IBM Research Report

On the Linear Relaxation of the p-Median Problem II: Directed Graphs

Mourad Baïou
CNRS
LIMOS Complexe scientifique des Czeaux
63177 Aubiere cedex, France
Francisco Barahona
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

ON THE LINEAR RELAXATION OF THE p-MEDIAN PROBLEM II: DIRECTED GRAPHS

MOURAD BAÏOU AND FRANCISCO BARAHONA

Abstract

We study a well-known linear programming relaxation of the p-median problem. We give a characterization of the directed graphs for which this system of inequalities defines an integral polytope. Our proof uses a similar result on oriented graphs that we gave in [2].

1. Introduction

This is the second of two papers dealing with a linear programming relaxation of the p-median problem. Our goal is to characterize the graphs for which this system of inequalities defines an integral polytope. In [2] we gave such a characterization for oriented graphs; these are graphs such that if (u, v) is in the arc-set then (v, u) is not in the arc-set. Here we give such a characterization for general directed graphs, we use the result on oriented graphs as a starting point.

Let $G=(V, A)$ be a directed graph, not necessarily connected, where each arc $(u, v) \in$ A has an associated cost $c(u, v)$. The p-median problem ($p \mathrm{MP}$) consist of selecting p nodes, usually called centers, and then assign each non-selected node to a selected node. The goal is to select p nodes that minimize the sum of the costs yield by the assignment of the non-selected nodes. For more references on the $p \mathrm{MP}$ see $[3,2]$. The graphs we consider do not contain multiple arcs, that is if (u, v) and (u^{\prime}, v^{\prime}) are two distinct arcs then we cannot have $u=u^{\prime}$ and $v=v^{\prime}$. The following is a natural linear programming relaxation for the $p \mathrm{MP}$:

$$
\begin{align*}
\operatorname{minimize} \sum_{(u, v) \in A} c(u, v) x(u, v), & \tag{1}\\
\sum_{v \in V} y(v)=p, & \tag{2}\\
\sum_{v:(u, v) \in A} x(u, v)=1-y(u) & \forall u \in V, \tag{3}\\
x(u, v) \leq y(v) & \forall(u, v) \in A, \tag{4}\\
y(v) \leq 1 & \forall v \in V, \tag{5}\\
x(u, v) \geq 0 & \forall(u, v) \in A . \tag{6}
\end{align*}
$$

Denote by $P_{p}(G)$ the polytope defined by constraints (2)-(6), and let $p M P(G)$ be the convex hull of $P_{p}(G) \cap\{0,1\}^{|A|+|V|}$. In this paper we characterize all directed graphs

[^0]such that $P_{p}(G)=p M P(G)$. To state our main result we need some definitions and notation.

In Figure 1, we show four directed graphs and for each of them a fractional extreme point of $P_{p}(G)$. The numbers near the nodes correspond to the variables y, all the arcs variables are equal to $\frac{1}{2}$.

Figure 1. Fractional extreme points of $P_{p}(G)$.
A simple cycle C is an ordered sequence

$$
v_{0}, a_{0}, v_{1}, a_{1}, \ldots, a_{p-1}, v_{p}
$$

where

- $v_{i}, 0 \leq i \leq p-1$, are distinct nodes,
- $a_{i}, 0 \leq i \leq p-1$, are distinct arcs,
- either v_{i} is the tail of a_{i} and v_{i+1} is the head of a_{i}, or v_{i} is the head of a_{i} and v_{i+1} is the tail of a_{i}, for $0 \leq i \leq p-1$, and
- $v_{0}=v_{p}$.

We denote by $V(C)$ the nodes of C and by $A(C)$ the arcs of C. The size of C is p. By setting $a_{p}=a_{0}$, we associate with C three more sets as below.

- We denote by \hat{C} the set of nodes v_{i}, such that v_{i} is the head of a_{i-1} and also the head of $a_{i}, 1 \leq i \leq p$.
- We denote by \dot{C} the set of nodes v_{i}, such that v_{i} is the tail of a_{i-1} and also the tail of $a_{i}, 1 \leq i \leq p$.
- We denote by \tilde{C} the set of nodes v_{i}, such that either v_{i} is the head of a_{i-1} and also the tail of a_{i}, or v_{i} is the tail of a_{i-1} and also the head of $a_{i}, 1 \leq i \leq p$.

A cycle C is said to be odd if $|\tilde{C}|+|\hat{C}|$ is odd, otherwise it is said to be even. When $\hat{C}=\emptyset$ the cycle is a directed cycle. If we do not require $v_{0}=v_{p}$, we have a path. In this case, the nodes v_{1}, \ldots, v_{p-1} are called internal nodes.

The following definition extends to directed graphs, the definition of a Y-cycle given in [2] for oriented graphs.
Definition 1. A simple cycle C is called a Y-cycle if for every $v \in \hat{C}$ at least one of the following hold:
(i) there exists an arc $(v, \bar{v}) \notin A(C), \bar{v} \notin V(C)$, or
(ii) there exists an arc $(v, \bar{v}) \notin A(C), \bar{v} \in \tilde{C}$ and \bar{v} is one of the two neighbors of v in C.

For a simple cycle C, denote by $\hat{C}_{(i)}$ the set of nodes in \hat{C} that satisfy condition (i) of the above definition. Notice that we may have nodes in \hat{C} that satisfy both (i) and (ii).

For a directed graph $G=(V, A)$ and a set $W \subset V$, we denote by $\delta^{+}(W)$ the set of $\operatorname{arcs}(u, v) \in A$, with $u \in W$ and $v \in V \backslash W$. Also we denote by $\delta^{-}(W)$ the set of arcs (u, v), with $v \in W$ and $u \in V \backslash W$. We write $\delta^{+}(v)$ and $\delta^{-}(v)$ instead of $\delta^{+}(\{v\})$ and $\delta^{-}(\{v\})$, respectively. If there is a risk of confusion we use δ_{G}^{+}and δ_{G}^{-}. A node u with $\delta^{+}(u)=\emptyset$ is called a pendent node.

In Figure 2 we show a fractional extreme point of $P_{p}(G)$ different from those given in Figure 1. It consists of an odd Y-cycle with an arc having both of its endnodes outside the cycle. The values reported near each node represent the node variables, the arc variables are all equal to $\frac{1}{2}$. These values form a fractional extreme point of $P_{p}(G)$, with $p=4$.

Figure 2. An odd Y-cycle with an arc outside the cycle .

The theorem below is the main result of this paper. It shows that the configurations in figures 1 and 2 are the only configurations that should be forbidden in order to have an integral polytope.

Theorem 2. Let $G=(V, A)$ be a directed graph, then $P_{p}(G)$ is integral if and only if

- (i) it does not contain as a subgraph one of the graphs H_{1}, H_{2}, H_{3} or H_{4} of Figure 1, and
- (ii) it does not contain an odd Y-cycle C and an arc (u,v) with neither u nor v in $V(C)$.

The proof of this theorem is given in Section 5. This proof uses the following main theorem of [2].

Theorem 3. Let $G=(V, A)$ be an oriented graph, then $P_{p}(G)$ is integral if and only if

- (i) it does not contain as a subgraph one of the graphs H_{1}, H_{2}, H_{3} of Figure 1, and
- (ii) it does not contain an odd Y-cycle C and an arc (u, v) with neither u nor v in $V(C)$.

The paper is organized as follows. Section 2 contains preliminary definitions and notation. The graphs that satisfy conditions (i) and (ii) of Theorem 2 with no odd Y-cycle are considered in Section 3 and those containing an odd Y-cycle are studied in Section 4. Section 5 gives the proof of Theorem 2. In Section 6 we show how to test in
polynomial time conditions (i) and (ii) of Theorem 2. Finally Section 7 concludes this paper with some remarks and a corollary in undirected graphs.

2. Preliminaries

Let $G=(V, A)$ be a directed graph. Let $l: V \cup A \rightarrow\{0,-1,1\}$ be a labeling function that associates to each node and arc of G a label $0,-1$ or 1 .

A vector $(x, y) \in P_{p}(G)$ will be denoted by z, i. e. $z(u)=y(u)$ for all $u \in V$ and $z(u, v)=x(u, v)$ for all $(u, v) \in A$. Given a vector z and a labeling function l, we define a new vector z_{l} from z as follows:

$$
\begin{gathered}
z_{l}(u)=z(u)+l(u) \epsilon, \text { for all } u \in V, \text { and } \\
z_{l}(u, v)=z(u, v)+l(u, v) \epsilon, \text { for all }(u, v) \in A,
\end{gathered}
$$

where ϵ is a sufficiently small positive scalar. We say that an $\operatorname{arc}(u, v)$ is tight for $z \in P_{p}(G)$ if $z(u, v)=z(v)$.

The labeling procedure for even cycles [2]. We will recall the labeling procedure for even cycles introduced in [2] and some of its properties without proofs.

Let $C=v_{0}, a_{0}, v_{1}, a_{1}, \ldots, a_{p-1}, v_{p}$ be an even cycle, not necessarily a Y-cycle.

- If C is a directed cycle, assume that v_{0} is the tail of a_{0}, then set $l\left(v_{0}\right) \leftarrow 1$; $l\left(a_{0}\right) \leftarrow-1$. Otherwise, assume $v_{0} \in \dot{C}$ and set $l\left(v_{0}\right) \leftarrow 0 ; l\left(a_{0}\right) \leftarrow 1$.
- For $i=1$ to $p-1$ do the following:
- If v_{i} is the head of a_{i-1} and is the tail of a_{i}, then $l\left(v_{i}\right) \leftarrow l\left(a_{i-1}\right), l\left(a_{i}\right) \leftarrow$ $-l\left(v_{i}\right)$.
- If v_{i} is the head of a_{i-1} and is the head of a_{i}, then $l\left(v_{i}\right) \leftarrow l\left(a_{i-1}\right), l\left(a_{i}\right) \leftarrow$ $l\left(v_{i}\right)$.
- If v_{i} is the tail of a_{i-1} and is the head of a_{i}, then $l\left(v_{i}\right) \leftarrow-l\left(a_{i-1}\right), l\left(a_{i}\right) \leftarrow$ $l\left(v_{i}\right)$.
- If v_{i} is the tail of a_{i-1} and is the tail of a_{i}, then $l\left(v_{i}\right) \leftarrow 0, l\left(a_{i}\right) \leftarrow-l\left(a_{i-1}\right)$.

Remark 4. If C is a directed even cycle, then $l\left(a_{p-1}\right)=l\left(v_{0}\right)$ and $\sum l\left(v_{i}\right)=0$.
This remark is easy to see. The second property is given in the following lemma and it concerns non-directed cycles.

Lemma 5. [2] If C is a non-directed even cycle, then $l\left(a_{p-1}\right)=-l\left(a_{0}\right)$ and $\sum l\left(v_{i}\right)=0$.
Definition 6. Let C be a Y-cycle in a directed graph $G=(V, A)$. A node $v \in V(C)$ is called a blocking node, (see Figure 3), if one of the following hold:
(i) $v \in \tilde{C},(v, u) \in A(C),(u, v) \in A \backslash A(C)$ and $u \in \tilde{C}$, or
(ii) $v \in \hat{C},(u, v) \in A(C),(w, v) \in A(C),(v, u) \in A \backslash A(C),(v, w) \in A \backslash A(C)$ and both u and w are in \tilde{C}.

Figure 3. Solid lines represent an even Y-cycle. The black and the gray node are blocking nodes satisfying Definition 6 (i) and (ii), respectively.

Lemma 7. Let $G=(V, A)$ be a directed graph with no multiple arcs and that satisfies condition (i) of Theorem 2. If the following assumptions hold:
(a1) G admits an even Y-cycle C of size greater or equal to three with no blocking node, and
(a2) $P_{p}(G)$ contains a vector \bar{z} with:
$0<\bar{z}(v)<1$ for each node $v \in \tilde{C} \cup \hat{C}$; $0<\bar{z}(u, v)<1$ for each arc $(u, v) \in A(C)$; and $0<\bar{z}(u, v)<1$ for each arc (u, v) with $u \in \hat{C}$,
then \bar{z} is not an extreme point of $P_{p}(G)$.
Proof. Assume that the assumptions of the lemma are true. Let

$$
C=v_{0}, a_{0}, v_{1}, a_{1}, \ldots, a_{p-1}, v_{p}
$$

be an even Y-cycle with no blocking node.
Assign labels to the arcs and nodes of C following the labeling procedure above. Extend this labeling as follows: for each node $v_{i} \in \hat{C}$ if there is an $\operatorname{arc}\left(v_{i}, u\right) \in A \backslash A(C)$ with $u \in \tilde{C}$, then $l\left(v_{i}, u\right) \leftarrow-l\left(v_{i}\right)$. Notice that $u=v_{i-1}$ or $u=v_{i+1}$ and since v_{i} is not a blocking node, such an arc is unique if it exists. If there is not such an arc, by the definition of a Y-cycle we must have an $\operatorname{arc}\left(v_{i}, u\right) \in A \backslash A(C)$ with $u \notin V(C)$, in this case also set $l\left(v_{i}, u\right) \leftarrow-l\left(v_{i}\right)$. Now assign the label 0 for each node and arc with no label. Call this labeling function l.

Claim. \bar{z}_{l} satisfies with equality each constraint among (2)-(6) that is satisfied with equality by \bar{z}.

Proof. Assumption (a2) shows that for the nodes and arcs that received a nonzero label, their corresponding variables take a fractional value. This implies that each inequality among (5) and (6) that is satisfied with equality by \bar{z}, is also satisfied with equality by \bar{z}_{l}.

Remark 4 and Lemma 5 imply $\sum l\left(v_{i}\right)=0$, in both cases, whether C is directed or not. Hence equality (2) is satisfied by \bar{z}_{l}. When C is directed, equalities (3) are satisfied by \bar{z}_{l} by definition. When it is not directed, by definition these equalities are satisfied for every node $v \neq v_{0}$. By Lemma 5 we have $l\left(a_{p-1}\right)=-l\left(a_{0}\right)$. This shows that equality (3) with respect to v_{0} is also satisfied by \bar{z}_{l}.

Now we will show that every arc that is tight for \bar{z} is also tight for \bar{z}_{l}. Let $(u, v) \in A(C)$, the labeling procedure gives $l(v)=l(u, v)$, hence $\bar{z}_{l}(u, v)=\bar{z}_{l}(v)$. Also, for every arc
$(u, v) \in A \backslash A(C)$ with $u, v \notin V(C)$, we have $l(u, v)=0$ and $l(u)=l(v)=0$. Let us examine the three other cases:
(i) $(u, v) \in A \backslash A(C)$, with u and v in $V(C)$. We have three sub-cases:

- If $v \in \dot{C}$, then $l(v)=0$ and $l(u, v)=0$.
- Suppose $v \in \tilde{C}$, since G does not contain any of the graphs H_{1}, H_{3} and H_{4} as a subgraph, the nodes u and v must be consecutive in C. So $(v, u) \in A(C)$. By assumption (a1), v is not a blocking node, so u must be in \hat{C}. Let u^{\prime} be the other node of the cycle adjacent to u. The node u is not a blocking node. Thus if $\left(u, u^{\prime}\right) \in A$, then $u^{\prime} \in \dot{C}$. Hence when extending the labeling of C, we get $l(u, v)=-l(u)$ which is equal to $l(v)$ by the labeling procedure of C.
- The case $v \in \hat{C}$ cannot exist since G does not contain either H_{2} or H_{4} as a subgraph and it does not contain multiple arcs.
(ii) $(u, v) \in A \backslash A(C)$, with $u \in V(C)$ and $v \in V \backslash V(C)$. By definition $l(v)=0$. If $u \in(\tilde{C} \cup \dot{C})$, then $l(u, v)=0$. And if $u \in \hat{C}$, since G does not contain H_{1}, H_{3} or H_{4} as a subgraph, v must be a pendent node, so $\bar{z}(u, v)<\bar{z}(v)=1$.
(iii) $(u, v) \in A \backslash A(C)$, with $u \in V \backslash V(C)$ and $v \in V(C)$. The node v must be in \dot{C}, otherwise one of the graphs H_{1}, H_{2}, H_{3} or H_{4} exists in G. Thus by the labeling procedure, $l(v)=0$; and when extending this labeling (u, v) takes the label 0 since $u \notin V(C)$.

Since $\bar{z} \neq \bar{z}_{l}$, the claim above implies that \bar{z} is not an extreme point of $P_{p}(G)$.

3. Graphs with no odd Y-cycle

In this section we assume that $G=(V, A)$ is a directed graph satisfying condition (i) of Theorem 2, that is, it does not contain any of the graphs H_{1}, H_{2}, H_{3} or H_{4} of Figure 1 as a subgraph. Also we assume that G does not contain an odd Y-cycle.

