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Inertia Revealing Preconditioning For Large-Scale Nonconvex

Constrained Optimization

Olaf Schenk∗ Andreas Wächter† Martin Weiser‡

November 5, 2007

Abstract

Fast nonlinear programming methods following the all-at-once approach usually employ
Newton’s method for solving linearized Karush-Kuhn-Tucker (KKT) systems. In nonconvex
problems, the Newton direction is only guaranteed to be a descent direction if the Hessian of
the Lagrange function is positive definite on the nullspace of the active constraints, otherwise
some modifications to Newton’s method are necessary. This condition can be verified using
the signs of the KKT’s eigenvalues (inertia), which are usually available from direct solvers for
the arising linear saddle point problems. Iterative solvers are mandatory for very large-scale
problems, but in general do not provide the inertia. Here we present a preconditioner based on
a multilevel incomplete LBL

T factorization, from which an approximation of the inertia can
be obtained. The suitability of the heuristics for application in optimization methods is veri-
fied on an interior point method applied to the CUTE and COPS test problems, on large-scale
3D PDE-constrained optimal control problems, as well as 3D PDE-constrained optimization
in biomedical cancer hyperthermia treatment planning. The efficiency of the preconditioner is
demonstrated on convex and nonconvex problems with 1503 state variables and 1502 control
variables, both subject to bound constraints.

1 Introduction

In this paper we address the numerical solution of nonlinear optimization problems (NLPs) given as

min
x∈Rn

f(x) subject to c(x) = 0, xL ≤ x ≤ xU (1)

where the objective function f : R
n −→ R and the constraints function c : R

n −→ R
m are assumed

to be C2. Note that problems with general nonlinear inequality constraints can be equivalently
reformulated into the above statement by means of slack variables.

Despite the vast amount of literature published in this area (cf. [25] and the references therein),
large-scale nonconvex nonlinear constrained programming remains to be algorithmically and compu-
tationally challenging. Here, we address one specific open aspect of that class of problems: How to
compute or approximate the inertia of the Hessian of the Lagrange functional (a.k.a. KKT matrix)
when an iterative linear solver is used to obtain the search directions of the optimization algorithm.
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INERTIA REVEALING PRECONDITIONING 2

This piece of information can be employed to generate optimization steps that promote convergence
to minimizers of a nonconvex optimization problem, and not merely to any stationary point, which
is often unsatisfactory.

A rich source for large-scale nonconvex NLPs are PDE-constrained optimal control problems.
Here, the unknowns x = (y, u) can often be partitioned into control variables u ∈ R

n−m and state
variables y ∈ R

m. Usually, the state equation c(y, u) = 0 defines (locally) unique states y = y(u) in
terms of given controls. The reduced solution approach, which considers the reformulation

min
u∈Rn−m

f(y(u), u) subject to yL ≤ y ≤ yU , uL ≤ u ≤ uU

is formally attractive, but requires to solve the nonlinear state equation to high accuracy in every
step of the optimization algorithm. In addition, the PDE solver has to provide the derivative

information ∂y
∂u

(and possibly ∂2y
∂u2 for an optimization algorithm with fast local convergence), which is

often implementationally and computationally challenging or impossible. Furthermore, in problems
where a partitioning x = (y, u) of the unknowns is not induced by the problem structure, computing
a reduced basis is usually only practical for small problems.

On the other hand, in the all-at-once approach, optimality and feasibility are reached simul-
taneously. The infinite-dimensional differential equations are discretized, and only linearized state
equations have to be solved in every optimization step, which can improve the overall performance
tremendously (cf. [4, 5, 26]). Drawbacks are a significantly increased number of variables and the
necessity to handle the equality constraints explicitly. However, the first and second derivatives of
the discretized constraints and objective are typically readily available, sparse, and well-structured.
Unfortunately, direct linear solvers applied to the step computation system can create a lot of fill-
in. This is particularly pronounced for discretized optimal control problems with three-dimensional
PDE constraints. Here, the memory requirements induced by the fill-in may practically rule out
direct solvers for very large problems, in which case preconditioned iterative methods are the only
viable alternative.

