carry values of the empty structure type, { }.) 

2.2 Declarations 

There are four kinds of declarations—input-event declarations, output-event 
declarations, data-type definitions, and function declarations. 

Input-event declarations and output-event declarations specify the names of 
input and output events, respectively, and the data types of the data they carry. For 
example, the input-event declaration 

in double SetAlarmThreshhold, 
   {string zoneName; double temperature;} ZoneReport 

declares SetAlarmThreshhold to be an event name for input events carrying values 
of type double, and ZoneReport to be an event name for input events carrying val-
ues of a structure type with a field named zoneName, of type string, and a field 
named temperature, of type double; the declaration 

out long PostSpeedLimit, {} CloseGate, {} OpenGate 

declares PostSpeedLimit to be an event name for output events carrying values of 
type long, and CloseGate and OpenGate to be event names for output events that 
are pure signals. (Input-event declarations also have optional clauses, detailed in Sec-
tions  2.5 and  2.6, for specifying the features described in those sections.) 

For convenience, and to facilitate abstraction, data types may be given names. 
The data-type definition 

type Point = {double x; double y;} 

allows the identifier Point to be used afterward as a synonym for the structure type 
{double x; double y;} any place where a data type is expected. In particular, 
the data-type name can be used in later data-type definitions. Thus an EventScript 
program beginning with the lines 

type Point = {double x; double y;} 
type Polygon = Point[] 
in {string name; Polygon boundary;} SetZone 

is equivalent to one beginning with just this line: 
in {string name; {double x; double y;}[] boundary;} SetZone 

Function declarations declare functions that are implemented outside of 
EventScript, so that they can be invoked by function calls in EventScript expressions. 
An external function might, for example, access system information such as an envi-
ronment-variable value, or provide a domain-specific abstraction such as inclusion of 
a point in a polygon. The construct 

function string envVar(string): "eslib.systemFuncs.EnvVar" 
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declares envVar to be an external function that takes a string argument and returns 
a string result. The string constant following the colon identifies the external im-
plementation of the function.1

2.3 Regular-expression operators 

Regular expressions may be combined into larger regular expressions using 
the conventional operators *, |, and sequence, as well as parentheses. Thus the regu-
lar expression R* matches any event sequence consisting of zero or more consecutive 
subsequences each of which matches regular expression R; the regular expression R1 
| ... | Rn matches any event sequence that matches at least one of the regular expres-
sions R1, ..., Rn; and the sequence R1 ... Rn matches any event sequence consisting of n 
consecutive subsequences that match regular expressions R1, ..., Rn in that order. 

In addition, EventScript has several familiar extended regular-expression op-
erators—the intersection operator &, the difference operator -, and several postfix 
multipliers, syntactically analogous to *: {i}, {i,j}, {i,}, +, and ?, where i and j are 
numeric constants such that 0[i[j. The regular expression R1&R2 matches any event 
sequence that matches both regular expression R1 and regular expression R2. The 
regular expression R1-R2 matches any event sequence that matches regular expression 
R1 but does not match regular expression R2.  If R is a regular expression, then R{i} 
matches an event sequence consisting of exactly i consecutive subsequences, each of 
which matches R; R{i,j} matches any event sequence consisting of from i to j such 
subsequences; R{i,} matches any event sequence consisting of i or more such subse-
quences (so that R{0,} is equivalent to R*), R+ is equivalent to R{1,}, and R? is 
equivalent to R{0,1}). 

2.4 Event markers 

Just as the character y in the Perl string regular expression x*yx* is a place-
holder matching an occurrence of the character 'y' in a sequence of characters, the 
event marker S1Input(v1) in the EventScript regular expression of Section  1 is a 
placeholder for an occurrence of an event named S1Input in a sequence of input 
events. The event name in an event marker is followed by parentheses optionally con-
taining a variable into which the value carried by the matched event should be stored. 

In addition to the input events explicitly declared by input-event declarations, 
there are unnamed input events triggered by the passage of time. A time-triggered 
event carries a value of type time, specifying the time at which the event occurred. 

 
1 For the Java-based EventScript engine we have implemented, this string is the fully-qualified name of 
a Java class implementing the following interface: 

public interface FunctionBody { 
   EventScriptValue evaluate(EventScriptValue[] args) 
      throws FunctionException;    
} 

An EventScriptValue object is the Java representation of an EventScript boolean, double,  long, 
object, string, time, array, or structure value. 
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There are two special kinds of event markers for time-triggered events, one that is 
matched after a specified amount of time has elapsed and one that is triggered when a 
specified time (or a time matching a specified pattern) arrives. 

The event marker elapse[(x1+x2)/2 minutes](t) is matched when 
(x1+x2)/2 minutes have passed since the previous event (or since the beginning of 
program execution). The time at which the match occurs is captured in the variable t. 
The time unit in an elapse event marker may be days, hours, minutes, seconds, mil-
liseconds, or microseconds2. Here is a variation on the average-of-three-sensors ex-
ample of Section  1, in which the current average is emitted not only when data arrives 
from some sensor, but also when nothing has been emitted for the last ten seconds: 

in double S1Input, double S2Input, double S3Input 
out double Average 

{ v1=0.0; v2=0.0; v3=0.0; } 

( 
  ( S1Input(v1) | S2Input(v2) | S3Input(v3) | elapse[10 sec]() ) 
  { !>Average( (v1+v2+v3)/3.0 ); } 
)* 

The event marker arrive[2038-01-19 03:14:08]() is matched at 14 
minutes and eight seconds  after  3:00  am  on  January  19,  2038.3   The event 
marker arrive[03:14:08](t) is matched at that time every day, and the time of 
the match is captured in the variable t. The date/time pattern in an arrive event 
marker can also contain wildcards (denoted by a dot) in place of components of the 
date and time, so arrive[.:00:00]() is matched every hour on the hour and ar-
rive[.:.:00]() is matched at the beginning of every minute. Any of the numbers 
in the date/time pattern can also be replaced by a parenthesized numeric expression, 
as in arrive[(min/60):(min%60):00](). Finally, the entire date/time pattern 
can be replaced by a parenthesized expression of data type time, as in this variation 
on the average-of-three-sensors example, in which an average is emitted at regular 
ten-second intervals, independently of the times that sensor readings arrive: 

in double S1Input, double S2Input, double S3Input 
out double Average 
 
{ v1=0.0; v2=0.0; v3=0.0; deadline=secondsAfter(10, now()); } 
 
(    S1Input(v1) 
   | S2Input(v2) 
   | S3Input(v3) 
   | arrive[(deadline)]() 
        { !>Average( (v1+v2+v3)/3.0 ); 
          deadline = secondsAfter(10, deadline); 
        } 
)* 

 
2 Although values of type time can express timestamps to the nearest microsecond, the time-of-day 
clock that the EventScript run-time implementation uses for time-triggered events need not tick that 
often. The time-of-day clock in the Java implementation ticks every millisecond. 
3 The rules of EventScript do not address questions about the time-of-day clock such as the time zone 
in which it operates, the effect of a transition to or from daylight savings time, or the insertion of leap 
seconds into UTC. An EventScript implementation is free to address these issues in its own way. 
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(The built-in function now() returns the time value corresponding to the time it was 
invoked. The built-in function secondsAfter(n,t) takes a long value n and a 
time value t and returns the time value n seconds after the time denoted by t.) 

Finally, there is a wildcard event marker, . (dot), that matches an event object 
of any named event type. Thus .-S1Input() matches an event object of every 
named event type other than S1Input, and .* matches an arbitrary sequence of 
named events. A wildcard event marker does not match a time-triggered event, so the 
following EventScript program emits a Silence event at the end of every one-
minute period in which no event of one of the types A, B, ..., Z has arrived: 

in {}A, {}B, ..., {}Z 
out {}Silence 
 
( . | elapse[1 minute]() { !>Silence({}); } )* 

Since we do not know beforehand the name of the event that will matched by a wild-
card, we do not know the data type of the value carried by the event. Therefore, unlike 
other event markers, a wildcard event marker does not include a parenthesized target 
variable for the value of the event. 

2.5 Actions 

An action block—a set of { ... } braces surrounding a sequence of actions—
may be placed before or after an element of an EventScript sequence regular expres-
sion. There are two kinds of primitive actions: emitting an output event object and 
assigning of the value of a Java-like expression to a variable. In addition, there are 
compound actions, including conditional actions, repeated actions, and nested action 
blocks. (Every primitive action ends with a semicolon.) 

The emit action !>Average( (v1+v2+v3)/3.0 ); emits an output event 
with the name Average, carrying the value of the expression (v1+v2+v3)/3.0. 
Given the output-event declaration 

out {string employeeID; number exposure;} EmployeeExposure 

the action 
!>EmployeeExposure( {employeeID:"771803", exposure:10.3} ); 

emits an output event with the name EmployeeExposure, carrying a value that con-
tains "771803" in its employeeID field and 10.3 in its exposure field. (The ex-
pression {employeeID:"771803", exposure:10.3} is an example of a struc-
ture-builder. Such an expression can also occur in contexts other than emit actions. 
The colons can be followed by arbitrary expressions for the field values.) 

An assignment action computes a value and assigns it to a variable. The vari-
able may be an identifier, a subscripted variable of the form a[e], where a is a vari-
able of some array type and e is an expression of type long, or a structure-field vari-
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able of the form s.f, where f is an identifier and s is a variable of some structure type 
having a field named by f.4

In the spirit of scripting languages, EventScript variables are not declared. 
However, they must be used in a type-consistent manner. For example, the same vari-
able may not appear both in a context requiring a long variable and a context requir-
ing a boolean variable. The EventScript compiler infers the types of variables, start-
ing with the data types of variables in event markers (as specified in the input-event 
declarations with the same event name), the expressions in emit actions (as specified 
in the output-event declarations with the same event name), and the type requirements 
of certain syntactic contexts (such as the requirement that a condition in a conditional 
action be of type boolean, or that the subscript in a subscripted variable be of type 
long).  The EventScript compiler flags type inconsistencies and also warns about 
variables potentially set but never read, or read without having been set. In the ab-
sence of explicit variable declarations, such warnings are essential to catch misspell-
ings of variable names. 

Additional aspects of EventScript actions are illustrated by the following pro-
gram, which emits smoothed averages of sensor readings. The program initially ac-
cepts a SetWindowSize event that specifies the size of the window used for comput-
ing sliding averages, say N. Then it accepts Reading events containing actual sensor 
data. Starting when N sensor readings have been received, each Reading event is fol-
lowed by the emission of an Average event containing the mean of the N most recent 
sensor readings: 

in long SetWindowSize, double Raw 
out double Average 
 
SetWindowSize(N) 
{ history = new double[N]; 
  for (i: 0, N-1) history[i] = 0.0; 
  sum = 0.0; 
  readingCount = 0; 
  circularBufferCursor = 0; 
} 
( 
   Raw(newValue) 
   {  sum = sum - history[circularBufferCursor] + newValue; 
      readingCount = readingCount + 1; 
      readingCount>=N ? !>Average(sum/N); 
      history[circularBufferCursor] = newValue; 
      circularBufferCursor = (circularBufferCursor+1) % N;      
   } 
)* 

As  in  Java,  the  expression  new double[N]  allocates  an  array  with N uninitial-
ized elements of type double. The repeated action 

for (i: 0, N-1) history[i] = 0; 

 
4 If the variable v belongs an array or structure data type, the assignment “w=v;” stores a reference to 
a shared array or structure into w, so that the subsequent assignment “v[0]=3;” or “v.f=3;”, re-
spectively, causes w[0] or  w.f, respectively, to assume the value 3. 
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executes the action history[i] = 0; with i set to successive values in the range 
zero to N. The conditional action 

readingCount>=N ? !>Average(sum/N); 

executes the action !>Average(sum/N); if and only if the condition 
readingCount>=N  

evaluates to true.5 The array history acts as a circular buffer for the N most recent 
readings. Rather than sum the contents of history each time an average is com-
puted, we maintain that sum in the variable sum, and use the buffer only to determine 
the amount to subtract from sum when the oldest reading in the buffer is replaced. 

A function call within an expression may call an EventScript built-in function 
or an external function implemented outside of EventScript. An external function im-
plemented outside of EventScript can only be called if it is declared by a function dec-
laration, as described in Section  2.2. 

2.6 Event classification 

We would sometimes like the role that an occurrence of a particular kind of 
event plays in matching a pattern to depend on the value carried by the event occur-
rence. EventScript provides for classifying events arriving with a particular name—
that is, assigning them new event names—depending on the value carried by each 
event. An event marker may refer to the new name. For example, the input-event dec-
laration 

in double Temperature 
   case { Temperature >= 100.0 ? High : Low } 

contains an event-case clause specifying that input events named Temperature carry 
values of type double, but that those arriving with values of at least 100.0 should be 
renamed with the event name High and the remainder should be renamed with the 
event name Low. Within a condition of the event-case clause (in this example, “Tem-
perature >= 100.0”), the original name of the arriving event (Temperature) 
represents the value carried by the event to be classified. 

Event classification can be used for filtering a stream of input events. The fol-
lowing event script program accepts a stream of Temperature input events, discards 
those with values below 100, and emits a FilteredTemperature event correspond-
ing to each Temperature event with a value greater than or equal to 100: 

 
5 As in many programming languages, if one operand of a binary operator is of type long and the other 
is of type double, the long operand is “promoted” to type double. In this example, N is promoted to 
type double and a floating-point division is performed. However, since the data type of the target 
variable in an EventScript assignment action is inferred from the context rather than specified in a dec-
laration, EventScript does not perform implicit conversions of assigned values. An assignment such as 
“N=sum;” or “sum=N;” in this example would result in a type error. The programmer must explicitly 
write “N=long(sum);” or “sum=double(N);” (calling one of the built-in type-conversion functions 
long or double) to assign a converted value.  



in double Temperature 
   case { Temperature >= 100.0 ? High : Low } 
 
out double FilteredTemperature 
 
( High(x) { !>FilteredTemperature(x); } | Low() )* 

The following EventScript program emits an Alert event if a temperature 
reading of 100 degrees or more is received and no temperature reading lower than 100 
degrees is received for an hour afterward; the program emits a Clear event the first 
time a temperature reading lower than 100 degrees is received after an Alert event 
has been issued. 

in double Temperature 
   case { Temperature >= 100.0 ? High : Low } 
 
out {} Alert, {} Clear 
 
( // in cleared state 
  Low()* 
  High() { alertTime = hoursAfter(1,now()); } 
  // in pending state 
  High()* 
  (   Low() 
    | 
      arrive[(alertTime)]() {!>Alert( {} );} 
      // in alerted state 
      High()* 
      Low() {!>Clear( {} );} 
  ) 
  // back in cleared state 
)* 

cleared pending alerted 

Low

!>Clear 

High 

High 

Low 

set 
alertTime !>Alert 

alertTime
arrives 

HighLow 

 
Fig. 1. A state-machine representation of the EventScript program that issues alerts about sustained high 
temperatures. 
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(As illustrated in Fig. 1, this program begins in a cleared state, in which it accepts 
Low events without performing any action. When the program receives a High event 
while in the cleared state, it sets alertTime to the time at which an Alert event 



should be issued if no Low event arrives in the meantime, and enters a pending state. 
While in the pending state, the program accepts further High events without perform-
ing any action. The program stays in the pending state until either it receives a Low 
event—in which case the program returns to the cleared state—or alertTime ar-
rives—in which case the program emits an Alert event and enters an alerted state. In 
the alerted state, the program accepts further High events without performing any ac-
tion, but when it receives a Low event, the program emits a Clear event and returns 
to the cleared state.) 

