
RC24399 (W0711-019) November 5, 2007
Computer Science

IBM Research Report

How Programmers Can Turn Comments into Waypoints
for Code Navigation

M.-A. Storey1, L.-T. Cheng2, J. Singer3, M. Muller2, D. Myers1, J. Ryell1

1University of Victoria
Victoria, BC

Canada

2IBM Research Division
One Rogers Street

Cambridge, MA 02142 USA

3National Research Council
Ottawa, ON

Canada

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

How Programmers can Turn Comments into Waypoints for Code Navigation

M.-A. Storey
1
 L.-T. Cheng

2
 J. Singer

3
 M. Muller

2
 D. Myers

1
 J. Ryall

1

University of Victoria
1

Victoria, BC, Canada

IBM Research
2

Cambridge, MA, USA

National Research Council
3

Ottawa, ON, Canada

Abstract

We have developed a new approach for software

navigation called TagSEA (Tagging of Software

Engineering Activities). TagSEA combines the notion

of “waypointing” with “social tagging” to support

programmers in defining navigational structures over

a software system. In this paper we present the results

from a case study series, conducted with professional

programmers, that demonstrates how this tool supports

navigation and under what circumstances. We

conclude with insights into user-definable navigational

structures, and how they can support software

maintenance more effectively.

1. Introduction

Navigation is a fundamental activity in software

maintenance. As such, integrated development

environments (IDEs), such as Visual Studio, NetBeans,

and Eclipse, offer a wide variety of mechanisms to

support navigation. These features include tree-based

outline views, tabbed views, cross reference hyperlinks,

and search facilities.

Many IDEs also offer a variety of user-definable

navigational structures. These user-driven features are

an important complement to system-defined

navigational structures, allowing the user to create their

own structures for moving about the software space.

One example of a user-defined navigational structure is

bookmarks, which support a user in annotating code

locations for further inspection by allowing the addition

of descriptive text. Bookmarks are stored in the user’s

local workspace metadata and do not alter the source

code. In addition to bookmarks, most IDEs support

annotations that indicate tasks, such as “TODO”.

From our research with software engineers, we have

observed that typical annotation mechanisms (notably

bookmarks and tasks) tend to be ineffective at

supporting software navigation, despite the intuition

that they should be sufficient. The bookmark metaphor

emerged from the notion of marking pages in a book

with sequential pages. Software, on the other hand, is a

complex multi-dimensional space. Moreover,

bookmarks and task annotations lack metadata that are

needed to group, filter, search, and manage them.

We propose that there is a need for a more elaborate

user-definable navigation mechanism. We start by

considering a metaphor that is richer than bookmarks,

that of waypoints. Waypointing originates from the

discipline of wayfinding in physical spaces (e.g. [5]).

Wayfinding has led to user experience design concepts,

such as navigation aids [3] and landmarks [12].

Waypoints are created by marking a location of

interest. They have associated metadata, such as

creation time and author, and they can be shared across

users and applications and may be gathered into routes.

In the context of software engineering, to leverage

the metadata capability of waypoints, we add the

concept of tagging. Furnas showed that users prefer to

use their own vocabularies for common objects and

concepts [6]. Tagging tools and social bookmarking

systems [9] provide a mechanism for users to create

and apply their own vocabularies. TagSEA, a tool for

Tagging Software Engineering Activities, combines

the notion of waypoints with tagging. By tagging a

waypoint with a set of unconstrained keywords, the

user implicitly creates a simple navigational structure

that can be used to locate specific targets by searching

or pivoting on one or more of the attached keywords.

An early version of the TagSEA tool was introduced

in [1]. Here, we report the results from a case study

series that explores how professional programmers use

the system, and sheds light on how other annotation

mechanisms support navigation. This paper is

structured as follows. In Section 2, we provide details

on various IDE features and research tools that support

user-definable navigational structures. In Section 3, we

briefly review the version of TagSEA used in the case

studies. Section 4 summarizes our key research

questions. The case study series and findings are

described in Sections 5 and 6. Section 7 provides

additional data from anonymous early TagSEA

adopters. In Section 8, we synthesize and discuss the

results from the studies in light of our research

questions. Section 9 summarizes the contributions and

proposes future work.

2. User-defined software navigation

Although most IDEs typically offer a number of

canonical navigation features such as bookmarks and

task annotations, our research, and that of Murphy et

al. [13], indicates that bookmarks and tasks are rarely

used in software development environments. Using

Murphy et al.’s data, which they shared with us, we

examined the logs of 42 programmers. Task selection

events were as low as .2% of the total user view

selections, and bookmark selection events were as low

as .02%. Indeed only 13 of the 42 programmers used

tasks, and only four of the 42 programmers used

bookmarks. We believe this low usage is due to two

reasons. First, although it is easy to bookmark or to

mark a region with a task, these structures lack

sufficient semantic information to facilitate recovery at

a later stage. Second, bookmarks and task annotations

suffer from a lack of visibility and are unfortunately

easily forgotten and difficult to manage and thus

quickly become outdated.

A further problem is that in many IDEs, bookmarks

are not stored within the source code, and therefore

cannot easily be shared across teams of programmers.