This section is divided into two sub-sections. In Sub-section 3.1, we will proof the following lemma:

Lemma 8. $P_{p}(G)$ does not contain a fractional extreme point \bar{z} where $\bar{z}(u, v)=\bar{z}(v)$, for all (u, v) with v not a pendent node.

This lemma is used to prove the following theorem in Sub-section 3.2:
Theorem 9. If $G=(V, A)$ is a directed graph with no multiple arcs, no odd Y-cycle and satisfying condition (i) of Theorem 2, then $P_{p}(G)$ is integral.

But first, let us remark some useful implicit properties of the graph $G=(V, A)$ defined above and of the polytope $P_{p}(G)$.

Remark 10. Let $v \in V$, with $\delta^{-}(v)=\left\{\left(u_{1}, v\right),\left(u_{2}, v\right)\right\}$. If $(v, t) \in A$, then t is a pendent node or it coincides with u_{1} or u_{2}.

A bidirected path P of $G=(V, A)$, is an ordered sequence of nodes $P=v_{1}, \ldots, v_{p}$, where $\left(v_{i}, v_{i+1}\right)$ and $\left(v_{i+1}, v_{i}\right)$ belong to A, for $i=1, \ldots, p-1$. The size of P is p. A node v_{i} of P is called internal if $i \notin\{1, p\}$.

Remark 11. If $P=v_{1}, \ldots, v_{p}$ is a bidirected path of G, then for each internal node v_{i} we have $\delta^{-}\left(v_{i}\right)=\left\{\left(v_{i-1}, v_{i}\right),\left(v_{i+1}, v_{i}\right)\right\}$.

Let us assume that \bar{z} is a fractional extreme point of $P_{p}(G)$.
Lemma 12. We can assume that $\bar{z}(u, v)>0$ for all $(u, v) \in A$.

Proof. Let G^{\prime} be the graph obtained after removing all arcs (u, v) with $\bar{z}(u, v)=0$. The graph G^{\prime} has the same properties as G. Let z^{\prime} be the restriction of \bar{z} on G^{\prime}. Then z^{\prime} is a fractional extreme point of $P_{p}\left(G^{\prime}\right)$.

Lemma 13. We can assume that $\bar{z}(v)>0$ for all $v \in V$ with $\left|\delta^{-}(v)\right| \geq 1$.

Proof. It is straightforward from Lemma 12 and constraints (4).
Lemma 14. Let (u, v) and (v, w) be two arcs in G. Then $\bar{z}(v), \bar{z}(u, v)$ and $\bar{z}(v, w)$ are fractional.

Proof. Lemma 13 implies $\bar{z}(v)>0$, and Lemma 12 implies $\bar{z}(v, w)>0$ and $\bar{z}(u, v)>0$. Using equation (3) with respect to v we get $\bar{z}(v)<1$ and $\bar{z}(v, w)<1$. And using inequalities (4) we obtain $\bar{z}(u, v)<1$.

Lemma 15. We may assume that $\left|\delta^{-}(v)\right| \leq 1$ for every pendent node v in G.

Proof. If v is a pendent node in G and $\delta^{-}(v)=\left\{\left(u_{1}, v\right), \ldots,\left(u_{k}, v\right)\right\}$, we can split v into k pendent nodes $\left\{v_{1}, \ldots, v_{k}\right\}$ and replace every $\operatorname{arc}\left(u_{i}, v\right)$ with $\left(u_{i}, v_{i}\right)$. Then we define z^{\prime} such that $z^{\prime}\left(u_{i}, v_{i}\right)=z\left(u_{i}, v\right), z^{\prime}\left(v_{i}\right)=1$, for all i, and $z^{\prime}(u)=z(u), z^{\prime}(u, w)=z(u, w)$ for every other node and arc. Let G^{\prime} be this new graph. This graph transformation does not create cycles nor any of the graphs H_{1}, \ldots, H_{4}. So G^{\prime} has the same properties as G. Moreover, it is easy to check that z^{\prime} is a fractional extreme point of $P_{p+k-1}\left(G^{\prime}\right)$.

Lemma 16. We can assume that G does not contain a bidirected path $P=v_{1}, v_{2}, v_{3}$, where $\delta^{-}\left(v_{1}\right)=\left\{\left(v_{2}, v_{1}\right)\right\}, \delta^{-}\left(v_{3}\right)=\left\{\left(v_{2}, v_{3}\right)\right\}$, the inner node v_{2} is only adjacent to v_{1} and v_{3} and where all the arcs of P are tight for \bar{z} except for $\left(v_{2}, v_{3}\right)$ that may or may not be tight.

Proof. Let P be the path defined in the lemma. Define G^{\prime} as the graph obtained from G by identifying the nodes v_{1} and v_{3}, call v^{*} the resulting node, and by removing the node v_{2} with its incident arcs. Add a new node t and the $\operatorname{arc}\left(v^{*}, t\right)$, (see Figure 4).

Figure 4. On the left the bidirected path P. On the right the graph G^{\prime}.

Let $\delta=\bar{z}\left(v_{3}\right)-\bar{z}\left(v_{2}, v_{3}\right)$. Define z^{\prime} from \bar{z} as follows:

$$
z^{\prime}(v)=\left\{\begin{array}{ll}
\delta & \text { if } v=v^{*}, \\
1 & \text { if } v=t, \\
\bar{z}(v) & \text { otherwise },
\end{array} \quad ; \quad z^{\prime}(u, v)= \begin{cases}\bar{z}\left(v_{1}, v\right) & \text { if } u=v^{*} \text { and }\left(v_{1}, v\right) \in A \\
\bar{z}\left(v_{3}, v\right) & \text { if } u=v^{*} \text { and }\left(v_{3}, v\right) \in A, \\
\bar{z}\left(v_{2}\right) & \text { if } u=v^{*} \text { and } v=t, \\
\bar{z}(u, v) & \text { otherwise. }\end{cases}\right.
$$

Claim 1. G^{\prime} has no multiple arcs, satisfies condition (i) of Theorem 2 and does not contain an odd Y-cycle.

Proof. (a) The graph G^{\prime} does not contain multiple arcs. In fact, let a_{1} and a_{2} be two multiple arcs in G^{\prime}. The node v^{*} must be their tail and let u be their head. Since $\left|\delta^{-}(u)\right| \geq 2$, by Lemma $15 u$ is not a pendent node. Let $\left(u, t^{\prime}\right) \in$ A, by the definition of P, t^{\prime} is different from v_{1}, v_{2} and v_{3}. The cycle $C^{\prime}=$ $v_{1},\left(v_{1}, v_{2}\right), v_{2},\left(v_{2}, v_{3}\right), v_{3},\left(v_{3}, u\right), u,\left(v_{1}, u\right), v_{1}$ is an odd Y-cycle $\left(u \in \hat{C}^{\prime}\right)$, which is not possible.
(b) If G^{\prime} contains an odd Y-cycle C^{\prime}, we should assume that $v^{*} \in \dot{C}^{\prime}$. Assume also that $\left(v^{*}, u\right)$ and $\left(v^{*}, v\right)$ are the two arcs in C^{\prime} incident to v^{*}, where $\left(v^{*}, u\right)$ was obtained from $\left(v_{1}, u\right)$ and $\left(v^{*}, v\right)$ was obtained from $\left(v_{3}, v\right)$. Then by removing $\left(v^{*}, u\right), v^{*},\left(v^{*}, v\right)$ from C^{\prime} and adding $\left(v_{1}, u\right), v_{1},\left(v_{2}, v_{1}\right), v_{2},\left(v_{2}, v_{3}\right), v_{3},\left(v_{3}, v\right)$, we obtain an odd Y-cycle in G, which is impossible.
(c) From (b) it follows that G^{\prime} does not contain H_{3}. If G^{\prime} contains one of the graphs H_{1}, H_{2} or H_{4} as a subgraph, then v^{*} belong to these graphs. Otherwise this subgraph exists in G too. By definition $\delta_{G^{\prime}}^{-}\left(v^{*}\right)=\emptyset$. Suppose that G^{\prime} contains H as a subgraph, where H is one of the graphs H_{1}, H_{2} or H_{4}. Then $\delta_{H}^{-}\left(v^{*}\right)=\emptyset$. In this case, by replacing in $H v^{*}$ by v_{1} or v_{3} with its corresponding arc in G, one obtain one of the graphs H_{1}, H_{2} or H_{4} as a subgraph in G, which is not possible.

Claim 2. z^{\prime} is a fractional extreme point of $P_{p}\left(G^{\prime}\right)$.
Proof. Lemma 14 imply that $\bar{z}\left(v_{2}\right)$ is fractional. So at least $z^{\prime}\left(v^{*}, t\right)$ is fractional.
Let us examine the validity of z^{\prime}. By the definition of z^{\prime}, we only need to show that $\sum z^{\prime}(v)=p$ and that equation (3) with respect to v^{*} is satisfied.

Notice that the validity of \bar{z} implies that

$$
\begin{equation*}
\bar{z}\left(v_{2}\right)+\bar{z}\left(v_{2}, v_{1}\right)+\bar{z}\left(v_{2}, v_{3}\right)=1 . \tag{7}
\end{equation*}
$$

Since $\bar{z}\left(v_{2}, v_{1}\right)=\bar{z}\left(v_{1}\right)$ and that $\bar{z}\left(v_{2}, v_{3}\right)=\bar{z}\left(v_{3}\right)-\delta$ when replacing in (7) we obtain

$$
\begin{align*}
& \bar{z}\left(v_{2}\right)+\bar{z}\left(v_{1}\right)+\bar{z}\left(v_{3}\right)=1+\delta, \tag{8}\\
\sum z^{\prime}(v) & =\sum_{v \in V} \bar{z}(v)-\bar{z}\left(v_{1}\right)-\bar{z}\left(v_{2}\right)-\bar{z}\left(v_{3}\right)+z^{\prime}\left(v^{*}\right)+z^{\prime}(t) \\
& =p-\bar{z}\left(v_{1}\right)-\bar{z}\left(v_{2}\right)-\bar{z}\left(v_{3}\right)+\delta+1 \\
& =p .
\end{align*}
$$

Now let us show that equation (3) with respect to v^{*} is satisfied as well.
The validity of \bar{z} implies that

$$
\begin{align*}
& \bar{z}\left(\delta^{+}\left(v_{1}\right) \backslash\left\{\left(v_{1}, v_{2}\right)\right\}\right)+\bar{z}\left(v_{1}, v_{2}\right)+\bar{z}\left(v_{1}\right)=1 \tag{9}\\
& \bar{z}\left(\delta^{+}\left(v_{3}\right) \backslash\left\{\left(v_{3}, v_{2}\right)\right\}\right)+\bar{z}\left(v_{3}, v_{2}\right)+\bar{z}\left(v_{3}\right)=1 \tag{10}
\end{align*}
$$

Adding equations (9) and (10) and replacing $\bar{z}\left(v_{1}, v_{2}\right)$ and $\bar{z}\left(v_{3}, v_{2}\right)$ by $\bar{z}\left(v_{2}\right)$, we obtain $\bar{z}\left(\delta^{+}\left(v_{1}\right) \backslash\left\{\left(v_{1}, v_{2}\right)\right\}\right)+\bar{z}\left(\delta^{+}\left(v_{3}\right) \backslash\left\{\left(v_{3}, v_{2}\right)\right\}\right)+2 \bar{z}\left(v_{2}\right)+\bar{z}\left(v_{1}\right)+\bar{z}\left(v_{3}\right)=2$.
By combining this last equation with (8), we obtain
$\bar{z}\left(\delta^{+}\left(v_{1}\right) \backslash\left\{\left(v_{1}, v_{2}\right)\right\}\right)+\bar{z}\left(\delta^{+}\left(v_{3}\right) \backslash\left\{\left(v_{3}, v_{2}\right)\right\}\right)+\bar{z}\left(v_{2}\right)+\delta=1$.
By definition this last equation corresponds to equation (3) with respect to v^{*}.
Now, let us show that z^{\prime} is an extreme point of $P_{p}\left(G^{\prime}\right)$. Suppose the contrary, then there must exist $z^{\prime \prime} \in P_{p}\left(G^{\prime}\right)$ where every constraint tight for z^{\prime} is also tight for $z^{\prime \prime}$. Let

$$
\begin{aligned}
& \alpha=\sum_{u:\left(v_{1}, u\right) \in A} z^{\prime \prime}\left(v^{*}, u\right), \\
& \beta=\sum_{u:\left(v_{3}, u\right) \in A} z^{\prime \prime}\left(v^{*}, u\right) .
\end{aligned}
$$

Notice that $z^{\prime \prime}\left(v^{*}\right)+z^{\prime \prime}\left(v^{*}, t\right)+\alpha+\beta=1$. Let z^{*} be the extension of $z^{\prime \prime}$ to $P_{p}(G)$ defined as follows:

$$
\begin{aligned}
& z^{*}(v)= \begin{cases}\beta+z^{\prime \prime}\left(v^{*}\right) & \text { if } v=v_{1}, \\
z^{\prime \prime}\left(v^{*}, t\right) & \text { if } v=v_{2}, \\
\alpha+z^{\prime \prime}\left(v^{*}\right) & \text { if } v=v_{3}, \\
z^{\prime \prime}(v) & \text { otherwise, }\end{cases} \\
& z^{*}(u, v)= \begin{cases}z^{\prime \prime}\left(v^{*}, v\right) & \text { if } u=v_{1} \text { and } v \neq v_{2}, \\
z^{\prime \prime}\left(v^{*}, v\right) & \text { if } u=v_{3} \text { and } v \neq v_{2}, \\
z^{\prime \prime}\left(v^{*}, t\right) & \text { if } v=v_{2} \text { and } u=v_{1} \text { or } v_{3}, \\
\alpha & \text { if } u=v_{2} \text { and } v=v_{3}, \\
\beta+z^{\prime \prime}\left(v^{*}\right) & \text { if } u=v_{2} \text { and } v=v_{1}, \\
z^{\prime \prime}(u, v) & \text { otherwise. }\end{cases}
\end{aligned}
$$

It is easy to check that $z^{*} \in P_{p}(G)$ and that every constraint tight for \bar{z} is also tight for z^{*}, which contradicts the fact that \bar{z} is an extreme point of $P_{p}(G)$.
3.1. Proof of Lemma 8. In this sub-section we assume that \bar{z} is a fractional extreme point of $P_{p}(G)$, such that

$$
\begin{equation*}
\bar{z}(u, v)=\bar{z}(v) \text { for every } \operatorname{arc}(u, v) \in A, \text { when } v \text { is not a pendent node. } \tag{11}
\end{equation*}
$$

The proof of Lemma 8 will be given at the end of this sub-section. Next, we give several lemmas useful for that proof.

Lemma 17. Let $(v, w),(w, v)$ and (w, t) be three arcs in A. Then $\left|\delta^{+}(v)\right| \geq 2$.
Proof. Suppose the contrary, that is $\delta^{+}(v)=\{(v, w)\}$. Since v and w are not pendent nodes, assumption (11) implies $\bar{z}(w, v)=\bar{z}(v)$ and $\bar{z}(v, w)=\bar{z}(w)$. Constraint (3) with respect to v implies $\bar{z}(v, w)=1-\bar{z}(v)$. Thus $\bar{z}(w)=1-\bar{z}(v)=1-\bar{z}(w, v)$. Hence constraint (3) with respect to w implies that $\bar{z}(w, t)=0$, which contradicts Lemma 12.

Lemma 18. We can assume that G does not contain a bidirected path P of size four, where its internal nodes are adjacent to only their neighbors in P.

Proof. Assume the contrary. Let $P=v_{1}, v_{2}, v_{3}, v_{4}$ a bidirected path of size four, where $\delta^{+}\left(v_{2}\right)=\left\{\left(v_{2}, v_{1}\right),\left(v_{2}, v_{3}\right\}, \delta^{-}\left(v_{2}\right)=\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{2}\right)\right\}, \delta^{+}\left(v_{3}\right)=\left\{\left(v_{3}, v_{2}\right),\left(v_{3}, v_{4}\right)\right\}\right.$ and $\delta^{-}\left(v_{3}\right)=\left\{\left(v_{2}, v_{3}\right),\left(v_{4}, v_{3}\right)\right\}$.

Consider the graph $G^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ obtained from G by identifying the nodes v_{1} and v_{4} and removing the nodes v_{2} and v_{3} (with their incident arcs). Call v^{*} the node that results from identifying v_{1} and v_{4}. See Figure 5 .

Figure 5. On the left the bidirected path of Lemma 18. On the right the graph G^{\prime}.

