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ON THE LINEAR RELAXATION OF THE p-MEDIAN PROBLEM II:

DIRECTED GRAPHS

MOURAD BAÏOU AND FRANCISCO BARAHONA

Abstract. We study a well-known linear programming relaxation of the p-median
problem. We give a characterization of the directed graphs for which this system of
inequalities defines an integral polytope. Our proof uses a similar result on oriented
graphs that we gave in [2].

1. Introduction

This is the second of two papers dealing with a linear programming relaxation of
the p-median problem. Our goal is to characterize the graphs for which this system
of inequalities defines an integral polytope. In [2] we gave such a characterization for
oriented graphs; these are graphs such that if (u, v) is in the arc-set then (v, u) is not in
the arc-set. Here we give such a characterization for general directed graphs, we use the
result on oriented graphs as a starting point.

Let G = (V,A) be a directed graph, not necessarily connected, where each arc (u, v) ∈
A has an associated cost c(u, v). The p-median problem (pMP) consist of selecting p
nodes, usually called centers, and then assign each non-selected node to a selected node.
The goal is to select p nodes that minimize the sum of the costs yield by the assignment
of the non-selected nodes. For more references on the pMP see [3, 2]. The graphs we
consider do not contain multiple arcs, that is if (u, v) and (u′, v′) are two distinct arcs
then we cannot have u = u′ and v = v′. The following is a natural linear programming
relaxation for the pMP:

minimize
∑

(u,v)∈A

c(u, v)x(u, v),(1)

∑

v∈V

y(v) = p,(2)

∑

v:(u,v)∈A

x(u, v) = 1− y(u) ∀u ∈ V,(3)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(4)

y(v) ≤ 1 ∀v ∈ V,(5)

x(u, v) ≥ 0 ∀(u, v) ∈ A.(6)

Denote by Pp(G) the polytope defined by constraints (2)-(6), and let pMP (G) be the

convex hull of Pp(G) ∩ {0, 1}|A|+|V |. In this paper we characterize all directed graphs
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inequalities.
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such that Pp(G) = pMP (G). To state our main result we need some definitions and
notation.

In Figure 1, we show four directed graphs and for each of them a fractional extreme
point of Pp(G). The numbers near the nodes correspond to the variables y, all the arcs
variables are equal to 1

2 .
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Figure 1. Fractional extreme points of Pp(G).

A simple cycle C is an ordered sequence

v0, a0, v1, a1, . . . , ap−1, vp,

where

• vi, 0 ≤ i ≤ p− 1, are distinct nodes,
• ai, 0 ≤ i ≤ p− 1, are distinct arcs,
• either vi is the tail of ai and vi+1 is the head of ai, or vi is the head of ai and

vi+1 is the tail of ai, for 0 ≤ i ≤ p− 1, and
• v0 = vp.

We denote by V (C) the nodes of C and by A(C) the arcs of C. The size of C is p.
By setting ap = a0, we associate with C three more sets as below.

• We denote by Ĉ the set of nodes vi, such that vi is the head of ai−1 and also the
head of ai, 1 ≤ i ≤ p.
• We denote by Ċ the set of nodes vi, such that vi is the tail of ai−1 and also the

tail of ai, 1 ≤ i ≤ p.
• We denote by C̃ the set of nodes vi, such that either vi is the head of ai−1 and

also the tail of ai, or vi is the tail of ai−1 and also the head of ai, 1 ≤ i ≤ p.

A cycle C is said to be odd if |C̃|+ |Ĉ| is odd, otherwise it is said to be even. When

Ĉ = ∅ the cycle is a directed cycle. If we do not require v0 = vp, we have a path. In this
case, the nodes v1, . . . , vp−1 are called internal nodes.

The following definition extends to directed graphs, the definition of a Y -cycle given
in [2] for oriented graphs.

Definition 1. A simple cycle C is called a Y-cycle if for every v ∈ Ĉ at least one of the
following hold:

(i) there exists an arc (v, v̄) /∈ A(C), v̄ /∈ V (C) , or

(ii) there exists an arc (v, v̄) /∈ A(C), v̄ ∈ C̃ and v̄ is one of the two neighbors of v
in C.
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For a simple cycle C, denote by Ĉ(i) the set of nodes in Ĉ that satisfy condition (i) of

the above definition. Notice that we may have nodes in Ĉ that satisfy both (i) and (ii).

For a directed graph G = (V,A) and a set W ⊂ V , we denote by δ+(W ) the set of
arcs (u, v) ∈ A, with u ∈ W and v ∈ V \W . Also we denote by δ−(W ) the set of arcs
(u, v), with v ∈ W and u ∈ V \W . We write δ+(v) and δ−(v) instead of δ+({v}) and
δ−({v}), respectively. If there is a risk of confusion we use δ+

G and δ−G . A node u with
δ+(u) = ∅ is called a pendent node.

In Figure 2 we show a fractional extreme point of Pp(G) different from those given in
Figure 1. It consists of an odd Y -cycle with an arc having both of its endnodes outside
the cycle. The values reported near each node represent the node variables, the arc
variables are all equal to 1

2 . These values form a fractional extreme point of Pp(G), with
p = 4.
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Figure 2. An odd Y -cycle with an arc outside the cycle .

The theorem below is the main result of this paper. It shows that the configurations
in figures 1 and 2 are the only configurations that should be forbidden in order to have
an integral polytope.

Theorem 2. Let G = (V,A) be a directed graph, then Pp(G) is integral if and only if

• (i) it does not contain as a subgraph one of the graphs H1, H2, H3 or H4 of
Figure 1, and
• (ii) it does not contain an odd Y -cycle C and an arc (u, v) with neither u nor v

in V (C).

The proof of this theorem is given in Section 5. This proof uses the following main
theorem of [2].

Theorem 3. Let G = (V,A) be an oriented graph, then Pp(G) is integral if and only if

• (i) it does not contain as a subgraph one of the graphs H1, H2, H3 of Figure 1,
and
• (ii) it does not contain an odd Y -cycle C and an arc (u, v) with neither u nor v

in V (C).

The paper is organized as follows. Section 2 contains preliminary definitions and
notation. The graphs that satisfy conditions (i) and (ii) of Theorem 2 with no odd
Y -cycle are considered in Section 3 and those containing an odd Y -cycle are studied in
Section 4. Section 5 gives the proof of Theorem 2. In Section 6 we show how to test in
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polynomial time conditions (i) and (ii) of Theorem 2. Finally Section 7 concludes this
paper with some remarks and a corollary in undirected graphs.

2. Preliminaries

Let G = (V,A) be a directed graph. Let l : V ∪A→ {0,−1, 1} be a labeling function
that associates to each node and arc of G a label 0, −1 or 1.

A vector (x, y) ∈ Pp(G) will be denoted by z, i. e. z(u) = y(u) for all u ∈ V and
z(u, v) = x(u, v) for all (u, v) ∈ A. Given a vector z and a labeling function l, we define
a new vector zl from z as follows:

zl(u) = z(u) + l(u)ε, for all u ∈ V, and

zl(u, v) = z(u, v) + l(u, v)ε, for all (u, v) ∈ A,

where ε is a sufficiently small positive scalar. We say that an arc (u, v) is tight for
z ∈ Pp(G) if z(u, v) = z(v).

The labeling procedure for even cycles [2]. We will recall the labeling procedure
for even cycles introduced in [2] and some of its properties without proofs.

Let C = v0, a0, v1, a1, . . . , ap−1, vp be an even cycle, not necessarily a Y -cycle.

• If C is a directed cycle, assume that v0 is the tail of a0, then set l(v0) ← 1;

l(a0)← −1. Otherwise, assume v0 ∈ Ċ and set l(v0)← 0; l(a0)← 1.
• For i = 1 to p− 1 do the following:

– If vi is the head of ai−1 and is the tail of ai, then l(vi) ← l(ai−1), l(ai) ←
−l(vi).

– If vi is the head of ai−1 and is the head of ai, then l(vi) ← l(ai−1), l(ai)←
l(vi).

– If vi is the tail of ai−1 and is the head of ai, then l(vi)← −l(ai−1), l(ai)←
l(vi).

– If vi is the tail of ai−1 and is the tail of ai, then l(vi)← 0, l(ai)← −l(ai−1).

Remark 4. If C is a directed even cycle, then l(ap−1) = l(v0) and
∑

l(vi) = 0.

This remark is easy to see. The second property is given in the following lemma and
it concerns non-directed cycles.

Lemma 5. [2] If C is a non-directed even cycle, then l(ap−1) = −l(a0) and
∑

l(vi) = 0.

Definition 6. Let C be a Y -cycle in a directed graph G = (V,A). A node v ∈ V (C) is
called a blocking node, (see Figure 3), if one of the following hold:

(i) v ∈ C̃, (v, u) ∈ A(C), (u, v) ∈ A \A(C) and u ∈ C̃, or

(ii) v ∈ Ĉ, (u, v) ∈ A(C), (w, v) ∈ A(C), (v, u) ∈ A \ A(C), (v, w) ∈ A \ A(C) and

both u and w are in C̃.
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Figure 3. Solid lines represent an even Y -cycle. The black and the gray
node are blocking nodes satisfying Definition 6 (i) and (ii), respectively.

Lemma 7. Let G = (V,A) be a directed graph with no multiple arcs and that satisfies
condition (i) of Theorem 2. If the following assumptions hold:

(a1) G admits an even Y -cycle C of size greater or equal to three with no blocking
node, and

(a2) Pp(G) contains a vector z̄ with:

0 < z̄(v) < 1 for each node v ∈ C̃ ∪ Ĉ;
0 < z̄(u, v) < 1 for each arc (u, v) ∈ A(C);

and 0 < z̄(u, v) < 1 for each arc (u, v) with u ∈ Ĉ,

then z̄ is not an extreme point of Pp(G).

Proof. Assume that the assumptions of the lemma are true. Let

C = v0, a0, v1, a1, . . . , ap−1, vp

be an even Y -cycle with no blocking node.

Assign labels to the arcs and nodes of C following the labeling procedure above.
Extend this labeling as follows: for each node vi ∈ Ĉ if there is an arc (vi, u) ∈ A \A(C)

with u ∈ C̃, then l(vi, u)← −l(vi). Notice that u = vi−1 or u = vi+1 and since vi is not
a blocking node, such an arc is unique if it exists. If there is not such an arc, by the
definition of a Y -cycle we must have an arc (vi, u) ∈ A \ A(C) with u /∈ V (C), in this
case also set l(vi, u) ← −l(vi). Now assign the label 0 for each node and arc with no
label. Call this labeling function l.

Claim. z̄l satisfies with equality each constraint among (2)-(6) that is satisfied with
equality by z̄.

Proof. Assumption (a2) shows that for the nodes and arcs that received a nonzero label,
their corresponding variables take a fractional value. This implies that each inequality
among (5) and (6) that is satisfied with equality by z̄, is also satisfied with equality by
z̄l.

Remark 4 and Lemma 5 imply
∑

l(vi) = 0, in both cases, whether C is directed or
not. Hence equality (2) is satisfied by z̄l. When C is directed, equalities (3) are satisfied
by z̄l by definition. When it is not directed, by definition these equalities are satisfied
for every node v 6= v0. By Lemma 5 we have l(ap−1) = −l(a0). This shows that equality
(3) with respect to v0 is also satisfied by z̄l.

Now we will show that every arc that is tight for z̄ is also tight for z̄l. Let (u, v) ∈ A(C),
the labeling procedure gives l(v) = l(u, v), hence z̄l(u, v) = z̄l(v). Also, for every arc
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(u, v) ∈ A \ A(C) with u, v /∈ V (C), we have l(u, v) = 0 and l(u) = l(v) = 0. Let us
examine the three other cases:

(i) (u, v) ∈ A \ A(C), with u and v in V (C). We have three sub-cases:

– If v ∈ Ċ, then l(v) = 0 and l(u, v) = 0.