2.7 Event grouping 

Event grouping is the splitting of a stream of events into substreams according 
to the values carried by the events, and the matching of patterns independently within 
each substream. Event grouping is sometimes called event correlation. For example, a 
program monitoring suspicious stock-trading patterns might issue an alert if the same 
trader executes three or more trades valued over $10,000 for the same company in a 
space of one hour. The alert is issued for the third and any subsequent trades within 
any one hour span, and includes the average value of the three most recent trades over 
$10,000. A pattern matching three trades valued over $10,000 in a space of one hour 
should be processed independently for each combination of trader and company. Fig. 
2 depicts the processing that should be performed for a given trader and company. 

 

1 big 
trade 

pending 

SmallTrade 

0 big 
trades 

pending 

2 big 
trades 

pending 

SmallTrade SmallTrade 

BigTrade

one hour 
since 

pending 
big trade 

BigTrade

one hour
since older

pending 
big trade 

!>ThreeBigTrades 

BigTrade 

 
Fig. 2. A state-machine representation of the EventScript pattern for a given stock and trader that issues 
an alert when there have been three or more big trades of that issue by that trader within one hour. 

The following EventScript program solves this problem: 
in { string traderID; 
     string company; 
     double price; 
     long volume; 
     time when; 
   } Trade 
   group(Trade.traderID, Trade.company) 
   case { Trade.price*Trade.volume>=10000.0 ? 
              BigTrade 
            : SmallTrade 
        } 
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t {string traderID; string company; double averageValue;} 

  
 0 big trades pending 

 SmallTrade()* 

 hoursAfter(1,bt1.when); 

 // 1 big trade pending 

 ( 
SmallTrade()* 

oursAfter(1,bt2.when); 

    // 2 big trades pending 

    ( 
SmallTrade()* 

price * bt3.volume; 

bt3.traderID, 

alue2+value3)/3 }; 

ration2; 
t3.when); 

ve[(expiration1)]() 
n2; 

    // 1 big trade pending 

 )* 
ve[(expiration1)]() 

 // 0 big trades pending    

ou
       ThreeBigTrades 
 
 (
   //
 
  
   BigTrade(bt1) 
   { expiration1 =
     value1 = bt1.price * bt1.volume; 
   } 
 
  
 
  
      
      BigTrade(bt2) 
      { expiration2=h
        value2 = bt2.price * bt2.volume; 
      } 
 
  
 
  
         
         BigTrade(bt3) 
         { value3 = bt3.
           outputValue = 
              { traderID: 
                company: bt3.company, 
                averageValue: (value1+v
           !>ThreeBigTrades(outputValue); 
           value1 = value2; 
           value2 = value3; 
           expiration1 = expi
           expiration2 = hoursAfter(1,b
         } 
      )* 
      arri
      { expiration1 = expiratio
        value1 = value2; 
      } 
 
  
 
  
   arri
 
  
)* 
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The line 
group(Trade.traderID, Trade.company) 

in the input declaration for Trade is a group clause, indicating that incoming events 
will be grouped according a key with two components. In this case, the first compo-
nent is the traderID field of the value carried by the arriving Trade event and the 
second component is the company field of that value; in general, the group-clause 
expressions may involve arbitrary computations based on the value carried by the ar-
riving event. For every resulting key value, there will, in effect, be a distinct instance 
of the state machine depicted in Fig. 2. In a program with group clauses, every input-
event declaration must have a group clause, each group clause must have the same 
number of key components, and corresponding key components must have the same 
data type in each group clause. Thus each incoming Trade event is directed to an in-
stance of the pattern matching process determined by the values of its traderID and 
company attributes.  

(The assignment actions in this program maintain the following invariants: 

• When one or two big trades are pending, the variable expiration1 holds the 
expiration time for the oldest pending big trade and the variable value1 holds 
the value of that trade. 

• When two big trades are pending, the variable expiration2 holds the expira-
tion time for the more recent pending big trade and the variable value2 holds 
the value of that trade. 

When two big trades are pending and another big trade arrives, the trade that had been 
the more recent becomes the oldest and the one that just arrived becomes the more 
recent pending trade.  When two big trades are pending and the older one expires, the 
trade that had been the more recent pending trade becomes the oldest pending trade.) 

The traderID and company components of the structure value emitted in a 
ThreeBigTrades event reflect the corresponding components of the grouping key 
for the current instance of the state machine. In this program, the values of the group-
ing-key components were obtained from the value bt3 carried by the most recent 
BigTrade event. However, there are other programs that require knowledge of a 
grouping-key component value in contexts in which this information is not available 
from a previously received input event. An expression of the form group[n], where 
n is a zero-based index into the components of the grouping key, gives the value of 
the corresponding grouping-key component for the current instance of the state ma-
chine. 

3. Semantic issues 

Section  2 explained the fundamental features of EventScript, and the informa-
tion provided there is sufficient to begin writing useful EventScript programs. In this 
section we discuss that do not play a central role in day-to-day programming, but 
which presented interesting challenges in the design of the language. Section  3.1 ex-
plains how EventScript deals with runtime errors. Section  3.2 explains how the notion 
matching a regular expression, which has traditionally been applied to strings of a 
known length, applies to a stream of incoming events that may have no end. Section 
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 3.3 explains how EventScript deals with programs that may match an event stream in 
more than one way. 

3.1 Runtime errors 

A number of errors can arise during the execution of an EventScript program: 

• the arrival of an event whose name was not declared as an input-event name 
• the arrival of an event whose name was declared, but which does not match the 

regular expression 
• an attempt to evaluate an uninitialized variable 
• a value of zero for the right operand of the division or remainder operator for 

type long6 
• a subscript out of bounds 

In any of these cases, the EventScript program emits an implicitly declared output 
event whose name is the reserved name “$error” and whose value is a structure con-
taining a numeric error code and a textual description of the error. For errors involv-
ing the arrival of an unexpected event, the offending event is discarded. For errors in-
volving the evaluation of an expression, a default value (depending on the type of the 
expression) is used. Execution then proceeds as normal. As Section  5 will explain, the 
handling of emitted error events depends on the EventScript run-time implementation. 

3.2 Termination, acceptance, and rejection 

The following EventScript program receives a Start event, followed by zero 
or more Ping events, followed by a Stop event, then emits a PingCount event re-
porting the number of Ping events it received, then terminates: 

in {} Start, {} Ping, {} Stop 
out long PingCount 
 
Start() { n = 0; } 
( Ping() { n = n+1; } )* 
Stop() { !>PingCount(n); } 

In contrast, the following EventScript program does not terminate, but repeatedly 
waits for packets of events consisting of a Start event, followed by zero or more 
Ping events, followed by a Stop event, and emits a PingCount event at the comple-
tion of each packet reporting the number of Ping events in that packet: 

in {} Start, {} Ping, {} Stop 
out long PingCount 
 
( Start() { n = 0; } 
  ( Ping() { n = n+1; } )* 
  Stop() { !>PingCount(n); } 
)* 

 
6 For type double, division by zero produces an IEEE 754 negative or positive infinity result and re-
mainder mod zero produces an IEEE 754 NaN (Not a Number) result. 



16 

There are also programs that may or may not terminate, depending on the input data, 
such as this one:  

 
in boolean TerminationSwitch 
      case { TerminationSwitch ? DoOnce : DoRepeatedly } 
 
in {} Start, {} Ping, {} Stop 
 
out long PingCount 
 

DoOnce() 
// Match one packet, then terminate: 

  Start() 
  { n = 0; } ( Ping() { n = n+1; } )* 
  Stop() { !>PingCount(n); } 
| 

DoRepeatedly() 
// Match zero or more packets, and do not terminate: 

  ( Start() { n = 0; } 
    ( Ping() { n = n+1; } )* 
    Stop() { !>PingCount(n); } 
  )* 

As Section  0 explained, the execution of a program with event grouping con-
sists, in effect, of a separate instance of the computation for each value of the group-
ing key. When a particular grouping-key value is first encountered,  the EventScript 
run-time environment allocates resources for the computation instance corresponding 
to that key. In the case of a program with a terminating regular expression, the 
EventScript run-time environment releases those resources when the computation in-
stance terminates. However, in the case of a program with a nonterminating regular 
expression, the resources are never released. If the set of possible grouping keys is 
relatively small—for example, if each grouping key corresponds to a different room 
in a particular building—the accumulation of computation instances presents no prob-
lem. However, if the set of possible grouping keys is open-ended—for example, if 
each grouping key corresponds to an account number—then the accumulation of 
computation instances constitutes an unsustainable resource leak. In an application 
with an open-ended set of possible grouping keys, care should be taken to write ter-
minating regular expressions. (Our EventScript compiler warns the programmer about 
potentially nonterminating programs with grouping keys.) 

The traditional definition of a finite automaton, acting on a string of symbols 
of some known length, designates each state as either an accepting state or a nonac-
cepting state; the finite automaton either accepts the string (if the transitions induced 
by the symbols of the string leave it in an accepting state) or rejects it (if they leave 
the automaton in a nonaccepting state). In the case of an EventScript program acting 
on a stream of events, we do not always know whether we have seen all events in the 
stream, so we are not interested in whether the corresponding finite automaton is in an 
accepting state following the sequence of events we have seen so far. Rather, we are 
interested in whether the sequence of events we have seen so far is one that could be 
extended in a way that matches the program’s regular expression.  For example, given 
the regular expression ( A() B() )*,  we do not distinguish between the validity of 
the computation after receiving the event sequence A, B (in which the regular expres-



sion has been matched) and after receiving the event sequence A (in which the regular 
expression may be on its way to being matched). However, as soon as we receive an 
event that cannot possibly be part of a matching string (say an A event following an-
other A event), we signal a run-time error as described in Section  3.1. 

3.3 Ensuring deterministic execution 

3.3.1 Ambiguous regular expressions 

An EventScript program may be ambiguous. That is, for a given sequence of 
input events, there may be multiple paths through its regular expression, possibly with 
different actions along each path.7 For example, an A event may match either alterna-
tive in the program of Fig. 3, and the value carried by the emitted B event depends on 
which path is chosen. Ultimately, an ambiguity in a regular expression is attributable 
to one of two circumstances: 

• The next arriving event can be interpreted as matching more than one alterna-
tive in a set of alternatives, as in Fig. 3. 

• In a sequence regular expression containing a repetition, the next arriving event 
can be interpreted as matching either the beginning of the repetition or the be-
ginning of the part of the sequence following the repetition, as in the regular 
expression ( A() B() )* A() C(). 

Sometimes an ambiguous regular expression is considerably more succinct than an 
equivalent unambiguous regular expression, and sometimes there is not an equivalent 
unambiguous regular expression. Thus, EventScript allows ambiguous regular expres-
sions, but our compiler issues warnings when it encounters them.  

Fig. 3. An ambiguous EventScript program that executes assignment actions on different paths in response to the 
same input event. 

in {} A 
out long B 
 
( A() {x=1;} | A() {x=2;} ) {!>B(x);} 

The execution of an EventScript program follows all feasible paths simultane-
ously; on a transition that causes actions to be reached on multiple paths, all actions 
reached are executed, in order of their textual occurrence in the program. Thus, when 
the program in the previous paragraph receives an A event, it executes first the action 
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7 Book et al. [Boo71] call a regular expression unambiguous if, for all input sequences matching the 
regular expression there is exactly one mapping from symbols in the input sequence to matching occur-
rences of symbols in the regular expression. For every regular expression that is ambiguous in this 
sense, there is an unambiguous regular expression matching the same set of sequences. Bruggemann-
Klein and Wood [Bru94] call a regular expression 1-unambiguous if it is always possible to determine 
the symbol occurrence in the regular expression that should match the next input symbol by looking 
only at the input symbols that have already been read and the next input symbol. That is, a regular ex-
pression is 1-unambiguous if it can be matched in a unique manner with one-symbol lookahead. Some 
regular expressions have no 1-unambiguous equivalents. When we refer to an ambiguous EventScript 
program, we mean one whose regular expression is not 1-unambiguous in the sense of Bruggemann-
Klein and Wood. 



x=1 and then the action x=2, leaving x holding the value 2 when the action !>B(x); 
is executed. In contrast, the program of Fig. 4 responds to an A event by first execut-
ing the action !>B(1); and then executing the action !>B(2);.  The all-feasible-
paths semantics follows naturally from taking a nondeterministic finite automaton re-
flecting an ambiguous regular expression and applying the classic construction of a 
deterministic finite automaton from a nondeterministic one [Rab59], in which there is 
a one-to-one correspondence between the state of the deterministic finite automaton 
reached for a given input and the set of states of the nondeterministic finite automaton 
reached for that input. 

in {} A 
out long B 
 
( A() {!>B(1);} | A() {!>B(2);} )

 
Fig. 4. An ambiguous EventScript program that executes emit actions on different paths in re-
sponse to the same input event. 

The intersection regular-expression operator & and the difference regular-
expression operator – work by following all feasible paths through both operands. A 
sequence of events matches an instance of the intersection operator if and only if it 
has at least one feasible path through each operand; it matches an instance of the dif-
ference operator if and only if it has at least one feasible path through the left operand 
and no feasible path through the right operand. Interestingly, in a regular expression 
of the form L – R { a }, where L and R are regular subexpressions and a is an action 
(or sequence of actions) executed when R has been matched, a is executed only for 
event sequences that do not match the difference regular expression as a whole. In 
effect, a is a response to the discovery of a reason that the event sequence should not 
be matched by the regular expression as a whole. 