Define z^{\prime} from \bar{z} as follows:

$$
z^{\prime}(v)=\left\{\begin{array}{ll}
\bar{z}\left(v_{2}, v_{1}\right) & \text { if } v=v^{*} \\
\bar{z}(v) & \text { otherwise, }
\end{array} \quad ; z^{\prime}(u, v)= \begin{cases}\bar{z}\left(v_{1}, v\right) & \text { if } u=v^{*} \text { and }\left(v_{1}, v\right) \in A, \\
\bar{z}\left(u, v_{1}\right) & \text { if } v=v^{*} \text { and }\left(u, v_{1}\right) \in A, \\
\bar{z}\left(v_{4}, v\right) & \text { if } u=v^{*} \text { and }\left(v_{4}, v\right) \in A, \\
\bar{z}\left(u, v_{4}\right) & \text { if } v=v^{*} \text { and }\left(u, v_{4}\right) \in A, \\
\bar{z}(u, v) & \text { if } u \neq v^{*} \text { and } v \neq v^{*} .\end{cases}\right.
$$

We will prove that G^{\prime} has the same properties as G and that z^{\prime} is a fractional extreme point of $P_{p^{\prime}}\left(G^{\prime}\right)$, for some positive integer p^{\prime}.
Claim 1. v_{1} and v_{4} have no neighbor in common.
Proof. Let u be a common neighbor of v_{1} and v_{4}. We have four cases to consider:
(a) ($\left.v_{1}, u\right)$ and $\left(u, v_{4}\right)$ are in A. Then the ordered sequence $v_{1}, u, v_{4}, v_{3}, v_{2}, v_{1}$ defines and odd directed cycle, which is not possible.
(b) $\left(u, v_{1}\right)$ and $\left(v_{4}, u\right)$ are in A. By symmetry we get the same contradiction as in (a).
(c) $\left(u, v_{1}\right)$ and $\left(u, v_{4}\right)$ are in A. By Lemma $17,\left|\delta^{+}\left(v_{1}\right)\right| \geq 2$. Thus there must exist an $\operatorname{arc}\left(v_{1}, v^{\prime}\right)$, with $v^{\prime} \notin\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Suppose $v^{\prime}=u$. Then the ordered sequence $u, v_{4}, v_{3}, v_{2}, v_{1}, u$ defines a directed odd cycle in G, which is impossible. And if $v^{\prime} \neq u$, then the cycle $C^{\prime}=u,\left(u, v_{1}\right), v_{1},\left(v_{2}, v_{1}\right), v_{2},\left(v_{2}, v_{3}\right), v_{3},\left(v_{3}, v_{4}\right), v_{4},\left(u, v_{4}\right), u$ is an odd Y-cycle, $\left(v_{1}\right.$ and v_{4} are in \hat{C}^{\prime} and $\left.v_{3} \in \tilde{C}^{\prime}\right)$. This contradicts the fact that G does not contain an odd Y-cycle.
(d) $\left(v_{1}, u\right)$ and $\left(v_{4}, u\right)$ are in A. Lemma 15 implies that u is not a pendent node. Thus we must have an $\operatorname{arc}(u, v) \in A$. The node v is different from v_{2} and v_{3}. Suppose that v is different from v_{1} and v_{4}. Then $C^{\prime}=u,\left(v_{1}, u\right), v_{1},\left(v_{1}, v_{2}\right), v_{2}$, $\left(v_{3}, v_{2}\right), v_{3},\left(v_{4}, v_{3}\right), v_{4},\left(v_{4}, u\right), u$ is an odd Y-cycle (u and v_{2} are in \hat{C}^{\prime} and v_{3} in $\left.\tilde{C}^{\prime}\right)$. If $v=v_{4}$, then the ordered sequence $u, v_{4}, v_{3}, v_{2}, v_{1}, u$ define an odd directed
cycle. Also if $v=v_{1}$ one can construct by symmetry and odd directed cycle. In all cases, G contain an odd Y-cycle, which is not possible.

Claim 2. G^{\prime} does not contain an odd Y-cycle.
Proof. Assume the contrary and let C^{\prime} be an odd Y-cycle in G^{\prime}. The cycle C^{\prime} must contain the node v^{*}, otherwise C^{\prime} is an odd Y-cycle in G too, which is impossible. We distinguish four cases as shown in Figure 6.

Figure 6. v^{*} with its incident arcs in C^{\prime}.
(a) $v^{*} \in \dot{C}^{\prime}$. Let $\left(v_{1}, v\right) \in A$ and $\left(v_{4}, u\right) \in A$. Let C be the Y-cycle in G obtained from C^{\prime} by removing the node v^{*} and the arcs $\left(v^{*}, u\right)$ and $\left(v^{*}, v\right)$, and by adding the nodes $v_{1}, v_{2}, v_{3}, v_{4}$ and the arcs $\left(v_{1}, v\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{4}, v_{3}\right)$ and $\left(v_{4}, u\right)$. We have $|V(C)|=\left|V\left(C^{\prime}\right)\right|+3$ and $|\hat{C}|=\left|\hat{C}^{\prime}\right|+1$. These imply that $|V(C)|+|\hat{C}|=$ $\left|V\left(C^{\prime}\right)\right|+\left|\hat{C}^{\prime}\right|+4$. Thus C is odd, which is impossible.
(b) $v^{*} \in \hat{C}^{\prime}$. Let $\left(v, v_{1}\right) \in A$ and $\left(u, v_{4}\right) \in A$. We have two sub-cases:

- Suppose that there is an $\operatorname{arc}\left(v^{*}, t\right) \in A^{\prime}, t \notin V\left(C^{\prime}\right)$. Suppose that $\left(v^{*}, t\right)$ was obtained from $\left(v_{1}, t\right) \in A$. Let C be the Y-cycle in G obtained from C^{\prime} by removing the node v^{*} and the arcs $\left(u, v^{*}\right)$ and $\left(v, v^{*}\right)$, and by adding the nodes $v_{1}, v_{2}, v_{3}, v_{4}$ and the $\operatorname{arcs}\left(v, v_{1}\right),\left(v_{2}, v_{1}\right),\left(v_{2}, v_{3}\right),\left(v_{4}, v_{3}\right)$ and $\left(u, v_{4}\right)$. We have that $|V(C)|+|\hat{C}|=\left|V\left(C^{\prime}\right)\right|+\left|\hat{C}^{\prime}\right|+4$. So C is an odd Y-cycle of G.
- If the arc $\left(v^{*}, t\right) \in A^{\prime}, t \notin V\left(C^{\prime}\right)$, does not exist, we have that $u \in \tilde{C}^{\prime}$, say. Also $\left(v^{*}, u\right) \in A^{\prime}$. Let C be the Y-cycle in G obtained from C^{\prime} by removing the node v^{*} and the $\operatorname{arcs}\left(u, v^{*}\right)$ and $\left(v, v^{*}\right)$, and by adding the nodes v_{1}, v_{2}, v_{3}, v_{4} and the $\operatorname{arcs}\left(v, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{4}\right)$ and $\left(u, v_{4}\right)$. We have that $|V(C)|+|\hat{C}|=\left|V\left(C^{\prime}\right)\right|+\left|\hat{C}^{\prime}\right|+4$. Thus C is odd, which is impossible.
(c) $v^{*} \in \tilde{C}^{\prime}$. Let $\left(v_{1}, v\right) \in A$ and $\left(u, v_{4}\right) \in A$. Let C be the Y-cycle in G obtained from C^{\prime} by removing the node v^{*} and the $\operatorname{arcs}\left(u, v^{*}\right)$ and $\left(v^{*}, v\right)$, and by adding the nodes $v_{1}, v_{2}, v_{3}, v_{4}$ and the $\operatorname{arcs}\left(v_{1}, v\right),\left(v_{2}, v_{1}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{4}\right)$ and $\left(u, v_{4}\right)$. We have that C is an odd Y-cycle, a contradiction.
(d) This case is similar to the case (c).

Claim 3. G^{\prime} does not contain any of the graphs $H_{i}, 1 \leq i \leq 4$, as a subgraph.
Proof. By Claim $2 G^{\prime}$ cannot contain H_{3}. Remark that $\left|\delta^{-}\left(v^{*}\right)\right| \leq 2$, otherwise G contains H_{4} as a subgraph. When $\left|\delta^{-}\left(v^{*}\right)\right| \leq 1$, the claim is straightforward. Hence we assume that $\left|\delta^{-}\left(v^{*}\right)\right|=2$. Let $\delta^{-}\left(v^{*}\right)=\left\{\left(u, v^{*}\right),\left(v, v^{*}\right)\right\}$, then in G we must have $\delta^{-}\left(v_{1}\right)=\left\{\left(u, v_{1}\right),\left(v_{2}, v_{1}\right)\right\}$ and $\delta^{-}\left(v_{4}\right)=\left\{\left(v, v_{4}\right),\left(v_{3}, v_{4}\right)\right\}$, otherwise G contains H_{4}. If G^{\prime} contains one of the graphs H_{1}, H_{2} or H_{4}, then v^{*} must belong to these graphs otherwise these graphs exist in G too. We also suppose that v^{*} is the head of at least
two arcs in these graphs, the other cases are straightforward. Since $\left|\delta^{-}\left(v^{*}\right)\right|=2$, then G^{\prime} cannot contain H_{2} nor H_{4}.

Assume that G^{\prime} contains H_{1}. Let $\left(u, v^{*}\right),\left(v, v^{*}\right),\left(v^{*}, w\right)$ and (w, t) the four arcs that compose H_{1}. Assume that $\left(u, v_{1}\right)$ and $\left(v, v_{4}\right)$ are in G. We must have $\left(v_{1}, w\right)$ or $\left(v_{4}, w\right)$ in G. Say $\left(v_{1}, w\right)$ is an arc of G. Then the four $\operatorname{arcs}\left(u, v_{1}\right),\left(v_{2}, v_{1}\right),\left(v_{1}, w\right)$ and (w, t) are in G. Thus G contains H_{1} as a subgraph, which is impossible.

Claim 4. $z^{\prime} \in P_{p-1}\left(G^{\prime}\right)$.
Proof. The definition of P, assumption (11) and equalities (3) with respect to v_{1}, v_{2}, v_{3} and v_{4} imply the following:

$$
\begin{array}{r}
\bar{z}\left(v_{2}\right)+\bar{z}\left(v_{2}, v_{1}\right)+\bar{z}\left(v_{2}, v_{3}\right)=1, \\
\bar{z}\left(v_{1}\right)=\bar{z}\left(v_{2}, v_{1}\right), \\
\bar{z}\left(\delta^{+}\left(v_{1}\right) \backslash\left\{\left(v_{1}, v_{2}\right)\right\}\right)=\bar{z}\left(v_{2}, v_{3}\right), \\
\bar{z}\left(v_{3}\right)=\bar{z}\left(v_{2}, v_{3}\right), \\
\bar{z}\left(v_{4}\right)=\bar{z}\left(v_{2}, v_{1}\right), \\
\bar{z}\left(\delta^{+}\left(v_{4}\right) \backslash\left\{\left(v_{4}, v_{3}\right)\right\}\right)=\bar{z}\left(v_{2}\right) . \tag{17}
\end{array}
$$

Any constraint that does not contain $z^{\prime}\left(v^{*}\right)$ is satisfied by definition. Let us examine those constraints that contain $z^{\prime}\left(v^{*}\right)$.

- Let us show that z^{\prime} satisfies equality (2).

$$
\begin{aligned}
\sum_{v \in V^{\prime}} z^{\prime}(v) & =\sum_{v \in V \backslash\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}} \bar{z}(v)+z^{\prime}\left(v^{*}\right) \\
& =p-\bar{z}\left(v_{1}\right)-\bar{z}\left(v_{2}\right)-\bar{z}\left(v_{3}\right)-\bar{z}\left(v_{4}\right)+z^{\prime}\left(v^{*}\right) .
\end{aligned}
$$

By (13) $\bar{z}\left(v_{1}\right)=\bar{z}\left(v_{2}, v_{1}\right)$ and by (15) $\bar{z}\left(v_{3}\right)=\bar{z}\left(v_{2}, v_{3}\right)$. Replacing this in (12), we obtain $\bar{z}\left(v_{1}\right)+\bar{z}\left(v_{2}\right)+\bar{z}\left(v_{3}\right)=1$. Also from (16) and the definition of $z^{\prime}\left(v^{*}\right)$ we have that $\bar{z}\left(v_{4}\right)=z^{\prime}\left(v^{*}\right)$. Thus $\sum_{v \in V^{\prime}} z^{\prime}(v)=p-1$.

- Let us show that z^{\prime} satisfies equality (3) with respect to v^{*}. We have

$$
z^{\prime}\left(\delta^{+}\left(v^{*}\right)\right)+z^{\prime}\left(v^{*}\right)=\bar{z}\left(\delta^{+}\left(v_{1}\right) \backslash\left\{\left(v_{1}, v_{2}\right)\right\}\right)+\bar{z}\left(\delta^{+}\left(v_{4}\right) \backslash\left\{\left(v_{4}, v_{3}\right)\right\}\right)+z^{\prime}\left(v^{*}\right)
$$

If we combine the above equality with (14) and (17), we obtain

$$
z^{\prime}\left(\delta^{+}\left(v^{*}\right)\right)+z^{\prime}\left(v^{*}\right)=\bar{z}\left(v_{2}, v_{3}\right)+\bar{z}\left(v_{2}\right)+z^{\prime}\left(v^{*}\right)
$$

Now replace $z^{\prime}\left(v^{*}\right)$ of the right hand side of the above equality by its value and evaluate this side using (12), we get

$$
z^{\prime}\left(\delta^{+}\left(v^{*}\right)\right)+z^{\prime}\left(v^{*}\right)=1 .
$$

- Finally, let us show that z^{\prime} verifies (4) with respect to v^{*}. Let $\left(u, v^{*}\right)$ be an arc in G^{\prime} and let us show that $z^{\prime}\left(u, v^{*}\right) \leq z^{\prime}\left(v^{*}\right)$.

By definition $z^{\prime}\left(u, v^{*}\right)=\bar{z}\left(u, v_{1}\right)$ or $z^{\prime}\left(u, v^{*}\right)=\bar{z}\left(u, v_{4}\right)$. The definition of $z^{\prime}\left(v^{*}\right)$, (13) and (16) imply $z^{\prime}\left(v^{*}\right)=\bar{z}\left(v_{1}\right)=\bar{z}\left(v_{4}\right)$. Hence the fact that $\bar{z}\left(u, v_{1}\right) \leq$ $\bar{z}\left(v_{1}\right)$ or $\bar{z}\left(u, v_{4}\right) \leq \bar{z}\left(v_{4}\right)$ imply immediately $z^{\prime}\left(u, v^{*}\right) \leq z^{\prime}\left(v^{*}\right)$. Also remark that $z^{\prime}\left(v^{*}, u\right) \leq z^{\prime}(u)$ for all $\left(v^{*}, u\right) \in A^{\prime}$.

Claim 5. z^{\prime} is a fractional extreme point of $P_{p-1}\left(G^{\prime}\right)$.
Proof. By Claim 4, we have $z^{\prime} \in P_{p-1}\left(G^{\prime}\right)$. Lemma 14 and the definition of z^{\prime} imply that z^{\prime} is fractional. Suppose that z^{\prime} is not an extreme point of $P_{p-1}\left(G^{\prime}\right)$. Thus there must exist $z^{\prime \prime} \in P_{p-1}\left(G^{\prime}\right), z^{\prime \prime} \neq z^{\prime}$, where each constraint that is tight for z^{\prime} is also tight for $z^{\prime \prime}$. Let

$$
\begin{aligned}
& \alpha=\sum_{u:\left(v_{1}, u\right) \in A} z^{\prime \prime}\left(v^{*}, u\right), \\
& \beta=\sum_{u:\left(v_{4}, u\right) \in A} z^{\prime \prime}\left(v^{*}, u\right) .
\end{aligned}
$$

Notice that $z^{\prime \prime}\left(v^{*}\right)+\alpha+\beta=1$. Let z^{*} be the extension of $z^{\prime \prime}$ to $P_{p}(G)$ defined as follows:

$$
\begin{aligned}
& z^{*}(v)= \begin{cases}z^{\prime \prime}\left(v^{*}\right) & \text { if } v=v_{1} \text { or } v=v_{4}, \\
\beta & \text { if } v=v_{2}, \\
\alpha & \text { if } v=v_{3}, \\
z^{\prime \prime}(v) & \text { otherwise },\end{cases} \\
& z^{*}(u, v)= \begin{cases}z^{\prime \prime}\left(v^{*}, v\right) & \text { if } u=v_{1} \text { and } v \neq v_{2}, \\
z^{\prime \prime}\left(u, v^{*}\right) & \text { if } u \neq v_{2} \text { and } v=v_{1}, \\
z^{\prime \prime}\left(v^{*}, v\right) & \text { if } u=v_{4} \text { and } v \neq v_{3}, \\
z^{\prime \prime}\left(u, v^{*}\right) & \text { if } u \neq v_{3} \text { and } v=v_{4}, \\
\beta & \text { if } v=v_{2} \text { and } u=v_{1} \text { or } v_{3}, \\
\alpha & \text { if } v=v_{3} \text { and } u=v_{2} \text { or } v_{4}, \\
z^{\prime \prime}\left(v^{*}\right) & \text { if }(u, v)=\left(v_{2}, v_{1}\right) \text { or }\left(v_{3}, v_{4}\right), \\
z^{\prime \prime}(u, v) & \text { otherwise. }\end{cases}
\end{aligned}
$$

It is easy to check that $z^{*} \in P_{p}(G)$ and that every constraint tight for \bar{z} is also tight for z^{*}, which contradicts the fact that \bar{z} is an extreme point of $P_{p}(G)$.