Since software is frequently developed by teams, this is

a significant issue. Tasks are sometimes more useful as

they can be added directly within the source code.

Ying et al. analyzed task annotations (such as TODO)

that are stored within the source code and categorized

how such comments can “talk” [19]. Some of the

categories these researchers observed supported future

navigation. However, we have observed that task

annotations lack sufficient structure or metadata to

facilitate search. Although task annotation keywords

can be customized (to keywords such as “FIXME” or

“XXX”), it is cumbersome to do so and the customized

tasks lack user interface (UI) management support.

Another simple mechanism for programmers to

mark locations of interest for future examination,

involves inline commenting in the source code. A

familiar example is the prevalence of informal

expressions and memorable keywords, such as

“HACK” or “fix me” to highlight suspect code (e.g.

[16]). These annotations assert information on the code

or design and may also indicate locations for future

work. Such comments may be scattered throughout the

program if the concerns or tasks being documented

crosscut the established software structure. A drawback

with the use of distributed in-line comments is that the

programmer either needs to remember the locations of

the code to be revisited or the terms used so that they

can be searched. To help provide support for

navigation via in-line comments, various programming

languages have special syntax. For example, the

Javadoc documentation facility in Java has the “@see”

and “@link” tags, which are accompanied by notation

referring to parts of code (e.g. packages, classes,

methods) or URLs [18]. Modern Java IDEs

automatically turn these tags into clickable hyperlinks.

Java annotations can provide similar affordances, but

can also affect how programs are compiled and run.

Tagging is not a new concept to software

engineering. Tags have been used for decades for

annotating check-in and branching events in software

version control systems, as well as for documenting

bugs in bug tracking systems. Brothers’ ICICLE was an

early exploration of a limited, controlled-vocabulary of

tag-like structures during code inspection [2]. Code

Snippets (bigbold.com/snippets) and ByteMycode

(bytemycode.com) support social tagging of source

code, but require the user to post code fragments on

public servers where tagging is then applied to the

fragments. However, tags have not been adequately

explored as a mechanism for categorizing and

retrieving lightweight annotations in source code.

There are related research tools that support user-

definable navigational structures. ConcernMapper [15]

supports programmers navigating cross-cutting

concerns by allowing them to automatically find and

group together related pieces of code within a concern.

The programmer can then browse the code by clicking

on the elements identified in the concern. These

annotations reside in the user’s workspace. They are

easy to create and access; and since they are linked to

elements in the program, they are automatically

updated as the program evolves. However, since the

documented concerns are not stored in the source code,

they are not easy to share across workspaces and

programmers. They also rely on a top-down approach

to creation, whereby the programmer specifies the

concern up front and then identifies code that belongs

to it. Another research tool, JTourBus [14] also

proposes the notion of “tours” through the source code

as a form of documentation. The tours concept is

similar to the notion of routes of waypoints. We have

also explored the concept of “tours” as presentations

for programmers [20].

Another class of research tools, Mylar [10],

NavTracks [17], and TeamTracks [4], monitor the

user’s interactions and then prune the available

navigation targets. These tools attempt to automatically

create personalized structures to facilitate navigation.

Mylar is the most advanced of these tools, but it relies

on the programmer opening and closing a task when

they switch context.

Figure 1. TagSEA plugin for Eclipse

The tools described support the user in either

explicitly or implicitly defining navigational structures.

What is missing is a lightweight, bottom-up mechanism

for explicitly tagging code that provides convenient UI

mechanisms for searching, grouping, managing and

filtering related code. The tool we have prototyped,

called TagSEA, aims to fill this gap.

3. Tagging Software Engineering Activities

TagSEA has been implemented as a plug-in for the

Eclipse IDE (www.eclipse.org). In TagSEA, the

waypoint analogy corresponds to marking locations in

the software such as Java source code elements (e.g.

class or method), or a specific line in a source or

documentation file. The tagging element comes in (a)

because waypoints are described by a set of tags

supplied by the programmers, and (b) because each

user’s tags are visible to other users. In addition to the

tags, metadata may be automatically associated with

each waypoint, such as the version of the file, creation

date, author, related bugs, etc.

Figure 1 shows a view of TagSEA. Programmers

create waypoints by associating tags with parts of the

source code using a Javadoc-style keyword.

Specifically, a waypoint is created by the programmer

typing “@tag” in a comment block, followed by the tag

keywords. Descriptive text can be added. Individual

tags are delimited by spaces (see

Fig. 1A). A programmer can also

associate hierarchical tags to a

waypoint using dot-separated or

bracket notation as follows:

 “@tag bug.performance” or

“@tag bug(performance)” This

indicates that there is a waypoint

with the tag “bug” whose subtype

is “performance”. The Javadoc-

style syntax allows for easier

adoption of TagSEA by Java

programmers, who are already

familiar with similar conventions,

such as

“@author” and “@version”. The

resulting waypoints are

automatically associated with the

closest Java element (e.g. a

method). Once waypoints are

created they can be used by

programmers to navigate and

understand the code or to share

information with others by

uploading “waypointed” code into a source control

system.