EventScript is intended, in part, for responsive applications in which it is not 
feasible to defer actions until later input events resolve ambiguities. Therefore, we 
perform an action as soon as it is reached: The program 

in {} A, {} B, {} C 
out {} Z 
 

( A() B() | A() {!>Z({});} C() ) 

emits a Z event as soon as an A event arrives, rather than waiting for the next event to 
determine which alternative should have been selected. Furthermore, since an action 
can have an irreversible external side effect—the emitting of an output event—we 
cannot backtrack when the arrival of a later event EventScript establishes that one of 
the paths taken was wrong. Even if the arrival of the A event is followed by the arrival 
of a B event, a Z event has already been emitted—and possibly processed by a system 
that has performed some physical action in response—and cannot be retracted. 

This “greedy” execution of actions arises not only in alternatives, but also in 
repetitions. After the program 

in {} A, {} B, {} C 
out {} Y, {} Z 
 

A() ( { !>Y({}); } B() )* { !>Z({}); } C() 
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encounters an A event, it is poised to iterate the repetition zero or more times. Since 
the emit action for Y and the emit action for Z are both reachable, both actions are 
executed greedily at this point (and, similarly, after each subsequent arrival of a B 
event). If the intent is to execute a Y action only on each actual execution of the body 
of the repetition, and to execute a Z action only after all repetitions are done, the regu-
lar expression should be written as follows instead: 

A() ( B(){ !>Y({}); } )* C(){ !>Z({}); } 

The general principle is that actions should be “guarded” by event markers for the 
events whose arrivals are meant to trigger the actions.8

Much of the expressive power of regular expressions comes from ambiguity. 
For example, suppose we have a keypad with keys labeled 0 through 9, we receive a 
Key event carrying the value x whenever the key labeled x has been pressed, and we 
wish to emit an Unlock event whenever the key sequence 0, 0, 7 is pressed in the 
middle of an arbitrary sequence of key presses. The following EventScript program 
solves this problem in a straightforward way: 

in long Key case { Key==0 ? K0 : Key==7 ? K7 : Other } 
 
out {} Unlock 
 
( .* K0() K0() K7() { !>Unlock({}); } )* 

The regular expression in this program is ambiguous. For example, there are three 
ways the sequence of key presses 1, 0, 0  can begin to match it: 

• The repeated wildcard .* matches all three key presses. 
• The repeated wildcard .* matches the first two key presses and the first event 

marker K0() matches the third key press. 
• The repeated wildcard .* matches the first key press and the sequence of event 

markers K0() K0() matches the second and third key presses. 

The EventScript all-feasible-paths semantics has exactly the desired effect, causing an 
Unlock event to be emitted precisely when a sequence of key presses ending in 0, 0, 
7 has been entered. The following unambiguous EventScript program has the same 
behavior, but it is both longer and less obvious: 

in long Key case { Key==0 ? K0 : Key==7 ? K7 : Other } 
 
out {} Unlock 
 

 
8 The regular expression ( A()* { !>Z(); } )* has a path with an infinite number of action execu-
tions, with no intervening input event. (This path corresponds to zero iterations of the inner repetition 
on each iteration of the outer repetition.) Greedy execution of actions would imply that the EventScript 
program should immediately enter an infinite loop emitting Z events. However, EventScript prohibits 
(and our EventScript compiler detects) any program containing a cyclic path that has actions but no 
event marker. 



( 
   // No zeroes pending 
   ( K7() | Other() )* 
   // No zeroes pending 
   K0() 
   // One zero pending 
   ( ( K7() | Other() )+ K0() )* 
   // One zero pending 
   K0()+ 
   // Two zeroes pending 
   ( K7() { !>Unlock({}); } | Other() ) 
   // No zeroes pending 
)* 

For both programs, our EventScript compiler generates a deterministic finite automa-
ton equivalent to the one shown in Fig. 5. 
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Fig. 5. A deterministic finite automaton that emits an Unlock event whenever it has received a se-
quence of input events ending with K0, K0, K7. 

one zero 
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There are also ambiguous regular expressions for which there is no unambigu-
ous equivalent. For example, the program 

in {} A, {} Even, {} Odd 
 
out {} EvenSeen, {} OddSeen 
 
( A() A() )* 
( Even() {!>EvenSeen({});} | A() Odd() {!>OddSeen({});} ) 

—which matches either an even number of A events followed by an Even event or an 
odd number of A events followed by an Odd event—is ambiguous because, after an 
even number of A events (possibly zero) have been seen, the next A event to arrive 
may match either the first A() event marker in the repetition or the A() event marker 
at the start of the second alternative following the repetition. It can be shown by the 
methods of [Bru98] that any regular expression that is built using |, *, and sequence 
operations, and that matches either an even number of A events followed by an Even 
event or an odd number of A events followed by an Odd event, is necessarily ambigu-
ous. In this case, there is no harm done by following both feasible paths simultane-
ously, because the arrival of the next event after the problematic A event renders one 
of the paths infeasible: If that event is another A event, we must have been on the path 
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through the repetition; if it is an Odd event, we must have been on the path through 
the second alternative. Importantly, the emit actions are executed at points where 
there is only one feasible path through the regular expression (because we have seen 
either an Even event or an Odd event).  

In general, an ambiguous regular expression is innocuous as long as the set of 
feasible paths through the regular expression has collapsed back into a single path at 
all points where an action is reached. (Like the even/odd program, the ambiguous ver-
sion of the keypad program has this property. The programs of Fig. 3 and Fig. 4 do 
not.) However, the execution of actions on different paths in response to a single input 
event can also be innocuous. For example, suppose a retailer wishes to reward a cus-
tomer with a discount coupon after every third purchase, and with free software after 
every computer-related purchase. The following program issues output events signal-
ing the granting of a coupon or software in response to input events reporting pur-
chases:9

in {string customerID; boolean isComputerRelated;} Purchase 
   group(Purchase.customerID) 
   case { Purchase.isComputerRelated ? 
             CompPurchase 
           : OtherPurchase 
        } 
 
out string GiveCoupon, string GiveSoftware 
 
   ( Purchase(p){3} { !>GiveCoupon(p.customerID); } ) * 
| 
   (   CompPurchase(cp) { !>GiveSoftware(cp.customerID); } 
     |  
       OtherPurchase()  
   )* 

In effect, the two alternatives at the outermost level of this regular expression are 
computations preceding in parallel: For each input event, the program follows one 
path through the top alternative and one path through the bottom alternative. When a 
customer’s third purchase is computer-related, the customer should be rewarded with 
both a coupon and software; the program reflects this by emitting a GiveCoupon 
event followed by a GiveSoftware event (in that order, based on lexical position) as 
both emit actions are encountered in response to the corresponding Purchase event. 
This paradigm is reminiscent of orthogonal products in Statecharts [Har87], in which 
the state of a box consists of the states of several contained boxes responding inde-
pendently to each input. 

In the customer-reward example, the actions reached along different paths 
through the regular expression in response to the same input manipulate disjoint sets 
of variables. The behavior of a program becomes much harder to understand if the 
actions along one path read or modify a variable modified along the other path. The 
rule stipulating that such actions are executed in order of lexical occurrence in the 

 
9 The presence of an event-case clause in the declaration of an event name enables the writing of event 
markers with the event names in the event-case clause, but it does not preclude the writing of event 
markers with the original, unclassified event name. In this example, the event marker Purchase(p) is 
equivalent to ( CompPurchase(p) | OtherPurchase(p) ). 



22 

                                                

program makes the behavior of such a program deterministic: Race conditions of the 
sort arising in multithread programs do not arise. Nonetheless, we do not encourage 
programming styles that depend subtly on lexical order. 

This section has highlighted examples in which ambiguity is useful, to justify 
our decision to allow ambiguous regular expressions in EventScript. However, in our 
experience, the majority of real-world event-processing problems are most naturally 
solved with unambiguous regular expressions. Typically, an EventScript programmer 
need not be concerned with the rules for ambiguous regular expressions. In the un-
usual case where an ambiguity does arise, our EventScript compiler calls the pro-
grammer’s attention to this fact with a warning message. 

3.3.2 Ambiguity arising from simultaneously firing event markers 

Section  3.3.1 was concerned with ambiguity about the current position in  a 
regular expression after a specified sequence of events has occurred. A different kind 
of potential ambiguity concerns which events have occurred. This form of ambiguity  
arises when multiple elapse or arrive event markers fire simultaneously. Whether 
or not time-event markers actually fire simultaneously depends, in general, on the 
values of expressions appearing in the markers. While our EventScript compiler 
warns about the potential for simultaneously firing time-event markers, the actual dis-
covery of such an event would require a run-time check. Rather than performing a 
run-time check, we define the ambiguity away by arbitrarily choosing, from among 
simultaneously firing time-event markers, that which occurs earliest in the text of the 
program.10 For example, the program 

out {} StartOfMinute, {} StartOfHour 
 
(   arrive[.:00:00]() {!>StartOfHour({});} 
  | arrive[.:.:00]() {!>StartOfMinute({});} 
)* 

emits a StartOfMinute event at the start of every minute, except for the first min-
ute of every hour, when the earlier arrive event marker is selected and a StartOf-
Hour event is emitted instead.  (Were we to reverse the order of the alternatives, the 
StartOfMinute event would be emitted every minute, and the arrive event 
marker associated with the StartOfHour event would never be selected.) Of course 
there is a less tricky way to achieve this effect, not depending on the order-of-
occurrence tie-breaking rule: 

( arrive[.:00](t) 
  { minute(t)==0 ? !>StartOfHour({}); : !>StartOfMinute({}); } 
)* 

 
10 In our implementation, this choice is made upon transition to a state in which multiple time-event 
markers become eligible to be matched next: We evaluate the expressions in each of these time-event 
markers, determine which marker has the earliest deadline, and use textual position to break ties. A 
wakeup timer is set only for the textually earliest of the time-event markers sharing the earliest firing 
time. 
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4. EventScript programming techniques 

The use of regular expressions annotated with actions to process event streams 
is a very flexible paradigm, enabling a wide variety of programming idioms and 
styles. This section discusses some of those we have discovered so far. Of course ad-
ditional EventScript programming techniques will be discovered over time. 

4.1 Modeling the input stream 

An EventScript regular expression can be thought of as a model of the stream 
of events that will arrive during the lifetime of the program. This model reflects not 
only the event sequences for which actions should be performed, but also the event 
sequences that should be ignored. 

Consider, for example, the problem of ensuring that a jet engine is inspected 
after each use. A Use event arrives when the engine is started and an Inspection 
event arrives when completion  of  an  inspection  is  detected.  A Violation event 
is to be emitted whenever  two  Use  events  are  detected  without  an intervening 
Inspection event. It is tempting to attempt to solve this problem with the following 
program: 

// Version 1: 
 
in {} Use, {} Inspection 
out {} Violation 
 
( Use() Use() { !>Violation({}); } )* 

However, as Section  3.1 explained, the arrival of an input event that does not match 
the regular expression of the program results in a run-time error. This program will 
generate an error every time an Inspection event arrives. Worse, the unexpected 
Inspection event will be discarded  and normal execution will continue after an 
error event is emitted, so an Use event followed by a (discarded) Inspection event 
followed by an Use event will incorrectly cause a Violation event to be emitted. 

Since many regular expressions can be written to match the same set of input 
sequences, there are many ways to model the expected set of input events. The fol-
lowing version of the program works correctly: 

// Version 2: 
 
in {} Use, {} Inspection 
out {} Violation 
 
{ inspectionNeeded = false; } 
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(   Use() 
    { inspectionNeeded ? 
           !>Violation({}); 
         : inspectionNeeded = true; 
    } 
  | 
    Inspection() 
    { inspectionNeeded = false; } 
)* 

So, however, does the following version: 
// Version 3: 
 
in {} Use, {} Inspection 
out {} Violation 
 
(   Use() 
    ( Use() { !>Violation({}); } )* 
    Inspection() 
  | 
    Inspection() 
)* 

Version 2 is a generic model that says very little about the underlying structure of the 
input stream. If we ignore the actions, we are left with a regular expression that says 
simply that we expect a stream of zero or more input events, each of which is either a 
Use event or an Inspection event. The actions following the Use and Inspection 
event markers specify how each kind of input event is to be handled. In fact, any pro-
gramming problem can be solved with a regular expression of the form 

( a1() action1 | ... | an() actionn )* 

where a1, ..., an are all the input-event names. This approach has the advantage of ob-
viously eliminating the possibility of unexpected events, but it does not take full ad-
vantage of the regular-expression paradigm, and amounts to little more than a round-
about way of associating a fixed event-handling routine with each input-event name. 

Although the regular expression in Version 3 matches exactly the same set of 
input-event sequences as Version 2, Version 3 is somehow a more detailed model of 
the logical structure of the input stream for the purposes of this program. In effect, 
some of the state information captured in Version 2 by the use of variables is captured 
in Version 3 by the current position of the computation within the regular expression. 
This is demonstrated by our ability to annotate Version 3 with comments that reflect 
invariants that hold at certain points within the regular expression: 

// Version 3’: 
 
in {} Use, {} Inspection 
out {} Violation 
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(   // no inspection needed 
    Use() 
    // inspection needed 
    ( // inspection needed 
      Use() { !>Violation({}); } 
      // inspection needed 
    )* 
    Inspection() 
    // no inspection needed 

| 
    // no inspection needed 
    Inspection() 
    // no inspection needed 
)* 

Nonetheless, the original specification of the program was in terms of a pat-
tern of events—two Use events without an intervening Inspection event—that 
should trigger a particular action. Many event-processing problems are specified in 
this way, and it is appealing to be able to model the event stream in a manner that di-
rectly reflects this specification. One way to do this is with an ambiguous set of alter-
natives such as 

( . | Use() Use() {!>Violation({}); } )* 

The wildcard alternative ensures that every input event matches the regular expression 
and the other alternative, in conjunction with the all-feasible-paths rule, ensures that if 
the most recently received events can be interpreted as matching the pattern Use() 
Use(), a Violation event will be emitted. Another way to model the event stream 
in a manner that directly reflects the specification is to use the regular-expression dif-
ference operator: 

.* - ( .* Use() Use() { !>Violation({}); } ) 

The regular expression .* matches any sequence of input events, and the regular ex-
pression .* Use() Use() matches any sequence of input events ending with two 
Use events. Thus the difference regular expression as a whole matches any sequence 
of input events that does not end with two Use events. The key is that the action block 
{ !>Violation(); } is part of the second operand of the difference operator,11 
and, as Section  3.3.1 discussed, it is reached in the course of matching that operand. 