Claim 1 implies that G^{\prime} has no multiple arcs. Hence Claims 1, 2 and 3 show that G^{\prime} has the same properties as G. Claim 5 shows that z^{\prime} is a fractional extreme point of $P_{p-1}\left(G^{\prime}\right)$. This completes the proof of this lemma.

Lemma 19. G does not contain a bidirected path $P=v_{1}, v_{2}, v_{3}$, satisfying the following:
(i) $\left(v_{3}, t\right) \in A$ with t a pendent node, and
(ii) $\delta^{-}\left(v_{1}\right)=\left\{\left(v_{2}, v_{1}\right)\right\}$.

Proof. Suppose the contrary and let $P=v_{1}, v_{2}, v_{3}$ be a bidirected path satisfying (i) and (ii). Let l be a labeling function, where the node v_{2} with the $\operatorname{arcs}\left(v_{1}, v_{2}\right)$ and $\left(v_{3}, v_{2}\right)$ receive the label 1 ; the node v_{1} with the $\operatorname{arcs}\left(v_{2}, v_{1}\right)$ and $\left(v_{3}, t\right)$ receive the label -1 ; and all other nodes and arcs receive the label 0 .

The vector \bar{z}_{l} satisfies with equality each constraint among (2)-(6) that was satisfied with equality by \bar{z}. In fact, Lemma 14 implies that the value of \bar{z}, corresponding to the nodes and arcs that received a label different from 0 , is fractional. This implies that any inequalities (5) or (6) that are satisfied with equality by \bar{z} remain satisfied with equality by \bar{z}_{l}. Let us see that equations (3) are satisfied. The arcs that receive a non-zero label are incident to the nodes v_{1}, v_{2} and v_{3}. Equation (3) with respect to v_{1} is satisfied since v_{1} and $\left(v_{1}, v_{2}\right)$ receive opposite labels, the same holds for v_{2}. Also, the unique arcs incident to v_{3} that receive a non-zero label are $\left(v_{3}, v_{2}\right)$ and ($\left.v_{3}, t\right)$, and they receive
opposite labels. Since v_{3} receives a zero label, then equation (3) with respect to v_{3} is satisfied. Equality (2) is satisfied since v_{1} and v_{2} received opposite labels and the other nodes received the label 0 .

The unique nodes with labels different from 0 are v_{1} and v_{2}. Notice that $\left(v_{2}, v_{1}\right)$ received the same label as v_{1} and by hypothesis (ii) is the unique arc directed into v_{1}. Also by Remark 11 the only arcs directed into v_{2} are $\left(v_{1}, v_{2}\right)$ and $\left(v_{3}, v_{2}\right)$ and they received the same label as v_{2}. Hence any inequality (4) that is satisfied with equality by \bar{z} remains satisfied with equality by \bar{z}_{l}. This is in contradiction with the fact that \bar{z} is an extreme point of $P_{p}(G)$.

Lemma 20. G does not contain a bidirected path $P=v_{1}, v_{2}, v_{3}, v_{4}$, such that v_{1} and v_{4} are adjacent to a pendent node.

Proof. Suppose the contrary and let $P=v_{1}, v_{2}, v_{3}, v_{4}$ be a bidirected path such that $\left(v_{1}, t\right)$ and $\left(v_{4}, t^{\prime}\right)$ are in A, where t and t^{\prime} are pendent nodes.

Assign the label 1 to the node v_{3} and the arcs $\left(v_{1}, t\right),\left(v_{2}, v_{3}\right)$ and $\left(v_{4}, v_{3}\right)$; assign the label -1 to the node v_{2} and the $\operatorname{arcs}\left(v_{1}, v_{2}\right),\left(v_{3}, v_{2}\right)$ and $\left(v_{4}, t^{\prime}\right)$; assign to the other nodes and arcs the label 0 . Call this labeling l.

As in the proof of Lemma 19, one can easily check that \bar{z}_{l} satisfies with equality any constraint among (2)-(6) that is satisfied with equality by \bar{z}. This contradicts the fact that \bar{z} is an extreme point of $P_{p}(G)$.

Lemma 21. If G contains a cycle of size at least three, then it contains a Y-cycle of the same size.

Proof. Let $C^{\prime}=v_{0}, a_{0}, v_{1}, a_{1}, \ldots, a_{p-1}, v_{p}$, be a simple cycle with $p \geq 3$. Suppose that C^{\prime} is a not a Y-cycle. There must exist a node $v_{i} \in \hat{C}^{\prime}$ where conditions (i) and (ii) of Definition 1 are not satisfied. Let $\left(v_{i-1}, v_{i}\right)$ and $\left(v_{i+1}, v_{i}\right)$ be the two arcs of C^{\prime} directed into v_{i}. By Lemma $13, \bar{z}\left(v_{i}\right)>0$. Since v_{i} is not a pendent node, there must exist an $\operatorname{arc}\left(v_{i}, u\right)$ in G. The fact that (i) is not satisfied implies that $u \in V\left(C^{\prime}\right)$. If u is different from v_{i-1} and v_{i+1}, then C^{\prime} is of size at least four. In this case, G must contain one of the graphs H_{1} or H_{3} as a subgraph, which is impossible. Thus $\delta^{+}\left(v_{i}\right)$ consists of one of the $\operatorname{arcs}\left(v_{i}, v_{i-1}\right)$ or $\left(v_{i}, v_{i+1}\right)$, or both. Assume $\left(v_{i}, v_{i-1}\right) \in A$, since Definition 1 (ii) is not satisfied v_{i-1} must be in \dot{C}^{\prime}, so $\left(v_{i-1}, v_{i-2}\right) \in A\left(C^{\prime}\right)$ with $v_{i-2} \in V\left(C^{\prime}\right)$. Then Lemma 17 implies that $\left(v_{i}, v_{i+1}\right) \in A$. Also $\left(v_{i}, v_{i+1}\right) \in A$ implies $v_{i+1} \in \dot{C}^{\prime}$, so $\left(v_{i+1}, v_{i+2}\right) \in A\left(C^{\prime}\right)$, (see Figure 7).

Figure 7. Dashed lines represent arcs in C^{\prime}.

Thus we may suppose that for any node $v_{i} \in \hat{C}^{\prime}$ that does not satisfy Definition 1 (i) and $($ ii $), \delta^{+}\left(v_{i}\right)=\left\{\left(v_{i}, v_{i-1}\right),\left(v_{i}, v_{i+1}\right)\right\}$ and both nodes v_{i-1} and v_{i+1} are in \dot{C}^{\prime}. Define C from C^{\prime}, recursively, following the procedure below:

Step 0. $A(C) \leftarrow A\left(C^{\prime}\right), V(C) \leftarrow V\left(C^{\prime}\right), C \leftarrow C^{\prime}$.
Step 2. If there exist $v_{i} \in \hat{C}$, a node not satisfying Definition 1 (i) and (ii), go to Step 3. Otherwise stop, C is a Y-cycle.
Step 3. $A(C) \leftarrow\left(A(C) \backslash\left\{\left(v_{i-1}, v_{i}\right),\left(v_{i+1}, v_{i}\right)\right\}\right) \cup\left\{\left(v_{i}, v_{i-1}\right),\left(v_{i}, v_{i+1}\right)\right\} . C$ is the new cycle defined by $A(C)$. Go to Step 2 .

Each Step 3 decreases by one the number of nodes in \hat{C}. Thus the procedure must end.
Lemma 22. Let $C=v_{0}, a_{0}, v_{1}, a_{1}, \ldots, a_{p-1}, v_{p}, p \geq 3$, be an even Y-cycle with $\left|\hat{C}_{(i)}\right|$ maximum. Then C does not contain a blocking node.

Proof. Suppose that C contains a blocking node v_{i}.
Case 1. v_{i} is a blocking node satisfying Definition 6 (i). Thus $v_{i} \in \tilde{C},\left(v_{i-1}, v_{i}\right),\left(v_{i}, v_{i+1}\right)$ in $A(C),\left(v_{i+1}, v_{i}\right)$ in $A \backslash A(C)$ and $v_{i+1} \in \tilde{C}$. Thus $\left(v_{i+1}, v_{i+2}\right) \in A(C)$ (see Figure 8). Notice that $v_{i+2} \neq v_{i-1}$, otherwise C is a directed odd cycle.

Figure 8. Dashed lines represent arcs in C.
Claim 1. If $\left(v_{i}, u\right) \in A$, then $u \in V(C)$.
Proof. Suppose the contrary, let $\left(v_{i}, u\right) \in A$ with $u \notin V(C)$. The node v_{i+2} is not in \tilde{C}, otherwise the cycle C^{\prime}, where $V\left(C^{\prime}\right)=V(C)$ and $A\left(C^{\prime}\right)=\left(A(C) \backslash\left\{\left(v_{i}, v_{i+1}\right)\right\}\right) \cup$ $\left\{\left(v_{i+1}, v_{i}\right)\right\}$, is an odd Y-cycle. Thus v_{i+2} must be in \hat{C}. If the cycle C^{\prime} as defined previously is a Y-cycle, then it is odd. Thus C^{\prime} is not a Y-cycle, which implies that $\left(v_{i+2}, v_{i+1}\right) \in A \backslash A(C)$ and $v_{i+2} \notin \hat{C}_{(i)}$. Replace the $\operatorname{arcs}\left(v_{i}, v_{i+1}\right)$ and $\left(v_{i+1}, v_{i+2}\right)$ by $\left(v_{i+1}, v_{i}\right)$ and $\left(v_{i+2}, v_{i+1}\right)$. Call $C^{\prime \prime}$ the resulting cycle. It is easy to check that $C^{\prime \prime}$ is a Y-cycle with $\left|\hat{C}^{\prime \prime}{ }_{(i)}\right|=\left|\hat{C}_{(i)}\right|+1$, this contradicts the fact that C is a Y-cycle with $\left|\hat{C}_{(i)}\right|$ maximum.

Claim 2. $\delta^{+}\left(v_{i}\right)=\left\{\left(v_{i}, v_{i-1}\right),\left(v_{i}, v_{i+1}\right)\right\}$ and $\delta^{-}\left(v_{i}\right)=\left\{\left(v_{i-1}, v_{i}\right),\left(v_{i+1}, v_{i}\right)\right\}$.
Proof. Lemma 17 implies that $\left|\delta^{+}\left(v_{i}\right)\right| \geq 2$. Let $\left(v_{i}, u\right) \in \delta^{+}\left(v_{i}\right)$, where $u \neq v_{i+1}$. Claim 1 implies that $u \in V(C)$. If $u \neq v_{i-1}$, then G contains one of the graphs of Figure 1 as a subgraph. Thus $u=v_{i-1}$ and $\delta^{+}\left(v_{i}\right)=\left\{\left(v_{i}, v_{i-1}\right),\left(v_{i}, v_{i+1}\right)\right\}$. To finish the proof of this claim, remark that since G does not contain H_{4} as a subgraph the only arcs in A directed into v_{i} are $\left(v_{i-1}, v_{i}\right)$ and $\left(v_{i+1}, v_{i}\right)$.

Claim 3. $v_{i-1} \in \dot{C}$.
Proof. Suppose that $v_{i-1} \notin \dot{C}$. It follows that $v_{i-1} \in \tilde{C}$, thus $\left(v_{i-2}, v_{i-1}\right) \in A(C)$. Remark that v_{i-1} is a blocking node satisfying Definition 6 (i). Thus Claim 2 may be applied to v_{i-1}, so $\delta^{+}\left(v_{i-1}\right)=\left\{\left(v_{i-1}, v_{i-2}\right),\left(v_{i-1}, v_{i}\right)\right\}$ and $\delta^{-}\left(v_{i-1}\right)=\left\{\left(v_{i-2}, v_{i-1}\right),\left(v_{i}, v_{i-1}\right)\right\}$. Thus the sequence $P=v_{i-2}, v_{i-1}, v_{i}, v_{i+1}$ is a bidirected path of size four, where its internal nodes v_{i} and v_{i-1} are adjacent to only their neighbors in P. This contradicts Lemma 18.

Thus v_{i-1} must be in \dot{C} and $\left(v_{i-1}, v_{i-2}\right) \in A(C)$, as shown by Figure 9 . Notice that $v_{i-2} \neq v_{i+2}$, otherwise the Y-cycle C will be odd.

Figure 9. Dashed lines represent arcs in C.
$P=v_{i-1}, v_{i}, v_{i+1}$ is a bidirected path of size three. Lemma 16 implies that at least one of the $\operatorname{arcs}\left(u, v_{i-1}\right)$ or $\left(u, v_{i+1}\right)$ exists, with $u \neq v_{i}$.

Suppose $\left(u, v_{i-1}\right) \in A$. The case when $\left(u, v_{i+1}\right) \in A$ is symmetric. Since v_{i-2} is not a pendent node, Remark 10 implies that $u=v_{i-2}$, so $\delta^{-}\left(v_{i-1}\right)=\left\{\left(v_{i}, v_{i-1}\right),\left(v_{i-2}, v_{i-1}\right)\right\}$. If $\delta^{+}\left(v_{i-1}\right)=\left\{\left(v_{i-1}, v_{i}\right),\left(v_{i-1}, v_{i-2}\right)\right\}$, then $P=v_{i-2}, v_{i-1}, v_{i}, v_{i+1}$ is a bidirected path that contradicts Lemma 18. Hence we may assume that $\left(v_{i-1}, t\right) \in A$ and t is a pendent node.

If $\delta^{-}\left(v_{i+1}\right)=\left\{\left(v_{i}, v_{i+1}\right)\right\}$, then $P=v_{i-1}, v_{i}, v_{i+1}$ is a bidirected path satisfying the conditions (i) and (ii) of Lemma 19, which is impossible. Thus we must have an arc $\left(u, v_{i+1}\right) \in A$ with $u \neq v_{i}$. Since v_{i+2} is not a pendent node, Remark 10 implies that $u=v_{i+2}$. There must exist also an arc $\left(v_{i+1}, t^{\prime}\right) \in A$, where t^{\prime} is a pendent node, otherwise the bidirected path $P=v_{i-1}, v_{i}, v_{i+1}, v_{i+2}$ contradicts Lemma 18. The situation is summarized in Figure 10.

Figure 10. Dashed lines represent arcs in C.

If $v_{i+2} \in \tilde{C}$, then v_{i+1} is a blocking node satisfying Definition 6 (i). But since $\left(v_{i+1}, t^{\prime}\right) \in A$ and $t^{\prime} \notin V(C)$, this contradicts Claim 1. Thus $v_{i+2} \in \hat{C}$. We claim
that $v_{i+2} \notin \hat{C}_{(i)}$. Indeed, suppose the contrary let $\left(v_{i+2}, u\right) \in A$ and $u \notin V(C)$. The node u must be a pendent node, otherwise G contains one of the graphs H_{1}, H_{3} or H_{4} as a subgraph. Thus, the sequence $P=v_{i-1}, v_{i}, v_{i+1}, v_{i+2}$ is a bidirected path of size four, where v_{i-1} and v_{i+2} are adjacent to pendent nodes, which is impossible by Lemma 20.

Now it is easy to check that the cycle C^{\prime} obtained from C by removing $\left(v_{i+1}, v_{i+2}\right)$ and adding $\left(v_{i+2}, v_{i+1}\right)$ is a Y-cycle with $\left|\hat{C}^{\prime}{ }_{(i)}\right|=\left|\hat{C}_{(i)}\right|+1$. This contradicts the fact that C is chosen so that $\left|\hat{C}_{(i)}\right|$ is maximum.

Case 2. v_{i} is a blocking node satisfying Definition 6 (ii). Thus $v_{i} \in \hat{C} ;\left(v_{i-1}, v_{i}\right)$, $\left(v_{i+1}, v_{i}\right)$ belong to $A(C) ;\left(v_{i}, v_{i+1}\right),\left(v_{i}, v_{i-1}\right)$ belong to $A \backslash A(C)$; and $v_{i-1}, v_{i+1} \in \tilde{C}$. It follows that $\left(v_{i+2}, v_{i+1}\right)$ and $\left(v_{i-2}, v_{i-1}\right)$ are in $A(C)$ (see Figure 11). Notice that $v_{i+2} \neq v_{i-2}$, otherwise C is an odd Y-cycle.