Waypoints indicated by the “@tag” notation are

highlighted in the editor’s text, left-margin, and

scrollbar so that they stand out as clear landmarks of

interest. Using the Waypoints Viewer (see Fig. 1B),

programmers can jump immediately to a particular

waypoint, or they can view all waypoints with specific

tags associated with them, or search for waypoints with

certain characteristics. For instance, a programmer

could view all waypoints tagged with a specific bug id

or task, or all waypoints created by a particular

programmer. Selecting one or more tags in the Tag

Tree (see Fig. 1C) reveals the associated waypointed

Java elements in the middle pane. Then, clicking on

the waypoint entries in the Waypoints pane (Figure 1B)

opens the associated file editor, positions the editor at

the appropriate location, and highlights the waypointed

Java element. Thus, programmers can quickly navigate

to places of interest.

Managing a growing sea of tags is a concern for

social tagging systems [9] and this may be a problem

for large software systems. To address this concern,

TagSEA provides some initial support for dynamic

filtering and searching of waypoints (see Fig. 1D).

Every keystroke in the filtering text box immediately

updates the list of tags that partially match the entered

query, allowing a user to condense and explore tag

spaces through partial text entry. Users can also sort

and access waypoints via metadata. We have also

added support for refactoring of waypoint tags so that

they can be easily renamed, reorganized or deleted.

Reducing the number of unique tags created can be

addressed by using a consistent set of tags over time

[9]. TagSEA provides an automatic tag completion

feature to suggest the use of existing tags based on a

partially typed tag.

4. Evaluating TagSEA: Research Design

We formulated four research questions regarding

the additional tool support provided by TagSEA and its

role in aiding how programmers navigate code:

Q1. What kinds of waypoints and tags will professional

programmers create, and how will they evolve

over time?

Q2. How do programmers make use of waypoint

comments compared to their usage of Eclipse task

annotations and other source code comments?

Q3. If programmers choose not to use TagSEA, why

not?

Q4. If TagSEA is seen as a useful tool, how can it be

further improved?

We conducted a case study series with professional

programmers using TagSEA for their everyday

programming tasks. This qualitative research approach

is congruent with the research questions we pose. An

alternative approach would have been to conduct a

controlled study in the lab or in the field. However, a

formal study would not show us how professional

programmers would use a tool such as TagSEA for

supporting real-world navigation tasks, nor would it

reveal why some choose not to use the tool.

We made the tool available to eight professional

programmers at two industrial sites. We used a

purposeful sampling technique [11]. Specifically, we

selected users because they had the relevant experience

for participation and were accessible to us as

researchers. Our in-depth study of these individual

programmers provided insights on all of the research

questions posed above (see Table 1).

In addition to the case study series, we solicited a

small number of anonymous users to participate in our

study through the TagSEA website. From these

participants, we collected usage statistics to help us

further study the kinds of tags and waypoints TagSEA

users create. Since we did not have direct access to

these users we could not collect any additional

background information about them. Hence, this

supplemental data was used to bring insights only to

the first research question. The supplemental data is

presented in Section 7.

Table 1. Data collected and implications on research

questions posed during this work.

Research questions

Data collected: Q1 Q2 Q3 Q4

Selected users from industrial sites:

Pre-study questionnaire X X

Waypoint and tag analysis X

Comment and task analysis X

Focus Group X X X X

Post-study interviews, questionnaires X X X X

Anonymous early adopters of TagSEA:

 Waypoint and tag analysis X

5. Case study series

5.1 Developers studied

We recruited six programmers, whose primary task

is software development, from an industrial research

lab in Cambridge, Massachusetts (MA) and two from a

development lab in Victoria, British Columbia (BC),

Canada. We did not insist they use TagSEA, although

we did ask them to download it. TagSEA was made

available to these programmers over an eight-week

period. All of the recruited programmers worked on

separate coding projects. We refer to the programmers

from Cambridge as C1-C6, and the users from BC as

B1 and B2.

5.2 Data collection

We used five data collection methods. First,

following research ethics approval, we administered

pre-questionnaires to the recruited users from the

industrial sites. The pre-questionnaire asked for details

on programming experience, project type and size,

experience with advanced features in Eclipse, and

experience with social tagging tools. Second, we

designed simple scripts to extract comments from the

source code from programmers who gave permission,

and ran the scripts on multiple versions of their source

code as they used the TagSEA tool. This data allowed

us to examine usage of other mechanisms, such as task

annotations. Unfortunately, not all of the developers

could submit their source code due to privacy concerns.

Third, programmers were asked to submit a file

containing their tags and waypoints so that we could

analyze them. This data was generated using a script.

Tag and waypoint uploads were solicited from the

programmers at the Cambridge lab three times, i.e. at

roughly three week intervals in an eight week period,

and once from the BC users. Fourth, a focus group was

conducted with the programmers in Cambridge to help

us validate the initial analysis of the tag and interaction

data. It was particularly effective as we had both

adopter and non-adopter issues to explore. The focus

group was held three weeks after the initial download

so that we could learn about the adopters’ early

experiences and also find out why the non-adopters did

not use the tool. Finally, exit interviews and post study

questionnaires were conducted, asking programmers at

both sites for their insights on the tool.