4.2 Aggregating, smoothing, and debouncing 

A common function in the processing of event streams is the aggregation or 
smoothing of data, particularly sensor data. Aggregation and smoothing are straight-
forward in EventScript. For example, the following aggregation program groups sen-
sor readings into 20-reading bundles and emits the average reading for each bundle at 
the completion of that bundle: 

 
11 Because of the precedence of regular-expression operators, this would be the case even if the paren-
theses around the second operand were omitted. We include the parentheses to emphasize the crucial 
point that the action is part of the second operand. 
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( Signal(k) { !>KeyPress(k); } Signal()* elapse[5 msec]() )*  

in double Reading 
out double Average 
 
( { sum = 0.0; } 
  ( Reading(x) { sum = sum + x; } ){20} 
  { !>Average(sum/20); } 
)* 

Because the number n in an EventScript regular expression of the form R{n} must be 
a constant, the bundle size 20 is hardwired into the program. Here is a more general 
approach, in which the bundle size is specified by a SetBundleSize event preced-
ing all the Reading events: 

in long SetBundleSize, double Reading 
out double Average 
 
SetBundleSize(N) 
{ sum = 0.0; seen = 0; } 
( Reading(x) 
  { sum = sum + x; 
    seen = seen + 1; 
    seen==N ? { !>Average(sum/N); sum = 0.0; seen = 0; } 
  } 
)* 

The sliding-average example on page 9 smoothes a data stream by emitting, for each 
data reading received, the average of the N most recent readings, where N is specified 
by a SetWindowSize event preceding all readings. An exponential moving average 
is even easier to compute. The following program uses a smoothing factor alpha 
specified by a SetSmoothingFactor event preceding all readings: 

in double SetSmoothingFactor, double Raw 
 
out double Smoothed 
 
SetSmoothingFactor(alpha) { oneMinusAlpha = 1.0 - alpha; } 
Raw(history) 
( { !>Smoothed(history); } 
  Raw(x) 
  { history = alpha*x + oneMinusAlpha*history ; } 
)* 

Debouncing is a discrete analog to smoothing. It entails aggregating several 
input signals resulting from a single real-world occurrence into a single output signal.  
For example, when a key on a keyboard is pressed, electrical contacts may “bounce” 
together and apart several times (or electrical arcing may occur between two contacts 
as the distance between them approaches zero), resulting in several signals that ought 
to be interpreted as a single key press. The following EventScript program interprets 
each incoming signal from a given key as attributable to the same key press as the 
previous signal from that key, unless five milliseconds have passed since the previous 
signal from that key:  

in long Signal group(Signal) 
out long KeyPress 
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(An input signal from a given key is manifested as a Signal input event carrying a 
number that identifies the key. For each distinct key press it detects, the program 
emits a KeyPress output event carrying the same number. Signal events are grouped 
by key numbers, so that separate instance of this computation runs for each key on the 
keyboard. Although this computation is nonterminating, the number of keys on the 
keyboard is fixed, resource leaks of the kind discussed in Section  3.2 are not a con-
cern.) Essentially the same logic is found in a program that collects RFID readings at 
a toll booth, and treats a reading with a given tag ID as attributable to the same pas-
sage through the toll booth as the previous RFID reading with that tag ID, unless five 
minutes have passed since the previous reading with that tag ID: 

in {string readerID; string tagID; time when;} Reading  
      group(Reading.tagID) 
 
out {string readerID; string tagID; time when;} Passage 
 
Reading(r) { !>Passage(r); } 
Reading()* 
elapse[5 minutes]() 

(In this case, input events are grouped by tag ID, and resource leaks are a concern. 
Therefore, a computation instance terminates when five minutes have elapsed since 
the last reading for its tag.)  

In some applications, the possible values of a continuous variable measuring a 
physical property are summarized by a collection of discrete values, and we continu-
ally receive input events, reporting either the continuous variable itself or the corre-
sponding discrete state. Suppose the value of the continuous variable is near the 
boundary between regions corresponding to two discrete states A and B. As the value 
of the continuous variable varies in a noisy manner, but in the general direction away 
from the A region and towards the B region, we are likely to receive signals reflecting 
the discrete model of the system settled in state A, then oscillating chaotically between 
states A and B, and finally settled in state B. The role of debouncing in such a case is 
to aggregate these input signals into an output signal reporting one clean transition, 
without oscillation, from state A to state B. 

Typical debouncing strategies in such cases are sticky, continuing to report the 
old discrete state until faced with convincing evidence that the system is in the new 
discrete state. For debouncing logic that receives reports of the continuous variable 
itself, this convincing evidence might be a report that the continuous variable has 
crossed a certain distance past the boundary between regions corresponding to differ-
ent discrete states (distance debouncing). For debouncing logic that receives reports 
of the discrete state corresponding to the current value of the continuous variable, this 
convincing evidence might be the receipt of n consecutive signals that the system is in 
the new state, for some value of n (count debouncing), or the receipt only of signals 
that the system is in the new state for some time t (time debouncing).  

The following program receives reports of a continuous variable—temperature 
in a refrigeration system—and performs distance debouncing, indicating that the sys-
tem has switched to either a cold state (below 40 degrees) or a warm state (40 degrees 
or higher) when the temperature has crossed 5 degrees past the boundary between the 
new state and the old state. To err on the side of reporting near-borderline tempera-
tures as warm, we assume that the system starts out in the warm state. 
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in double Temperature 
    case {   Temperature < 35.0 ? DefinitelyCold 
           : Temperature < 40.0 ? SlightlyCold 
           : Temperature < 45.0 ? SlightlyWarm 
           : DefinitelyWarm 
    } 
 
out {} Warm, {} Cold 
 
{ !>Warm({}); } // initial report 
( // Warm state 
  (.-DefinitelyCold())* DefinitelyCold() 
  { !>Cold({}); } 
  // Cold state 
  (.-DefinitelyWarm())* DefinitelyWarm() 
  { !>Warm({}); } 
  // Warm state 

)* 

The following EventScript program performs count debouncing for n=5, ag-
gregating RawOff and RawOn input signals into DebouncedOff and DebouncedOn 
output signals: 

in { } RawOff, { } RawOn 
 
out { } DebouncedOff, { } DebouncedOn 
 
(  // Off state 
   ( RawOn(){0,4} RawOff() )* 
   RawOn(){5} 
   { !>DebouncedOn({}); } 
   // On state 
   ( RawOff(){0,4} RawOff() )* 
   RawOff(){5} 
   { !>DebouncedOff({}); } 
   // Off state 
)* 

In the Off state, we expect a sequence of zero or more RawOff events, each poten-
tially preceded by up to four RawOn events; but when we see five consecutive RawOn 
events, we transition to the On state. The On state works analogously.12

The following EventScript program works with the same input and output sig-
nals, but performs time debouncing for t=0.5 seconds: 

 
12 This regular expression is ambiguous. For example, in the Off state, a sequence 1, 2, 3, or 4  consecu-
tive  RawOn  events  may  correspond  to  either  RawOn(){0,4}  or  RawOn(){5}.  However,  once  a 
RawOff event or a fifth RawOn event arrives, only one of these paths remains feasible. Since there is 
only one feasible path at each action, the ambiguity is innocuous. 
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in { } RawOff, { } RawOn 
 
out { } DebouncedOff, { } DebouncedOn 
 
 ( // Off state 

   ( RawOff()* RawOn()+ RawOff() )* 
   RawOn() 
   { deadline = millisecondsAfter(500, now() ); } 
   RawOn()* 
   arrive[(deadline)]() 
   { !>DebouncedOn({}); } 

   // On state 

   ( RawOn()* RawOff()+ RawOn() )* 
   RawOff() 
   { deadline = millisecondsAfter(500, now() ); } 
   RawOff()* 
   arrive[(deadline)]() 
   { !>DebouncedOff({}); } 

   // Off state 
)* 

The regular expression ( RawOff()* RawOn()+ RawOff() )* matches what we 
may call a false-start sequence, consisting of zero or more RawOff events, one or 
more RawOn events, and then a RawOff  event (occurring less than 500 milliseconds 
after the first RawOn event of the sequence). In the Off state, we expect zero or more 
false-start sequences. Eventually, we may see a RawOn event that will not be followed 
by any RawOff event for the next 500 milliseconds. This RawOn event occurrence e is 
followed by zero or more RawOn events, and then the arrival of the time 500 millisec-
onds after e, at which point we enter the On state. The On state works analogously.13

4.3 Reacting to the absence of an event 

A common task in event processing is to react to the absence of an event in a 
certain time interval whose beginning and end are marked by delimiting events. The 
delimiting event marking the end of the interval may be an ordinary named input 
event, the arrival of a particular time and date, or the passage of a certain amount of 
time since the beginning of the interval.  Suppose we are expecting a repeated series 
of intervals  delimited  by  Start  and  Stop  events,  each  containing  zero or more 
Signal events, and we are to emit a NoSignal event at the end of each interval that 
did not contain a Signal event. Here is a straightforward solution: 

 
13 This regular expression is also ambiguous. After the program has entered the Off state and executed 
zero or more false-start sequences, an arrive RawOn event potentially matches both RawOn()+ in the 
false-start sequence and the event marker RawOn() appearing just before the assignment to deadline. 
Since any action reached along any feasible path is executed, deadline is set at this point to the time 
500 milliseconds after the current time. Subsequent RawOn events arriving at this point match both Ra-
wOn()+ in the false-start sequence and RawOn()* just after the assignment to deadline. If the next 
event is the arrival of the time deadline, the only remaining feasible path is the one that brings us to 
the emit action for DebouncedOn; but if the next event is a RawOff event, the only feasible path is the 
one inside the false-start sequence.  
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in {} Start, {} Signal, {} Stop 
out {} NoSignal 
 
( Start() 
  { signalReceived = false; } 
  ( Signal() { signalReceived = true; } )* 
  Stop() { !signalReceived ? !>NoSignal({}); } 
)* 

It can be argued that the following solution, which does not involve any variables, is 
even simpler: 

in {} Start, {} Signal, {} Stop 
out {} NoSignal 
 
( Start() 
  ( Stop() { !>NoSignal({}); } | Signal()+ Stop() ) 
)* 

Here is a variation in which the interval extends from 9:00 a.m. to 5:00 p.m. every 
day: 

in {} Start, {} Signal, {} Stop 
out {} NoSignal 
 
( arrive[9:00]() 
(   arrive[17:00]() { !>NoSignal({}); } 
  | Signal()+ arrive[17:00]() 
  ) 
)* 

Here is a variation in which the interval starts upon the arrival of a Start event and 
ends one hour later: 

in {} Start, {} Signal, {} Stop 
out {} NoSignal 
 
( Start() { endTime = hoursAfter(1, now()); } 
  (   arrive[(endTime)]() { !>NoSignal({}); } 
    | Signal()+ arrive[(endTime)]() 
  ) 
)* 

One special case of the absence of an event is a time-out. The following pro-
gram echoes14 Reading events, but also emits a MissingReading event each time 
15 seconds elapse without an input event: 

in double Reading 
out double Reading, { } MissingReading 
 
(   Reading(x) { !>Reading(x); } 
  | elapse[15 seconds]() { !> MissingReading({}); } 
)* 

 
14 As this example illustrates, EventScript allows a program to use a single name as both an input-event 
name and an output-event name, but in many contexts this practice may be confusing to readers of the 
program. 
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This program is similar to the first program on page 7,  which reports the average of 
three sensors every time a new reading arrives from some sensor and every time ten 
seconds have elapsed since an input arrived from any sensor. The second program on 
page 7, which reports the average of three sensors at regular ten-second intervals, il-
lustrates the use of time-outs for periodic processing. The keyboard debouncing ex-
ample on page 26 and the toll-booth debouncing example on page 27 illustrate yet an-
other use of time-outs. 

4.4 Factoring alternatives 

Sometimes a set of alternatives—say 

a1 | ... | aj | aj+1 | ... | ak | ak+1 | ... | an 

—includes identical actions in several alternatives. In such cases, we can avoid re-
dundant coding by grouping alternatives with actions in common into a single alterna-
tive, as in (a1 | ... | aj) | (aj+1 | ... | ak) | (ak+1 | ... | an). The actions 
common to all the alternatives in a group can then be placed after that group. The re-
sulting finite-state machine is identical, but the resulting program is easier to maintain 
because any change that must be made to the common actions can be made in a single 
place. 

Consider a one-floor industrial plant that uses an active-badge-based location-
tracking system to enforce a policy that all visitors must be accompanied by their 
hosts at all times. The location-tracking system uses x and y coordinates in which one 
unit corresponds to a distance of one meter. We assume that visitors and hosts meet at 
a security desk near the entrance to the plant, with coordinates x=3.5, y=7.2. At this 
desk, a security officer assigns a visitor ID to the visitor and records the fact that a 
particular host is responsible for a particular visitor. One host may be responsible for 
several visitors. Every time the active badge of a visitor is detected, the location-
tracking system generates a VisitorLocation event containing the visitor ID and x 
and y coordinates of the visitor. Every time the active badge of a host is detected, the 
location-tracking system generates a HostLocation event for each visitor assigned 
to that host, containing the ID of the visitor and the x and y coordinates of the host. 
When the visitor leaves the building, the security officer records this fact, and the sys-
tem emits an Unregister event containing the visitor ID of the departing visitor. We 
are to generate an UnaccompaniedVisitor event, containing a visitor ID and the 
last known coordinates of the visitor, any time a visitor’s last reported position is 
more than 10 meters away from the host’s last reported position, or any time no loca-
tion has been reported for one of these individuals for one minute. 

Our EventScript program groups VisitorLocation, HostLocation, and 
Unregister events by visitor ID, so that one instance of the program runs for each 
currently registered visitor; the Unregister event allows us to write a terminating 
program, so that there is no resource leak. (See Section  3.2.) The instance correspond-
ing to a given visitor ID saves the time by which we expect to receive the next Visi-
torLocation event for that visitor ID in the variable visitorDeadline, and the 
time by which we expect to receive the next HostLocation event for that visitor ID 
in the variable hostDeadline. 