Figure 11. Dashed lines represent arcs in C.
Lemma 17 implies that $\left(v_{i-1}, u\right) \in A$ and $\left(v_{i+1}, u^{\prime}\right) \in A$, with $u \neq v_{i}, u^{\prime} \neq v_{i}$. By Remark 10, u is a pendent node or $u=v_{i-2}$, and also u^{\prime} is a pendent node or $u^{\prime}=v_{i+2}$. Also both nodes v_{i-1} and v_{i+1} cannot be adjacent to a pendent node. Otherwise, the cycle obtained from C by removing $\left(v_{i-1}, v_{i}\right)$ and $\left(v_{i+1}, v_{i}\right)$, and by adding $\left(v_{i}, v_{i-1}\right)$ and $\left(v_{i}, v_{i+1}\right)$ is an odd Y-cycle, which is not possible. Thus we have two sub-cases; at least
(a) $u=v_{i-2}$ and v_{i-1} is not adjacent to a pendent node, or
(b) $u^{\prime}=v_{i+2}$ and v_{i+1} is not adjacent to a pendent node.

Below we treat sub-case (a), the sub-case (b) is symmetric. Let $u=v_{i-2}, v_{i-1}$ is not adjacent to a pendent node and $\left(v_{i-1}, v_{i-2}\right) \in A \backslash A(C)$. The node v_{i} must be adjacent to a pendent node t, otherwise the bidirected path $P=v_{i-2}, v_{i-1}, v_{i}, v_{i+1}$ contradicts Lemma 18. The situation is described in Figure 12

Figure 12. Dashed lines represent arcs in C.
The node v_{i-2} must be in \dot{C}. Otherwise, v_{i-2} is a blocking node by Definition 6 (i), which is impossible as shown in Case 1. Thus, $\left(v_{i-2}, v_{i-3}\right) \in A(C)$. By Lemma 19, we
must have an arc $\left(u^{\prime}, v_{i-2}\right), u^{\prime} \neq v_{i-1}$. Since v_{i-3} is not a pendent node, Remark 10 implies $u^{\prime}=v_{i-3}$. Also, Lemma 18 implies that v_{i-2} is adjacent to a pendent node t^{\prime}.

If $v_{i-3}=v_{i+2}$ then the cycle C^{\prime} obtained from C, by replacing the $\operatorname{arc}\left(v_{i-2}, v_{i-3}\right)$ by $\left(v_{i-3}, v_{i-2}\right)$ and replacing the arc $\left(v_{i-2}, v_{i-1}\right)$ by $\left(v_{i-1}, v_{i-2}\right)$, is an odd Y-cycle. Thus $v_{i-3} \neq v_{i+2}$.

If $\left(v_{i-3}, v_{i-4}\right) \in A(C)$ and $v_{i-4} \in \tilde{C}$, then the cycle C^{\prime} as defined above is an odd Y-cycle. A contradiction.

Suppose $\left(v_{i-3}, v_{i-4}\right) \in A(C)$ and $v_{i-4} \in \hat{C}$. Since $v_{i+2} \notin \hat{C}$, we have $v_{i-4} \neq v_{i+2}$. If the cycle C^{\prime} as defined above is a Y-cycle, then it is odd. Thus C^{\prime} is not a Y-cycle, which implies that $\left(v_{i-4}, v_{i-3}\right) \in A \backslash A(C)$ and $v_{i-4} \notin \hat{C}_{(i)}$. Thus the cycle $C^{\prime \prime}$ defined from C by replacing $\left(v_{i-3}, v_{i-4}\right)$ by $\left(v_{i-4}, v_{i-3}\right)$, replacing $\left(v_{i-2}, v_{i-3}\right)$ by (v_{i-3}, v_{i-2}) and replacing $\left(v_{i-2}, v_{i-1}\right)$ by $\left(v_{i-1}, v_{i-2}\right)$ is a Y-cycle with $\left|\hat{C}^{\prime \prime}{ }_{(i)}\right|=\left|\hat{C}_{(i)}\right|+1$, which contradicts the fact that $\left|\hat{C}_{(i)}\right|$ is maximum. Figure 13 illustrates this case.

Figure 13. Dashed lines represent arcs in C. The node v_{i-4} is not in $\hat{C}_{(i)}$.
Now suppose $\left(v_{i-4}, v_{i-3}\right) \in A(C)$, so $v_{i-3} \in \hat{C}$. In this case, the cycle obtained from C by replacing $\left(v_{i-2}, v_{i-3}\right)$ by $\left(v_{i-3}, v_{i-2}\right)$ is an odd Y-cycle, this is again a contradiction.

Lemma 23. G does not contain a cycle of size at least three.
Proof. Assume the contrary. Suppose that G admits such a cycle. From Lemma 21, we may assume that G contains an even Y-cycle. Among all these Y-cycles, let $C=$ $v_{0}, a_{0}, v_{1}, a_{1}, \ldots, a_{p-1}, v_{p}$ be an even Y-cycle such that $\left|\hat{C}_{(i)}\right|$ is maximum. Lemma 22 implies that C does not contain a blocking node. Hence assumption (a1) of Lemma 7 is satisfied. Also $\bar{z} \in P_{p}(G)$ and Lemma 14 implies that assumption (a2) of Lemma 7 is satisfied. Also the graph G is a directed graph with no multiple arcs and satisfies (i) of Theorem 2. It follows from Lemma 7 that \bar{z} is not an extreme point of $P_{p}(G)$, a contradiction.

Now we can prove the main result of this sub-section.

Proof of Lemma 8:

Denote by $\operatorname{Pair}(G)$ the set of pair of nodes $\{u, v\}$ such that both $\operatorname{arcs}(u, v)$ and (v, u) belong to A.

The proof is by induction on $|\operatorname{Pair}(G)|$. If $|\operatorname{Pair}(G)|=0$ then G is an oriented graph that satisfies conditions (i) and (ii) of Theorem 3. Thus by Theorem 3, $P_{p}(G)$ has no fractional extreme point so the lemma is true. Suppose that the lemma is true for every directed graph H with no multiple arcs, no odd Y-cycle and satisfying condition (i) of Theorem 2 and $|\operatorname{Pair}(H)| \leq m, m \geq 0$. Let $G=(V, A)$ be a directed graph with
no multiple arcs, no odd Y-cycle, satisfying condition (i) of Theorem 2 and such that $|\operatorname{Pair}(G)|=m+1$.

Let \bar{z} be a fractional extreme point of $P_{p}(G)$ where $\bar{z}(u, v)=\bar{z}(v)$ for each arc (u, v) with v not a pendent node. Notice that Lemma 23 applies, so G does not contain a cycle.

Let (u, v) and (v, u) be two arcs in G. Denote by $G(u, v)$ the graph obtained from G by removing the $\operatorname{arc}(u, v)$ and adding a new arc (u, t), where t is a new pendent node. Define $\tilde{z} \in P_{\tilde{p}}(G(u, v)), \tilde{p}=p+1$, to be $\tilde{z}(u, t)=\bar{z}(u, v), \tilde{z}(t)=1$ and $\tilde{z}(r)=\bar{z}(r)$, $\tilde{z}(r, s)=\bar{z}(r, s)$ for every other node and arc.

The graph $G(u, v)$ is directed with no multiple arcs and satisfies condition (i) of Theorem 2. Since G does not contain a cycle, we have that $G(u, v)$ has no odd Y-cycle. Moreover $|\operatorname{Pair}(G(u, v))| \leq m$, hence the induction hypothesis applies for $G(u, v)$. We have that \tilde{z} is a fractional vector in $P_{\tilde{p}}(G(u, v))$ with $\tilde{z}(u, v)=\tilde{z}(v)$ for each $\operatorname{arc}(u, v)$, with v not pendent. By the induction hypothesis \tilde{z} is not an extreme point. Thus, there must exist a set of extreme points of $P_{\tilde{p}}(G(u, v)), z^{1}, \ldots, z^{k}$, where each constraint that is tight for \tilde{z} is also tight for each of z^{1}, \ldots, z^{k}, and \tilde{z} is a convex combination of z^{1}, \ldots, z^{k}. Let us see that all this extreme points are in $0-1$. In fact, suppose that z^{1} is a fractional extreme point of $P_{\tilde{p}}(G(u, v))$. By the induction hypothesis, we must have an arc $\left(u^{\prime}, v^{\prime}\right)$ in $G(u, v)$ with v^{\prime} is not a pendent node and $z^{1}\left(u^{\prime}, v^{\prime}\right)<z^{1}\left(v^{\prime}\right)$. Since v^{\prime} is not a pendent node, then by construction the arc $\left(u^{\prime}, v^{\prime}\right)$ is in G too. Thus we must have $\tilde{z}\left(u^{\prime}, v^{\prime}\right)<\tilde{z}\left(v^{\prime}\right)$. But this implies that v^{\prime} must be a pendent node, a contradiction.

Since all the extreme points z^{1}, \ldots, z^{k} are in $0-1$ and $\tilde{z}(v, u)>0$, there must exist one vector among z^{1}, \ldots, z^{k}, say z^{1}, with $z^{1}(v, u)=1$. From z^{1} define $z^{\prime \prime} \in P_{p}(G)$ as follows: $z^{\prime \prime}(u, v)=z^{1}(u, t)$ and $z^{\prime \prime}(r, s)=z^{1}(r, s), z^{\prime \prime}(r)=z^{1}(r)$, for all other nodes and arcs. All constraints that are tight for \bar{z} are also tight for $z^{\prime \prime}$. To see this, it suffices to remark that $z^{\prime \prime}(v)=z^{1}(v)=0$ and $z^{\prime \prime}(u, v)=z^{1}(u, t)=0$. This contradicts the fact that \bar{z} is an extreme point of $P_{p}(G)$. Thus the proof of Lemma 8 is complete.
3.2. The proof of Theorem 9. Assume that \bar{z} is a fractional extreme point of $P_{p}(G)$. In this subsection, we will not further suppose that $\bar{z}(u, v)=\bar{z}(v)$ when v is not a pendent node.

Lemma 24. Let (u, v) be an arc such that v is not pendent. Let G^{\prime} be the graph obtained from G by removing (u, v) and adding a new pendent node v^{\prime} and the arc (u, v^{\prime}). If G^{\prime} does not contain an odd Y-cycle, then we can assume that $\bar{z}(u, v)=\bar{z}(v)$.

Proof. Suppose that $\bar{z}(u, v)<\bar{z}(v)$. Define $z^{\prime}\left(u, v^{\prime}\right)=\bar{z}(u, v), z^{\prime}\left(v^{\prime}\right)=1$, and $z^{\prime}(s, t)=$ $\bar{z}(s, t), z^{\prime}(r)=\bar{z}(r)$ for all other arcs and nodes. It is easy to check that G^{\prime} share the same properties as G and that z^{\prime} is a fractional extreme point of $P_{p+1}\left(G^{\prime}\right)$.
Lemma 25. Let $G=(V, A)$ be a directed graph with no odd Y-cycle. If (u, v) and (v, u) are two arcs in A and $\delta^{-}(u)=\{(v, u)\}$, then the graph G^{\prime} obtained from G by removing (u, v) and adding a new pendent node v^{\prime} and the arc (u, v^{\prime}) does not contain an odd Y-cycle.

Proof. It is easy to see that any odd Y-cycle in G^{\prime} is also an odd Y-cycle in G. This is because the node u cannot belong to \hat{C} for any cycle C in G^{\prime}.

Let v a node in G. We call v a knot if $\delta^{-}(v)=\{(u, v),(w, v)\}, u \neq w$ and both (v, u) and (v, w) belong to $\delta^{+}(v)$. Let \bar{z} be a fractional extreme point of $P_{p}(G)$. Recall that $\bar{z}(u, v)>0$ for all (u, v). Let v be a knot in G as defined above, recall that from

Lemma 14, $\bar{z}(v), \bar{z}(u, v)$ and $\bar{z}(w, v)$ are fractional. If $\bar{z}(u, v)<\bar{z}(v)$ or $\bar{z}(w, v)<\bar{z}(v)$, then v is called a fragile knot and we say that the pair (G, \bar{z}) contains a fragile knot.

Let (G, \bar{z}) be a pair containing a fragile knot v. The arcs incident to v are (u, v), $(v, u),(w, v),(v, w)$ and there is possibly other arcs (v, t) with t different from u and w. Assume that $\bar{z}(u, v)<\bar{z}(v)$. Define the graph $G(v)$ form G as follows. Remove v and its incident arcs. Add four nodes $v^{\prime}, v^{\prime \prime}, s^{\prime}$ and a pendent node t^{\prime}. Add the $\operatorname{arcs}\left(u, v^{\prime}\right)$, $\left(v^{\prime}, u\right),\left(v^{\prime}, s^{\prime}\right),\left(s^{\prime}, t^{\prime}\right),\left(v^{\prime \prime}, w\right),\left(w, v^{\prime \prime}\right)$ and the set of $\operatorname{arcs}\left(v^{\prime \prime}, t\right)$ whenever (v, t) belongs to $G, t \neq u, w$.

Lemma 26. If G has no multiple arcs, no odd Y-cycle and satisfies condition (i) of Theorem 2, then $G(v)$, as defined above, has the same properties.

Proof. Remark first that if there exists an arc (v, t) with t different from u and w, then t is a pendent node. Otherwise G contains H_{1} or H_{3} as a subgraph. Using this remark, one can see that the nodes v^{\prime} and $v^{\prime \prime}$ cannot belong to any cycle of size at least three in $G(v)$. Thus if there is an odd Y-cycle in $G(v)$, then this is also an odd Y-cycle in G, which is not possible.

By definition $G(v)$ does not contain multiple arcs.
Now suppose that $G(v)$ contains one of the graphs H_{1}, H_{2} or H_{4} as a subgraph, call it H. Remark that H cannot contain $\left(s^{\prime}, t^{\prime}\right)$. If it contains $\left(v^{\prime}, s^{\prime}\right)$, then by replacing it by (v, w) one obtains the same subgraph in G. If H does not contain $\left(v^{\prime}, s^{\prime}\right)$ and contains the node v^{\prime}, then the set of nodes in H where v^{\prime} is replaced by v induces the same subgraph in G, which is not possible. Similar arguments can be used with $v^{\prime \prime}$. Finally, If H does not contain v^{\prime} nor $v^{\prime \prime}$, then H is also a subgraph in G.

Lemma 27. Let $G=(V, A)$ be a directed graph. If $P_{p}(G)$ admits a fractional extreme point \bar{z}, where (G, \bar{z}) contains a fragile knot $v,(\bar{z}(u, v)<\bar{z}(v))$, then $P_{\tilde{p}}(G(v)) \neq$ $\tilde{p} M P(G(v))$, with $\tilde{p}=p+2$.

Proof. Suppose that $P_{\tilde{p}}(G(v))=\tilde{p} M P(G(v))$. Define $\tilde{z} \in P_{\tilde{p}}(G(v))$ to be

$$
\tilde{z}(l)=\left\{\begin{array}{lll}
\bar{z}(v) & \text { if } l=v^{\prime} \text { or } l=v^{\prime \prime}, \\
1-\bar{z}(v) & \text { if } l=s^{\prime}, \\
1 & \text { if } l=t^{\prime}, \\
\bar{z}(l) & \text { otherwise }
\end{array} \quad ; \quad \tilde{z}(l, k)= \begin{cases}\bar{z}(u, v) & \text { if }(l, k)=\left(u, v^{\prime}\right) \\
\bar{z}(v, u) & \text { if }(l, k)=\left(v^{\prime}, u\right), \\
1-\bar{z}(v) & \\
-\bar{z}(v, u) & \text { if }(l, k)=\left(v^{\prime}, s^{\prime}\right) \\
\bar{z}(v, w) & \text { if }(l, k)=\left(v^{\prime \prime}, w\right) \\
\bar{z}(w, v) & \text { if }(l, k)=\left(w, v^{\prime \prime}\right), \\
\bar{z}(v, t) & \text { if }(v, t) \in A, t \neq u, w \\
& \text { and }(l, k)=\left(v^{\prime \prime}, t\right) \\
\bar{z}(l, k) & \text { otherwise. }\end{cases}\right.
$$

The vector \tilde{z} is fractional, so \tilde{z} is not an extreme point of $P_{\tilde{p}}(G(v))$. Since $P_{\tilde{p}}(G(v))$ is integral, there is a $0-1$ vector $z^{*} \in P_{\tilde{p}}(G(v))$ with $z^{*}\left(v^{\prime}, s^{\prime}\right)=1$ so that the same constraints that are tight for \tilde{z} are also tight for z^{*}. From z^{*} define $z^{\prime \prime} \in P_{p}(G)$ as follows:

$$
z^{\prime \prime}(l)=\left\{\begin{array}{ll}
z^{*}\left(v^{\prime \prime}\right) & \text { if } l=v, \\
z^{*}(l) & \text { otherwise. }
\end{array} \quad ; \quad z^{\prime \prime}(l, k)= \begin{cases}z^{*}\left(u, v^{\prime}\right) & \text { if }(l, k)=(u, v), \\
z^{*}\left(v^{\prime}, u\right) & \text { if }(l, k)=(v, u), \\
z^{*}\left(v^{\prime \prime}, w\right) & \text { if }(l, k)=(v, w), \\
z^{*}\left(w, v^{\prime \prime}\right) & \text { if }(l, k)=(w, v), \\
z^{*}\left(v^{\prime \prime}, t\right) & \text { if }(v, t) \in A, t \neq u, w, \\
z^{*}(l, k) & \text { and }(l, k)=(v, t), \\
\text { otherwise. }\end{cases}\right.
$$

All constraints that are tight for \bar{z} are also tight for $z^{\prime \prime}$. To see this, it suffices to notice that $\sum_{v \in V} z^{\prime \prime}(v)=p$ since $z^{*}\left(s^{\prime}\right)=z^{*}\left(t^{\prime}\right)=1$. Also remark that $z^{*}\left(u, v^{\prime}\right)=z^{*}\left(v^{\prime}\right)=0$ and that $z^{*}\left(v^{\prime \prime}\right)$ may be equal to 0 or 1 , so we may have $z^{\prime \prime}(u, v)=0<z^{\prime \prime}(v)=1$ but this inequality was not tight for \bar{z}.
Lemma 28. Let (u, v) and (v, u) be two arcs in G. If $\delta^{+}(u)=\{(u, v)\}$ and $\bar{z}(v, u)=$ $\bar{z}(u)$, then $\bar{z}(u, v)=\bar{z}(v)$ for $\bar{z} \in P_{p}(G)$.