– Suppose v ∈ C̃, since G does not contain any of the graphs H1, H3 and H4 as
a subgraph, the nodes u and v must be consecutive in C. So (v, u) ∈ A(C).

By assumption (a1), v is not a blocking node, so u must be in Ĉ. Let u′

be the other node of the cycle adjacent to u. The node u is not a blocking
node. Thus if (u, u′) ∈ A, then u′ ∈ Ċ. Hence when extending the labeling
of C, we get l(u, v) = −l(u) which is equal to l(v) by the labeling procedure
of C.

– The case v ∈ Ĉ cannot exist since G does not contain either H2 or H4 as a
subgraph and it does not contain multiple arcs.

(ii) (u, v) ∈ A \ A(C), with u ∈ V (C) and v ∈ V \ V (C). By definition l(v) = 0. If

u ∈ (C̃ ∪ Ċ), then l(u, v) = 0. And if u ∈ Ĉ, since G does not contain H1, H3 or
H4 as a subgraph, v must be a pendent node, so z̄(u, v) < z̄(v) = 1.

(iii) (u, v) ∈ A \ A(C), with u ∈ V \ V (C) and v ∈ V (C). The node v must be in Ċ,
otherwise one of the graphs H1, H2, H3 or H4 exists in G. Thus by the labeling
procedure, l(v) = 0; and when extending this labeling (u, v) takes the label 0
since u /∈ V (C).

�

Since z̄ 6= z̄l, the claim above implies that z̄ is not an extreme point of Pp(G). �

3. Graphs with no odd Y -cycle

In this section we assume that G = (V,A) is a directed graph satisfying condition (i)
of Theorem 2, that is, it does not contain any of the graphs H1, H2, H3 or H4 of Figure 1
as a subgraph. Also we assume that G does not contain an odd Y -cycle.

This section is divided into two sub-sections. In Sub-section 3.1, we will proof the
following lemma:

Lemma 8. Pp(G) does not contain a fractional extreme point z̄ where z̄(u, v) = z̄(v),
for all (u, v) with v not a pendent node.

This lemma is used to prove the following theorem in Sub-section 3.2:

Theorem 9. If G = (V,A) is a directed graph with no multiple arcs, no odd Y -cycle and
satisfying condition (i) of Theorem 2, then Pp(G) is integral.

But first, let us remark some useful implicit properties of the graph G = (V,A) defined
above and of the polytope Pp(G).

Remark 10. Let v ∈ V , with δ−(v) = {(u1, v), (u2, v)}. If (v, t) ∈ A, then t is a pendent
node or it coincides with u1 or u2.

A bidirected path P of G = (V,A), is an ordered sequence of nodes P = v1, . . . , vp,
where (vi, vi+1) and (vi+1, vi) belong to A, for i = 1, . . . , p−1. The size of P is p. A node
vi of P is called internal if i /∈ {1, p}.
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Remark 11. If P = v1, . . . , vp is a bidirected path of G, then for each internal node vi

we have δ−(vi) = {(vi−1, vi), (vi+1, vi)}.

Let us assume that z̄ is a fractional extreme point of Pp(G).

Lemma 12. We can assume that z̄(u, v) > 0 for all (u, v) ∈ A.

Proof. Let G′ be the graph obtained after removing all arcs (u, v) with z̄(u, v) = 0. The
graph G′ has the same properties as G. Let z ′ be the restriction of z̄ on G′. Then z′ is
a fractional extreme point of Pp(G

′). �

Lemma 13. We can assume that z̄(v) > 0 for all v ∈ V with |δ−(v)| ≥ 1.

Proof. It is straightforward from Lemma 12 and constraints (4). �

Lemma 14. Let (u, v) and (v, w) be two arcs in G. Then z̄(v), z̄(u, v) and z̄(v, w) are
fractional.

Proof. Lemma 13 implies z̄(v) > 0, and Lemma 12 implies z̄(v, w) > 0 and z̄(u, v) > 0.
Using equation (3) with respect to v we get z̄(v) < 1 and z̄(v, w) < 1. And using
inequalities (4) we obtain z̄(u, v) < 1. �

Lemma 15. We may assume that |δ−(v)| ≤ 1 for every pendent node v in G.

Proof. If v is a pendent node in G and δ−(v) = {(u1, v), . . . , (uk, v)}, we can split v into
k pendent nodes {v1, . . . , vk} and replace every arc (ui, v) with (ui, vi). Then we define
z′ such that z′(ui, vi) = z(ui, v) , z′(vi) = 1, for all i, and z′(u) = z(u), z′(u,w) = z(u,w)
for every other node and arc. Let G′ be this new graph. This graph transformation does
not create cycles nor any of the graphs H1, . . . ,H4. So G′ has the same properties as G.
Moreover, it is easy to check that z ′ is a fractional extreme point of Pp+k−1(G

′). �

Lemma 16. We can assume that G does not contain a bidirected path P = v1, v2, v3,
where δ−(v1) = {(v2, v1)}, δ−(v3) = {(v2, v3)}, the inner node v2 is only adjacent to v1

and v3 and where all the arcs of P are tight for z̄ except for (v2, v3) that may or may not
be tight.

Proof. Let P be the path defined in the lemma. Define G′ as the graph obtained from G
by identifying the nodes v1 and v3, call v∗ the resulting node, and by removing the node
v2 with its incident arcs. Add a new node t and the arc (v∗, t), (see Figure 4).

t

v∗

v1 v2 v3

A B
A B

Figure 4. On the left the bidirected path P . On the right the graph G′.

Let δ = z̄(v3)− z̄(v2, v3). Define z′ from z̄ as follows:
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z′(v) =







δ if v = v∗,
1 if v = t,
z̄(v) otherwise,

; z′(u, v) =















z̄(v1, v) if u = v∗ and (v1, v) ∈ A,
z̄(v3, v) if u = v∗ and (v3, v) ∈ A,
z̄(v2) if u = v∗ and v = t,
z̄(u, v) otherwise.

Claim 1. G′ has no multiple arcs, satisfies condition (i) of Theorem 2 and does not
contain an odd Y -cycle.

Proof. (a) The graph G′ does not contain multiple arcs. In fact, let a1 and a2 be
two multiple arcs in G′. The node v∗ must be their tail and let u be their
head. Since |δ−(u)| ≥ 2, by Lemma 15 u is not a pendent node. Let (u, t′) ∈
A, by the definition of P , t′ is different from v1, v2 and v3. The cycle C ′ =
v1, (v1, v2), v2, (v2, v3), v3, (v3, u), u, (v1, u), v1 is an odd Y -cycle (u ∈ Ĉ ′), which
is not possible.

(b) If G′ contains an odd Y -cycle C ′, we should assume that v∗ ∈ Ċ ′. Assume also
that (v∗, u) and (v∗, v) are the two arcs in C ′ incident to v∗, where (v∗, u) was
obtained from (v1, u) and (v∗, v) was obtained from (v3, v). Then by removing
(v∗, u), v∗, (v∗, v) from C ′ and adding (v1, u), v1, (v2, v1), v2, (v2, v3), v3, (v3, v), we
obtain an odd Y -cycle in G, which is impossible.

(c) From (b) it follows that G′ does not contain H3. If G′ contains one of the graphs
H1, H2 or H4 as a subgraph, then v∗ belong to these graphs. Otherwise this
subgraph exists in G too. By definition δ−G′(v∗) = ∅. Suppose that G′ contains H

as a subgraph, where H is one of the graphs H1, H2 or H4. Then δ−H(v∗) = ∅. In
this case, by replacing in H v∗ by v1 or v3 with its corresponding arc in G, one
obtain one of the graphs H1, H2 or H4 as a subgraph in G, which is not possible.

�

Claim 2. z′ is a fractional extreme point of Pp(G
′).

Proof. Lemma 14 imply that z̄(v2) is fractional. So at least z ′(v∗, t) is fractional.

Let us examine the validity of z ′. By the definition of z′, we only need to show that
∑

z′(v) = p and that equation (3) with respect to v∗ is satisfied.

Notice that the validity of z̄ implies that

z̄(v2) + z̄(v2, v1) + z̄(v2, v3) = 1.(7)

Since z̄(v2, v1) = z̄(v1) and that z̄(v2, v3) = z̄(v3)− δ when replacing in (7) we obtain

z̄(v2) + z̄(v1) + z̄(v3) = 1 + δ,(8)

∑

z′(v) =
∑

v∈V z̄(v)− z̄(v1)− z̄(v2)− z̄(v3) + z′(v∗) + z′(t)
= p− z̄(v1)− z̄(v2)− z̄(v3) + δ + 1
= p.

Now let us show that equation (3) with respect to v∗ is satisfied as well.

The validity of z̄ implies that
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z̄(δ+(v1) \ {(v1, v2)}) + z̄(v1, v2) + z̄(v1) = 1(9)

z̄(δ+(v3) \ {(v3, v2)}) + z̄(v3, v2) + z̄(v3) = 1.(10)

Adding equations (9) and (10) and replacing z̄(v1, v2) and z̄(v3, v2) by z̄(v2), we obtain

z̄(δ+(v1) \ {(v1, v2)}) + z̄(δ+(v3) \ {(v3, v2)}) + 2z̄(v2) + z̄(v1) + z̄(v3) = 2.

By combining this last equation with (8), we obtain

z̄(δ+(v1) \ {(v1, v2)}) + z̄(δ+(v3) \ {(v3, v2)}) + z̄(v2) + δ = 1.

By definition this last equation corresponds to equation (3) with respect to v∗.

Now, let us show that z′ is an extreme point of Pp(G
′). Suppose the contrary, then

there must exist z′′ ∈ Pp(G
′) where every constraint tight for z ′ is also tight for z′′. Let

α =
∑

u:(v1,u)∈A

z′′(v∗, u),

β =
∑

u:(v3,u)∈A

z′′(v∗, u).

Notice that z′′(v∗)+ z′′(v∗, t)+α+β = 1. Let z∗ be the extension of z′′ to Pp(G) defined
as follows:

z∗(v) =















β + z′′(v∗) if v = v1,
z′′(v∗, t) if v = v2,
α + z′′(v∗) if v = v3,
z′′(v) otherwise,

z∗(u, v) =































z′′(v∗, v) if u = v1 and v 6= v2,
z′′(v∗, v) if u = v3 and v 6= v2,
z′′(v∗, t) if v = v2 and u = v1 or v3,
α if u = v2 and v = v3,
β + z′′(v∗) if u = v2 and v = v1,
z′′(u, v) otherwise.

It is easy to check that z∗ ∈ Pp(G) and that every constraint tight for z̄ is also tight
for z∗, which contradicts the fact that z̄ is an extreme point of Pp(G). �

3.1. Proof of Lemma 8. In this sub-section we assume that z̄ is a fractional extreme
point of Pp(G), such that

(11) z̄(u, v) = z̄(v) for every arc (u, v) ∈ A, when v is not a pendent node.

The proof of Lemma 8 will be given at the end of this sub-section. Next, we give several
lemmas useful for that proof.

Lemma 17. Let (v, w), (w, v) and (w, t) be three arcs in A. Then |δ+(v)| ≥ 2.

Proof. Suppose the contrary, that is δ+(v) = {(v, w)}. Since v and w are not pendent
nodes, assumption (11) implies z̄(w, v) = z̄(v) and z̄(v, w) = z̄(w). Constraint (3) with
respect to v implies z̄(v, w) = 1 − z̄(v). Thus z̄(w) = 1 − z̄(v) = 1 − z̄(w, v). Hence
constraint (3) with respect to w implies that z̄(w, t) = 0, which contradicts Lemma 12.

�
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Lemma 18. We can assume that G does not contain a bidirected path P of size four,
where its internal nodes are adjacent to only their neighbors in P .

Proof. Assume the contrary. Let P = v1, v2, v3, v4 a bidirected path of size four, where
δ+(v2) = {(v2, v1), (v2, v3}, δ−(v2) = {(v1, v2), (v3, v2)}, δ+(v3) = {(v3, v2), (v3, v4)} and
δ−(v3) = {(v2, v3), (v4, v3)}.