Here is an initial version of the program: 
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in { string visitorID; double x; double y; } 
      HostLocation group(HostLocation.visitorID),  
   { string visitorID; double x; double y; } 
      VisitorLocation group(VisitorLocation.visitorID),  
   string Unregister group(Unregister) 
 
out { string visitorID; double x; double y; } 
       UnaccompaniedVisitor 
 
{ THRESHOLD = 10;  
  THRESHOLD_SQUARED = THRESHOLD*THRESHOLD; 
  INITIAL_LOCATION = {visitorID: group[0], x: 3.5, y: 7.2}; 
  h = INITIAL_LOCATION; 
  v = INITIAL_LOCATION; 
  hostDeadline = minutesAfter(1, now()); 
  visitorDeadline = hostDeadline; 
} 
 
(   HostLocation(h) 
    { hostDeadline = minutesAfter(1, now());  
      deltaX = v.x-h.x;  
      deltaY = v.y-h.y;  
      deltaX*deltaX + deltaY*deltaY > THRESHOLD_SQUARED ?  
         !>UnaccompaniedVisitor 
              ({visitorID: group[0], x: v.x, y: v.y});  
      } 
  |  
    VisitorLocation(v) 
    { visitorDeadline = minutesAfter(1, now()); 
      deltaX = v.x-h.x;  
      deltaY = v.y-h.y;  
      deltaX*deltaX + deltaY*deltaY > THRESHOLD_SQUARED ?  
         !>UnaccompaniedVisitor 
              ({visitorID: group[0], x: v.x, y: v.y});  
    } 
 |  
   arrive[(hostDeadline)]()  
   { hostDeadline = minutesAfter(1, hostDeadline); 
     !>UnaccompaniedVisitor 
          ({visitorID: group[0], x: v.x, y: v.y}); 
   }  
 |  
   arrive[(visitorDeadline)]()  
   { visitorDeadline = minutesAfter(1, visitorDeadline);  
     !>UnaccompaniedVisitor 
          ({visitorID: group[0], x: v.x, y: v.y}); 
   }        
)*  
Unregister() 

Except for the resetting of either hostDeadline or visitorDeadline, the actions 
performed after the arrival of a HostLocation event are identical to those performed 
after the arrival of a VisitorLocation event, and the actions performed after the 
arrival of the time hostDeadline are identical those performed after the arrival of 
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the time visitorDeadline. Therefore, the repetition regular expression in this pro-
gram can be factored as follows: 

(  
    (   HostLocation(h) 
        { hostDeadline = minutesAfter(1, now()); }  
      |  
        VisitorLocation(v) 
        { visitorDeadline = minutesAfter(1, now()); }  
    )  
    { deltaX = v.x-h.x;  
      deltaY = v.y-h.y;  
      deltaX*deltaX + deltaY*deltaY > THRESHOLD_SQUARED ?  
         !>UnaccompaniedVisitor 
              ({visitorID: group[0], x: v.x, y: v.y});  
    } 
 
  |  
 
    (   arrive[(hostDeadline)]()  
        { hostDeadline = minutesAfter(1, hostDeadline); }  
      |  
        arrive[(visitorDeadline)]()  
        { visitorDeadline = minutesAfter(1,visitorDeadline); }  
    )  
    { !>UnaccompaniedVisitor 
           ({visitorID: group[0], x: v.x, y: v.y}); }  
 

)* 

4.5 Pipelining EventScript programs 

Many event-processing problems can be simplified by decomposing them into 
stages of a pipeline, in which the output events emitted by one stage are fed as input 
events into the next stage. Sometimes the simplification results from separating dif-
ferent aspects of the problem into different stages, or by filtering out irrelevant infor-
mation. Sometimes the simplification results from resolving a clash between the struc-
ture of the original input stream and the structure of the ultimate output stream by in-
troducing an intermediate stream whose structure is compatible with both. Sometimes 
the simplification results from the use of event grouping to group data in different 
ways at different stages. 

Suppose a piece of equipment issues status reports every few minutes, report-
ing either normal or abnormal status. A window begins every hour on the hour. When 
we observe three consecutive windows containing at least one abnormal reading, we 
issue an alarm and reset the count of consecutive abnormal windows to zero. The 
alarm should be issued as soon as the first abnormal status report of the third consecu-
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tive abnormal window is received. The following one-stage EventScript program 
solves this problem:15

in boolean Status 
   case { Status ? NormalStatus : AbnormalStatus } 
 
out { } Alarm 
 
 ( NormalStatus()*               // (0,N) -> (0,N) 
   ( 
       arrive[.:00]()            // (0,N) -> (0,N) 
     | 
       AbnormalStatus()          // (0,N) -> (0,A) 
       .*                        // (0,A) -> (0,A) 
       arrive[.:00]()            // (0,A) -> (1,N) 
       NormalStatus()*           // (1,N) -> (1,N) 
       (    arrive[.:00]()       // (1,N) -> (0,N) 
         | 
            AbnormalStatus()     // (1,N) -> (1,A) 
            .*                   // (1,A) -> (1,A) 
            arrive[.:00]()       // (1,A) -> (2,N) 
            NormalStatus()*      // (2,N) -> (2,N) 
            (   arrive[.:00]()   // (2,N) -> (0,N) 
              | 
                AbnormalStatus() // (2,N) -> (2,A) 
                { !>Alarm({}); } // (2,A) -> (2,A) 
                .*               // (2,A) -> (2,A) 
                arrive[.:00]()   // (2,A) -> (0,N) 
            ) 
       ) 
   ) 
)* 

 
15 The invariant holding at each point in this program can be described by a pair (k,status), where k is 
an integer in the range 0 to 2 and status is either “N” (for normal) or “A” (for abnormal). The invariant 
(k,status) asserts that the immediately preceding k windows are to be counted as abnormal, and that at 
least one abnormal status report has (if status=”A”) or has not (if status=”N”) been seen in the current 
window. The comments of the form // (k1,status1) -> (k2, status2) at the ends of the lines in this 
program assert that the invariant (k1, status1) holds before the line and the invariant (k2, status2) holds 
afterward. The validity of these comments can be derived from the following rules of inference: 

• Whatever invariant holds before NormalStatus() still holds afterward. 
• If (k,N) holds before AbnormalStatus(), then (k,A) holds afterward. 
• If (k,A) holds before AbnormalStatus(), then (k,A) still holds afterward. (Since the wild-

card . is equivalent to NormalStatus() | AbnormalStatus(), it follows that if (k,A) 
holds before ., then (k,A) holds afterward.)  

• For any regular expression R that preserves a given invariant, the regular expression R* also 
preserves that invariant. 

• If (k,N) holds before arrive[.:00](), then (0,N) holds afterward (because a window with no 
abnormal status reports has just ended). 

• If (k,A) holds before arrive[.:00](), then (k+1,N) holds afterward (because an abnormal 
window has just ended and no status reports have arrived in the current window). 

• Whatever invariant holds before { !>Alarm({}); } still holds afterward. 
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However, a simpler and more obviously correct solution can be obtained by 
decomposing the processing into two stages. The first stage consumes Normal-
Status, AbnormalStatus, and arrive[.:00]() events, and emits either a Nor-
malWindow event or an AbnormalWindow event at the end of each window. The 
second stage consumes NormalWindow and AbnormalWindow events and emits 
Alarm events after three consecutive AbnormalWindow events for which no Alarm 
event was previously emitted. Here is the first stage: 

in boolean Status 
   case { Status ? NormalStatus : AbnormalStatus } 
 
out { } NormalWindow, { } AbnormalWindow 
 
( 

NormalStatus()* 
(   arrive[.:00]() { !>NormalWindow({}); } 
  | 
    AbnormalStatus() { !>AbnormalWindow({}); } 
    .* 
    arrive[.:00]() 
) 

)* 

Here is the second stage: 
in { } NormalWindow, { } AbnormalWindow 
out { } Alarm 
 
( 
  ( AbnormalWindow(){0,2} NormalWindow() )* 

AbnormalWindow(){3} { !>Alarm({}); } 
)* 

We have separated concern with determining when a window has ended and whether 
the window was abnormal from concern about whether there have been three con-
secutive abnormal windows. Furthermore, instead of dealing with an event for each 
status report, the second stage only has to deal with one summary event for each win-
dow. 

The three-big-trades example on page 12 can also be improved by decompos-
ing it into two stages. The first stage consumes BigTrade and SmallTrade events, 
filters out the SmallTrade events, and emits a FilteredTrade event correspond-
ing to each BigTrade event: 

in { string traderID; 
     string company; 
     double price; 
     long volume; 
     time when; 
   } Trade 
        case { Trade.price*Trade.volume>=10000.0 ? 
                   BigTrade 
                 : SmallTrade 
             } 
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out 
   {string traderID; string company; double value; time when;} 
      FilteredTrade 
 
(   SmallTrade() 
  | 
    BigTrade(t) 
    { !>FilteredTrade 
           ( { traderID: t.traderID, 
               company: t.company, 
               value: t.price*t.volume, 
               when: t.when } 
            ); 
    } 
)* 

The second stage consumes FilteredTrade events and emits ThreeBigTrade 
events: 

in {string traderID; string company; double value; time 
when;} 
      FilteredTrade 
      group(FilteredTrade.traderID, FilteredTrade.company) 
 
out {string traderID; string company; double averageValue;} 
       ThreeBigTrades 
 
// 0 trades pending 
FilteredTrade(t1) { expiration1 = hoursAfter(1,t1.when); } 
// 1 trade pending 
( 
   FilteredTrade(t2) { expiration2=hoursAfter(1,t2.when); } 
   // 2 trades pending 
   (  FilteredTrade(t3) 
      { outputValue = 
          { traderID: t3.traderID, 
            company: t3.company, 
            averageValue: (t1.value+t2.value+t3.value)/3 }; 
        !>ThreeBigTrades(outputValue); 
        t1 = t2; 
        t2 = t3; 
        expiration1 = expiration2; 
        expiration2 = hoursAfter(1,t2.when); 
      } 
   )* 
   arrive[(expiration1)]() 
   { expiration1 = expiration2; t1 = t2; } 
   // 1 trade pending 
)* 
arrive[(expiration1)]() 
// 0 trades pending; terminate    

 
The second stage of the revised program is a simplified version of the body of the 
repetition in the original program, in which small trades are not addressed and in 
which the values of trades (which are computed in the first stage) are taken from 
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FilteredTrade input events rather than computed. The event grouping in the origi-
nal program is confined to the second stage of the modified program. This has impor-
tant performance implications: The original program maintained a computation in-
stance for every combination of trader ID and company, but the second stage of the 
modified program maintains a computation instance only for those trader-company 
combinations for which there are big trades. Since we can expect the overwhelming 
majority of traders to execute only small trades, the modified program requires far 
fewer computation instances. Still, in accordance with the discussion in Section  3.2 
about resource leaks, we have transformed the second stage of the modified program 
from a nonterminating program into a terminating one, by replacing the outermost 
repetition with the body of that repetition. In the revised program, a computation in-
stance of the second stage terminates when the most recent big trade for its trader-
company combination has become an hour old, so that the resources associated with 
that combination can be freed. (Should there later be another big trade by that trader 
for that company, a new computation instance will be created.)  

A multistage solution is also helpful to reconcile what M.A. Jackson [Jac75] 
calls a boundary clash. Suppose a sensor takes readings once every second and a con-
troller attached to the sensor packs consecutive readings into a message containing 15 
consecutive readings in order, delivered at 15-second intervals. Suppose further that 
we are to emit an event three times a minute, each containing the largest of the most 
recent 20 readings. The boundary clash is between an input stream in which events 
correspond to groups of 15 readings and an output stream in which events correspond 
to groups of 20 readings. We solve the problem by introducing an intermediate stream 
in which events correspond to groups of five readings. The first stage decomposes a 
15-reading input event into three five-reading output events. The second stage proc-
esses four five-reading input events at a time to produce an output event. We assume 
that sensor readings are nonnegative real numbers. Here is the first stage: 

in double[] PacketOf15 
out double[] PacketOf5 
 
{ buffer = new double[5]; } 
( 
   PacketOf15(input) 
   { for (i: 0, 3) { 
        for (j: 0, 5) buffer[j] = input[3*i+j]; 
        !>PacketOf5(buffer); 
     } 
   } 
)* 

Here is the second stage: 
in double[] PacketOf5 
out double MaxOf20 
 
( 
   { max = 0.0; } 
   ( PacketOf5(input) 
     { for (i: 0, 4) { input[i] > max ? max = input[i]; } }     
   ){4} 
   { !>MaxOf20(max); } 
)* 
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Jackson solves such problems by writing two coroutines, one of which feeds values to 
the other, and then performing intricate program transformations to implement the 
coroutines in a conventional programming language. In the EventScript solution, the 
two stages of the pipeline play the role of these coroutines. 

Our final example of pipelining illustrates the power of grouping events by 
different criteria in different stages of the pipeline. This example uses radiation sen-
sors to monitor the current radiation level in several rooms of an industrial plant, and 
uses an active-badge-based location-tracking system to detect the presence of specific 
employees in specific rooms, to ensure that no employee receives a dose of 1.0 mil-
liSievert16 or more during any 24-hour period. Each minute during which an em-
ployee’s exposure for the most recent 24 hours (1,440 minutes) equals or exceeds 1.0 
milliSievert, we are to issue an alert specifying the employee and the total exposure 
over the past 24 hours. The radiation sensor for a room emits RadiationLevel 
events whose values identify the room and its current radiation level in milliSieverts 
per hour. Every time it reads an active badge, the location-tracking system emits an 
EmployeeLocation event whose value reports that a particular employee has been 
detected in a particular room. The role of the first stage is to join the Radia-
tionLevel data to the EmployeeLocation data, and report that particular employ-
ees have been detected at places with particular radiation levels. The first stage is 
grouped by room, so that all RadiationLevel events and all EmployeeLocation 
events for a given room go to the corresponding instance of the first-stage computa-
tion. When an instance of the first stage receives a RadiationLevel event for its 
room, it simply saves that event’s value. When it receives an EmployeeLocation 
event reporting that a particular employee has been detected in that room, it emits an 
EmployeeExposure event, reporting that that employee has been detected in a place 
whose radiation level is the most recently saved radiation level for the room: 

in { string roomID; double mSvPerHour; } RadiationLevel  
      group(RadiationLevel.roomID),  
   { string employeeID; string roomID; } EmployeeLocation  
      group(EmployeeLocation.roomID) 
 
out { string employeeID; double mSvPerHour; } EmployeeExposure 
 
{ r = {roomID: "", mSvPerHour: 0.0 }; } 
(  
      RadiationLevel(r) 
   |  
      EmployeeLocation(e)  
      { !>EmployeeExposure 
           ( { employeeID: e.employeeID, 
               mSvPerHour: r.mSvPerHour } 
           ); 
      }  
)* 

(The value of the most recently received RadiationLevel event is stored in the 
variable r. This variable is initialized to a dummy event value with a radiation level of 
zero, to be used for EmployeeLocation events that arrive before the first Radia-