5.3 Data analysis

We used a qualitative analysis approach to

construct a descriptive story about each user, detailing

how they used or did not use the tool given their

particular experience and programming context. For

each user, we gathered the available data and

performed a preliminary exploratory analysis [11].

This was followed by a coding process that involved

segmenting and labeling text from the interview, open-

ended questionnaires and focus groups. Where possible

we looked for converging sources of evidence to

support our claims. For example, the conclusions we

drew from the comments, annotations, and the tag data

were verified through interviews or questionnaires.

We manually classified each of the comments,

annotations and TagSEA waypoints using a set of

codes. The codes used for the classification were

derived through an iterative analysis of the source code

comments, task annotations and tagged waypoints.

Three coders, all with qualitative research experience,

independently derived codes for all waypoint tags for

each user and then through consensus merged their

codes into a single set of codes. These codes were also

used to code the in-line comments and the task

annotations. Where possible, we verified with the

programmers that we were interpreting the intent

behind commenting and tagging correctly.

Two major categories of intent for commenting and

tagging were identified: INFO and TODO. INFO

refers to the general category of annotations that assert

information. In some cases, INFO could be refined to

two subcategories, INFO-FEATURE, and INFO-

AUTHOR, indicating information about a particular

feature and author respectively. TODO is a general

category for annotations that document a task. It has

four subcategories, each referring to a specific action to

take: testing code (TODO-TEST), fixing a bug

(TODO-BUG), changing or completing some aspect of

the code (TODO-CHANGE), or checking something

(TODO-CHECK). This coding is similar to Golder

and Huberman’s breakdown on the types of tags users

use in social bookmarking systems [7], except we

refine the task type into four TODO categories that are

specific to software maintenance.

In addition to categorizing each of the user’s

waypoints, we count the number of waypoints and tags

at each time slice. As a reminder to the reader, a tag is

a user supplied keyword (e.g. “performance”) to index

a waypoint (a specific line of code or Java element),

and a waypoint may have one or more tags associated

with it. The tag density provides a measure of the

extent of tag reuse. Tag density = (#unique tags)/(#tag

occurrences). A lower density indicates more reuse of

tags. The upper bound value of 1 would occur if each

tag was used only once (i.e. no reuse).

6. Findings

6.1 Adopters

Two programmers from Cambridge, C2 and C3,

and one user from the BC lab, B2, adopted the tool.

We use information from the questionnaires, focus

group and the data submitted to us in forming these

user stories. The two Cambridge users also submitted

snapshots of their source code comments for analysis.

Using the code categories described in Section 5.3, we

were able to code C2 and C3’s use of descriptive in-

line comments and task annotations and then compare

these to the TagSEA waypoints. Table 2 shows a

summary of the number and category of waypoints

created per user, and how they changed over the study

period. It also provides a count of the number of

waypoints, unique tags and density of tags.

C2 (female) used the tool over the course of the

eight week study and continued to use the tool after the

study. She joined the company shortly before this pilot

and was assigned to extend existing code in a team

project. The majority of her waypoints were created to

support future tasks (see Table 2). In the interview

with C2, we were able to verify that she mostly created

waypoints for navigation. She said they were a

reminder of the places that needed more examination.

From an analysis of her source code, we were able to

verify that she uses neither tasks nor bookmarks and

that very few of her source comments could be

classified as supporting future navigation. This user

only used one instance of a hierarchical tag, but she did

use multiple tags (at most two) per waypoint. She did

not add additional comments to the waypoints. There

were instances of the same tag being used on more than

six waypoints

Table 2. Shows # of waypoints for C2, C3 and B2 for the first data collection period (T1). The change in number of waypoints is

indicated at the second (T2) and third (T3) data collection periods. Note that waypoints were both added and deleted (indicated

with a ‘+’ or ‘-’ sign). Waypoint count, #tags, #tag instances and a tag density metric are also given.

across three files of code.

One interesting tag we observed was called “home”.

In the interview, C2 indicated it was a special tag to

support navigation. She also created one tag type to

match her name and it was used to indicate several

places she had made changes in the code. She agreed

that the Javadoc @author feature could have been used,

but she said she preferred the lighter-weight approach

of TagSEA for indicating her changes. In the exit

interview, C2 indicated she would continue to use

TagSEA and that it was preferred over bookmarks

andEclipse tasks. C2 mentions that “she liked TagSEA

for being fast and lightweight to type in things”.

C3 (male) joined the company six months before

the study. He also used the tool over the course of the

eight week study and continued to use the tool after the

study. C3 worked individually on code that provided

infrastructure support for a larger project. Table 2

shows a summary of the tagged waypoints created by

C3, the type of tags used and how they changed. For

this user, there were changes made consistently

throughout the study time to the tags and waypoints,

indicating that this user was able to manage and update

the tagged waypoints effectively. When asked in the

post-questionnaire if his use of the tool changed over

time, he replied: “yes -- I started with tags that

described the function of the code, but I moved to tags

that were task-based (bugs, todos, API changes, etc.)”.

This user did not create any hierarchical tags, but used

multiple tags frequently and in quite sophisticated

ways. He also added comments for all the waypoints.