Consider the graph G′ = (V ′, A′) obtained from G by identifying the nodes v1 and
v4 and removing the nodes v2 and v3 (with their incident arcs). Call v∗ the node that
results from identifying v1 and v4. See Figure 5.

v∗v1 v2 v3 v4

A B A

B

Figure 5. On the left the bidirected path of Lemma 18. On the right
the graph G′.

Define z′ from z̄ as follows:

z′(v) =

{

z̄(v2, v1) if v = v∗

z̄(v) otherwise,
; z′(u, v) =























z̄(v1, v) if u = v∗ and (v1, v) ∈ A,
z̄(u, v1) if v = v∗ and (u, v1) ∈ A,
z̄(v4, v) if u = v∗ and (v4, v) ∈ A,
z̄(u, v4) if v = v∗ and (u, v4) ∈ A,
z̄(u, v) if u 6= v∗ and v 6= v∗.

We will prove that G′ has the same properties as G and that z ′ is a fractional extreme
point of Pp′(G′), for some positive integer p′.

Claim 1. v1 and v4 have no neighbor in common.

Proof. Let u be a common neighbor of v1 and v4. We have four cases to consider:

(a) (v1, u) and (u, v4) are in A. Then the ordered sequence v1, u, v4, v3, v2, v1 defines
and odd directed cycle, which is not possible.

(b) (u, v1) and (v4, u) are in A. By symmetry we get the same contradiction as in
(a).

(c) (u, v1) and (u, v4) are in A. By Lemma 17, |δ+(v1)| ≥ 2. Thus there must exist an
arc (v1, v

′), with v′ /∈ {v1, v2, v3, v4}. Suppose v′ = u. Then the ordered sequence
u, v4, v3, v2, v1, u defines a directed odd cycle in G, which is impossible. And if
v′ 6= u, then the cycle C ′ = u, (u, v1), v1, (v2, v1), v2, (v2, v3), v3, (v3, v4), v4, (u, v4), u

is an odd Y -cycle, (v1 and v4 are in Ĉ ′ and v3 ∈ C̃ ′). This contradicts the fact
that G does not contain an odd Y -cycle.

(d) (v1, u) and (v4, u) are in A. Lemma 15 implies that u is not a pendent node.
Thus we must have an arc (u, v) ∈ A. The node v is different from v2 and v3.
Suppose that v is different from v1 and v4. Then C ′ = u, (v1, u), v1, (v1, v2), v2,

(v3, v2), v3, (v4, v3), v4, (v4, u), u is an odd Y -cycle (u and v2 are in Ĉ ′ and v3 in

C̃ ′). If v = v4, then the ordered sequence u, v4, v3, v2, v1, u define an odd directed
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cycle. Also if v = v1 one can construct by symmetry and odd directed cycle. In
all cases, G contain an odd Y -cycle, which is not possible.

�

Claim 2. G′ does not contain an odd Y -cycle.

Proof. Assume the contrary and let C ′ be an odd Y -cycle in G′. The cycle C ′ must
contain the node v∗, otherwise C ′ is an odd Y -cycle in G too, which is impossible. We
distinguish four cases as shown in Figure 6.

v∗

uv

(d)

v∗

uv

(c)

v∗

uv

(b)

v∗

uv

(a)

Figure 6. v∗ with its incident arcs in C ′.

(a) v∗ ∈ Ċ ′. Let (v1, v) ∈ A and (v4, u) ∈ A. Let C be the Y -cycle in G obtained
from C ′ by removing the node v∗ and the arcs (v∗, u) and (v∗, v), and by adding
the nodes v1, v2, v3, v4 and the arcs (v1, v), (v1, v2), (v2, v3), (v4, v3) and (v4, u).

We have |V (C)| = |V (C ′)|+3 and |Ĉ| = |Ĉ ′|+1. These imply that |V (C)|+|Ĉ | =

|V (C ′)|+ |Ĉ ′|+ 4. Thus C is odd, which is impossible.

(b) v∗ ∈ Ĉ ′. Let (v, v1) ∈ A and (u, v4) ∈ A. We have two sub-cases:
– Suppose that there is an arc (v∗, t) ∈ A′, t 6∈ V (C ′). Suppose that (v∗, t)

was obtained from (v1, t) ∈ A. Let C be the Y -cycle in G obtained from C ′

by removing the node v∗ and the arcs (u, v∗) and (v, v∗), and by adding the
nodes v1, v2, v3, v4 and the arcs (v, v1), (v2, v1), (v2, v3), (v4, v3) and (u, v4).

We have that |V (C)|+ |Ĉ| = |V (C ′)| + |Ĉ ′| + 4. So C is an odd Y -cycle of
G.

– If the arc (v∗, t) ∈ A′, t 6∈ V (C ′), does not exist, we have that u ∈ C̃ ′, say.
Also (v∗, u) ∈ A′. Let C be the Y -cycle in G obtained from C ′ by removing
the node v∗ and the arcs (u, v∗) and (v, v∗), and by adding the nodes v1,
v2, v3, v4 and the arcs (v, v1), (v1, v2), (v3, v2), (v3, v4) and (u, v4). We have

that |V (C)|+ |Ĉ| = |V (C ′)|+ |Ĉ ′|+ 4. Thus C is odd, which is impossible.

(c) v∗ ∈ C̃ ′. Let (v1, v) ∈ A and (u, v4) ∈ A. Let C be the Y -cycle in G obtained
from C ′ by removing the node v∗ and the arcs (u, v∗) and (v∗, v), and by adding
the nodes v1, v2, v3, v4 and the arcs (v1, v), (v2, v1), (v2, v3), (v3, v4) and (u, v4).
We have that C is an odd Y -cycle, a contradiction.

(d) This case is similar to the case (c).

�

Claim 3. G′ does not contain any of the graphs Hi, 1 ≤ i ≤ 4, as a subgraph.

Proof. By Claim 2 G′ cannot contain H3. Remark that |δ−(v∗)| ≤ 2, otherwise G
contains H4 as a subgraph. When |δ−(v∗)| ≤ 1, the claim is straightforward. Hence
we assume that |δ−(v∗)| = 2. Let δ−(v∗) = {(u, v∗), (v, v∗)}, then in G we must have
δ−(v1) = {(u, v1), (v2, v1)} and δ−(v4) = {(v, v4), (v3, v4)}, otherwise G contains H4.
If G′ contains one of the graphs H1, H2 or H4, then v∗ must belong to these graphs
otherwise these graphs exist in G too. We also suppose that v∗ is the head of at least
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two arcs in these graphs, the other cases are straightforward. Since |δ−(v∗)| = 2, then
G′ cannot contain H2 nor H4.

Assume that G′ contains H1. Let (u, v∗), (v, v∗), (v∗, w) and (w, t) the four arcs that
compose H1. Assume that (u, v1) and (v, v4) are in G. We must have (v1, w) or (v4, w)
in G. Say (v1, w) is an arc of G. Then the four arcs (u, v1), (v2, v1), (v1, w) and (w, t)
are in G. Thus G contains H1 as a subgraph, which is impossible. �

Claim 4. z′ ∈ Pp−1(G
′).

Proof. The definition of P , assumption (11) and equalities (3) with respect to v1, v2, v3

and v4 imply the following:

z̄(v2) + z̄(v2, v1) + z̄(v2, v3) = 1,(12)

z̄(v1) = z̄(v2, v1),(13)

z̄(δ+(v1) \ {(v1, v2)}) = z̄(v2, v3),(14)

z̄(v3) = z̄(v2, v3),(15)

z̄(v4) = z̄(v2, v1),(16)

z̄(δ+(v4) \ {(v4, v3)}) = z̄(v2).(17)

Any constraint that does not contain z ′(v∗) is satisfied by definition. Let us examine
those constraints that contain z ′(v∗).

• Let us show that z′ satisfies equality (2).
∑

v∈V ′

z′(v) =
∑

v∈V \{v1,v2,v3,v4}

z̄(v) + z′(v∗)

= p− z̄(v1)− z̄(v2)− z̄(v3)− z̄(v4) + z′(v∗).

By (13) z̄(v1) = z̄(v2, v1) and by (15) z̄(v3) = z̄(v2, v3). Replacing this in (12),
we obtain z̄(v1) + z̄(v2) + z̄(v3) = 1. Also from (16) and the definition of z ′(v∗)
we have that z̄(v4) = z′(v∗). Thus

∑

v∈V ′ z′(v) = p− 1.
• Let us show that z′ satisfies equality (3) with respect to v∗. We have

z′(δ+(v∗)) + z′(v∗) = z̄(δ+(v1) \ {(v1, v2)}) + z̄(δ+(v4) \ {(v4, v3)}) + z′(v∗).

If we combine the above equality with (14) and (17), we obtain

z′(δ+(v∗)) + z′(v∗) = z̄(v2, v3) + z̄(v2) + z′(v∗).

Now replace z′(v∗) of the right hand side of the above equality by its value
and evaluate this side using (12), we get

z′(δ+(v∗)) + z′(v∗) = 1.

• Finally, let us show that z ′ verifies (4) with respect to v∗. Let (u, v∗) be an arc
in G′ and let us show that z′(u, v∗) ≤ z′(v∗).

By definition z′(u, v∗) = z̄(u, v1) or z′(u, v∗) = z̄(u, v4). The definition of
z′(v∗), (13) and (16) imply z ′(v∗) = z̄(v1) = z̄(v4). Hence the fact that z̄(u, v1) ≤
z̄(v1) or z̄(u, v4) ≤ z̄(v4) imply immediately z′(u, v∗) ≤ z′(v∗). Also remark that
z′(v∗, u) ≤ z′(u) for all (v∗, u) ∈ A′.

�
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Claim 5. z′ is a fractional extreme point of Pp−1(G
′).

Proof. By Claim 4, we have z ′ ∈ Pp−1(G
′). Lemma 14 and the definition of z ′ imply that

z′ is fractional. Suppose that z ′ is not an extreme point of Pp−1(G
′). Thus there must

exist z′′ ∈ Pp−1(G
′), z′′ 6= z′, where each constraint that is tight for z ′ is also tight for

z′′. Let
α =

∑

u:(v1,u)∈A

z′′(v∗, u),

β =
∑

u:(v4,u)∈A

z′′(v∗, u).

Notice that z′′(v∗)+α+β = 1. Let z∗ be the extension of z′′ to Pp(G) defined as follows:

z∗(v) =















z′′(v∗) if v = v1 or v = v4,
β if v = v2,
α if v = v3,
z′′(v) otherwise,

z∗(u, v) =















































z′′(v∗, v) if u = v1 and v 6= v2,
z′′(u, v∗) if u 6= v2 and v = v1,
z′′(v∗, v) if u = v4 and v 6= v3,
z′′(u, v∗) if u 6= v3 and v = v4,
β if v = v2 and u = v1 or v3,
α if v = v3 and u = v2 or v4,
z′′(v∗) if (u, v) = (v2, v1) or (v3, v4),
z′′(u, v) otherwise.

It is easy to check that z∗ ∈ Pp(G) and that every constraint tight for z̄ is also tight
for z∗, which contradicts the fact that z̄ is an extreme point of Pp(G). �

Claim 1 implies that G′ has no multiple arcs. Hence Claims 1, 2 and 3 show that G′

has the same properties as G. Claim 5 shows that z ′ is a fractional extreme point of
Pp−1(G

′). This completes the proof of this lemma. �

Lemma 19. G does not contain a bidirected path P = v1, v2, v3, satisfying the following:

(i) (v3, t) ∈ A with t a pendent node, and
(ii) δ−(v1) = {(v2, v1)}.

Proof. Suppose the contrary and let P = v1, v2, v3 be a bidirected path satisfying (i) and
(ii). Let l be a labeling function, where the node v2 with the arcs (v1, v2) and (v3, v2)
receive the label 1; the node v1 with the arcs (v2, v1) and (v3, t) receive the label −1; and
all other nodes and arcs receive the label 0.