 
16 1.0 milliSievert  = 100 milliRem. 
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tionLevel event.) The various instances of the first stage emit their EmployeeEx-
posure events into one merged stream. The role of the second stage is to track the 
total exposure of individual employees for the past 24 hours. The second stage is 
grouped by employee, so all the EmployeeExposure events for a given employee 
are handled by the same instance of the computation. The regular expression for the 
second stage matches repeated sequences each consisting of zero or more Employee-
Exposure events followed by the arrival of the beginning of a new minute. Each 
minute, we compute the average r of the radiation levels in EmployeeExposure 
events that arrived for that employee during the previous minute, and we make the 
approximating assumption that the employee was exposed to a radiation level of r 
milliSieverts per hour (or r/60 milliSieverts per minute) uniformly for the entire min-
ute, so that the employee’s total exposure for the minute is r/60 milliSieverts. Each 
instance has a 1,440-element array used as a circular buffer to store the exposure 
computed for each minute in the last 24 hours. (24 hours = 1,440 minutes.) Rather 
than sum the elements of the buffer each minute, we maintain a running sum, as in the 
sliding-average example on page 9. Each minute, we remove the oldest value from the 
buffer, subtract it from the running sum, add the exposure value for the most recent 
minute to the running sum, and place that value in the buffer. Here is the second 
stage: 

in 
   { string employeeID; double mSvPerHour; }  
      EmployeeExposure 
   group(EmployeeExposure.employeeID) 
 
out { string employeeID; double mSv; } ExposureLimit 
 
{ THRESHOLD = 1.0; MINUTES_PER_DAY = 24*60; 
  history = new double[MINUTES_PER_DAY]; 
  for (i: 0, MINUTES_PER_DAY-1) history[i] = 0.0; 
  mSvInLast24Hours = 0.0; circularBufferCursor = 0; 
}  
   
(  
   { readingTotalForMinute = 0.0; 
     readingCountForMinute = 0; 
   }  
   (  
      EmployeeExposure(report) 
      { readingTotalForMinute = 
           readingTotalForMinute+report.mSvPerHour; 
        readingCountForMinute = readingCountForMinute+1; 
      } 
   )*  
   arrive[.:.:00]()  
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   {  
      mSvPerHourAverage = 
         readingCountForMinute==0 ? 
              0.0 
            : readingTotalForMinute/readingCountForMinute; 
      mSvPerMinuteAverage = mSvPerHourAverage/60.0; 
      mSvInLast24Hours = 
           mSvInLast24Hours 
         - history[circularBufferCursor] 
         + mSvPerMinuteAverage; 
      history[circularBufferCursor] = mSvPerMinuteAverage; 
      circularBufferCursor = 
         (circularBufferCursor+1) % MINUTES_PER_DAY; 
      mSvInLast24Hours >= THRESHOLD ? 
         !>ExposureLimit 
            ({employeeID: group[0], mSv: mSvInLast24Hours}); 
   } 
)* 

Both stages of this pipeline are nonterminating, but we expect the number of rooms to 
remain fixed and the number of employees to be relatively stable, so the possibility of 
a resource leak is not an issue. 

5. Connecting EventScript to the outside world 

EventScript is based on a sparing model of an event object, compatible with a 
wide variety of real-world event messages and imposing minimal run-time overhead. 
We also aim to isolate the semantics of EventScript from the notion of event channels 
in the outside world, to shield the semantics of EventScript from unnecessary compli-
cation and to make EventScript widely applicable. 

An EventScript run-time implementation includes pluggable components 
called adapters. An input adapter is responsible for somehow collecting event signals 
from the outside world, translating them into EventScript event objects, and feeding 
them to the EventScript engine. An output adapter is responsible for taking the event 
objects emitted by the EventScript engine, translating them into some external format, 
and somehow dispatching them to the outside world. 

The event objects emitted by the EventScript engine include the error events 
emitted, as described in Section  3.1, in response to runtime errors. It is the output 
adapter that is responsible for handling error events. This may entail, for example, ig-
noring the error event, displaying its message on an operator’s console, logging it, or 
transmitting it to some downstream event consumer as if it were an ordinary event. 

Event objects are matched against regular expressions based on their event 
names. The name of an event object also determines the data type of the event’s 
value. However, there are several ways to define what it means for an event entering 
the EventScript run-time environment from the outside world to be translated into an 
event object with a particular event name: 

• The name of an event object indicates the event channel on which it arrived. 
(All event objects originating from the same event channel must have values of 
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the same data type, and event objects originating from different event channels 
must have different names, even if they have values of the same data type.) 

• The name of an EventScript event object corresponds to some sort of event 
name in the outside world. (All events with the same outside-world event name 
must be translated into EventScript event objects with values of the same data 
type.) 

• The name of an event object is simply a tag indicating the data type of the 
event’s value. (Event objects whose values have identical data types may have 
the same event name even if they arrive on different event channels.) 

The definition of EventScript does not impose any of these choices, since 
there are scenarios in which any one of them might be appropriate, depending on the 
nature of the outside sources of events. Adapters implementing any of these choices 
are consistent with EventScript. Indeed, the semantics of EventScript are agnostic 
about the existence of multiple external event channels: The role of an input adapter is 
to collect event notifications, from whatever source, and feed corresponding event 
objects to the EventScript engine one at a time, in some sequence. EventScript regular 
expressions are matched against this totally ordered sequence. 

The EventScript language makes no assumptions about the external represen-
tation of event objects. It is the responsibility of an adapter to convert, according to its 
own conventions, between the EventScript event-object model and the event represen-
tations of the outside world. For example, an input adapter might derive the event type 
of an input event from an event name that is part of the incoming event notification, 
or from a particular attribute found in every incoming event notification, or from a 
computation based on the form and content of the incoming event notification. 

The rules of the language allow, but do not depend upon, some correspon-
dence between EventScript event names and notions of message types in the outside 
world. For example, in the outside world there might be an inheritance-based mes-
sage-type system, with a message type PresenceStatus having a userid field and 
an availability field, and a message subtype RichPresenceStatus extending 
PresenceStatus with a location field and a preferredCommunicationMode 
field. EventScript would treat PresenceStatus and RichPresenceStatus event 
objects with distinct names, whose values belong to two independent event types, the 
first with userid and availability structure fields and the second with userid, 
availability, location, and preferredCommunicationMode structure fields. 
A regular expression matching an event named PresenceStatus would not match 
an event named RichPresenceStatus, but the EventScript programmer would be 
able to write a regular expression such as 

(   PresenceStatus(ps) { u = ps.userid; } 
  | RichPresenceStatus(rps) { u = rps.userid; } 
) 
{ inList(buddies, u) ? 
    {   a=="available" ? !>MarkAvailable(u); 
      : a=="away"      ? !>MarkAway(u); 
      : a=="offline"   ? !>MarkOffline(u); 
    } 
} 
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that matches an event with either name and responds to the two kinds of events in the 
same manner. 

6. EventScript development tools and execution platforms 

Until now, we have discussed the EventScript language, independent of any 
particular implementation. This section is concerned with one particular implementa-
tion of the language. We have developed a run-time engine that is easily plugged into 
various execution environments, as well as a number of tools for developing 
EventScript programs. The tools include a language-sensitive editor, a compiler, and a 
tester that runs EventScript programs against a timestamped event trace. We have also 
defined and implemented a Java API for writing input and output adapters and exter-
nally defined functions. 

6.1 EventScript engine 

The EventScript engine loads an XML file that contains a representation of a 
finite-state machine, then runs the finite-state machine. The heart of the XML file is a 
transition table specifying, for each state and input event17, an action to be performed 
and a new state. The XML file also contains information about grouping keys, event 
classification, externally defined functions, the initial state, and actions to be per-
formed before the arrival of the first input event. 

An arriving input event is represented by an object that includes the value of 
the event. In the case of a named event, the object also includes the event name. In the 
case of a time event, the object also includes the identity of the corresponding event-
marker occurrence in the source text and, in the case of a program with event group-
ing, the grouping-key value for the computation instance that triggered the time event. 

In a program without event grouping, the execution of the state machine con-
sists of performing any initial actions, and then responding to each input event by 
looking up the transition-table entry corresponding to the current state and the arriving 
event, performing the actions found in that entry, and updating the current state to the 
state found in that entry. Among the transition-table entries for the current state, the 
table entry corresponding to the arriving event is selected as follows: If the event has 
a name declared in an event declaration with an event-case clause, the conditions of 
the event-case clause are evaluated in turn until the applicable arm is found, and the 
event-name in that arm is used for the table lookup; for any other named event, the 
event name itself is used for the table lookup; for a time event, the identity of the cor-
responding event-marker occurrence is used for the table lookup. 

 
17 For each state, the transition table contains an entry for each symbol of the state machine’s input al-
phabet. The input alphabet consists of a distinct symbol for each of the following: 

• each input event name declared in an event declaration without a case clause 
• each classified-event name appearing in an arm of a case clause 
• each textual occurrence of a time event marker 
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In a program with event grouping, the EventScript engine maintains a hash ta-
ble that maps grouping-key values to instance-context objects. Each instance-context 
object holds the current finite-automaton state and variable values for the computation 
instance corresponding to a different grouping-key value. When an input event ar-
rives, its grouping-key value is computed, and the hash table is probed to see if there 
is an existing instance-context object for that value. If not, a new instance-context ob-
ject is created in the initial finite-automaton state and any initial actions are executed 
using the variables in that instance-context object. In either case, we now have an in-
stance-context object corresponding to the grouping-key value. The event is now 
processed in the same manner is an a program without event grouping, but with ac-
tions reading and updating only the variable instances in that instance-context object. 
If the EventScript program terminates (i.e., reaches a finite-automaton state marked as 
being a final state), the instance-context object is removed from the hash table and its 
storage is released. (Section  3.2 noted the possibility of a resource leak in nontermi-
nating programs with event grouping. This resource leak manifests itself in the un-
bounded accumulation of instance-context objects in the hash table.) 

In addition to actions explicitly appearing in the source program, the initial ac-
tions and the actions in the transition table may include timer start actions and timer 
stop actions. A timer start action is executed upon entry to a state in which the next 
event may be a time event; this execution entails evaluating the expressions in ar-
rive and elapse event markers reachable from that state, determining the lexically 
earliest time-event marker among those with the earliest execution time,18 and setting 
a timer to generate a time event corresponding to that marker when that time arrives. 
A timer stop action is executed upon departure from a state in which the next event 
may be a time event, to cancel the pending time event. For example, Fig. 6 shows the 
state diagram, including timer start and timer stop actions, for the following program: 

in {} CallReceived 
out long BusinessHourCallCount 
 
( CallReceived()* 
   arrive[9:00]() { count = 0; } 
   ( CallReceived() { count = count + 1; } )* 
   arrive[17:00]() { !>BusinessHourCallCount(count); } 
)* 

 
18 In the case of an arrive event marker with wildcards, this entails determining the next date and 
time that will match the date-time pattern in the event marker. 



CallReceived 
 
{ stop(); 
  start{9:00}; } 

CallReceived 
 
{ stop(); 
count=count+1; 
start{17:00}; } 

{ start{9:00}; } 

arrive[9:00] 
 
{ stop(); 
count=0; 

  start{17:00}; } 

{ stop(); 
!>BusinessHourCallCount(count); 
start{17:00}; } 

arrive[17:00]

 
Fig. 6. A state-transition diagram in which each transition is labeled with the event causing the transi-
tion to be taken and the actions, including timer start and timer stop actions, performed when that tran-
sition is taken. The arrow entering the top state is labeled with the initial action to be executed before 
any event arrives. The action start(pattern) sets a timer to trigger a time event at the next date and 
time matching pattern, and the action stop() turns the timer off, canceling any pending trigger. 

As illustrated in Fig. 7, our Java implementation of the EventScript run-time 
machinery consists of the EventScript engine plus a number of pluggable components 
that connect the EventScript engine to the surrounding environment. The input 
adapter learns of events in the outside world, builds corresponding EventScript event 
objects, and feeds the event objects to the EventScript engine by calling a method that 
takes an event object as a parameter. When the EventScript engine emits an event, it 
calls an analogous method of the output adapter, which receives an event object for 
the emitted event as a parameter and takes appropriate actions in the outside world in 
response to the emitted event. (Input and output adapters were discussed in Section  5.) 
The function class loader is responsible for finding class files for implementations of 
external functions called within the EventScript program. (As explained in footnote 1 
on page 6, these implementations are classes implementing the FunctionBody inter-
face.) The function class loader is a pluggable component because the places to be 
searched for these class files depend on the surrounding environment. The time pro-
vider keeps track of the current date and time, handles timer start and timer stop ac-
tions,19 and, upon the expiration of a timer, triggers a time event by constructing an 
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19 A given computation instance (corresponding to a given grouping-key value) executes a strictly al-
ternating sequence of timer start and timer stop actions. We can think of there being one timer for each 
computation instance, which is only started when it was previously stopped, and only stopped when it 



event object for the time event and passing it to the same method that the input 
adapter invokes to feed events to the EventScript engine. The built-in function now 
obtains the current time and date from the time provider. Different implementations of 
the time provider might correspond to different time standards (e.g., UTC or the local 
time), or to simulated time. 

function 
class 
loader 

time 
provider

input adapter 
output 

adapter 

EventScript engine

 
Fig. 7. Pluggable architecture of the EventScript run-time environment. 

6.2 EventScript editor 

The EventScript editor is a plug-in to the Eclipse workbench. It highlights 
EventScript keywords and finds matching pairs of parentheses, braces, and brackets. 
The editor interfaces with the EventScript compiler to mark the source code instantly 
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was previously started. Although there is always at most one pending timer expiration for each compu-
tation instance, timer expirations for different computation instances may be pending at the same time. 
Our timer-provider architecture has two layers. The bottom layer handles a single pending timer expira-
tion at a time. The top layer implements multiple timers by maintaining a priority queue of all pending 
timer expirations but the earliest and submitting the earliest pending timer expiration to the bottom 
layer. If a computation instance submits a timer start action to the top layer while the bottom-layer 
timer is active, the top layer compares the expiration time for the timer start action with the expiration 
time currently pending in the bottom layer. If the expiration time in the timer start action is earlier, the 
bottom-layer timer is stopped, the expiration time that had previously been pending in the bottom layer 
is added to the top-layer priority queue, and the bottom-layer timer is restarted with the time in the 
timer start action; otherwise, the expiration time in the timer start action is simply added to the top-
layer priority queue. If a timer stop action is received corresponding to an expiration time in the top-
layer priority queue, the expiration time is removed from the priority queue. If a timer stop action is 
received corresponding to the expiration time pending in the bottom layer, the bottom-layer timer is 
stopped; then, if the top-layer priority queue is not empty, the earliest expiration time in the priority 
queue is removed and the bottom-layer timer is restarted with that time. The top layer maintains a re-
cord of which computation instance is responsible for each pending expiration time, so that time events 
can be delivered to the appropriate computation instance. 
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with syntax errors, semantic errors, and warnings; these syntax errors, semantic er-
rors, and warnings also show up in the Problems View of the Eclipse workbench. 