Proof. Immediate from the validity of \bar{z}.
All the material defined above permits us to characterize $p M P(G)$ in a special class of graphs defined in the following theorem. This theorem will be used to prove Theorem 9.
Theorem 29. Let $G=(V, A)$ be a directed graph with no multiple arcs, no odd Y-cycle and satisfying condition (i) of Theorem 2. If G does not contain a knot, then $P_{p}(G)$ is integral

Proof. Suppose that the theorem is false. Let \bar{z} be a fractional extreme point of $P_{p}(G)$. By Lemma 8 , there must exist an $\operatorname{arc}(u, v)$ with $\bar{z}(u, v)<\bar{z}(v)$ and v is not a pendent node. Lemma 24 implies that the graph G^{\prime} obtained from G by removing (u, v) and adding a pendent node v^{\prime} with the arc $\left(u, v^{\prime}\right)$ contains an odd Y-cycle C. Also, since G contains no knot, this implies in G that $\delta^{+}(u)=\{(u, v)\}$ and $\delta^{-}(u)=\{(s, u),(v, u)\}$, where s and v are the nodes that are adjacent to u in C. Remark that v must be in \dot{C}, otherwise C is also an odd Y-cycle in G, which is not possible.

We have that $\delta^{-}(v)=\{(u, v)\}$. In fact, since $v \in \dot{C}$ we must have an $\operatorname{arc}(v, w)$ in C. Because G has no knot this implies that the arc (w, v) cannot exist. So suppose (w^{\prime}, v) is an arc of G with $w^{\prime} \neq w, w^{\prime} \neq u$. Since w is in C, it is not a pendent node and hence G does not satisfies condition (i) of Theorem 2.

Now, if we remove (v, u) and we add a new pendent node u^{\prime} and the $\operatorname{arc}\left(v, u^{\prime}\right)$ the resulting graph does not contain an odd Y-cycle, so Lemma 24 implies that $\bar{z}(v, u)=\bar{z}(u)$. But in this case, Lemma 28 implies that $\bar{z}(u, v)=\bar{z}(v)$, a contradiction.

Now we prove the main result of this sub-section.

Proof of Theorem 9:

Denote by $k n o t(G)$ the set of knots in G. The proof is by induction on $|k n o t(G)|$. If $|\operatorname{knot}(G)|=0$, then by Theorem $29 P_{p}(G)$ is integral.

Suppose that the theorem is true for every directed graph with no multiple arcs, with no odd Y-cycle, satisfying condition (i) of Theorem 2 and having at most m knots, with $m \geq 0$. Let $G=(V, A)$ be a directed graph, with no multiple arcs, no odd Y cycle, satisfying condition (i) of Theorem 2 and $|\operatorname{knot}(G)|=m+1$. Assume that \bar{z} is a fractional extreme point of $P_{p}(G)$.
Claim 1. (G, \bar{z}) does not contain a fragile knot.

Proof. Suppose the contrary and let v be a fragile knot. We have that $|\operatorname{knot}(G(v))| \leq m$ and by Lemma 26 the graph $G(v)$ has no multiple arcs, no odd Y-cycle and satisfies condition (i) of Theorem 2. Thus the induction hypothesis applies, so $P_{p+2}(G(v))$ is integral. This contradicts Lemma 27.

By Lemma $8, G$ must contain an arc $\left(v_{2}, v_{3}\right)$ with $\bar{z}\left(v_{2}, v_{3}\right)<\bar{z}\left(v_{3}\right)$ and v_{3} is not a pendent node. Lemma 24 implies that the graph G^{\prime} obtained from G by removing $\left(v_{2}, v_{3}\right)$ and adding a new pendent node v_{3}^{\prime} and the arc $\left(v_{2}, v_{3}^{\prime}\right)$ contains an odd Y cycle C. The fact that G does not contain an odd Y-cycle implies that C is an odd cycle in G where $v_{2} \in \hat{C}$ and v_{2} does not satisfy either Definition 1 (i) or (ii). Hence $\delta^{-}\left(v_{2}\right)=\left\{\left(v_{3}, v_{2}\right),\left(v_{1}, v_{2}\right)\right\}$, otherwise the graph H_{4} is present. Also $v_{3} \in \dot{C}$. Let v_{4} be the other node in C adjacent to v_{3}, so $\left(v_{3}, v_{4}\right)$ is an arc of C.

Suppose that $\left(u, v_{3}\right) \in A$, with $u \neq v_{2}$. We must have $u=v_{4}$, otherwise G does not satisfies condition (i) of Theorem 2. Thus v_{3} is a fragile knot, which is impossible by Claim 1. It follows that we may assume that $\delta^{-}\left(v_{3}\right)=\left\{\left(v_{2}, v_{3}\right)\right\}$.

Lemma 24 together with Lemma 25 imply that $\bar{z}\left(v_{3}, v_{2}\right)=\bar{z}\left(v_{2}\right)$. Now Lemma 28 implies that we must have an arc $\left(v_{2}, u\right)$ different from $\left(v_{2}, v_{3}\right)$. Since v_{2} is in \hat{C} and it does not satisfy either Definition 1 (i) or (ii) and G satisfies condition (i) of Theorem 2, we must have $u=v_{1}$ and $v_{1} \in \dot{C}$. If $\bar{z}\left(v_{1}, v_{2}\right)<\bar{z}\left(v_{2}\right)$, then v_{2} is a fragile knot, which is not possible by Claim 1 . And if $\bar{z}\left(v_{2}, v_{1}\right)<\bar{z}\left(v_{1}\right)$, then the labeling function l that assign 1 to $\left(v_{2}, v_{3}\right),-1$ to $\left(v_{2}, v_{1}\right)$ and 0 to each other node and arc, implies that \bar{z}_{l} satisfies with equality the same constraints that are satisfied with equality for \bar{z}. This contradicts the fact that \bar{z} is an extreme point.

Let us summarize the above discussion. We have

- $\delta^{-}\left(v_{2}\right)=\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{2}\right)\right\} ; \delta^{+}\left(v_{2}\right)=\left\{\left(v_{2}, v_{1}\right),\left(v_{2}, v_{3}\right)\right\} ; \delta^{-}\left(v_{3}\right)=\left\{\left(v_{2}, v_{3}\right)\right\}$,
- $\bar{z}\left(v_{1}, v_{2}\right)=\bar{z}\left(v_{3}, v_{2}\right)=\bar{z}\left(v_{2}\right) ; \bar{z}\left(v_{2}, v_{1}\right)=\bar{z}\left(v_{1}\right)$ and $\bar{z}\left(v_{2}, v_{3}\right)<\bar{z}\left(v_{3}\right)$.

Since v_{2} does not satisfy either Definition 1 (i) or (ii), the node v_{1} must be in \dot{C}, so we must have $\left(v_{1}, v_{0}\right)$ in $A(C)$. Lemma 16 implies that we must have an $\operatorname{arc}\left(u, v_{1}\right)$ with $u \neq v_{2}$. Condition (i) of Theorem 2, implies that $u=v_{0}$. We must have $\bar{z}\left(v_{0}, v_{1}\right)=\bar{z}\left(v_{1}\right)$, otherwise v_{1} is a fragile knot which is impossible by Claim 1. Suppose that $\bar{z}\left(v_{1}, v_{0}\right)<$ $\bar{z}\left(v_{0}\right)$ (resp. There exist an arc (v_{1}, t) and t a pendent node). Define the following labeling function l. Assign the label 1 to the $\operatorname{arcs}\left(v_{1}, v_{0}\right)$ (resp. $\left.\left(v_{1}, t\right)\right)$ and $\left(v_{2}, v_{3}\right)$ and to the node v_{3}; assign the label -1 to the $\operatorname{arcs}\left(v_{1}, v_{2}\right)$ and $\left(v_{3}, v_{2}\right)$ and to the node v_{2}; for all other arcs and nodes assign the label 0 . Then any constraint that is tight for \bar{z} is also tight for \bar{z}_{l}, which contradicts the fact that \bar{z} is an extreme point. Hence we must have $\bar{z}\left(v_{1}, v_{0}\right)=\bar{z}\left(v_{0}\right)$ and $\delta^{+}\left(v_{1}\right)=\left\{\left(v_{1}, v_{0}\right),\left(v_{1}, v_{2}\right)\right\}$.

Finally we have a bidirected path $P=v_{0}, v_{1}, v_{2}, v_{3}$, where the inner nodes v_{1} and v_{2} are incident to only their neighbors in P and all the arcs of P are tight for \bar{z} except the $\operatorname{arc}\left(v_{2}, v_{3}\right)$.

Define G^{\prime} the graph obtained from G by identifying the nodes v_{0} and v_{3}, call v^{*} the resulting node, and by removing the nodes v_{1} and v_{2} with their incident arcs.

Define z^{\prime} from \bar{z} as follows:

$$
z^{\prime}(v)=\left\{\begin{array}{lll}
\bar{z}\left(v_{3}\right) & \text { if } v=v^{*} \\
\bar{z}(v) & \text { otherwise },
\end{array} \quad ; z^{\prime}(u, v)= \begin{cases}\bar{z}\left(v_{0}, v\right) & \text { if } u=v^{*} \text { and }\left(v_{0}, v\right) \in A, \\
\bar{z}\left(u, v_{0}\right) & \text { if } v=v^{*} \text { and }\left(u, v_{0}\right) \in A, \\
\bar{z}\left(v_{3}, v\right) & \text { if } u=v^{*} \text { and }\left(v_{3}, v\right) \in A, \\
\bar{z}(u, v) & \text { if } u \neq v^{*} \text { and } v \neq v^{*} .\end{cases}\right.
$$

Claim 2. G^{\prime} has no multiple arcs, satisfies condition (i) of Theorem 2 and does not contain an odd Y-cycle.

Proof. The proof is given by claims 1, 2 and 3 in the proof of Lemma 18.
Claim 3. z^{\prime} is a fractional vector in $P_{p-1}\left(G^{\prime}\right)$.
Proof. Lemma 14 imply that $\bar{z}\left(v_{3}\right)$ is fractional. So at least $z^{\prime}\left(v^{*}\right)$ is fractional.
Let us examine the validity of z^{\prime}. By definition any constraint where $z\left(v^{*}\right)$ does not appear is satisfied. Let us show that $\sum z^{\prime}(v)=p-1$ and that equation (3) with respect to v^{*} is satisfied.

We have that $\sum z^{\prime}(v)=\sum_{v \in V} \bar{z}(v)-\bar{z}\left(v_{0}\right)-\bar{z}\left(v_{1}\right)-\bar{z}\left(v_{2}\right)$. Notice that the validity of \bar{z} implies that

$$
\begin{equation*}
\bar{z}\left(v_{1}\right)+\bar{z}\left(v_{1}, v_{0}\right)+\bar{z}\left(v_{1}, v_{2}\right)=1 \tag{18}
\end{equation*}
$$

Since all the arcs of P are tight for \bar{z} except $\left(v_{2}, v_{3}\right)$, the equation (18) is equivalent to

$$
\begin{equation*}
\bar{z}\left(v_{1}\right)+\bar{z}\left(v_{0}\right)+\bar{z}\left(v_{2}\right)=1 \tag{19}
\end{equation*}
$$

Then we have that $\sum z^{\prime}(v)=\sum_{v \in V} \bar{z}(v)-\bar{z}\left(v_{0}\right)-\bar{z}\left(v_{1}\right)-\bar{z}\left(v_{2}\right)=p-1$. Now let us see that equation (3) with respect to v^{*} is satisfied, that is $z^{\prime}\left(v^{*}\right)+z^{\prime}\left(\delta^{+}\left(v^{*}\right)\right)=1$.

By definition we have

$$
z^{\prime}\left(v^{*}\right)+z^{\prime}\left(\delta^{+}\left(v^{*}\right)\right)=\bar{z}\left(v_{3}\right)+\bar{z}\left(\delta^{+}\left(v_{3}\right) \backslash\left\{\left(v_{3}, v_{2}\right)\right\}\right)+\bar{z}\left(\delta^{+}\left(v_{0}\right) \backslash\left\{\left(v_{0}, v_{1}\right)\right\}\right)
$$

Equations (3) with respect to v_{0} and v_{3} imply

$$
\begin{align*}
& \bar{z}\left(v_{0}\right)+\bar{z}\left(\delta^{+}\left(v_{0}\right) \backslash\left\{\left(v_{0}, v_{1}\right)\right\}\right)+\bar{z}\left(v_{0}, v_{1}\right)=1, \tag{20}\\
& \bar{z}\left(v_{3}\right)+\bar{z}\left(\delta^{+}\left(v_{3}\right) \backslash\left\{\left(v_{3}, v_{2}\right)\right\}\right)+\bar{z}\left(v_{3}, v_{2}\right)=1 . \tag{21}
\end{align*}
$$

Since $\bar{z}\left(v_{0}, v_{1}\right)=\bar{z}\left(v_{1}\right)$ and $\bar{z}\left(v_{3}, v_{2}\right)=\bar{z}\left(v_{2}\right)$, when we replace (19) in the sum of (20) and (21), we obtain $\bar{z}\left(v_{3}\right)+\bar{z}\left(\delta^{+}\left(v_{3}\right) \backslash\left\{\left(v_{3}, v_{2}\right)\right\}\right)+\bar{z}\left(\delta^{+}\left(v_{0}\right) \backslash\left\{\left(v_{0}, v_{1}\right)\right\}\right)=1$. Hence $z^{\prime}\left(v^{*}\right)+z^{\prime}\left(\delta^{+}\left(v^{*}\right)\right)=1$.

To finish the proof of this claim, we need also to show that $z^{\prime}\left(u, v^{*}\right) \leq z^{\prime}\left(v^{*}\right)$ for any $\operatorname{arc}\left(u, v^{*}\right)$ in G^{\prime}.

The validity of \bar{z} implies that

$$
\begin{equation*}
\bar{z}\left(v_{2}\right)+\bar{z}\left(v_{2}, v_{1}\right)+\bar{z}\left(v_{2}, v_{3}\right)=1 . \tag{22}
\end{equation*}
$$

Since $\bar{z}\left(v_{2}, v_{1}\right)=\bar{z}\left(v_{1}\right)$, then equation (22) is equivalent to

$$
\begin{equation*}
\bar{z}\left(v_{2}\right)+\bar{z}\left(v_{1}\right)+\bar{z}\left(v_{2}, v_{3}\right)=1 \tag{23}
\end{equation*}
$$

Combining (19) with (23) we obtain

$$
\begin{equation*}
\bar{z}\left(v_{2}, v_{3}\right)=\bar{z}\left(v_{0}\right) \tag{24}
\end{equation*}
$$

If $\left(u, v^{*}\right)$ is an arc in G^{\prime}, then $\left(u, v_{0}\right)$ is an arc in G. The validity of \bar{z} and (24) imply that $\bar{z}\left(u, v_{0}\right) \leq \bar{z}\left(v_{0}\right)=\bar{z}\left(v_{2}, v_{3}\right) \leq \bar{z}\left(v_{3}\right)$ and with the definition of z^{\prime} we have $z^{\prime}\left(u, v^{*}\right)=\bar{z}\left(u, v_{0}\right) \leq \bar{z}\left(v_{3}\right)=z^{\prime}\left(v^{*}\right)$.