One interesting tag this user added to a preexisting

waypoint was: "badbadbad". The existing tags on this

waypoint were used to indicate what he needed to do.

The additional “badbadbad” tag was used as a

prominent reminder.

There are bursts of commenting and tagging activity

that occur just before a major release, change or

refactoring. C3, in the post-questionnaire, said the most

useful instance for using waypoints was “tagging

particular changes in an API for later integration”. C3

used TagSEA as a “todo/remember-this-stuff-for-later”

tool. He tended to use TagSEA as a status indicator of

his TODOs rather than to support navigation. The

difference in use between C2 and C3 is reflected in

Table 2, where C2’s use of waypoints is more focused

on asserting information, while C3’s use of waypoints

is more focused on TODOs. C3 said he would favor

using TagSEA over tasks and bookmarks. He mentions

that TagSEA is more flexible because the user can

define their own tags directly in code and they show up

in the tags view and “you can pivot around them”.

B2. From the two programmers that responded to

our email from the BC lab, only B2 downloaded the

tool and completed the pre-questionnaire. B2 (male)

was only able to use the tool for two weeks due to other

deadlines at work. This programmer had over 10 years

of programming experience. He worked on a

demanding project with two other team members. He

was unable to submit his source code to us for analysis.

However, Table 2 shows the data from one version of

his submitted tagged data. We also asked him to submit

interaction data (logged by TagSEA) on how he used

the tool. This data showed us that he used the

waypoints to support his navigation activities, and that

he also used the refactoring facility for managing his

tags. In the interview, he mentioned that the refactoring

facility was very powerful. He created hierarchical tags

and added additional comments.

B2’s intent behind tagging is summarized in Table

2. In the questionnaire he commented that he used

waypoints for “exploring complex code paths” and

“TODOs”. He did not use them for asserting

information. A post study interview confirmed that he

used the tagged waypoints to support things that

needed further examination. He also made several

suggestions for improvements, including that TagSEA

should “use icons to represent type of waypoint

(TODO, documentation, code review, code execution

path, etc)” and that “the context sensitive help system

#Waypoints

 of type:

User:

Info Info-

Author

Info-

Feature

ToDo ToDo-

Bug

ToDo-

Change

ToDo-

Check

ToDo-

Test

Total

Way

points

Unique

Tags/

Instances

Tag

Den-

sity

C2 T1 1 5 11 1 1 4 23 15/23 .65

∆ T2 -1 +2/-3 +5/-1 25 14/25 .56

∆ T3 +1 26 14/26 .54

C3 T1 2 1 7 3 2 15 10/24 .42

∆ T2 +4 -1 18 11/28 .34

∆ T3 +1/-1 +5 +1 24 19/45 .42

B2 T1 6 12 7 25 14/55 .25

needs to reflect the tag hierarchy”. We were not able to

analyze his code, so we could not determine how he

used ordinary comments or task annotations for

navigation. However, in the post-study questionnaire,

he indicated that he used neither bookmark nor task

annotations. He felt that the Eclipse task annotations

were worthless because they could be obscured by

many general TODO task annotations generated by the

IDE. Although he was aware that they could be

customized, he indicated in the interview that it was too

tedious. When asked about bookmarks in the

questionnaire, he replied: “I never use bookmarking.

TagSEA augments the IDE tools and should become a

standard part of Eclipse”.

6.2 Non-adopters

Two of the six users from Cambridge did not use

the tool for technical incompatibilities and two used it

for only a short time. Their reasons for not using the

tool were determined through the focus group and

interviews. One programmer, C1, did not adopt the tool

because his work required Java and non-Java

development, and TagSEA did not support the non-

Java work. C6 used an IDE configuration that could

not run TagSEA.

C5, (male) a senior software engineer and expert

with Eclipse, tried the tool on the first day, but later

dropped it. His work involved creating and maintaining

his own source code in a large project and he was

intimately aware of how to navigate around his code.

Thus he could not see any advantage to using TagSEA

over Eclipse’s navigational shortcuts (e.g. accelerator

keys to jump to classes) and advanced features (e.g.

browsing source control history to study changes). In

the interview, he mentioned that he does not comment

his code (“code speaks for itself”), but enters check-in

comments into the version control system, which he

can then review in the version history. He heavily uses

a bug tracking system and version history browser to

manage his tasks. We confirmed the lack of

commenting through examination of his source code.

We found only one task annotation within four months

of revisions, and less than 10 descriptive comments that

we coded as navigation markers.

C4 (male) is a software engineer on temporary

assignment from another product division. C4 also

largely worked with his own code that provided

infrastructure support for a larger project. C4 used the

tool for only a very brief time. Prior to using TagSEA

he had created custom task annotation types via

Eclipse’s preference settings that equated to some, but

not all, of the support that TagSEA offered.

Unfortunately we could not access C4’s source code

for confidentiality reasons so we could not determine

what kinds of comments he made. In the exit interview,

C4 mentioned that he found typing tags to be tedious.

B1 (male) from the BC lab did not use the tool,

despite downloading it. He indicated he did not use it

because TagSEA was not compatible with his

environment.