The vector z̄l satisfies with equality each constraint among (2)-(6) that was satisfied
with equality by z̄. In fact, Lemma 14 implies that the value of z̄, corresponding to the
nodes and arcs that received a label different from 0, is fractional. This implies that any
inequalities (5) or (6) that are satisfied with equality by z̄ remain satisfied with equality
by z̄l. Let us see that equations (3) are satisfied. The arcs that receive a non-zero label
are incident to the nodes v1, v2 and v3. Equation (3) with respect to v1 is satisfied
since v1 and (v1, v2) receive opposite labels, the same holds for v2. Also, the unique
arcs incident to v3 that receive a non-zero label are (v3, v2) and (v3, t), and they receive
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opposite labels. Since v3 receives a zero label, then equation (3) with respect to v3 is
satisfied. Equality (2) is satisfied since v1 and v2 received opposite labels and the other
nodes received the label 0.

The unique nodes with labels different from 0 are v1 and v2. Notice that (v2, v1)
received the same label as v1 and by hypothesis (ii) is the unique arc directed into v1.
Also by Remark 11 the only arcs directed into v2 are (v1, v2) and (v3, v2) and they
received the same label as v2. Hence any inequality (4) that is satisfied with equality by
z̄ remains satisfied with equality by z̄l. This is in contradiction with the fact that z̄ is
an extreme point of Pp(G). �

Lemma 20. G does not contain a bidirected path P = v1, v2, v3, v4, such that v1 and v4

are adjacent to a pendent node.

Proof. Suppose the contrary and let P = v1, v2, v3, v4 be a bidirected path such that
(v1, t) and (v4, t

′) are in A, where t and t′ are pendent nodes.

Assign the label 1 to the node v3 and the arcs (v1, t), (v2, v3) and (v4, v3); assign the
label −1 to the node v2 and the arcs (v1, v2), (v3, v2) and (v4, t

′); assign to the other
nodes and arcs the label 0. Call this labeling l.

As in the proof of Lemma 19, one can easily check that z̄l satisfies with equality any
constraint among (2)-(6) that is satisfied with equality by z̄. This contradicts the fact
that z̄ is an extreme point of Pp(G). �

Lemma 21. If G contains a cycle of size at least three, then it contains a Y -cycle of the
same size.

Proof. Let C ′ = v0, a0, v1, a1, . . . , ap−1, vp, be a simple cycle with p ≥ 3. Suppose that

C ′ is a not a Y -cycle. There must exist a node vi ∈ Ĉ ′ where conditions (i) and (ii) of
Definition 1 are not satisfied. Let (vi−1, vi) and (vi+1, vi) be the two arcs of C ′ directed
into vi. By Lemma 13, z̄(vi) > 0. Since vi is not a pendent node, there must exist an
arc (vi, u) in G. The fact that (i) is not satisfied implies that u ∈ V (C ′). If u is different
from vi−1 and vi+1, then C ′ is of size at least four. In this case, G must contain one of the
graphs H1 or H3 as a subgraph, which is impossible. Thus δ+(vi) consists of one of the
arcs (vi, vi−1) or (vi, vi+1), or both. Assume (vi, vi−1) ∈ A, since Definition 1 (ii) is not

satisfied vi−1 must be in Ċ ′, so (vi−1, vi−2) ∈ A(C ′) with vi−2 ∈ V (C ′) . Then Lemma 17

implies that (vi, vi+1) ∈ A. Also (vi, vi+1) ∈ A implies vi+1 ∈ Ċ ′, so (vi+1, vi+2) ∈ A(C ′),
(see Figure 7).

vi

vi+1

vi+2

vi−1

vi−2

Figure 7. Dashed lines represent arcs in C ′.
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Thus we may suppose that for any node vi ∈ Ĉ ′ that does not satisfy Definition 1 (i)

and (ii), δ+(vi) = {(vi, vi−1), (vi, vi+1)} and both nodes vi−1 and vi+1 are in Ċ ′. Define
C from C ′, recursively, following the procedure below:

Step 0. A(C)← A(C ′), V (C)← V (C ′), C ← C ′.

Step 2. If there exist vi ∈ Ĉ, a node not satisfying Definition 1 (i) and (ii), go to Step 3.
Otherwise stop, C is a Y -cycle.

Step 3. A(C)← (A(C)\{(vi−1, vi), (vi+1, vi)})∪{(vi, vi−1), (vi, vi+1)}. C is the new cycle
defined by A(C). Go to Step 2.

Each Step 3 decreases by one the number of nodes in Ĉ. Thus the procedure must
end. �

Lemma 22. Let C = v0, a0, v1, a1, . . . , ap−1, vp, p ≥ 3, be an even Y -cycle with |Ĉ(i)|
maximum. Then C does not contain a blocking node.

Proof. Suppose that C contains a blocking node vi.

Case 1. vi is a blocking node satisfying Definition 6 (i). Thus vi ∈ C̃, (vi−1, vi), (vi, vi+1)

in A(C), (vi+1, vi) in A \ A(C) and vi+1 ∈ C̃. Thus (vi+1, vi+2) ∈ A(C) (see Figure 8).
Notice that vi+2 6= vi−1, otherwise C is a directed odd cycle.

vi

vi+1

vi+2

vi−1

Figure 8. Dashed lines represent arcs in C.

Claim 1. If (vi, u) ∈ A, then u ∈ V (C).

Proof. Suppose the contrary, let (vi, u) ∈ A with u /∈ V (C). The node vi+2 is not in

C̃, otherwise the cycle C ′, where V (C ′) = V (C) and A(C ′) = (A(C) \ {(vi, vi+1)}) ∪

{(vi+1, vi)}, is an odd Y -cycle. Thus vi+2 must be in Ĉ. If the cycle C ′ as defined
previously is a Y -cycle, then it is odd. Thus C ′ is not a Y -cycle, which implies that
(vi+2, vi+1) ∈ A \ A(C) and vi+2 /∈ Ĉ(i). Replace the arcs (vi, vi+1) and (vi+1, vi+2) by
(vi+1, vi) and (vi+2, vi+1). Call C ′′ the resulting cycle. It is easy to check that C ′′ is a

Y -cycle with |Ĉ ′′
(i)| = |Ĉ(i)|+ 1, this contradicts the fact that C is a Y -cycle with |Ĉ(i)|

maximum. �

Claim 2. δ+(vi) = {(vi, vi−1), (vi, vi+1)} and δ−(vi) = {(vi−1, vi), (vi+1, vi)}.

Proof. Lemma 17 implies that |δ+(vi)| ≥ 2. Let (vi, u) ∈ δ+(vi), where u 6= vi+1. Claim 1
implies that u ∈ V (C). If u 6= vi−1, then G contains one of the graphs of Figure 1 as
a subgraph. Thus u = vi−1 and δ+(vi) = {(vi, vi−1), (vi, vi+1)}. To finish the proof of
this claim, remark that since G does not contain H4 as a subgraph the only arcs in A
directed into vi are (vi−1, vi) and (vi+1, vi). �
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Claim 3. vi−1 ∈ Ċ.

Proof. Suppose that vi−1 /∈ Ċ. It follows that vi−1 ∈ C̃, thus (vi−2, vi−1) ∈ A(C). Re-
mark that vi−1 is a blocking node satisfying Definition 6 (i). Thus Claim 2 may be applied
to vi−1, so δ+(vi−1) = {(vi−1, vi−2), (vi−1, vi)} and δ−(vi−1) = {(vi−2, vi−1), (vi, vi−1)}.
Thus the sequence P = vi−2, vi−1, vi, vi+1 is a bidirected path of size four, where its
internal nodes vi and vi−1 are adjacent to only their neighbors in P . This contradicts
Lemma 18. �

Thus vi−1 must be in Ċ and (vi−1, vi−2) ∈ A(C), as shown by Figure 9. Notice that
vi−2 6= vi+2, otherwise the Y -cycle C will be odd.

vi

vi+1

vi+2

vi−1

vi−2

Figure 9. Dashed lines represent arcs in C.

P = vi−1, vi, vi+1 is a bidirected path of size three. Lemma 16 implies that at least
one of the arcs (u, vi−1) or (u, vi+1) exists, with u 6= vi.

Suppose (u, vi−1) ∈ A. The case when (u, vi+1) ∈ A is symmetric. Since vi−2 is not a
pendent node, Remark 10 implies that u = vi−2, so δ−(vi−1) = {(vi, vi−1), (vi−2, vi−1)}.
If δ+(vi−1) = {(vi−1, vi), (vi−1, vi−2)}, then P = vi−2, vi−1, vi, vi+1 is a bidirected path
that contradicts Lemma 18. Hence we may assume that (vi−1, t) ∈ A and t is a pendent
node.

If δ−(vi+1) = {(vi, vi+1)}, then P = vi−1, vi, vi+1 is a bidirected path satisfying the
conditions (i) and (ii) of Lemma 19, which is impossible. Thus we must have an arc
(u, vi+1) ∈ A with u 6= vi. Since vi+2 is not a pendent node, Remark 10 implies that
u = vi+2. There must exist also an arc (vi+1, t

′) ∈ A, where t′ is a pendent node, otherwise
the bidirected path P = vi−1, vi, vi+1, vi+2 contradicts Lemma 18. The situation is
summarized in Figure 10.

vi tt′

vi+1

vi+2

vi−1

vi−2

Figure 10. Dashed lines represent arcs in C.

If vi+2 ∈ C̃, then vi+1 is a blocking node satisfying Definition 6 (i). But since

(vi+1, t
′) ∈ A and t′ /∈ V (C), this contradicts Claim 1. Thus vi+2 ∈ Ĉ. We claim
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that vi+2 /∈ Ĉ(i). Indeed, suppose the contrary let (vi+2, u) ∈ A and u /∈ V (C). The
node u must be a pendent node, otherwise G contains one of the graphs H1, H3 or H4 as
a subgraph. Thus, the sequence P = vi−1, vi, vi+1, vi+2 is a bidirected path of size four,
where vi−1 and vi+2 are adjacent to pendent nodes, which is impossible by Lemma 20.

Now it is easy to check that the cycle C ′ obtained from C by removing (vi+1, vi+2)

and adding (vi+2, vi+1) is a Y -cycle with |Ĉ ′
(i)| = |Ĉ(i)| + 1. This contradicts the fact

that C is chosen so that |Ĉ(i)| is maximum.

Case 2. vi is a blocking node satisfying Definition 6 (ii). Thus vi ∈ Ĉ; (vi−1, vi),

(vi+1, vi) belong to A(C); (vi, vi+1), (vi, vi−1) belong to A \ A(C); and vi−1, vi+1 ∈ C̃.
It follows that (vi+2, vi+1) and (vi−2, vi−1) are in A(C) (see Figure 11). Notice that
vi+2 6= vi−2, otherwise C is an odd Y -cycle.

vi

vi+1

vi+2

vi−1

vi−2

Figure 11. Dashed lines represent arcs in C.

Lemma 17 implies that (vi−1, u) ∈ A and (vi+1, u
′) ∈ A, with u 6= vi, u′ 6= vi. By

Remark 10, u is a pendent node or u = vi−2, and also u′ is a pendent node or u′ = vi+2.
Also both nodes vi−1 and vi+1 cannot be adjacent to a pendent node. Otherwise, the
cycle obtained from C by removing (vi−1, vi) and (vi+1, vi), and by adding (vi, vi−1) and
(vi, vi+1) is an odd Y -cycle, which is not possible. Thus we have two sub-cases; at least

(a) u = vi−2 and vi−1 is not adjacent to a pendent node, or
(b) u′ = vi+2 and vi+1 is not adjacent to a pendent node.