Notice that $\left|\operatorname{knot}\left(G^{\prime}\right)\right| \leq m$. It follows from Claim 2 that the induction hypothesis applies. Thus Claim 3 implies that z^{\prime} is not an extreme point of $P_{p}\left(G^{\prime}\right)$. So z^{\prime} can be written as a convex combination of $0-1$ vectors that satisfy with equation each constraint that is satisfied with equation by z^{\prime}. If there is an $\operatorname{arc}\left(u, v^{*}\right)$ in G^{\prime}, then by the definition of z^{\prime} and Lemma 12 we have $z^{\prime}\left(u, v^{*}\right)>0$. Hence one can choose among the $0-1$ solutions above a solution z^{*} with $z^{*}\left(u, v^{*}\right)=1$. This also implies that $z^{*}\left(v^{*}\right)=1$. Otherwise, since $z^{\prime}\left(v^{*}\right)>0$ one can also choose a solution z^{*} with $z^{*}\left(v^{*}\right)=1$. From z^{*} define $z^{\prime \prime} \in P_{p}(G)$ to be as follows:

$$
z^{\prime \prime}(v)=\left\{\begin{array}{ll}
0 & \text { if } v \in\left\{v_{1}, v_{2}\right\}, \\
1 & \text { if } v \in\left\{v_{0}, v_{3}\right\}, \\
z^{*}(v) & \text { otherwise. }
\end{array} ; \quad z^{\prime \prime}(u, v)= \begin{cases}1 & \text { if }(u, v) \in\left\{\left(v_{1}, v_{0}\right),\left(v_{2}, v_{3}\right)\right\}, \\
0 & \text { if }(u, v) \in\left\{\left(v_{0}, v_{1}\right),\left(v_{2}, v_{1}\right),\right. \\
& \left.\left(v_{1}, v_{2}\right),\left(v_{3}, v_{2}\right)\right\}, \\
z^{*}(u, v) & \text { otherwise. }\end{cases}\right.
$$

It is easy to check that $z^{\prime \prime} \in P_{p}(G)$ and any constraint that is satisfied as equality for \bar{z} is also satisfied as equality for \bar{z}. It suffices to see that if there is an $\operatorname{arc}\left(u, v_{0}\right)$ with $u \neq v_{1}$, then this arc is unique and by definition $z^{\prime \prime}\left(u, v_{0}\right)=z^{\prime \prime}\left(v_{0}\right)=1$. Thus we have a contradiction with the fact that \bar{z} is an extreme point.

4. Graphs with odd Y-cycles

In this section we assume that $G=(V, A)$ is a directed graph with no multiple arcs, satisfying conditions (i) and (ii) of Theorem 2. Also we assume that G contains an odd Y-cycle $C=v_{0}, a_{0}, v_{1}, a_{1}, \ldots, a_{p-1}, v_{p}$. We plan to prove that conditions (i) and (ii) of Theorem 2 are sufficient when G contains an odd Y-cycle. Let \bar{z} be a fractional extreme point of $P_{p}(G)$. First we need several lemmas.

Lemma 30. We can assume that

- $\bar{z}(u, v)>0$ for all $(u, v) \in A$,
- $\bar{z}(v)>0$ for all $v \in V$ with $\left|\delta^{-}(v)\right| \geq 1$, and
- $\left|\delta^{-}(v)\right| \leq 1$ for every pendent node $v \in V$.

Proof. Similar to the proofs of Lemmas 12, 13 and 15.
Let v_{k} and v_{l} be two nodes in $V(C)$. Call P_{1} and P_{2} the two paths in C from v_{k} to v_{l}. We are going to prove that if there is another path between v_{k} and v_{l} whose internal nodes are not in $V(C)$, then this path consists of just one arc and v_{k} and v_{l} should be consecutive in C. Assume the contrary, and let $P=v_{k}, b_{1}, u_{1}, \ldots, u_{r-1}, b_{r}, v_{l}$ be another path between v_{k} and v_{l}. Assume that all internal nodes of P are not in $V(C)$. Notice that because of (ii) P cannot have more than two arcs. We call C_{1} (resp. C_{2}) the cycle defined by P_{1} and P (resp. P_{2} and P).

Lemma 31. Assume that v_{k} and v_{l} are not consecutive in C or P contains two arcs, then if an arc of P is directed into (resp. away from) v_{k} (or v_{l}) then this node must be in $\dot{C}($ resp. $\dot{C} \cup \tilde{C})$.

Proof.

- Suppose first that b_{1} is directed into v_{k}, thus $b_{1}=\left(u_{1}, v_{k}\right)$. Assume that v_{k} and v_{l} are not consecutive or that P consists of two arcs.

Let $v_{k} \in \hat{C}$. If $v_{k} \in \hat{C}_{(i)}$ (resp. $\left.v_{k} \notin \hat{C}_{(i)}\right)$ then G contains H_{2} (resp. H_{4}) as a subgraph.

Now assume that $v_{k} \in \tilde{C}$. Let $\left(v_{k-1}, v_{k}\right)$ and $\left(v_{k}, v_{k+1}\right)$ be the two arcs of C incident to v_{k}. The node v_{k+1} is not a pendent node, so there is an $\operatorname{arc}\left(v_{k+1}, u\right)$. If $u \in\left\{v_{k}, v_{k-1}, u_{1}\right\}$ (resp. $\left.u \notin\left\{v_{k}, v_{k-1}, u_{1}\right\}\right)$ then the graph defined by $\left(v_{k-1}, v_{k}\right)$, $\left(u_{1}, v_{k}\right),\left(v_{k}, v_{k+1}\right)$ and $\left(v_{k+1}, u\right)$ corresponds to H_{3} or H_{4} (resp. H_{1}). Therefore $v_{k} \in \dot{C}$.

- Suppose now that b_{1} is directed away from v_{k}, thus $b_{1}=\left(v_{k}, u_{1}\right)$. Suppose that $v_{k} \in \hat{C}$, and $\left(v_{k-1}, v_{k}\right)$ and $\left(v_{k+1}, v_{k}\right)$ are the two arcs of C incident to v_{k}.

Assume first that P consists of two arcs.

- Assume that $\left(u_{1}, v_{l}\right)$ is the second arc of P. If v_{l} coincides with v_{k+1} or v_{k-1}, then we have H_{3} as a subgraph, otherwise we have H_{1} as a subgraph.
- Assume now that $\left(v_{l}, u_{1}\right)$ is the second arc of P. Since $\left|\delta^{-}\left(u_{1}\right)\right| \geq 2$, by Lemma $30 u_{1}$ is not a pendent node, so there is an $\operatorname{arc}\left(u_{1}, u\right)$. If $u=v_{k}$ we have H_{4} as a subgraph; if u coincides with v_{k-1} or v_{k+1} we have H_{3} as a subgraph; otherwise we have H_{1} as a subgraph.
Assume now that P consists of one arc and that v_{k} and v_{l} are not consecutive. So $u_{1}=v_{l}$. Since b_{1} is directed into v_{l}, we have seen above that v_{l} must be in \dot{C}. In this case we must have H_{1} or H_{3} as a subgraph.

Lemma 32. If v_{k} and v_{l} are not consecutive in C, then P cannot consist of just one arc.

Proof. Let $P=v_{k},\left(v_{k}, v_{l}\right), v_{l}$. By Lemma 31, $v_{l} \in \dot{C}$ and $v_{k} \in \dot{C} \cup \tilde{C}$. We then consider two cases: (a) $v_{k} \in \dot{C}$ and (b) $v_{k} \in \tilde{C}$, as shown in Figure 14.

Figure 14. Cases (a) and (b).
(a) C_{1} and C_{2} are both Y-cycles and exactly one of them is odd. The fact that G satisfies (ii) implies that the even cycle contains three arcs. Let C_{1} be the even cycle. Thus $C_{1}=v_{k},\left(v_{k}, v_{l}\right), v_{l},\left(v_{l}, v\right), v,\left(v_{k}, v\right), v_{k}$, where $v \in \hat{C}$. Since both nodes v_{k} and v_{l} are in \dot{C}, there is an $\operatorname{arc}(v, \bar{v})$, where \bar{v} is a pendent node, $\bar{v} \notin V(C)$. Therefore condition (ii) is violated by C_{2} and (v, \bar{v}).
(b) Let $\left(u, v_{k}\right)$ and $\left(v_{k}, v\right)$ be the two arcs in $A(C)$ incident to v_{k}. Notice that there is no arc from v to v_{k}, otherwise G contains H_{1} or H_{3} as a subgraph. Thus C_{1} and C_{2} are both Y-cycles. The parity of C implies that exactly one of these cycles is odd. If one is odd the fact that G satisfies (ii) implies that the other cycle
must contain three arcs. So the odd cycle must be the one containing the arc $\left(u, v_{k}\right)$ call it C_{2}. Let $C_{1}=v_{k},\left(v_{k}, v_{l}\right), v_{l},\left(v_{l}, v\right), v,\left(v_{k}, v\right), v_{k}$. Since C and C_{1} are both Y-cycles, there is an $\operatorname{arc}(v, \bar{v})$, where \bar{v} is a pendent node, $\bar{v} \notin V(C)$. Thus condition (ii) is violated by C_{2} and (v, \bar{v}).

Lemma 33. The path P cannot consist of two arcs.
Proof. Let $P=v_{k}, b_{1}, u_{1}, b_{2}, v_{l}$. We have to study three cases:
(1) $b_{1}=\left(u_{1}, v_{k}\right)$ and $b_{2}=\left(u_{1}, v_{l}\right)$. By Lemma 31, both v_{k} and v_{l} are in \dot{C}. Both C_{1} and C_{2} are Y-cycles and exactly one of them must be odd, otherwise C is an even Y-cycle. Suppose that C_{1} is odd. Then C_{2} is even and must contain four arcs, otherwise G does not satisfies (ii). Now it is easy to see that $\left|\hat{C}_{2}\right|+\left|\tilde{C}_{2}\right|=3$, a contradiction.
(2) $b_{1}=\left(v_{k}, u_{1}\right)$ and $b_{2}=\left(u_{1}, v_{l}\right)$. The case where $b_{1}=\left(u_{1}, v_{k}\right)$ and $b_{2}=\left(v_{l}, u_{1}\right)$ may be treated by symmetry. By Lemma $31, v_{l} \in \dot{C}$ and $v_{k} \in \dot{C} \cup \tilde{C}$. So we have to distinguish two sub-cases: (a) $v_{k} \in \dot{C}$ and (b) $v_{k} \in \tilde{C}$. They are shown below in Figure 15.

Figure 15. The sub-cases (a) and (b).
(a) C_{1} and C_{2} are both Y-cycles. The parity of C implies that exactly one of C_{1} or C_{2} is odd. Suppose C_{1} is odd. As in the previous case we have that $\left|\hat{C}_{2}\right|+\left|\tilde{C}_{2}\right|=3$, a contradiction.
(b) Let $\left(u, v_{k}\right)$ and $\left(v_{k}, v\right)$ be the two arcs of C incident to v_{k}. First we need several claims.

* Claim: u and v are different from v_{l}.

Proof. Since $v_{l} \in \dot{C}$, we have $v \neq v_{l}$. Suppose $u=v_{l}$. Then the cycle $v_{l},\left(v_{l}, v_{k}\right), v_{k},\left(v_{k}, u_{1}\right), u_{1},\left(u_{1}, v_{l}\right), v_{l}$ is an odd Y-cycle. Since G satisfies (ii), the arcs $\left(v_{l}, v\right)$ and $\left(v_{k}, v\right)$ must be in $A(C)$. But this implies that C is an even Y-cycle, a contradiction. It follows that both u and v are different from v_{l}.

* Claim: C_{1} and C_{2} are Y-cycles.

Proof. Let C_{1} be the cycle containing $\left(v_{k}, v\right)$ and let C_{2} be the cycle containing $\left(u, v_{k}\right)$. It is easy to see that C_{2} is a Y-cycle. Let us see that C_{1} is also a Y-cycle. If $v \in \tilde{C}$ then clearly C_{1} is a Y-cycle. Suppose $v \in \hat{C}$. Thus $v \in \hat{C}_{1}$. We need to show that v verifies (i) or (ii) of Definition 1 with respect to C_{1}. Suppose the contrary, then $\left(v, v_{k}\right) \in A$. It follows that the graph defined by the $\operatorname{arcs}\left(v, v_{k}\right),\left(u, v_{k}\right),\left(v_{k}, u_{1}\right)$ and $\left(u_{1}, v_{l}\right)$ corresponds to H_{1}, which is not possible. Hence $v \in \hat{C}_{(i)}$
or there is an $\operatorname{arc}(v, \bar{v})$, where \bar{v} is the other node adjacent to v in C, and $\bar{v} \in \tilde{C}$. In either case we have that C_{1} is a Y-cycle.

* Claim: C_{2} is a directed Y-cycle of size four.

Proof. The parity of C implies that exactly one of the cycles C_{1} or C_{2} is odd. If C_{2} is odd then, as in the previous cases $\left|\hat{C}_{1}\right|+\left|\tilde{C}_{1}\right|=3$, which is impossible. So suppose that C_{1} is odd. Then C_{2} is a directed Y cycle of size four, $C_{2}=v_{k},\left(v_{k}, u_{1}\right), u_{1},\left(u_{1}, v_{l}\right), v_{l},\left(v_{l}, u\right), u,\left(u, v_{k}\right), v_{k}$, see Figure 16.

Figure 16. The Case (2b)
Now suppose there is an arc not in $A\left(C_{2}\right)$ directed into a node in C_{2}. Call this arc (w, t). If $w \notin V\left(C_{2}\right)$, then G contains H_{1}; and if w and t are not consecutive in C_{2}, then G contains H_{3}. So assume $(w, t) \in A \backslash A\left(C_{2}\right)$ and t and w are two consecutive nodes in $V\left(C_{2}\right)$.
Let C_{2}^{\prime} be the cycle obtained from C_{2} by adding (w, t) and removing (t, w). We have two sub-cases:

* Assume that C_{2}^{\prime} is an odd Y-cycle. This implies that C_{1} must be of size four, otherwise G does not satisfy (ii). Thus the arcs $\left(v_{l}, v\right)$ and $\left(v_{k}, v\right)$ are in $A\left(C_{1}\right)$ and if C_{1} is of size four, it was proved above that $v \in \hat{C}_{(i)}$. Let $(v, \bar{v}) \in A$ with $\bar{v} \notin V(C)$. If $\bar{v} \neq u_{1}$, then the pair C_{2}^{\prime} and (v, \bar{v}) violates condition (ii) of Theorem 2. And if $\bar{v}=u_{1}$, then the graph defined by $\left(v, u_{1}\right),\left(u_{1}, v_{l}\right),\left(v_{l}, v\right)$ and $\left(v_{k}, u_{1}\right)$ corresponds to H_{3}, which is not possible.
* The case when C_{2}^{\prime} is not a Y-cycle is obtained when $(w, t)=\left(v_{l}, u_{1}\right)$ or $(w, t)=\left(v_{k}, u\right)$; and in both cases $\delta^{+}(t)=\{(t, w)\}$. Suppose that $\bar{z}(w, t)=\bar{z}(t)$. Thus constraint (3) with respect to t implies that

$$
\bar{z}(t)+\bar{z}(t, w)=1=\bar{z}(t, w)+\bar{z}(w, t) .
$$

Since w is one of the nodes v_{k} or v_{l}, then there is an $\operatorname{arc}\left(w, t^{\prime}\right)$ where t^{\prime} is another node in C different from t. Lemma 30 implies that $\bar{z}\left(w, t^{\prime}\right)>0$. Hence from constraint (3) with respect to w

$$
\bar{z}(w)+\bar{z}(w, t)<1 .
$$

Combining (25) with (26) we obtain

$$
\bar{z}(t, w)>\bar{z}(w) .
$$

But this contradicts the validity of \bar{z}.
Hence we may suppose that if there is an arc (w, t) not in C_{2} directed into a node in C_{2}, then $\bar{z}(w, t)<\bar{z}(t)$. Assign labels to the nodes and
arcs in C_{2} following the labeling procedure of an even cycle. Extend this labeling by assigning the label 0 to each node and arc with no label. Call this labeling l. The constraints that are satisfied with equality by \bar{z} are also satisfied with equality by \bar{z}_{l}. This contradicts the fact that \bar{z} is an extreme point of $P_{p}(G)$. Notice that we do not need $\bar{z}_{l} \in P_{p}(G)$.
(3) $b_{1}=\left(v_{k}, u_{1}\right)$ and $b_{2}=\left(v_{l}, u_{1}\right)$. Notice that by Lemma 30, u_{1} is not a pendent node. Since G satisfies condition (ii), there is an arc $\left(u_{1}, t\right)$ with $t \in V(C)$. If t is different from v_{k} and v_{l} then one can easily create a subgraph in G that is one of the subgraphs of Figure 1. So t must coincide with v_{k} or v_{l}, say $t=v_{l}$. If we take the path $P^{\prime}=v_{k},\left(v_{k}, u_{1}\right), u_{1},\left(u_{1}, v_{l}\right), v_{l}$, instead of P, this reduces to the case (2) above.