7. Anonymous users and TagSEA

In addition to the case study series where we had

full access to the programmers and their source code,

we collected, with consent, usage statistics from five

early adopters of the TagSEA tool (A1-A5). Our goal

was to understand the intent for creating waypoints

(using the INFO and TODO categories). Data was

automatically uploaded to our server every time the

TagSEA tool was re-initialized. Tag names as well as

the resource names and line numbers of waypoints

were collected. Two of the experimenters

independently examined the logged data and the

number of the waypoints for each tag. Since we neither

collected comments associated with the waypoints nor

source code, we only provide a summary of their intent

for tagging as in many cases we were not able to

determine the exact user’s intent. Table 3 provides a

summary of the quantitative data, including the

numbers of waypoints and unique tags, and the density

of tags (see Sec. 5.3) from the last set of logged data.

The quantitative data is discussed further in Sec. 8.

Table 3. Anonymous log data collected

User

#days

logged

maximum

depth of

hierarchy

#way-

points

#unique

tags/

instances

tag

density

A1 81 3 59 43/115 .37

A2 59 5 250 140/799 .18

A3 25 2 15 12/21 .57

A4 58 3 3 3/4 .75

A5 25 3 19 11/37 .30

7.1 Anonymous user #1 (A1)

During our analysis of the logged data, we noticed

that three sets of logged files were overlapping for

three different user IDs. The overlapping data

comprises of 105 log files submitted over 81 logged

days. There are two possible explanations. Either three

users working on the same project agreed to participate

in our study, or the same user enrolled in the study

from three different workstations. From our data it is

impossible to tell. We take a conservative stance and

assume it is only one user.

This user made extensive use of the tag hierarchy to

create a set of well-organized tag names. The leaves of

the tag hierarchy are mostly composed of cryptic short-

hand words. However, the more descriptive higher

level nodes in the hierarchy can be used to determine

the purposes of the leaf tags. From this, we were able to

determine that the user used tags to indicate

functionality in the code; both already implemented,

and to be completed. This user’s tags were categorized

as INFO-FEATURE and TODO-CHANGE.

7.2 Anonymous user #2 (A2)

A2 submitted files covering 59 days. Most of the

user's waypoints indicate locations where generic

features are implemented. The predominant category is

INFO-FEATURE. Hierarchical tags are used to

organize tags according to projects or products (e.g.

Project1.UI_Contribution, Project2.Layout). We

replaced the project names with Project1, etc to protect

the anonymity of the users’ submitted data. There was

one instance of a group of tags indicating one TODO-

CHANGE event.

7.3 Anonymous user #3 (A3)

This user submitted 25 days of logged data. It was

hard to classify some of this user’s tags because they

were written using characters outside of the Roman

alphabet. However, the tags that we could read

indicate an extensive use of the various TODO

categories of tags. TODO-CHECK, TODO-CHANGE,

and TODO-TEST are all used. Similar to A3, this user

organized the tag hierarchy according to project names.

(e.g. Project3.todo, Project3.test, Project3.review,

Project3.documentme). This user also added some

unusual tags to emphasize important areas in code, for

example through the use of capitalization and the use of

exclamation marks (e.g. Project3.!!!). These tags are

indicative of the TODO-CHECK category. Finally,

there is a small indication that this user used tags to

indicate features of the software (INFO-FEATURE), as

well as to document that he or she was the author of the

code (INFO-AUTHOR). Overall, A3 made quite

extensive use of tags for varied purposes.

7.4 Anonymous user #4 (A4)

A4 submitted 58 days of log data. Most of the tags

appear to belong to the INFO-FEATURE category

(e.g. copy.import.vector). There were a few scattered

tags that indicate TODO events: TODO-CHANGE

(e.g. "changerefname"); general TODO (e.g.

"**.todo"); and possibly TODO-CHECK (e.g.

"**.question"). We replaced two initials with “**” to

preserve anonymity.

7.5 Anonymous user #5 (A5)

A5 submitted 25 days of logged data. This user has

a very small tag hierarchy. It is used to mark-up code

that implements an abstract model. There are tags that

indicate future work. Given the small hierarchy and the

lack of context, the tags are quite difficult to classify,

but they generally indicate the classes of TODO-

CHANGE and INFO-FEATURE.

8. Discussion

We discuss the insights we gained on the research

questions posed as well as the study limitations.

8.1 Research Questions

Q1: For adopters, what kinds of waypoints and tags

are created, and how do they evolve? Users from

both groups used TagSEA for task management as well

as to assert information about the program code and

design. However, the majority of the use cases were for

managing or reminding about tasks. One interesting

result was that the two professional programmers from

Cambridge did not, for the most part, use hierarchical

tags. We speculate this may have been because these

two programmers were experienced with social

bookmarking tools and there are reports of experienced

tagging users creating their own conventions to encode

hierarchical relationships across tags [8]. The

programmer from BC and the anonymous users all used

hierarchical tags. We hypothesize that these users find

hierarchies to be a useful way of organizing their tags.