Below we treat sub-case (a), the sub-case (b) is symmetric. Let u = vi−2, vi−1 is not
adjacent to a pendent node and (vi−1, vi−2) ∈ A \ A(C). The node vi must be adjacent
to a pendent node t, otherwise the bidirected path P = vi−2, vi−1, vi, vi+1 contradicts
Lemma 18. The situation is described in Figure 12

vi

t

vi+1

vi+2

vi−1

vi−2

Figure 12. Dashed lines represent arcs in C.

The node vi−2 must be in Ċ. Otherwise, vi−2 is a blocking node by Definition 6 (i),
which is impossible as shown in Case 1. Thus, (vi−2, vi−3) ∈ A(C). By Lemma 19, we
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must have an arc (u′, vi−2), u′ 6= vi−1. Since vi−3 is not a pendent node, Remark 10
implies u′ = vi−3. Also, Lemma 18 implies that vi−2 is adjacent to a pendent node t′.

If vi−3 = vi+2 then the cycle C ′ obtained from C, by replacing the arc (vi−2, vi−3) by
(vi−3, vi−2) and replacing the arc (vi−2, vi−1) by (vi−1, vi−2), is an odd Y -cycle. Thus
vi−3 6= vi+2.

If (vi−3, vi−4) ∈ A(C) and vi−4 ∈ C̃, then the cycle C ′ as defined above is an odd
Y -cycle. A contradiction.

Suppose (vi−3, vi−4) ∈ A(C) and vi−4 ∈ Ĉ. Since vi+2 /∈ Ĉ, we have vi−4 6= vi+2. If
the cycle C ′ as defined above is a Y -cycle, then it is odd. Thus C ′ is not a Y -cycle, which
implies that (vi−4, vi−3) ∈ A\A(C) and vi−4 /∈ Ĉ(i). Thus the cycle C ′′ defined from C by
replacing (vi−3, vi−4) by (vi−4, vi−3), replacing (vi−2, vi−3) by (vi−3, vi−2) and replacing

(vi−2, vi−1) by (vi−1, vi−2) is a Y -cycle with |Ĉ ′′
(i)| = |Ĉ(i)| + 1, which contradicts the

fact that |Ĉ(i)| is maximum. Figure 13 illustrates this case.

vi

t t′

vi+1

vi+2

vi−1 vi−2 vi−3

vi−4

Figure 13. Dashed lines represent arcs in C. The node vi−4 is not in Ĉ(i).

Now suppose (vi−4, vi−3) ∈ A(C), so vi−3 ∈ Ĉ. In this case, the cycle obtained from C
by replacing (vi−2, vi−3) by (vi−3, vi−2) is an odd Y -cycle, this is again a contradiction.

�

Lemma 23. G does not contain a cycle of size at least three.

Proof. Assume the contrary. Suppose that G admits such a cycle. From Lemma 21,
we may assume that G contains an even Y -cycle. Among all these Y -cycles, let C =
v0, a0, v1, a1, . . . , ap−1, vp be an even Y -cycle such that |Ĉ(i)| is maximum. Lemma 22
implies that C does not contain a blocking node. Hence assumption (a1) of Lemma 7
is satisfied. Also z̄ ∈ Pp(G) and Lemma 14 implies that assumption (a2) of Lemma 7
is satisfied. Also the graph G is a directed graph with no multiple arcs and satisfies
(i) of Theorem 2. It follows from Lemma 7 that z̄ is not an extreme point of Pp(G), a
contradiction. �

Now we can prove the main result of this sub-section.

Proof of Lemma 8:

Denote by Pair(G) the set of pair of nodes {u, v} such that both arcs (u, v) and (v, u)
belong to A.

The proof is by induction on |Pair(G)|. If |Pair(G)| = 0 then G is an oriented graph
that satisfies conditions (i) and (ii) of Theorem 3. Thus by Theorem 3, Pp(G) has no
fractional extreme point so the lemma is true. Suppose that the lemma is true for every
directed graph H with no multiple arcs, no odd Y -cycle and satisfying condition (i)
of Theorem 2 and |Pair(H)| ≤ m, m ≥ 0. Let G = (V,A) be a directed graph with
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no multiple arcs, no odd Y -cycle, satisfying condition (i) of Theorem 2 and such that
|Pair(G)| = m + 1.

Let z̄ be a fractional extreme point of Pp(G) where z̄(u, v) = z̄(v) for each arc (u, v)
with v not a pendent node. Notice that Lemma 23 applies, so G does not contain a cycle.

Let (u, v) and (v, u) be two arcs in G. Denote by G(u, v) the graph obtained from G
by removing the arc (u, v) and adding a new arc (u, t), where t is a new pendent node.
Define z̃ ∈ Pp̃(G(u, v)), p̃ = p + 1, to be z̃(u, t) = z̄(u, v), z̃(t) = 1 and z̃(r) = z̄(r),
z̃(r, s) = z̄(r, s) for every other node and arc.

The graph G(u, v) is directed with no multiple arcs and satisfies condition (i) of The-
orem 2. Since G does not contain a cycle, we have that G(u, v) has no odd Y -cycle.
Moreover |Pair(G(u, v))| ≤ m, hence the induction hypothesis applies for G(u, v). We
have that z̃ is a fractional vector in Pp̃(G(u, v)) with z̃(u, v) = z̃(v) for each arc (u, v),
with v not pendent. By the induction hypothesis z̃ is not an extreme point. Thus,
there must exist a set of extreme points of Pp̃(G(u, v)), z1, . . . , zk, where each constraint

that is tight for z̃ is also tight for each of z1, . . . , zk, and z̃ is a convex combination of
z1, . . . , zk. Let us see that all this extreme points are in 0-1. In fact, suppose that z1

is a fractional extreme point of Pp̃(G(u, v)). By the induction hypothesis, we must have
an arc (u′, v′) in G(u, v) with v′ is not a pendent node and z1(u′, v′) < z1(v′). Since v′

is not a pendent node, then by construction the arc (u′, v′) is in G too. Thus we must
have z̃(u′, v′) < z̃(v′). But this implies that v′ must be a pendent node, a contradiction.

Since all the extreme points z1, . . . , zk are in 0-1 and z̃(v, u) > 0, there must exist one
vector among z1, . . . , zk, say z1, with z1(v, u) = 1. From z1 define z′′ ∈ Pp(G) as follows:
z′′(u, v) = z1(u, t) and z′′(r, s) = z1(r, s), z′′(r) = z1(r), for all other nodes and arcs. All
constraints that are tight for z̄ are also tight for z ′′. To see this, it suffices to remark
that z′′(v) = z1(v) = 0 and z′′(u, v) = z1(u, t) = 0. This contradicts the fact that z̄ is an
extreme point of Pp(G). Thus the proof of Lemma 8 is complete. �

3.2. The proof of Theorem 9. Assume that z̄ is a fractional extreme point of Pp(G).
In this subsection, we will not further suppose that z̄(u, v) = z̄(v) when v is not a pendent
node.

Lemma 24. Let (u, v) be an arc such that v is not pendent. Let G′ be the graph obtained
from G by removing (u, v) and adding a new pendent node v ′ and the arc (u, v′). If G′

does not contain an odd Y -cycle, then we can assume that z̄(u, v) = z̄(v).

Proof. Suppose that z̄(u, v) < z̄(v). Define z ′(u, v′) = z̄(u, v), z′(v′) = 1, and z′(s, t) =
z̄(s, t), z′(r) = z̄(r) for all other arcs and nodes. It is easy to check that G′ share the
same properties as G and that z ′ is a fractional extreme point of Pp+1(G

′). �

Lemma 25. Let G = (V,A) be a directed graph with no odd Y -cycle. If (u, v) and (v, u)
are two arcs in A and δ−(u) = {(v, u)}, then the graph G′ obtained from G by removing
(u, v) and adding a new pendent node v ′ and the arc (u, v′) does not contain an odd
Y -cycle.

Proof. It is easy to see that any odd Y -cycle in G′ is also an odd Y -cycle in G. This is
because the node u cannot belong to Ĉ for any cycle C in G′. �

Let v a node in G. We call v a knot if δ−(v) = {(u, v), (w, v)}, u 6= w and both
(v, u) and (v, w) belong to δ+(v). Let z̄ be a fractional extreme point of Pp(G). Recall
that z̄(u, v) > 0 for all (u, v). Let v be a knot in G as defined above, recall that from
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Lemma 14, z̄(v), z̄(u, v) and z̄(w, v) are fractional. If z̄(u, v) < z̄(v) or z̄(w, v) < z̄(v),
then v is called a fragile knot and we say that the pair (G, z̄) contains a fragile knot.

Let (G, z̄) be a pair containing a fragile knot v. The arcs incident to v are (u, v),
(v, u), (w, v), (v, w) and there is possibly other arcs (v, t) with t different from u and w.
Assume that z̄(u, v) < z̄(v). Define the graph G(v) form G as follows. Remove v and
its incident arcs. Add four nodes v′, v′′, s′ and a pendent node t′. Add the arcs (u, v′),
(v′, u), (v′, s′), (s′, t′), (v′′, w), (w, v′′) and the set of arcs (v′′, t) whenever (v, t) belongs
to G, t 6= u,w.

Lemma 26. If G has no multiple arcs, no odd Y -cycle and satisfies condition (i) of
Theorem 2, then G(v), as defined above, has the same properties.

Proof. Remark first that if there exists an arc (v, t) with t different from u and w, then
t is a pendent node. Otherwise G contains H1 or H3 as a subgraph. Using this remark,
one can see that the nodes v′ and v′′ cannot belong to any cycle of size at least three in
G(v). Thus if there is an odd Y -cycle in G(v), then this is also an odd Y -cycle in G,
which is not possible.

By definition G(v) does not contain multiple arcs.

Now suppose that G(v) contains one of the graphs H1, H2 or H4 as a subgraph, call it
H. Remark that H cannot contain (s′, t′). If it contains (v′, s′), then by replacing it by
(v, w) one obtains the same subgraph in G. If H does not contain (v ′, s′) and contains the
node v′, then the set of nodes in H where v′ is replaced by v induces the same subgraph
in G, which is not possible. Similar arguments can be used with v ′′. Finally, If H does
not contain v′ nor v′′, then H is also a subgraph in G. �

Lemma 27. Let G = (V,A) be a directed graph. If Pp(G) admits a fractional ex-
treme point z̄, where (G, z̄) contains a fragile knot v, (z̄(u, v) < z̄(v)), then P p̃(G(v)) 6=
p̃MP (G(v)), with p̃ = p + 2.

Proof. Suppose that Pp̃(G(v)) = p̃MP (G(v)). Define z̃ ∈ Pp̃(G(v)) to be

z̃(l) =















z̄(v) if l = v′or l = v′′,
1− z̄(v) if l = s′,
1 if l = t′,
z̄(l) otherwise

; z̃(l, k) =























































z̄(u, v) if (l, k) = (u, v′),
z̄(v, u) if (l, k) = (v′, u),
1− z̄(v)
−z̄(v, u) if (l, k) = (v′, s′),
z̄(v, w) if (l, k) = (v′′, w),
z̄(w, v) if(l, k) = (w, v′′),
z̄(v, t) if (v, t) ∈ A, t 6= u,w,

and (l, k) = (v′′, t),
z̄(l, k) otherwise.

The vector z̃ is fractional, so z̃ is not an extreme point of Pp̃(G(v)). Since Pp̃(G(v))
is integral, there is a 0-1 vector z∗ ∈ Pp̃(G(v)) with z∗(v′, s′) = 1 so that the same
constraints that are tight for z̃ are also tight for z∗. From z∗ define z′′ ∈ Pp(G) as
follows:
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z′′(l) =

{

z∗(v′′) if l = v,
z∗(l) otherwise.

; z′′(l, k) =







































z∗(u, v′) if (l, k) = (u, v),
z∗(v′, u) if (l, k) = (v, u),
z∗(v′′, w) if (l, k) = (v, w),
z∗(w, v′′) if(l, k) = (w, v),
z∗(v′′, t) if (v, t) ∈ A, t 6= u,w,

and (l, k) = (v, t),
z∗(l, k) otherwise.