Lemma 34. The node set of any cycle of size at least three in G coincides with $V(C)$.
Proof. The proof is straightforward from Lemmas 32 and 33 and condition (ii) of Theorem 2.

The following lemma permits the reduction to oriented graphs.
Let (u, v) and (v, u) be two arcs in A. Denote by $G(u, v)$ the graph obtained from G by removing the $\operatorname{arc}(u, v)$ and adding a new $\operatorname{arc}(u, t)$, where t is a new pendent node.

Lemma 35. Let $G=(V, A)$ be a directed graph and (u, v) and (v, u) two arcs in A. If $P_{p}(G)$ admits a fractional extreme point \bar{z} with $\bar{z}(v, u)>0$, then $P_{\tilde{p}}(G(u, v)) \neq$ $\tilde{p} M P(G(u, v))$, where $\tilde{p}=p+1$.

Proof. Let \bar{z} be a fractional extreme point of $P_{p}(G)$ with $\bar{z}(v, u)>0$. Suppose that $P_{\tilde{p}}(G(u, v))=\tilde{p} M P(G(u, v))$. Define $\tilde{z} \in P_{\tilde{p}}(G(u, v))$ to be $\tilde{z}(u, t)=\bar{z}(u, v), \tilde{z}(t)=1$ and $\tilde{z}(r)=\bar{z}(r), \tilde{z}(r, s)=\bar{z}(r, s)$ for all other nodes and arcs. The solution \tilde{z} is fractional, so \tilde{z} is not an extreme point of $P_{\tilde{p}}(G(u, v))$. Since $P_{\tilde{p}}(G(u, v))$ is integral, there must exist a 0-1 vector $z^{*} \in P_{\tilde{p}}(G(u, v))$ with $z^{*}(v, u)=1$, so that the same constraints that are tight for \tilde{z} are also tight for z^{*}. From z^{*} define $z^{\prime \prime} \in P_{p}(G)$ as follows: $z^{\prime \prime}(u, v)=z^{*}(u, t)$ and $z^{\prime \prime}(r)=z^{*}(r), z^{\prime \prime}(r, s)=z^{*}(r, s)$, for all other nodes and arcs. All constraints that are tight for \bar{z} are also tight for $z^{\prime \prime}$. To see this, it suffices to remark that $z^{\prime \prime}(v)=z^{*}(v)=0$ and $z^{\prime \prime}(u, v)=z^{*}(u, t)=0$. This contradicts the fact that \bar{z} is an extreme point of $P_{p}(G)$.

Now we can prove the main result of this section.
Theorem 36. If $G=(V, A)$ is a directed graph with no multiple arcs, satisfying condition (i) and (ii) of Theorem 2 and containing an odd Y-cycle, then $P_{p}(G)$ is integral.

Proof. Denote by $\operatorname{Pair}(G)$ the set of pair of nodes $\{u, v\}$ such that both arcs (u, v) and (v, u) belong to A. The proof is by induction on $|\operatorname{Pair}(G)|$. If $|\operatorname{Pair}(G)|=0$ then G is an oriented graph that satisfies conditions (i) and (ii) of Theorem 3. Hence the result follows from Theorem 3.

Suppose that Theorem 36 is true for every directed graph H with no multiple arcs, satisfying conditions (i) and (ii) of Theorem 2, containing an odd Y-cycle and $|P a i r(H)| \leq$
$m, m \geq 0$. Let $G=(V, A)$ be a directed graph with no multiple arcs, satisfying conditions (i) and (ii) of Theorem 2, containing an odd Y-cycle and $|\operatorname{Pair}(G)|=m+1$. Assume that \bar{z} is a fractional extreme point of $P_{p}(G)$.

Let (u, v) and (v, u) be two arcs in A. Lemma 30 implies $\bar{z}(v, u)>0$, so Lemma 35 applies and implies that

$$
\begin{equation*}
P_{\tilde{p}}(G(u, v)) \neq \tilde{p} M P(G(u, v)) . \tag{28}
\end{equation*}
$$

Claim. The graph $G(u, v)$ satisfies conditions (i) and (ii) of Theorem 2.
Proof. To see that $G(u, v)$ satisfies condition (i) is easy, it follows from the definition of $G(u, v)$ and the fact that G satisfies (i) too. Let us see that $G(u, v)$ satisfies (ii). The graph $G=(V, A)$ satisfies conditions (i) and (ii) and contains an odd Y-cycle, call it C. Lemma 34 implies that $V=U \cup V(C)$, where $U=\left\{u_{1}, \cdots, u_{k}\right\}$, and $\left|\delta^{+}\left(u_{i}\right)\right| \leq 1$, $\left|\delta^{-}\left(u_{i}\right)\right| \leq 1$, for $i=1, \cdots, k$. Moreover, if $\left(t, u_{i}\right) \in \delta^{-}\left(u_{i}\right)$ then $t \in V(C)$, if $\left(u_{i}, t\right) \in$ $\delta^{+}\left(u_{i}\right)$ then $t \in V(C)$, and if $\left(u_{i}, t\right) \in \delta^{+}\left(u_{i}\right)$ and $\left(t^{\prime}, u_{i}\right) \in \delta^{-}\left(u_{i}\right)$ then $t=t^{\prime}$; for $i=1, \cdots, k$.

Thus we can assume that $u \in V(C)$. Suppose that (ii) is violated with respect to $G(u, v)$. Then in $G(u, v)$ we must have an odd Y-cycle C^{\prime} with (s, w) an arc in $G(u, v)$ with both s and w not in $V\left(C^{\prime}\right)$. The new arc (u, t) and the new node t of $G(u, v)$ cannot be in $V\left(C^{\prime}\right)$ since t is a pendent node. So C^{\prime} is a cycle in G, too. Lemma 34 implies that $V(C)=V\left(C^{\prime}\right)$. But then the pair C and (s, w) violate condition (ii) with respect to G, which is not possible.

By the claim above and Theorem $9, G(u, v)$ must contain an odd Y-cycle. Since $|\operatorname{Pair}(G(u, v))|=m$, we can apply the induction hypothesis and so $P_{\tilde{p}}(G(u, v))=$ $\tilde{p} M P(G(u, v))$. This contradicts (28).

5. Proof of Theorem 2

In this section we put all pieces together and prove Theorem 2, the main result of this paper.

Necessity. Let $G=(V, A)$ be a directed graph. Let H be a subgraph of G that corresponds to one of the graphs H_{1}, H_{2}, H_{3} or H_{4} of Figure 1. Define \bar{z} to be the solution obtained by extending the fractional extreme point associated with H, defined in Figure 1, as follows: $\bar{z}(u)=1$ for each node u not in $H ; \bar{z}(u, v)=0$ for each $\operatorname{arc}(u, v)$ not in H. Then it is easy to check in all cases that \bar{z} is a fractional extreme point of $P_{|V|-2}(G)$.

Now suppose that G contains an odd Y-cycle C with an $\operatorname{arc}(t, w) \in A \backslash A(C)$, with t and w not in $V(C)$. Define \bar{z} as follows: $\bar{z}(t)=\frac{1}{2}, \bar{z}(t, w)=\frac{1}{2}$ and $\bar{z}(w)=1 ; \bar{z}(v)=\frac{1}{2}$ for each node $v \in \hat{C} \cup \tilde{C}$ and $\bar{z}(v)=0$ for each node $v \in \dot{C} ; \bar{z}(u, v)=\frac{1}{2}$ for each arc $(u, v) \in A(C)$; for each node $v \in \hat{C}_{(i)}$ by the definition of a Y-cycle it must exist and $\operatorname{arc}(v, \bar{v}) \notin A(C)$ with \bar{v} a pendent node, so let $\bar{z}(v, \bar{v})=\frac{1}{2}$ and $\bar{z}(\bar{v})=1$; for each node $v \in \hat{C} \backslash \hat{C}_{(i)}$ by the definition of a Y-cycle there must exist an $\operatorname{arc}(v, \bar{v})$ with $\bar{v} \in \tilde{C}$, so let $\bar{z}(v, \bar{v})=\frac{1}{2}$. For all other node v and $\operatorname{arc}(u, v)$, let $\bar{z}(v)=\bar{z}(u, v)=0$.

It is straightforward and is left to the reader to see that \bar{z} is a fractional extreme point of $P_{p}(G)$, where $p=|V|-|\dot{C}|-\frac{(|\hat{C}|+|\tilde{C}|+1)}{2}$.

Sufficiency. It is straightforward from theorems 9 and 36.

6. Recognizing the graphs Defined in Theorem 2

In this section we show how to decide if a graph satisfies conditions (i) and (ii) of Theorem 2. Clearly Condition (i) can be tested in polynomial time. Thus we assume that we have a graph satisfying Condition (i), then we pick an arc (u, v), we remove u and v, and look for an odd Y-cycle in the new graph. We repeat this for every arc. It remains to show how to find an odd Y-cycle.

In [1] we gave a procedure that finds an odd cycle if there is any. We remind the reader that a cycle C is odd if $|V(C)|+|\hat{C}|$ is odd. Since an odd cycle is not necessarily a Y-cycle, we are going to modify the graph so that an odd cycle in the new graph gives an odd Y-cycle in the original graph. The main difficulty resides in how to deal with nodes that satisfy condition (ii) of Definition 1 . Such a node should appear in a pair $\{(u, v),(v, u)\}$. Instead of working with such a pair we are going to work with a maximal bidirected path $P=v_{1}, \ldots, v_{q}$. Notice that if the graph contains a bidirected cycle, then it is easy to derive an odd Y-cycle. So in what follows we assume that there is no bidirected cycle. The transformation is based on the following two remarks.

Remark 37. There is at most one arc $\left(u, v_{1}\right), u \notin P$, and at most one arc $\left(v, v_{q}\right), v \notin P$. Otherwise the graph H_{4} is present.

Remark 38. If the arc $\left(u, v_{1}\right)$ is in $A, u \notin P$, and there is an arc $\left(v_{1}, w\right)$ also in A, $w \notin P$, then w is a pendent node. Otherwise we obtain one of the graphs in Figure 1.

Let C be a Y-cycle that goes through P. We have three cases to study.
Case 1. $\delta^{-}(P)=\left\{\left(u, v_{1}\right),\left(v, v_{q}\right)\right\}$. In this case C contains all nodes in P and also the $\operatorname{arcs}\left(u, v_{1}\right)$ and $\left(v, v_{q}\right)$. Since C contains all nodes from P, the only variable that can change the parity of C is the parity of $|\hat{C} \cap P|$.

Notice that if $q \geq 5$ and if there is a Y-cycle going through P then we can always change the parity of it if needed. In fact, we can always join the nodes v_{1} and v_{q} using arcs of P in such a way that $|\hat{C} \cap P|=1$ as shown in Figure 17 (a), or $|\hat{C} \cap P|=2$ as shown in Figure 17 (b). It follows that if there is a cycle C^{\prime} going through P then there is a cycle C of the same parity, whose nodes in $|\hat{C} \cap P|$ satisfy Definition 1 (ii).

Figure 17. Case $1, q \geq 5$. In bold the Y-cycle C. In dashed line the other arcs of P.

It remains to analyze the cases when $q \leq 4$. The only cases when a transformation is required, are the following two:

- $q=4$ and neither v_{1} nor v_{4} is adjacent to a pendent node. In this case we should have $|\hat{C} \cap P|=1$. To impose that when looking for an odd cycle, we replace P by a bidirected path with two nodes. See Figure 18.

Figure 18. Case $1, q=4$. (a): before transformation. (b): after transformation.
Let P^{\prime} the new bidirected path. Any cycle C^{\prime} with $\left|\hat{C}^{\prime} \cap P^{\prime}\right|=1$ can be extended to a cycle C with $|\hat{C} \cap P|=1$ and where the node in $\hat{C} \cap P$ satisfies Definition 1 (ii).

- $q=3$ and at most one of v_{1} or v_{3} is adjacent to a pendent node. Also here we have $|\hat{C} \cap P|=1$. To impose that when looking for an odd cycle, we remove the $\operatorname{arc}\left(v_{2}, v_{3}\right)$.

(b)

Figure 19. Case $1, q=3$. (a): before transformation. (b): after transformation.
In Figure 19, we supposed that v_{3} is adjacent to a pendent node and v_{1} is not.
The two remaining cases below follow the same philosophy as above.
Case 2. $\delta^{-}(P)=\left\{\left(u, v_{1}\right)\right\}$. In this case C contains $\left(u, v_{1}\right)$, all the nodes in P and one $\operatorname{arc}\left(v_{q}, v\right), v \notin P$. Here we have two cases to analyze.

- $q \geq 3$ or $q=2$ and v_{1} is adjacent to a pendent node. If $|\hat{C} \cap P|$ is even, we can assume that $|\hat{C} \cap P|=0$. If $|\hat{C} \cap P|$ is odd, we can assume that $|\hat{C} \cap P|=1$. Here no transformation is needed.
- $q=2$ and v_{1} is not adjacent to a pendent node. Here we should have $|\hat{C} \cap P|=0$. To impose that when looking for an odd cycle, we remove $\left(v_{2}, v_{1}\right)$.
Case 3. $\delta^{-}(P)=\emptyset$. In this case C contains an $\operatorname{arc}\left(v_{1}, u\right), u \notin P$, all nodes in P, and an $\operatorname{arc}\left(v_{q}, v\right), v \notin P$. Again we have two cases to analyze.
- $q \neq 3$ or $q=3$ and v_{2} is adjacent to a pendent node. If $|\hat{C} \cap P|$ is even, we can assume that $|\hat{C} \cap P|=0$. If $|\hat{C} \cap P|$ is odd, we can assume that $|\hat{C} \cap P|=1$. Here no transformation is needed.
- $q=3$ and v_{2} is not adjacent to a pendent node. Here we should have $|\hat{C} \cap P|=0$. To impose that when looking for an odd cycle, we remove $\left(v_{1}, v_{2}\right)$ and $\left(v_{3}, v_{2}\right)$.
After preprocessing the graph as in cases 1,2 , and 3 , we have to split all pendent nodes as in Lemma 15. This is to avoid having a pendent node in \hat{C}. Then we look for an odd cycle; if there is one, it gives an odd Y-cycle in the original graph.

7. Concluding remarks

We have characterized the graphs for which the system (2)-(6) defines an integral polytope. The proof of Theorem 2 consists of three major steps as follows. In [3] we proved a similar theorem for Y-free graphs, this is used in [2] as the starting point for proving a similar theorem for oriented graphs. The theorem on oriented graphs has been used here as the starting point for proving our main result.

We conclude with a simple corollary. For a undirected graph $G=(V, E)$ we denote by $\overleftrightarrow{G}=(V, A)$ the directed graph obtained from G by replacing each edge $u v \in E$ by two $\operatorname{arcs}(u, v)$ and (v, u).
Corollary 39. Let G be a connected undirected graph. Then $P_{p}(\overleftrightarrow{G})$ is integral for all p if and only if G is a path or a cycle.

Proof. If G is a path or a cycle, then \overleftrightarrow{G} satisfies conditions (i) and (ii) of Theorem 2 and so $P_{p}(\overleftrightarrow{G})$ is integral.

Suppose G is not a path nor a cycle. Then G contains a node of degree at least 3. Thus \overleftrightarrow{G} contains H_{4} as a subgraph. Again Theorem 2 implies that $P_{p}(\overleftrightarrow{G})$ is not integral for all p.

References

[1] M. Baïou and F. Barahona, On the integrality of the uncapacitated facility location polytope, Technical Report RC24101, IBM Watson Research Center, 2006.
[2] ——, On the linear relaxation p-median problem I: oriented graphs, technical report, IBM Watson Research Center, 2007.
[3] - On the p-median polytope of Y-free graphs. To appear in Discrete Optimization, 2007.
(M. Baïou) CNRS, LimOS Complexe scientifique des Czeaux, 63177 AUBIERE cedex, FRANCE.

E-mail address, M. Baïou: Mourad.BAIOU@univ-bpclermont.fr
(F. Barahona) IBM T. J. Watson research Center, Yorktown Heights, NY 10589, USA

E-mail address, F. Barahona: barahon@us.ibm.com

[^0]: Date: November 1, 2007.
 Key words and phrases. p-median problem, uncapacitated facility location problem, odd cycle inequalities.