6.3 EventScript compiler 

The compiler parses EventScript source, reporting syntax errors or construct-
ing an abstract syntax tree if there are no syntax errors. The parser recognizes C-like 
include directives, which allow text in a single file to be included in multiple pro-
grams. Include files are intended to facilitate the construction of libraries of data-type 
and function declarations. 

If an abstract syntax tree is successfully constructed, the compiler then makes 
several passes over the tree, to perform the following functions: 

• checking for and issuing warnings about ambiguous regular expressions 
• replacing each identifier representing the current event in an event-case clause, 

the current event in a group clause, or the loop index of a repeated action with a 
different syntax-tree node signifying this role 

• inferring types of variables, checking for type inconsistencies, and reporting 
type inconsistencies as errors 

• inserting implicit conversions of long operands of binary operators to type 
double if the other operands of those operators are of type double 

• identifying the explicit function declaration or the built-in function referenced 
by each function call 

• checking for cyclic paths through the regular expression that contain actions but 
no event marker (see footnote 8 on page 19), and reporting such paths as errors 

• checking for and warning about possible references to uninitialized variables 
and assignments to variables that are not referenced 

• inserting timer start actions and timer stop actions at appropriate places in the 
abstract syntax tree for the regular expression 

• numbering all actions (including actions inserted in the previous pass) in order 
of occurrence (for later use in determining the order in which actions simulta-
neously reachable along different paths should be executed) 

• performing simplifications, for example, flattening sequence regular expres-
sions containing nested sequence regular expressions, alternative regular ex-
pressions containing nested alternative regular expressions, and intersection 
regular expressions containing nested intersection regular expressions 

• transforming the abstract syntax tree into a normal form in which, for example, 
each wildcard event marker is replaced by an alternative regular expression 
with alternatives consisting of event markers for each named input event 

• checking for potentially nonterminating programs that have grouping clauses, 
and warning about a possible resource leak in such programs (see Section  3.2) 

The resulting abstract syntax tree is then used to build a nondeterministic finite 
automaton (NFA), based on the approach introduced by Thompson [Tho68] and 
elaborated upon by Aho, Sethi, and Ullman [Aho86]. The NFA is a graph consisting 
of nodes connected by arrows. Each arrow is labeled with either an event symbol (de-
noting a transition triggered by the arrival of that event from the state at the tail of the 
arrow to the state at the head of the arrow) or epsilon (denoting an immediate transi-
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tion without the arrival of another event symbol), as well as with a sequence of zero 
or more actions to be executed as part of the transition. For each kind of regular ex-
pression operator, there is a method that recursively constructs a corresponding sub-
graph of the NFA containing one entry node and one exit node, as shown in Fig. 8. To 
generate the NFA for an intersection regular expression such as R & S & T, we take 
advantage of DeMorgan’s Law for regular expressions: R & S & T = 
~(~R | ~S | ~T), where, if E is a regular expression, ~E means .* - E. To con-
struct the subgraph for ~R, we convert the subgraph for R into a deterministic finite 
automaton (in a manner that we will describe in the next paragraph), then change each 
accepting state to a rejecting state and vice versa to obtain a deterministic finite 
automaton for ~R, then add an epsilon transition from each accepting state to a new 
single exit node to obtain a single-entry/single-exit nondeterministic subgraph for ~R. 
We do the same for S and T, then combine the subgraphs for ~R, ~S, and ~T using the 
usual construction for alternative regular expressions (Fig. 8(e)). Finally, we obtain 
the subgraph for ~(~R | ~S | ~T) from the subgraph for ~R | ~S | ~T in the 
same way that we obtained the subgraph for ~R from the subgraph for R. We generate 
the NFA for a difference regular expression such as R-S in a similar manner, taking 
advantage of the fact that R-S = R & ~S = ~(~R | S). 

For example, let us revisit the keypad example introduced in Section  3.3.1: 
in long Key case { Key==0 ? K0 : Key==7 ? K7 : Other } 
out {} Unlock 
 
( .* K0() K0() K7() { !>Unlock({}); } )* 

Fig. 9 shows the NFA generated for this program. 

Next, the compiler transforms the NFA into another NFA that has no epsilon 
transitions, but has zero or more initial actions and one or more start states. We clas-
sify each state of the NFA as significant if it has at least one non-epsilon arrow leav-
ing it, or no arrows leaving it at all, and insignificant otherwise. Fig. 10(a) shows the 
significant and insignificant states of Fig. 9. Our transformation eliminates all insig-
nificant states. An acyclic epsilon path from a node n0 to a node nk, km0, is a sequence 
of distinct nodes n0, ..., nk such that, for 0 < i [ k, there is an epsilon arrow from ni-1 to 
ni. For each acyclic epsilon path from the starting state to a significant state s, we de-
clare s to be a starting state of the transformed NFA, and we include the sequence of 
actions encountered along that acyclic epsilon path in the initial actions of the trans-
formed NFA. For each non-epsilon arrow from a significant state s1 to some other 
(significant or insignificant) state s2, we find all acyclic paths consisting only of zero 
or more epsilon arrows from s2 to some significant state s3. (If s2 is significant, these 
paths include the path of length zero whose only node is s2.) In place of the arrow 
from s1 to s2 we insert, for each such path, an arrow from s1 to s3, labeled with the 
same event symbol as the deleted arrow from s1 to s2, and with the sequence of ac-
tions encountered along the path from s2 to s3. Fig. 10(b) shows the epsilon-free NFA 
for the keypad program. 
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Fig. 8. Construction of a nondeterministic finite automaton from a regular expression. The subgraph for 
an event marker for event E consists of and entry node and an exit node connected by a single arrow 
labeled E, with an empty sequence of actions, as shown in (a). The subgraph for an event block { a1, ..., 
an } consists of and entry node and an exit node connected by a single arrow labeled epsilon, with athe 
sequence of actions a1, ..., an, as shown in (b).  In (c), suppose the cloud labeled R, together with the 
explicitly labeled entry and exit nodes, form the subgraph for a regular expression R, and similarly for 
S and T.  Then (d) shows the subgraph for the sequence regular expression R S T, (e) shows the sub-
graph for the alternative regular expression R | S | T, and (f) shows the subgraph for the repetition 
regular expression R*.  (In (d), the same node generated as the exit node for the R subgraph serves as 
the entry node for the S subgraph, and the same node generated as the exit node for the S subgraph 
serves as the entry node for the T subgraph. In (e), a single node serves as the entry node for the R, S, 
and T subgraphs.) 
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Fig. 9. NFA generated for the keypad example. Epsilon transitions are marked with the symbol . Ab-
stract-syntax-tree transformations have replaced the regular expression . with (K0|K7|Other) before 
the generation of the NFA. The subgraph generated from this alternative regular expression consists of 
states 2 through 6, the transitions from state 2 to states 4, 5, and 6, and the transitions from states 4, 5, 
and 6 to state 3.  The subgraph generated from the repetition .* (i.e., (K0|K7|Other)*) consists of 
this subgraph plus the epsilon transitions from state 2 to state 3 and from state 3 to state 2. The sub-
graph generated from the sequence .* K0() K0() K7() { !>Unlock({}); } consists of this sub-
graph plus states 7 through 10 and the transitions from state 3 to state 7, state 7 to state 8, state 8 to 
state 9, and state 9 to state 10. The subgraph for the entire outer repetition consists of this subgraph plus 
the epsilon transitions from state 1 to state 10 and from state 10 to state 1. The entire NFA consists of 
the starting state 0 plus an epsilon transition from there to the subgraph for the regular expression. 

 

Following Rabin [Rab59], we then convert the epsilon-free NFA into a deter-
ministic finite automaton (DFA), each of whose states corresponds to a set of states of 
the NFA.20 The initial actions of the DFA consist of the initial actions of the trans-
formed NFA. The initial state of the DFA corresponds to the set of start states of the 
transformed NFA. To compute the transition on input x from a DFA state correspond-
ing to a set Nd of NFA states, we follow all the NFA arrows labeled x that emerge 
from states in Nd.  The target DFA state corresponds to the set of NFA states reached 
by these NFA arrows. The actions associated with the DFA transition are the actions 
associated with these NFA arrows, ordered according to their original positions in the 
source program. Fig. 11 shows the DFA for the keypad program. 

The compiler writes the XML file, described in Section  6.1, that is read by the 
EventScript engine. The transition table in this file contains the transitions of the DFA 
constructed from the epsilon-free NFA. 
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20 In the absence of actions, Rabin’s method can be applied to an NFA with epsilon transitions. Our 
purpose in eliminating epsilon transitions is to ensure that actions are handled properly.  
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Fig. 10. Removal of epsilon transitions from the NFA of Fig. 9. In (a), we have marked the epsilon 
transitions with unlabeled dotted lines and shaded in the significant states (i.e., those with non-epsilon 
transitions coming out of them. In (b), we have eliminated epsilon transitions and insignificant states. 
Because of the acyclic epsilon path from state 4 to state 3, we have replaced the transition on input K0 
from state 2 to state 4 with a transition from state 2 directly to state 3. The transitions from state 2 on 
inputs K7 and Other are handled similarly. Because of the acyclic epsilon paths from state 9 to state 10 
to state 1 to state 2 and from state 9 to state 10 to state 1 to state 2 to state 3, we have replaced the tran-
sition from state 8 to state 9 on input K7 with transitions from state 8 directly to states 2 and 3. The 
emit action encountered along both these paths is associated with the new transitions. Because of the 
acyclic epsilon paths from state 0 to state 1 to state 2 and from state 0 to state 1 to state 2 to state 3, 
states 2 and 3 are both starting states of the transformed NFA. 
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Fig. 11. The DFA for the keypad program. Each DFA state is labeled with the set of NFA states to 
which it corresponds. 

6.4 Hierarchical machines 

The number of states in the NFA generated for a given regular expression is 
roughly proportional to the size of the regular expression. However, since each state 
of the DFA constructed from an NFA corresponds to a distinct set of NFA states, it is 
theoretically possible for an NFA with n states to have a corresponding DFA with 2n 
states. A well-known example of this exponential blowup is reflected in the following 
EventScript program, in which k is a placeholder for some integer constant: 

in {} A, {} B 
out { } Z 
 
.* A() .{k} { !>Z({}); } 

This regular expression matches a string of any zero or more input events, followed 
by an A event, followed by any k input events. Thus the emit action is reachable 
whenever the (k+1)th most recent input event is an A event. It follows that the DFA 
must, in effect, remember the history of the k+1 most recent input events. Since 2k+1 
distinct histories are possible, the DFA must have at least 2k+1 states. 

We have yet to encounter a real-world problem for which the DFA size is 
problematic. Nonetheless, we felt it was important to have a fallback mechanism for 
any such cases that may arise. That fallback consists of a distinct variety of state ma-
chine that we call a hierarchical machine. The size of a hierarchical machine is pro-
portional to the size of the regular expression from which it was generated. However, 
the time for a hierarchical machine to process an input event (not counting the time 
spent executing actions) is also proportional to the size of the regular expression; for a 
DFA, this time is independent of the regular expression (and quite small). 

The EventScript compiler has an alternative mode in which, rather than gener-
ating a DFA, it generates a hierarchical machine, and writes an XML file that contains 
a specification of this hierarchical machine rather than a specification of a DFA. The 
passes of the compiler that manipulate the abstract syntax tree (which contain the bulk 
of the semantic analysis performed by the compiler) are the same regardless of the 
compiler mode; the only difference between the modes is the manner in which the fi-
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nal version of the abstract syntax tree is used to generate an XML file. The outermost 
element of the XML file written by the compiler has an attribute indicating whether it 
contains a specification of a DFA or a specification of a hierarchical machine. When 
the EventScript engine loads the XML file, it checks this attribute. If the file contains 
the specification of a hierarchical machine, the EventScript engine constructs and 
executes that hierarchical machine. The interface for feeding events to the EventScript 
engine is the same regardless of whether the EventScript engine is executing a DFA 
or a hierarchical machine. The handling of event classification and event grouping is 
the same in either case, although the form of instance-context objects is different. 

A hierarchical machine is an object that may contain other hierarchical ma-
chines within it, and whose structure mirrors the structure of the regular expression 
that it matches. There are different subclasses of hierarchical machines for different 
kinds of regular-expression operators. Fig. 12 illustrates the structure of the hierarchi-
cal machine for a particular regular expression. Each hierarchical machine is respon-
sible for tracking the possible current positions of the matching process within its part 
of the regular expression. A hierarchical-machine object has a method, implemented 
differently for each hierarchical-machine subclass, that processes the arrival of an 
event and returns a boolean value indicating whether the event can be interpreted as 
completing a match of its part of the regular expression. A hierarchical machine that 
contains inner hierarchical machines works by passing the just-arrived event to each 
inner machine, along with a flag indicating whether the matching process is poten-
tially positioned at the beginning of the inner machine’s part of the regular expression. 
Whenever a sequence machine determines that the matching process is potentially 
positioned at an action, it executes that action. 

Unfortunately, as far as we are aware, there are no procedures or heuristics for 
examining a regular expression and determining quickly whether its DFA will have an 
intractably large number of states. Therefore, the EventScript compiler cannot auto-
matically choose to compile a particular program into a hierarchical machine instead 
of a DFA. Rather, the compiler tries by default to compile a DFA, but terminates the 
compilation and issues an error message when a predetermined limit on the number of 
states is exceeded.21 The EventScript developer can then reinvoke the compiler with 
an option specifying a higher limit or with an option specifying that a hierarchical 
machine should be produced. 

We have considered the possibility of a hybrid hierarchical machine, in which 
some of the inner hierarchical machines, responsible for particular subexpressions of 
the regular expression, are implemented using DFA transition tables for those subex-
pressions. These inner machines, rather than tracking a single current DFA state, track 
a set of possible current DFA states. When one of these inner machines is invoked 
with a flag indicating that the matching process is potentially positioned at the begin-
ning of its part of the regular expression, the starting state of its DFA is added to the 
set of possible current states. One heuristic strategy for the construction of a hybrid 
machine is to attempt to compile a DFA for the entire regular expression and, when-
ever the DFA state limit is reached, abandoning that attempt and attempting instead to 
compile a hierarchical machine in which the same strategy is applied recursively to 
attempt to compile each immediate subexpression of the regular expression as a DFA. 