All constraints that are tight for z̄ are also tight for z ′′. To see this, it suffices to notice
that

∑

v∈V z′′(v) = p since z∗(s′) = z∗(t′) = 1. Also remark that z∗(u, v′) = z∗(v′) = 0
and that z∗(v′′) may be equal to 0 or 1, so we may have z ′′(u, v) = 0 < z′′(v) = 1 but
this inequality was not tight for z̄. �

Lemma 28. Let (u, v) and (v, u) be two arcs in G. If δ+(u) = {(u, v)} and z̄(v, u) =
z̄(u), then z̄(u, v) = z̄(v) for z̄ ∈ Pp(G).

Proof. Immediate from the validity of z̄. �

All the material defined above permits us to characterize pMP (G) in a special class of
graphs defined in the following theorem. This theorem will be used to prove Theorem 9.

Theorem 29. Let G = (V,A) be a directed graph with no multiple arcs, no odd Y -cycle
and satisfying condition (i) of Theorem 2. If G does not contain a knot, then Pp(G) is
integral

Proof. Suppose that the theorem is false. Let z̄ be a fractional extreme point of Pp(G).
By Lemma 8, there must exist an arc (u, v) with z̄(u, v) < z̄(v) and v is not a pendent
node. Lemma 24 implies that the graph G′ obtained from G by removing (u, v) and
adding a pendent node v′ with the arc (u, v′) contains an odd Y -cycle C. Also, since G
contains no knot, this implies in G that δ+(u) = {(u, v)} and δ−(u) = {(s, u), (v, u)},
where s and v are the nodes that are adjacent to u in C. Remark that v must be in Ċ,
otherwise C is also an odd Y -cycle in G, which is not possible.

We have that δ−(v) = {(u, v)}. In fact, since v ∈ Ċ we must have an arc (v, w) in C.
Because G has no knot this implies that the arc (w, v) cannot exist. So suppose (w ′, v)
is an arc of G with w′ 6= w, w′ 6= u. Since w is in C, it is not a pendent node and hence
G does not satisfies condition (i) of Theorem 2.

Now, if we remove (v, u) and we add a new pendent node u′ and the arc (v, u′) the
resulting graph does not contain an odd Y -cycle, so Lemma 24 implies that z̄(v, u) = z̄(u).
But in this case, Lemma 28 implies that z̄(u, v) = z̄(v), a contradiction. �

Now we prove the main result of this sub-section.

Proof of Theorem 9:

Denote by knot(G) the set of knots in G. The proof is by induction on |knot(G)|. If
|knot(G)| = 0, then by Theorem 29 Pp(G) is integral.

Suppose that the theorem is true for every directed graph with no multiple arcs, with
no odd Y -cycle, satisfying condition (i) of Theorem 2 and having at most m knots,
with m ≥ 0. Let G = (V,A) be a directed graph, with no multiple arcs, no odd Y -
cycle, satisfying condition (i) of Theorem 2 and |knot(G)| = m + 1. Assume that z̄ is a
fractional extreme point of Pp(G).

Claim 1. (G, z̄) does not contain a fragile knot.
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Proof. Suppose the contrary and let v be a fragile knot. We have that |knot(G(v))| ≤ m
and by Lemma 26 the graph G(v) has no multiple arcs, no odd Y -cycle and satisfies
condition (i) of Theorem 2. Thus the induction hypothesis applies, so Pp+2(G(v)) is
integral. This contradicts Lemma 27. �

By Lemma 8, G must contain an arc (v2, v3) with z̄(v2, v3) < z̄(v3) and v3 is not
a pendent node. Lemma 24 implies that the graph G′ obtained from G by removing
(v2, v3) and adding a new pendent node v′

3 and the arc (v2, v
′
3) contains an odd Y -

cycle C. The fact that G does not contain an odd Y -cycle implies that C is an odd
cycle in G where v2 ∈ Ĉ and v2 does not satisfy either Definition 1 (i) or (ii). Hence

δ−(v2) = {(v3, v2), (v1, v2)}, otherwise the graph H4 is present. Also v3 ∈ Ċ. Let v4 be
the other node in C adjacent to v3, so (v3, v4) is an arc of C.

Suppose that (u, v3) ∈ A, with u 6= v2. We must have u = v4, otherwise G does not
satisfies condition (i) of Theorem 2. Thus v3 is a fragile knot, which is impossible by
Claim 1. It follows that we may assume that δ−(v3) = {(v2, v3)}.

Lemma 24 together with Lemma 25 imply that z̄(v3, v2) = z̄(v2). Now Lemma 28

implies that we must have an arc (v2, u) different from (v2, v3). Since v2 is in Ĉ and it
does not satisfy either Definition 1 (i) or (ii) and G satisfies condition (i) of Theorem 2,

we must have u = v1 and v1 ∈ Ċ. If z̄(v1, v2) < z̄(v2), then v2 is a fragile knot, which is
not possible by Claim 1. And if z̄(v2, v1) < z̄(v1), then the labeling function l that assign
1 to (v2, v3), -1 to (v2, v1) and 0 to each other node and arc, implies that z̄l satisfies with
equality the same constraints that are satisfied with equality for z̄. This contradicts the
fact that z̄ is an extreme point.

Let us summarize the above discussion. We have

• δ−(v2) = {(v1, v2), (v3, v2)}; δ+(v2) = {(v2, v1), (v2, v3)}; δ−(v3) = {(v2, v3)},
• z̄(v1, v2) = z̄(v3, v2) = z̄(v2); z̄(v2, v1) = z̄(v1) and z̄(v2, v3) < z̄(v3).

Since v2 does not satisfy either Definition 1 (i) or (ii), the node v1 must be in Ċ, so
we must have (v1, v0) in A(C). Lemma 16 implies that we must have an arc (u, v1) with
u 6= v2. Condition (i) of Theorem 2, implies that u = v0. We must have z̄(v0, v1) = z̄(v1),
otherwise v1 is a fragile knot which is impossible by Claim 1. Suppose that z̄(v1, v0) <
z̄(v0) (resp. There exist an arc (v1, t) and t a pendent node). Define the following labeling
function l. Assign the label 1 to the arcs (v1, v0) (resp. (v1, t)) and (v2, v3) and to the
node v3; assign the label -1 to the arcs (v1, v2) and (v3, v2) and to the node v2; for all
other arcs and nodes assign the label 0. Then any constraint that is tight for z̄ is also
tight for z̄l, which contradicts the fact that z̄ is an extreme point. Hence we must have
z̄(v1, v0) = z̄(v0) and δ+(v1) = {(v1, v0), (v1, v2)}.

Finally we have a bidirected path P = v0, v1, v2, v3, where the inner nodes v1 and v2

are incident to only their neighbors in P and all the arcs of P are tight for z̄ except the
arc (v2, v3).

Define G′ the graph obtained from G by identifying the nodes v0 and v3, call v∗ the
resulting node, and by removing the nodes v1 and v2 with their incident arcs.

Define z′ from z̄ as follows:
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z′(v) =

{

z̄(v3) if v = v∗

z̄(v) otherwise,
; z′(u, v) =















z̄(v0, v) if u = v∗ and (v0, v) ∈ A,
z̄(u, v0) if v = v∗ and (u, v0) ∈ A,
z̄(v3, v) if u = v∗ and (v3, v) ∈ A,
z̄(u, v) if u 6= v∗ and v 6= v∗.

Claim 2. G′ has no multiple arcs, satisfies condition (i) of Theorem 2 and does not
contain an odd Y -cycle.

Proof. The proof is given by claims 1, 2 and 3 in the proof of Lemma 18. �

Claim 3. z′ is a fractional vector in Pp−1(G
′).

Proof. Lemma 14 imply that z̄(v3) is fractional. So at least z ′(v∗) is fractional.

Let us examine the validity of z ′. By definition any constraint where z(v∗) does not
appear is satisfied. Let us show that

∑

z′(v) = p− 1 and that equation (3) with respect
to v∗ is satisfied.

We have that
∑

z′(v) =
∑

v∈V z̄(v) − z̄(v0) − z̄(v1) − z̄(v2). Notice that the validity
of z̄ implies that

z̄(v1) + z̄(v1, v0) + z̄(v1, v2) = 1(18)

Since all the arcs of P are tight for z̄ except (v2, v3), the equation (18) is equivalent to

z̄(v1) + z̄(v0) + z̄(v2) = 1(19)

Then we have that
∑

z′(v) =
∑

v∈V z̄(v) − z̄(v0)− z̄(v1) − z̄(v2) = p− 1. Now let us
see that equation (3) with respect to v∗ is satisfied, that is z′(v∗) + z′(δ+(v∗)) = 1.

By definition we have

z′(v∗) + z′(δ+(v∗)) = z̄(v3) + z̄(δ+(v3) \ {(v3, v2)}) + z̄(δ+(v0) \ {(v0, v1)}).

Equations (3) with respect to v0 and v3 imply

z̄(v0) + z̄(δ+(v0) \ {(v0, v1)}) + z̄(v0, v1) = 1,(20)

z̄(v3) + z̄(δ+(v3) \ {(v3, v2)}) + z̄(v3, v2) = 1.(21)

Since z̄(v0, v1) = z̄(v1) and z̄(v3, v2) = z̄(v2), when we replace (19) in the sum of (20)
and (21), we obtain z̄(v3) + z̄(δ+(v3) \ {(v3, v2)}) + z̄(δ+(v0) \ {(v0, v1)}) = 1. Hence
z′(v∗) + z′(δ+(v∗)) = 1.

To finish the proof of this claim, we need also to show that z ′(u, v∗) ≤ z′(v∗) for any
arc (u, v∗) in G′.

The validity of z̄ implies that

z̄(v2) + z̄(v2, v1) + z̄(v2, v3) = 1.(22)

Since z̄(v2, v1) = z̄(v1), then equation (22) is equivalent to

z̄(v2) + z̄(v1) + z̄(v2, v3) = 1(23)

Combining (19) with (23) we obtain



24 M. BAÏOU AND F. BARAHONA

z̄(v2, v3) = z̄(v0).(24)

If (u, v∗) is an arc in G′, then (u, v0) is an arc in G. The validity of z̄ and (24)
imply that z̄(u, v0) ≤ z̄(v0) = z̄(v2, v3) ≤ z̄(v3) and with the definition of z ′ we have
z′(u, v∗) = z̄(u, v0) ≤ z̄(v3) = z′(v∗). �

Notice that |knot(G′)| ≤ m. It follows from Claim 2 that the induction hypothesis
applies. Thus Claim 3 implies that z ′ is not an extreme point of Pp(G

′). So z′ can be
written as a convex combination of 0-1 vectors that satisfy with equation each constraint
that is satisfied with equation by z ′. If there is an arc (u, v∗) in G′, then by the definition
of z′ and Lemma 12 we have z′(u, v∗) > 0. Hence one can choose among the 0-1 solutions
above a solution z∗ with z∗(u, v∗) = 1. This also implies that z∗(v∗) = 1. Otherwise,
since z′(v∗) > 0 one can also choose a solution z∗ with z∗(v∗) = 1. From z∗ define
z′′ ∈ Pp(G) to be as follows:

z′′(v) =







0 if v ∈ {v1, v2},
1 if v ∈ {v0, v3},
z∗(v) otherwise.

; z′′(u, v) =















1 if (u, v) ∈ {(v1, v0), (v2, v3)},
0 if (u, v) ∈ {(v0, v1), (v2, v1),

(v1, v2), (v3, v2)},
z∗(u, v) otherwise.

It is easy to check that z ′′ ∈ Pp(G) and any constraint that is satisfied as equality for
z̄ is also satisfied as equality for z̄. It suffices to see that if there is an arc (u, v0) with
u 6= v1, then this arc is unique and by definition z ′′(u, v0) = z′′(v0) = 1. Thus we have a
contradiction with the fact that z̄ is an extreme point.