Two of the three professional programmers that

used TagSEA added comments to the waypoints. We

cannot tell if the anonymous users added comments as

we did not collect this data to maintain anonymity. We

also see evidence of the users creating memorable tags

to help them remember important code for future

inspection. Memorable tags included “home”,

“badbadbad” and “Project-Name3.!!!”.

The density of tags indicates that the tags are being

used to document delocalized concerns in the code (see

the density numbers in Tables 2 and 3). Most users

used multiple tags (e.g. performance, todo) per

waypoint. Tables 2 and 3 show us that two of the

anonymous users created considerably more tags and

waypoints than the other users and that they made

extensive reuse of existing tags. The reason for this

may have been due to more extensive programming

activities during the study period, but more studies are

needed to understand this difference.

We saw some indications that the tool support is

effective at supporting the deletion, maintenance and

creation of tags and waypoints. The logged data also

shows evidence that refactoring can be used to achieve

consistent tags. In summary, we noticed that the studied

users co-opted TagSEA’s features to support their task

and documentation needs in very different ways. It will

be interesting to explore in a future study how the

tool’s usage may also vary over a longer period of use.

Q2: For adopters, how does their use of waypoints

compare to the use of tasks and comments? From the

analysis of the source code from two of the Cambridge

programmers, we were able to explore how they made

use of source code comments, task annotations and

waypoints. For asserting information, C2 relied most

heavily on source code comments, but had a few

waypoints for this category (perhaps to support

perceived future navigation to these waypoints). C3 on

the other hand used only source code comments for

asserting information. For indicating tasks, C2 and C3

used waypoints for approximately half of these

annotations. For the other half, C2 used mostly source

code comments and a few Eclipse tasks, whereas C3

used Eclipse tasks. However, in the exit interviews

both C2 and C3 mentioned a preference for waypoints

over task annotations in the future. Unfortunately, we

could not access the source code for the professional

adopter in BC, but he indicated he did not use tasks.

Q3: Why do some users not use TagSEA? Since

three of the recruited programmers did not use

TagSEA for technical incompatibilities, the two users

that used TagSEA only for a short time are the most

interesting cases for us to consider.

C5 reported that the tool was not useful for him. We

suspect that C5 replicated most of the benefits of

TagSEA through disciplined management of external

tools or advanced UI features. Likewise, C4 had

already created custom task annotations and was

frustrated by the non-working automatic tag completion

facility. These results are interesting as they

demonstrate that users are going to some effort to

customize their environments to meet their navigation

needs.

Finally, another theme to emerge from the focus

group is that some users are reluctant to add shared

comments in the source code and thus requested a way

to privately waypoint outside the code.

Q4: How can TagSEA be improved? This is perhaps

the most important question for us to answer, as an

improved tool should enhance our ability to collect

further insights on the previous three research

questions. During the focus group discussion at the

Cambridge lab there was significant discussion on

whether waypoints should be personal or shared

artifacts. The non-adopters in particular were

concerned about this. One of the programmers used the

phrase “graffiti” to describe the annotations added to

the code. Others liked that the tagged comments were

in the source code – e.g. from C3’s questionnaire: “No

-- public tags work for me. At worst, they're

uninteresting to other people. At best, they help

document the code.” But there was a need expressed to

tag code that has read-only access. Our conclusion

from this is that both private and public waypoints are

needed, but they should be presented to the user in an

integrated way, rather than as separate tools with

different user interface affordances. Moreover, the tool

should have mechanisms so that annotations, if present

in the code itself, could be filtered easily when

formalizing a version of the code.

Based on the feedback we have received, the latest

version of TagSEA (tagsea.sourceforge.net) has

support for waypointing any resource (to support non-

Java work and read-only code), as well as waypointing

breakpoints (to help during debugging) and URLs (as

programmers often refer to web pages for

documentation). Importing and exporting tags and

waypoints are now supported, thus facilitating sharing.

8.2 Limitations

While our qualitative approach allowed us to

explore non-adopter issues, as well as the underlying

factors that contributed to TagSEA and comment use, it

is not possible at this point to generalize from these

findings. A longer observation period would reveal if

the tool would see long-term adoption and how the

usage of tags may shift over time. There are also some

limitations with the tool version used in the case study

series. This immaturity could have affected, not just its

usability, but also its usefulness. In particular, the

version deployed in Cambridge did not have full

support for refactoring and the automatic tag

completion feature did not work as predicted – this

may have had an impact on the programmers’ use of

hierarchical tags as well as influenced one

programmer’s adoption of the tool. Further studies are

needed to explore the reason for the varied use of

hierarchical tags and impediments to adoption.

9. Conclusions and future work

In this paper, we categorized a style of navigation

mechanisms whereby the programmer defines

personalized navigational structures over the software

space. We further discussed how the user may

appropriate other mechanisms to meet this need, such

as adding temporary source code comments.

TagSEA provides affordances for the specific tasks

of creating, accessing and managing user-definable

navigational structures. Previous tools, such as Eclipse

tasks and bookmarks, lack facilities to make these user-

defined navigational structures both accessible and

maintainable. ConcernMapper and JTourBus are

similar as they provide support for saving sets of code

locations that share a common theme. TagSEA can be

used in a similar manner, but it is more flexible as

multiple tags and hierarchical tags can be associated

with each location thus providing more flexibility for

viewing, filtering and accessing the tagged waypoints.