 
21 The default limit is set at 40,000. On our 2 GHz Pentium M with 2GB of RAM, the compiler runs for 
about 9.4 seconds before reaching this limit and terminating the compilation. 



 

 

Sequence Machine 

Action 
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Atom Machine 
RadiationLevel
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Action 

{ r = { ... }; } 
 
(  
   RadiationLevel(r) 
 |  
   EmployeeLocation(e)  
   { !>EmployeeExposure( ... ); } 
)* 

Fig. 12. A regular expression and its hierarchical machine. 

6.5 EventScript tester 

Events arrive from the outside world at arbitrary times, so anomalous behavior 
of an event-processing application is typically not reproducible. The EventScript 
tester facilitates testing and debugging by enabling EventScript programs to be exe-
cuted in a reproducible manner against a timed event trace. The execution runs in 
simulated time. The EventScript tester reports emitted events on an output console, 
indicating both the time at which the event was emitted and the value carried by the 
event. 

A timed event trace is a sequence of event-occurrence items, each specifying 
that an event with a given name and value should arrive; and monotonically increas-
ing timestamps, each specifying that the simulated time should be advanced to a par-
ticular date and time. Here is a sample fragment of a timed event trace: 
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[1979-03-28 4:00:00:000] RadiationLevel("Rm400",0.013) 
RadiationLevel("Rm405",0.021) RadiationLevel("Rm410",0.018) 
RadiationLevel("Rm415",0.020) RadiationLevel("Rm420",0.024) 
[4:00:07:500] RadiationLevel("Rm400",0.012) 
RadiationLevel("Rm405",0.023) RadiationLevel("Rm410",0.020) 
RadiationLevel("Rm415",0.023) RadiationLevel("Rm420",0.026) 
[4:00:15:000] RadiationLevel("Rm400",0.013) 
RadiationLevel("Rm405",0.022) RadiationLevel("Rm410",0.020) 
RadiationLevel("Rm415",0.026) RadiationLevel("Rm420",0.030) 
[4:00:22:500] RadiationLevel("Rm400",0.014) 
RadiationLevel("Rm405",0.027) RadiationLevel("Rm410",0.023) 
RadiationLevel("Rm415",0.028) RadiationLevel("Rm420",0.038) 

Timed event traces might be created manually by people testing or debugging pro-
grams, created automatically by test-case-generation programs, or captured by moni-
toring actual executions or scraping execution logs.  

To validate the event-occurrence items in the timed event trace, and to gener-
ate event objects from them, the EventScript tester needs the information in the input 
event declarations of the program being tested. The EventScript compiler has an invo-
cation option directing it to generate, in addition to the XML file describing the finite-
state machine, an XML file containing metadata about the declared input events. The 
EventScript tester can be invoked with a specified state-machine XML file, a speci-
fied metadata XML file, and a specified timed-event-trace file. Alternatively, it can be 
invoked with a specified EventScript source file and a specified timed-event-trace file, 
in which case the tester invokes the EventScript compiler to obtain the state-machine 
and metadata XML files. 

The internal architecture of the EventScript tester, shown in Fig. 13, exploits 
the pluggable architecture of the EventScript run-time environment, shown in Fig. 7. 
A single component, the timed-event-trace processor, reads the timed trace and plays 
the roles of both the input adapter and the time provider in Fig. 7. Specifically, the 
timed-event-trace processor processes an event-occurrence item by constructing an 
EventScript event object and by calling a method that takes an event object as a pa-
rameter to feed the event object to the EventScript engine; it processes a timestamp by 
advancing the simulated time and delivering time events for any pending timers that 
are set with an expiration time less than or equal to the new simulated time.22 Calls by 
the EventScript program on the built-in function now are passed through the standard 
time-provider interface, and return the simulated time. The role of the output adapter 
in Fig. 7 is played by a component that processes each event fed to it by printing the 
simulated time, the event name, and the event value on the EventScript tester output 
console. 

 
22 The processing of a time event may itself cause the EventScript program to execute new timer start 
or timer stop actions. Therefore, upon processing a timestamp, the timed-event-trace processor repeat-
edly looks for the earliest pending timer-expiration time less than or equal to the time in the timestamp, 
advances the simulated time to that expiration time, and feeds the resulting time event to the 
EventScript engine; the repetition ends when there is no longer a pending timer-expiration time less 
than or equal to the time in the timestamp. At this point the simulated time is advanced to the time in 
the timestamp, completing the processing of the timestamp. 



function 
class 
loader 

console 
event 
writer 

EventScript engine

timed event trace processor

 
Fig. 13. Architecture of the EventScript tester. 

 

The architecture of the tester would make it easy to construct other testing 
tools out of the same building blocks, although we have not yet done this. For exam-
ple, the role of the output adapter could be filled by a component that compares emit-
ted events to a file of expected test outputs, to facilitate automated testing. Alterna-
tively, a pipeline of EventScript engines could be interposed between the timed event 
trace processor and the console event writer, allowing all stages of a pipelined 
EventScript solution like those presented in Section  4.5 to be tested together.  
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mented as an atomic component. The logic of an atomic component may be specified 
either in Java or in EventScript. 

6.6 EventScript in DRIVE 

EventScript has been incorporated in the Distributed Responsive Infrastructure 
Virtualization Environment, or DRIVE [Che07]. DRIVE is an environment for devel-
oping, testing, and deploying event-based applications. A DRIVE solution is built out 
of components that may consume events through named input ports and may emit 
events through named output ports. A component may be implemented as a composite 
component, in which case events arriving through input ports of the composite com-
ponent are fed to input ports of some subcomponents, events emitted from the output 
ports of some subcomponents are fed to the input ports of other subcomponents, and 
events emitted from the output ports of some subcomponents are emitted through out-
put ports of the composite component. Alternatively, a component may be imple-
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VE input port names and EventScript output event 
names 

 sensors, actuators, graphical user interfaces, and web 
service

a API that provides the facilities 
corporate the EventScript engine in 

a new r

ce (see footnote 1 on page 6), methods to obtain Java 
values 

 
import com.ibm.es.external.FunctionBody; 

public final class EnvVar implements FunctionBody { 

  public EventScriptValue evaluate(EventScriptValue[] args) { 
     String envVarName = args[0].getStringValue(); 
     String envVarValue = System.getenv(envVarName); 
     return EventScriptValue.newStringValue(envVarValue); 
  } 

} 

                                                

For an atomic component implemented in EventScript, EventScript input 
event names correspond to DRI

correspond to DRIVE output port names. A DRIVE event consists of a value, 
analogous to the value carried by an EventScript event.23 When a DRIVE event ar-
rives at a given input port of an EventScript atomic component, that component’s 
EventScript engine receives an event whose name is the name of the input port and 
whose value is the DRIVE event value. When the DRIVE component’s EventScript 
engine emits an output event, a DRIVE event with the value carried by the 
EventScript output event is emitted from the DRIVE port whose name is the name of 
the EventScript output event. 

Some DRIVE atomic components correspond to event producers and consum-
ers in the real world, such as

s. DRIVE provides a valuable bridge between these real-world entities and 
EventScript programs. The DRIVE run-time environment includes one standard input 
adapter and one standard output adapter, applicable to all DRIVE atomic components 
implemented in EventScript. Thus the user of EventScript in DRIVE need not write 
any EventScript adapters. DRIVE domain-specific component libraries include prede-
fined atomic components for certain real-world producers and consumers, such as 
RFID readers and signal lights. Application developers can write their own Java 
atomic components for other producers and consumers. 

6.7 Java API for functions and adapters 

We have defined and implemented a Jav
needed to write external functions in Java and to in

un-time environment. 

The facilities needed to write external functions in Java include the declaration 
of the FunctionBody interfa

from EventScriptValue objects representing values in the EventScript type 
system, and methods to construct EventScriptValue objects from Java values. 
Here is an example of these facilities at work to implement a function that retrieves 
the value of a system environment variable with a given name: 

package myFuncs; 

import com.ibm.es.external.EventScriptValue;

 
23 Work is currently in progress to convert DRIVE values to be based on EventScript data types. For 
now, a DRIVE value is simply a Java object. The DRIVE input adapter converts Java objects to corre-
sponding EventScript values and the DRIVE output adapter converts EventScript values to correspond-
ing Java objects. 
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and Java values, as well as a constructor for creating an EventScriptEvent object 
with a given name and , and methods for extracting the name 

o create an 
EventS

e ex-
pect EventScript programmers to surprise us with clever new programming tech-

ssed in Section  4. 

It may be that for certain programming problems, or for visually-oriented pro-
gramm

 evaluate method co
ue representation of an EventScript string value to the 

ses that String object to the Java method System.g
ing result, converts that result to the EventScriptValue representa
ntScript string value, and returns that EventScriptValue object. 

Part of the task of incorporating the EventScript engine in a new run
nment is the writing of adapters. Facilities needed to write adapters include t

we have already seen for converting between EventScriptValue objehods 

EventScriptValue
and EventScriptValue from an EventScriptEvent. Other facilities needed to 
incorporate the EventScript engine in a new run-time environment include a method 
to read a state-machine XML file of the form generated by the EventScript compiler 
and generate a corresponding StateMachine object (which may be the representa-
tion of either a DFA or a hierarchical machine); and a constructor t

criptEngine object with a specified StateMachine, a specified 
ClassLoader for external-function classes, and a specified consumer for emitted 
events. The consumer is an object implementing the interface EventConsumer, 
which has the following method: 

void consume(EventScriptEvent event) 

Both output adapters and the EventScriptEngine class implement this interface, 
so the EventConsumer supplied to the EventScriptEngine constructor might be 
an output adapter or another EventScriptEngine. Once an EventScriptEngine 
object is constructed, the task of the input adapter is simply to construct an 
EventScriptEvent object and pass it to the consume method of the 
EventScriptEngine whenever it determines that there is a new input event. 

7. Future directions 

As EventScript gains wider use, by people with a wider variety of needs and 
outlooks, we will gain new insights. We will learn which tasks EventScript excels at, 
and which tasks are best addressed by other approaches. We will learn which concepts 
are natural to EventScript programmers and which are confusing, and we will learn 
better ways to explain the language in or teaching materials and error messages. If we 
learn of language idiosyncrasies that make the programmer’s task more difficult, we 
will study ways to remedy those problems in a later version of the language. W

niques, beyond those we discu

ers, it will be easier to specify the regular-language model of an input event 
stream by constructing a (possibly nondeterministic) state-transition diagram with a 
graphical editor than by writing the text of a particular regular expression. Actions, 
grouping-key expressions, and event-classification predicates would still be specified 
textually. Some state diagrams can only be transformed into regular expressions by 
writing certain subexpressions multiple times, and Bruggemann-Klein and Wood 
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an regular expressions. For example, 
the tim

useful to dev roughout the 
DRIVE

s of EventScript 
program

ndustry will benefit, if 
EventS

[Bru98] proved that there are deterministic state diagrams for which no unambiguous 
regular expression can be written. These facts suggest that state diagrams can, in some 
sense, be a more powerful form of expression th

e-debouncing program on page 29 is probably more easily specified and under-
stood in terms of the diagram in Fig. 14 than in terms of a regular expression. Much 
of the EventScript compiler, and all of the EventScript run-time environment, would 
be applicable to programs entered in the form of state-transition diagrams. 

off / 
change 
pending 

RawOff 

RawOff

RawOn 

RawOn RawOn

RawOn 

RawOff 

!>DebouncedOn

arrive 
[(deadline)]

deadline=... deadline=... 

 
Fig. 14. Deterministic state diagram for the time debouncing program. 

The rapid and wide adoption of Java can be attributed in part to the large 
number of useful classes in the standard Java library. Over time, we expect to build 
libraries of data types and external functions that will make EventScript a more pow-
erful and convenient programming tool for particular domains. We have already writ-
ten a package of computational geometry data types and external functions that are 
useful for recognizing spatio-temporal patterns (for example, for receiving location-
report events in terms of an x-y coordinate system and reporting that people or objects 
have entered or left certain zones defined as circles or polygons). As the DRIVE envi-
ronment described in Section  6.6 transitions to the EventScript type system, it will be 

!>DebouncedOff

arrive[(deadline)]

RawOff 

off / 
no change 
pending 

on / 
no change 
pending 

on / 
 change 
pending 

ise a repository of data-type definitions that can be used th
 environment and also incorporated in EventScript programs. 

There are many ways in which EventScript development tools could be better 
integrated with the Eclipse workbench. The existing EventScript editor could be en-
hanced to provide syntax completion. The EventScript compiler could be invoked 
automatically when an EventScript source file is saved. The EventScript tester could 
be made directly invocable from Eclipse run configurations. 

Several tool improvements independent of Eclipse are also possible. The 
EventScript compiler could be enhanced to compile to hybrid machines, as discussed 
in Section  6.4. (The required run-time support for hybrid machines has already been 
implemented.) Section  6.5 described two ways to enhance the EventScript tester: 
First, it could be enhanced to support the integrated testing of pipeline

s, like those illustrated in Section  4.5. Second, it could be enhanced to auto-
matically validate the emitted event sequence against a file containing expected out-
puts. Automatic validation, in turn, would facilitate the development of a JUnit-like 
tool to support the automated testing of large suites of EventScript programs. 

EventScript will be more wide useful, and the i
cript programs can also be executed on platforms other than a Java Virtual 

Machine. There are many rule-based event-processing engines in the marketplace, and 
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Among other valuable contributions, Karl championed the notion of hierarchical and 
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did the work to integrate EventScript into DRIVE. David 
entScript, helped clarify the ideas in Section  4.1 about a 
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er 24-26, 2007, to appear 

the last phase of the EventScript compiler (which transforms the final version of the 
abstract syntax tree to an XML file describing a DFA or a hierarchical machine) could 
be replaced with a generator of rules for one of these engines. Moreover, translators 
and run-time modules could be devised to allow the transition tables currently emitted 
by the compiler to be interpreted by a C program. This would allow EventScript pro-
grams to be executed in embedded environments that do not support Java. The feasi-
bility of this approach was proven by a summer intern at the IBM Thomas J.

h Center, who write a C program to interpret the transition tables generated by 
the compiler for an earlier version of EventScript (without time events or event group-
ing), enabling EventScript programs to be executed on a Nokia 770. 
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