4. Graphs with odd Y -cycles

In this section we assume that G = (V,A) is a directed graph with no multiple arcs,
satisfying conditions (i) and (ii) of Theorem 2. Also we assume that G contains an odd
Y -cycle C = v0, a0, v1, a1, . . . , ap−1, vp. We plan to prove that conditions (i) and (ii) of
Theorem 2 are sufficient when G contains an odd Y -cycle. Let z̄ be a fractional extreme
point of Pp(G). First we need several lemmas.

Lemma 30. We can assume that

• z̄(u, v) > 0 for all (u, v) ∈ A,
• z̄(v) > 0 for all v ∈ V with |δ−(v)| ≥ 1, and
• |δ−(v)| ≤ 1 for every pendent node v ∈ V .

Proof. Similar to the proofs of Lemmas 12, 13 and 15. �

Let vk and vl be two nodes in V (C). Call P1 and P2 the two paths in C from vk to
vl. We are going to prove that if there is another path between vk and vl whose internal
nodes are not in V (C), then this path consists of just one arc and vk and vl should be
consecutive in C. Assume the contrary, and let P = vk, b1, u1, . . . , ur−1, br, vl be another
path between vk and vl. Assume that all internal nodes of P are not in V (C). Notice
that because of (ii) P cannot have more than two arcs. We call C1 (resp. C2) the cycle
defined by P1 and P (resp. P2 and P ).

Lemma 31. Assume that vk and vl are not consecutive in C or P contains two arcs,
then if an arc of P is directed into (resp. away from) vk (or vl) then this node must be

in Ċ (resp. Ċ ∪ C̃).
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Proof.
• Suppose first that b1 is directed into vk, thus b1 = (u1, vk). Assume that vk and

vl are not consecutive or that P consists of two arcs.
Let vk ∈ Ĉ. If vk ∈ Ĉ(i) (resp. vk /∈ Ĉ(i)) then G contains H2 (resp. H4) as a

subgraph.
Now assume that vk ∈ C̃. Let (vk−1, vk) and (vk, vk+1) be the two arcs of C

incident to vk. The node vk+1 is not a pendent node, so there is an arc (vk+1, u). If
u ∈ {vk, vk−1, u1} (resp. u /∈ {vk, vk−1, u1}) then the graph defined by (vk−1, vk),
(u1, vk), (vk, vk+1) and (vk+1, u) corresponds to H3 or H4 (resp. H1). Therefore

vk ∈ Ċ.
• Suppose now that b1 is directed away from vk, thus b1 = (vk, u1). Suppose that

vk ∈ Ĉ, and (vk−1, vk) and (vk+1, vk) are the two arcs of C incident to vk.
Assume first that P consists of two arcs.
– Assume that (u1, vl) is the second arc of P . If vl coincides with vk+1 or vk−1,

then we have H3 as a subgraph, otherwise we have H1 as a subgraph.
– Assume now that (vl, u1) is the second arc of P . Since |δ−(u1)| ≥ 2, by

Lemma 30 u1 is not a pendent node, so there is an arc (u1, u). If u = vk

we have H4 as a subgraph; if u coincides with vk−1 or vk+1 we have H3 as a
subgraph; otherwise we have H1 as a subgraph.

Assume now that P consists of one arc and that vk and vl are not consecutive.
So u1 = vl. Since b1 is directed into vl, we have seen above that vl must be in Ċ.
In this case we must have H1 or H3 as a subgraph.

�

Lemma 32. If vk and vl are not consecutive in C, then P cannot consist of just one
arc.

Proof. Let P = vk, (vk, vl), vl. By Lemma 31, vl ∈ Ċ and vk ∈ Ċ ∪ C̃. We then consider

two cases: (a) vk ∈ Ċ and (b) vk ∈ C̃, as shown in Figure 14.

vk

vl

vk

vl

Figure 14. Cases (a) and (b).

(a) C1 and C2 are both Y -cycles and exactly one of them is odd. The fact that
G satisfies (ii) implies that the even cycle contains three arcs. Let C1 be the

even cycle. Thus C1 = vk, (vk, vl), vl, (vl, v), v, (vk , v), vk, where v ∈ Ĉ. Since

both nodes vk and vl are in Ċ, there is an arc (v, v̄), where v̄ is a pendent node,
v̄ /∈ V (C). Therefore condition (ii) is violated by C2 and (v, v̄).

(b) Let (u, vk) and (vk, v) be the two arcs in A(C) incident to vk. Notice that there is
no arc from v to vk, otherwise G contains H1 or H3 as a subgraph. Thus C1 and
C2 are both Y -cycles. The parity of C implies that exactly one of these cycles
is odd. If one is odd the fact that G satisfies (ii) implies that the other cycle
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must contain three arcs. So the odd cycle must be the one containing the arc
(u, vk) call it C2. Let C1 = vk, (vk, vl), vl, (vl, v), v, (vk , v), vk. Since C and C1 are
both Y -cycles, there is an arc (v, v̄), where v̄ is a pendent node, v̄ /∈ V (C). Thus
condition (ii) is violated by C2 and (v, v̄).

�

Lemma 33. The path P cannot consist of two arcs.

Proof. Let P = vk, b1, u1, b2, vl. We have to study three cases:

(1) b1 = (u1, vk) and b2 = (u1, vl). By Lemma 31, both vk and vl are in Ċ. Both
C1 and C2 are Y -cycles and exactly one of them must be odd, otherwise C is an
even Y -cycle. Suppose that C1 is odd. Then C2 is even and must contain four
arcs, otherwise G does not satisfies (ii). Now it is easy to see that |Ĉ2|+ |C̃2| = 3,
a contradiction.

(2) b1 = (vk, u1) and b2 = (u1, vl). The case where b1 = (u1, vk) and b2 = (vl, u1)

may be treated by symmetry. By Lemma 31, vl ∈ Ċ and vk ∈ Ċ ∪ C̃. So we have
to distinguish two sub-cases: (a) vk ∈ Ċ and (b) vk ∈ C̃. They are shown below
in Figure 15.

u1

vk

vl

u1

vk

vl

Figure 15. The sub-cases (a) and (b).

(a) C1 and C2 are both Y -cycles. The parity of C implies that exactly one of
C1 or C2 is odd. Suppose C1 is odd. As in the previous case we have that
|Ĉ2|+ |C̃2| = 3, a contradiction.

(b) Let (u, vk) and (vk, v) be the two arcs of C incident to vk. First we need
several claims.
∗ Claim: u and v are different from vl.

Proof. Since vl ∈ Ċ, we have v 6= vl. Suppose u = vl. Then the
cycle vl, (vl, vk), vk, (vk, u1), u1, (u1, vl), vl is an odd Y -cycle. Since G
satisfies (ii), the arcs (vl, v) and (vk, v) must be in A(C). But this
implies that C is an even Y -cycle, a contradiction. It follows that
both u and v are different from vl.
∗ Claim: C1 and C2 are Y -cycles.

Proof. Let C1 be the cycle containing (vk, v) and let C2 be the cycle
containing (u, vk). It is easy to see that C2 is a Y -cycle. Let us see that

C1 is also a Y -cycle. If v ∈ C̃ then clearly C1 is a Y -cycle. Suppose
v ∈ Ĉ. Thus v ∈ Ĉ1. We need to show that v verifies (i) or (ii) of
Definition 1 with respect to C1. Suppose the contrary, then (v, vk) ∈ A.
It follows that the graph defined by the arcs (v, vk), (u, vk), (vk, u1)

and (u1, vl) corresponds to H1, which is not possible. Hence v ∈ Ĉ(i)
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or there is an arc (v, v̄), where v̄ is the other node adjacent to v in C,

and v̄ ∈ C̃. In either case we have that C1 is a Y -cycle.
∗ Claim: C2 is a directed Y -cycle of size four.

Proof. The parity of C implies that exactly one of the cycles C1 or C2

is odd. If C2 is odd then, as in the previous cases |Ĉ1|+|C̃1| = 3, which
is impossible. So suppose that C1 is odd. Then C2 is a directed Y -
cycle of size four, C2 = vk, (vk, u1), u1, (u1, vl), vl, (vl, u), u, (u, vk), vk,
see Figure 16.

u1

vk

vl

u

Figure 16. The Case (2b)

Now suppose there is an arc not in A(C2) directed into a node in C2. Call
this arc (w, t). If w /∈ V (C2), then G contains H1; and if w and t are not
consecutive in C2, then G contains H3. So assume (w, t) ∈ A \ A(C2) and t
and w are two consecutive nodes in V (C2).
Let C ′

2 be the cycle obtained from C2 by adding (w, t) and removing (t, w).
We have two sub-cases:
∗ Assume that C ′

2 is an odd Y -cycle. This implies that C1 must be of
size four, otherwise G does not satisfy (ii). Thus the arcs (vl, v) and
(vk, v) are in A(C1) and if C1 is of size four, it was proved above that

v ∈ Ĉ(i). Let (v, v̄) ∈ A with v̄ /∈ V (C). If v̄ 6= u1, then the pair C ′
2

and (v, v̄) violates condition (ii) of Theorem 2. And if v̄ = u1, then
the graph defined by (v, u1), (u1, vl), (vl, v) and (vk, u1) corresponds
to H3, which is not possible.
∗ The case when C ′

2 is not a Y -cycle is obtained when (w, t) = (vl, u1)
or (w, t) = (vk, u); and in both cases δ+(t) = {(t, w)}. Suppose that
z̄(w, t) = z̄(t). Thus constraint (3) with respect to t implies that

(25) z̄(t) + z̄(t, w) = 1 = z̄(t, w) + z̄(w, t).

Since w is one of the nodes vk or vl, then there is an arc (w, t′)
where t′ is another node in C different from t. Lemma 30 implies
that z̄(w, t′) > 0. Hence from constraint (3) with respect to w

(26) z̄(w) + z̄(w, t) < 1.

Combining (25) with (26) we obtain

(27) z̄(t, w) > z̄(w).

But this contradicts the validity of z̄.
Hence we may suppose that if there is an arc (w, t) not in C2 directed
into a node in C2, then z̄(w, t) < z̄(t). Assign labels to the nodes and
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arcs in C2 following the labeling procedure of an even cycle. Extend
this labeling by assigning the label 0 to each node and arc with no
label. Call this labeling l. The constraints that are satisfied with
equality by z̄ are also satisfied with equality by z̄l. This contradicts
the fact that z̄ is an extreme point of Pp(G). Notice that we do not
need z̄l ∈ Pp(G).

(3) b1 = (vk, u1) and b2 = (vl, u1). Notice that by Lemma 30, u1 is not a pendent
node. Since G satisfies condition (ii), there is an arc (u1, t) with t ∈ V (C). If
t is different from vk and vl then one can easily create a subgraph in G that is
one of the subgraphs of Figure 1. So t must coincide with vk or vl, say t = vl.
If we take the path P ′ = vk, (vk, u1), u1, (u1, vl), vl, instead of P , this reduces to
the case (2) above.

�

Lemma 34. The node set of any cycle of size at least three in G coincides with V (C).

Proof. The proof is straightforward from Lemmas 32 and 33 and condition (ii) of Theo-
rem 2. �

The following lemma permits the reduction to oriented graphs.

Let (u, v) and (v, u) be two arcs in A. Denote by G(u, v) the graph obtained from G
by removing the arc (u, v) and adding a new arc (u, t), where t is a new pendent node.

Lemma 35. Let G = (V,A) be a directed graph and (u, v) and (v, u) two arcs in A.
If Pp(G) admits a fractional extreme point z̄ with z̄(v, u) > 0, then Pp̃(G(u, v)) 6=
p̃MP (G(u, v)), where p̃ = p + 1.