We are encouraged that some programmers in our

study wish to continue using TagSEA, as it indicates

the tool fills a perceived need. We believe part of

TagSEA’s appeal is the ease and flexibility of creating

custom tag vocabularies directly in the source code, the

expressiveness offered by defining info/todo tag names

meaningful to them (which corresponds to users’

preference for using their own vocabularies for objects

and concepts [6]). While regular source code

comments can be just as expressive (e.g. using

expletives in [16]), TagSEA’s custom vocabularies

become first class entities in the Tag Tree UI for

supporting navigation.

We suggest that whatever form user-definable

structures take (i.e. bookmarks, concerns, bug reports),

there are several key design principles that should be

followed. The structures should be easy to create (i.e.

lightweight), they should be clearly visible and easy to

access, and there should be management support for

creating, deleting, and refactoring the structures. The

structures should offer facilities for collaboration and

private/public management of information. Finally, the

structures should allow for the additional of metadata

to help users make navigation decisions.

Our studies so far have focused largely on

individual TagSEA users in isolated projects. Thus, this

work may inform, and be informed from, the social

bookmarking space. We need to explore how

waypointing, or even how simple bookmarks and

source code comments, are used in a team that engages

in a high degree of collaborative development work.

10. References

[1] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, Shared

“Waypoints and Social Tagging to Support Collaboration in

Software Development.” Proc. CSCW 06, Banff, 2006.

[2] L. Brothers, V. Sembugamoorthy and M. Muller. “ICICLE:

Groupware for Code Inspection.” Proc. CSCW 90, Los Angeles,

CA, USA, 1990, pp. 169-181.

[3] D.R. Benyon, “Beyond navigation as metaphor.” Proc 2nd

EuroDL Conference. Crete, 1998.

[4] R. Deline, M. Czerwinski and G.G. Robertson. “Easing Program

Comprehension by Sharing Navigation Data.” In Proceedings of

VL/HCC 2005.

[5] A. Dieberger and A.U. Frank, “A city metaphor for supporting

navigation in complex information spaces.” J. of Visual Languages

and Computing 9, 1998, pp. 597-622.

[6] G.W. Furnas, T.K. Landauer, L.M. Gomez, & S.T. Dumas, “The

Vocabulary Problem in Human System Communication: An

Analysis and Solution,” Comm. ACM 30(11), 1987, pp. 964-971.

[7] S. Golder and B.A. Huberman, "Usage Patterns of Collaborative

Tagging Systems." Journal of Information Science, 32(2). 2006, pp.

198-208.

[8] M. Guy and E. Tonkin, “Folksonomies: Tidying up Tags?” D-

Lib Magazine, Vol. 12, No. 1, January 2006.

[9] T. Hammond, T. Hannay, B. Lund and J. Scott, “Social

Bookmarking Tools: A General Review”, D-Lib Magazine, Volume

11 Number 4, April 2005.

[10] M. Kersten, and G. Murphy, "Mylar: A degree-of-interest model

for IDEs," Proceedings of Aspect Oriented Software Development,

Chicago, IL, 2005.

[11] J.W. Creswell, “Research Design: Qualitative, Quantitative, and

Mixed Methods Approaches”, ISBN: 0761924426, 2002.

[12] M. Muller, J., Kuchinskaya, O., Minassian, S. O., Tang, J. C.,

Danis, C., Zhao, C., Harrison, B., and Moran, T. P. 2005. “Shared

landmarks in complex coordination environments.” In CHI '05

Extended Abstracts on Human Factors in Computing Systems,

2005, pp. 1681-1684.

[13] G. Murphy, M. Kersten, and L. Findlater.

”How are Java software developers using the Eclipse IDE?”, IEEE

Software, July/August. 2006, pp. 76-83.

[14] C. Oezbek and L. Prechelt. “JTourBus: Simplifying Program

Understanding by Documentation that Provides Tours Through the

Source Code.” Working Paper TR-B-07-08, Freie Universität Berlin,

Germany, April 2007.

[15] M.P. Robillard and G. Murphy, "Automatically Inferring

Concern Code from Program Investigation Activities," Proceedings

of ICSE, 2003.

[16] Selznak, “We Are Morons: A Quick Look at the Win2k

Source,” www.kuro5hin.org/story/2004/2/15/71552/7795.

[17] J. Singer, R. Elves, and M.-A. Storey, “NavTracks: supporting

navigation in software maintenance,” Int. Conf. on Software

Maintenance, Budapest, 2005.

[18] Javadoc Home Page, http://java.sun.com/j2se/javadoc

[19] A. Ying, J. Wright and S. Abrams. “Source code that talks: an

exploration of Eclipse task comments and their implication to

repository mining”, Workshop on Mining Software Repositories

(MSR ’05), St. Louis, 2005, pp. 1-5.

[20] L.-T. Cheng, M. Desmond, M.-A. Storey, "Presentations by

Programmers for Programmers," 29th International Conference on

Software Engineering, 2007, pp. 788-792.