Proof. Let z̄ be a fractional extreme point of Pp(G) with z̄(v, u) > 0. Suppose that
Pp̃(G(u, v)) = p̃MP (G(u, v)). Define z̃ ∈ Pp̃(G(u, v)) to be z̃(u, t) = z̄(u, v), z̃(t) = 1
and z̃(r) = z̄(r), z̃(r, s) = z̄(r, s) for all other nodes and arcs. The solution z̃ is fractional,
so z̃ is not an extreme point of Pp̃(G(u, v)). Since Pp̃(G(u, v)) is integral, there must exist
a 0-1 vector z∗ ∈ Pp̃(G(u, v)) with z∗(v, u) = 1, so that the same constraints that are
tight for z̃ are also tight for z∗. From z∗ define z′′ ∈ Pp(G) as follows: z′′(u, v) = z∗(u, t)
and z′′(r) = z∗(r), z′′(r, s) = z∗(r, s), for all other nodes and arcs. All constraints that are
tight for z̄ are also tight for z ′′. To see this, it suffices to remark that z ′′(v) = z∗(v) = 0
and z′′(u, v) = z∗(u, t) = 0. This contradicts the fact that z̄ is an extreme point of
Pp(G). �

Now we can prove the main result of this section.

Theorem 36. If G = (V,A) is a directed graph with no multiple arcs, satisfying condition
(i) and (ii) of Theorem 2 and containing an odd Y -cycle, then Pp(G) is integral.

Proof. Denote by Pair(G) the set of pair of nodes {u, v} such that both arcs (u, v) and
(v, u) belong to A. The proof is by induction on |Pair(G)|. If |Pair(G)| = 0 then G is
an oriented graph that satisfies conditions (i) and (ii) of Theorem 3. Hence the result
follows from Theorem 3.

Suppose that Theorem 36 is true for every directed graph H with no multiple arcs, sat-
isfying conditions (i) and (ii) of Theorem 2, containing an odd Y -cycle and |Pair(H)| ≤
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m, m ≥ 0. Let G = (V,A) be a directed graph with no multiple arcs, satisfying con-
ditions (i) and (ii) of Theorem 2, containing an odd Y -cycle and |Pair(G)| = m + 1.
Assume that z̄ is a fractional extreme point of Pp(G).

Let (u, v) and (v, u) be two arcs in A. Lemma 30 implies z̄(v, u) > 0, so Lemma 35
applies and implies that

(28) Pp̃(G(u, v)) 6= p̃MP (G(u, v)).

Claim. The graph G(u, v) satisfies conditions (i) and (ii) of Theorem 2.

Proof. To see that G(u, v) satisfies condition (i) is easy, it follows from the definition of
G(u, v) and the fact that G satisfies (i) too. Let us see that G(u, v) satisfies (ii). The
graph G = (V,A) satisfies conditions (i) and (ii) and contains an odd Y -cycle, call it
C. Lemma 34 implies that V = U ∪ V (C), where U = {u1, · · · , uk}, and |δ+(ui)| ≤ 1,
|δ−(ui)| ≤ 1, for i = 1, · · · , k. Moreover, if (t, ui) ∈ δ−(ui) then t ∈ V (C), if (ui, t) ∈
δ+(ui) then t ∈ V (C), and if (ui, t) ∈ δ+(ui) and (t′, ui) ∈ δ−(ui) then t = t′; for
i = 1, · · · , k.

Thus we can assume that u ∈ V (C). Suppose that (ii) is violated with respect to
G(u, v). Then in G(u, v) we must have an odd Y -cycle C ′ with (s, w) an arc in G(u, v)
with both s and w not in V (C ′). The new arc (u, t) and the new node t of G(u, v) cannot
be in V (C ′) since t is a pendent node. So C ′ is a cycle in G, too. Lemma 34 implies that
V (C) = V (C ′). But then the pair C and (s, w) violate condition (ii) with respect to G,
which is not possible. �

By the claim above and Theorem 9, G(u, v) must contain an odd Y -cycle. Since
|Pair(G(u, v))| = m, we can apply the induction hypothesis and so Pp̃(G(u, v)) =
p̃MP (G(u, v)). This contradicts (28). �

5. Proof of Theorem 2

In this section we put all pieces together and prove Theorem 2, the main result of this
paper.

Necessity. Let G = (V,A) be a directed graph. Let H be a subgraph of G that corre-
sponds to one of the graphs H1, H2, H3 or H4 of Figure 1. Define z̄ to be the solution
obtained by extending the fractional extreme point associated with H, defined in Figure
1, as follows: z̄(u) = 1 for each node u not in H; z̄(u, v) = 0 for each arc (u, v) not in H.
Then it is easy to check in all cases that z̄ is a fractional extreme point of P|V |−2(G).

Now suppose that G contains an odd Y -cycle C with an arc (t, w) ∈ A \ A(C), with
t and w not in V (C). Define z̄ as follows: z̄(t) = 1

2 , z̄(t, w) = 1
2 and z̄(w) = 1; z̄(v) = 1

2

for each node v ∈ Ĉ ∪ C̃ and z̄(v) = 0 for each node v ∈ Ċ; z̄(u, v) = 1
2 for each arc

(u, v) ∈ A(C); for each node v ∈ Ĉ(i) by the definition of a Y -cycle it must exist and

arc (v, v̄) /∈ A(C) with v̄ a pendent node, so let z̄(v, v̄) = 1
2 and z̄(v̄) = 1; for each node

v ∈ Ĉ \ Ĉ(i) by the definition of a Y -cycle there must exist an arc (v, v̄) with v̄ ∈ C̃, so

let z̄(v, v̄) = 1
2 . For all other node v and arc (u, v), let z̄(v) = z̄(u, v) = 0.

It is straightforward and is left to the reader to see that z̄ is a fractional extreme point

of Pp(G), where p = |V | − |Ċ| − (|Ĉ|+|C̃|+1)
2 .

Sufficiency. It is straightforward from theorems 9 and 36.
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6. Recognizing the graphs defined in Theorem 2

In this section we show how to decide if a graph satisfies conditions (i) and (ii) of
Theorem 2. Clearly Condition (i) can be tested in polynomial time. Thus we assume
that we have a graph satisfying Condition (i), then we pick an arc (u, v), we remove u
and v, and look for an odd Y -cycle in the new graph. We repeat this for every arc. It
remains to show how to find an odd Y -cycle.

In [1] we gave a procedure that finds an odd cycle if there is any. We remind the

reader that a cycle C is odd if |V (C)|+ |Ĉ| is odd. Since an odd cycle is not necessarily
a Y -cycle, we are going to modify the graph so that an odd cycle in the new graph gives
an odd Y -cycle in the original graph. The main difficulty resides in how to deal with
nodes that satisfy condition (ii) of Definition 1. Such a node should appear in a pair
{(u, v), (v, u)}. Instead of working with such a pair we are going to work with a maximal
bidirected path P = v1, . . . , vq. Notice that if the graph contains a bidirected cycle,
then it is easy to derive an odd Y -cycle. So in what follows we assume that there is no
bidirected cycle. The transformation is based on the following two remarks.

Remark 37. There is at most one arc (u, v1), u /∈ P , and at most one arc (v, vq), v /∈ P .
Otherwise the graph H4 is present.

Remark 38. If the arc (u, v1) is in A, u /∈ P , and there is an arc (v1, w) also in A,
w /∈ P , then w is a pendent node. Otherwise we obtain one of the graphs in Figure 1.

Let C be a Y -cycle that goes through P . We have three cases to study.

Case 1. δ−(P ) = {(u, v1), (v, vq)}. In this case C contains all nodes in P and also the
arcs (u, v1) and (v, vq). Since C contains all nodes from P , the only variable that can

change the parity of C is the parity of |Ĉ ∩ P |.

Notice that if q ≥ 5 and if there is a Y -cycle going through P then we can always
change the parity of it if needed. In fact, we can always join the nodes v1 and vq using

arcs of P in such a way that |Ĉ ∩ P | = 1 as shown in Figure 17 (a), or |Ĉ ∩ P | = 2 as
shown in Figure 17 (b). It follows that if there is a cycle C ′ going through P then there

is a cycle C of the same parity, whose nodes in |Ĉ ∩ P | satisfy Definition 1 (ii).

(b)(a)

v1 v5 v1 v5

Figure 17. Case 1, q ≥ 5. In bold the Y -cycle C. In dashed line the
other arcs of P .

It remains to analyze the cases when q ≤ 4. The only cases when a transformation is
required, are the following two:
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• q = 4 and neither v1 nor v4 is adjacent to a pendent node. In this case we should
have |Ĉ ∩ P | = 1. To impose that when looking for an odd cycle, we replace P
by a bidirected path with two nodes. See Figure 18.

(a) (b)

v1 v2 v3 v4 v1 v4

Figure 18. Case 1, q = 4. (a): before transformation. (b): after transformation.

Let P ′ the new bidirected path. Any cycle C ′ with |Ĉ ′ ∩ P ′| = 1 can be

extended to a cycle C with |Ĉ ∩ P | = 1 and where the node in Ĉ ∩ P satisfies
Definition 1 (ii).
• q = 3 and at most one of v1 or v3 is adjacent to a pendent node. Also here we

have |Ĉ ∩ P | = 1. To impose that when looking for an odd cycle, we remove the
arc (v2, v3).

(b)(a)

v1 v2 v3 v1 v2 v3

Figure 19. Case 1, q = 3. (a): before transformation. (b): after transformation.

In Figure 19, we supposed that v3 is adjacent to a pendent node and v1 is not.

The two remaining cases below follow the same philosophy as above.

Case 2. δ−(P ) = {(u, v1)}. In this case C contains (u, v1), all the nodes in P and
one arc (vq, v), v /∈ P . Here we have two cases to analyze.

• q ≥ 3 or q = 2 and v1 is adjacent to a pendent node. If |Ĉ ∩ P | is even, we can

assume that |Ĉ ∩P | = 0. If |Ĉ ∩P | is odd, we can assume that |Ĉ ∩P | = 1. Here
no transformation is needed.
• q = 2 and v1 is not adjacent to a pendent node. Here we should have |Ĉ∩P | = 0.

To impose that when looking for an odd cycle, we remove (v2, v1).

Case 3. δ−(P ) = ∅. In this case C contains an arc (v1, u), u /∈ P , all nodes in P , and
an arc (vq, v), v /∈ P . Again we have two cases to analyze.

• q 6= 3 or q = 3 and v2 is adjacent to a pendent node. If |Ĉ ∩ P | is even, we can

assume that |Ĉ ∩P | = 0. If |Ĉ ∩P | is odd, we can assume that |Ĉ ∩P | = 1. Here
no transformation is needed.
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• q = 3 and v2 is not adjacent to a pendent node. Here we should have |Ĉ∩P | = 0.
To impose that when looking for an odd cycle, we remove (v1, v2) and (v3, v2).

After preprocessing the graph as in cases 1, 2, and 3, we have to split all pendent
nodes as in Lemma 15. This is to avoid having a pendent node in Ĉ. Then we look for
an odd cycle; if there is one, it gives an odd Y -cycle in the original graph.

7. Concluding remarks

We have characterized the graphs for which the system (2)-(6) defines an integral
polytope. The proof of Theorem 2 consists of three major steps as follows. In [3] we
proved a similar theorem for Y -free graphs, this is used in [2] as the starting point for
proving a similar theorem for oriented graphs. The theorem on oriented graphs has been
used here as the starting point for proving our main result.

We conclude with a simple corollary. For a undirected graph G = (V,E) we denote

by
←→
G = (V,A) the directed graph obtained from G by replacing each edge uv ∈ E by

two arcs (u, v) and (v, u).

Corollary 39. Let G be a connected undirected graph. Then Pp(
←→
G ) is integral for all p

if and only if G is a path or a cycle.

Proof. If G is a path or a cycle, then
←→
G satisfies conditions (i) and (ii) of Theorem 2

and so Pp(
←→
G ) is integral.

Suppose G is not a path nor a cycle. Then G contains a node of degree at least 3. Thus
←→
G contains H4 as a subgraph. Again Theorem 2 implies that Pp(

←→
G ) is not integral for

all p. �
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