One important aspect in nonconvex optimization is the usage of second-order information. On
the analytical side, sufficient and necessary optimality conditions require the Hessian of the La-
grangian function to be positive definite or positive semidefinite, respectively, on the nullspace of
the linearized constraints. On the algorithmic side, positive definiteness of the Hessian on the
constraints’ nullspace is necessary for Newton type methods to compute downhill tangential steps.
Thus, for both, verification of a candidate solution as well as computing good search directions,
it is important to check whether the Hessian is positive definite on the nullspace of the linearized
constraints. This information is given by the inertia of the Lagrange functional’s second derivative.
How to reliably obtain the inertia from iterative methods, however, is essentially an open research
problem. In the current paper we propose an algebraic multilevel preconditioning technique (not to
be confused with algebraic multigrid) based on an incomplete LBLT factorization using maximum
weighted matchings that aims to reveal the inertia of the iteration matrix and is used in a primal-
dual interior point method. Although no theoretical guarantees are provided, we will show that the
practical performance of this approach is very satisfactory.

For completeness, we point out that several other approaches have been proposed in the literature
to handle nonconvexity in nonlinear optimization such as [13, 17, 23]. However, these require the
direct factorization of a matrix that contains at least the Jacobian of the constraint matrix, i.e., the
discretized PDE. A recent exception to this is [12] which allows the use of iterative linear solvers
for nonconvex equality constrained optimization without specific preconditioner requirements, but
practical performance has not yet been tested on large problems.

The remainder of the paper is structured as follows. Section 2 reviews a typical interior-point
NLP optimization algorithm, introduces the matrix that commonly appears in linear systems for the
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search direction computation, and discusses how information about the inertia of this matrix can be
used to promote convergence to minimizers of the problem. Section 3 describes the novel inertia-
revealing preconditioning technique in detail. The practical performance of the preconditioner is
assessed in Section 4, specifically with respect to the exactness of the inertia approximation and its
usability for nonconvex optimization. Finally, Section 5 presents the application of the proposed
approach in hyperthermia cancer treatment planning.

2 Saddle point matrices in nonlinear nonconvex optimization

In order to solve optimization problems (1) coming from the all-at-once approach for PDE-constrained
optimal control, the optimization method needs to be able to handle a large number of variables and
bound constraints. At current time, the most successful methods for NLP are active set Sequential
Quadratic Programming (SQP) methods and Interior-Point Methods (IPM). Since SQP methods
are currently not able to efficiently handle very large problems with millions of (bounded) variables
due to the combinatorial complexity of identifying the active set, we will concentrate in this work
on IPMs.

Interior point methods avoid the high complexity introduced by inequality constraints by replac-
ing them by a barrier term which is added to the objective function. One then obtains the barrier
problem

min
x∈Rn

ϕµ(x) = f(x) − µ

n
∑

i=0

ln(x(i)) subject to c(x) = 0, (2)

where µ > 0 is a barrier parameter, and x(i) denotes the i-th component of the vector x. For the sake
of simplicity, we assume here that xL = 0 and xU = ∞, but the approach can easily be generalized.

The literature in the past 15 years has presented a number of different IPMs [18]. Most methods
have in common that steps are computed from the linearization of some formulation of the optimality
conditions of (2) and that µ is eventually driven to zero.

The particular method considered in this paper, implemented in the software package Ipopt,
reduces the barrier parameter µ monotonically, where a decrease is done every time the corresponding
barrier problem is solved to a convergence tolerance O(µ). At an iteration k with iterate xk > 0
and approximation of the Lagrangian multipliers λk, the method computes search directions from a
linearization of the optimality conditions for (2),

[

Hk Ak

AT
k 0

](

∆xk

∆λk

)

= −

(

∇ϕµ(xk) + Akλk

c(xk)

)

(3)

Here, AT
k denotes the Jacobian of the constraint functions at xk, and Hk is a suitable (primal-dual)

approximation of the Hessian of the Lagrangian function for (2). Once a search direction ∆xk has
been determined, a line search is performed to find a step size αk ∈ (0, 1], using a filter mechanism to
test acceptability of trial step sizes. Finally, the new iterates are obtained from xx+1 = xk + αk∆xk

and λx+1 = λk + αk∆λk

Details of the method implemented in Ipopt can be found in [40]. The following discussion is
restricted to the features that matter when we want to use an iterative linear solver to solve the
system (3).

First, under some circumstances no acceptable step size αk can be determined for a search
direction (∆xk, ∆λk). In this case, the filter line search procedure switches to a restoration phase,
which solves a related optimization problem, aiming to reduce the infeasibility. The search directions
are then obtained by solving a linear system of the same dimension as (3) but with a matrix

[

Hk Ak

AT
k −Ck

]

(4)
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where Ck is a diagonal matrix with positive entries.
Second, as mentioned in the Introduction, NLP solvers need to take special measures if they are

solving nonconvex problems, to ensure that they generate descent directions for the globalization
mechanism, and to attempt to avoid convergence to non-minimizers. In the considered IPM, this is
done by requiring that the Hessian matrix Hk in (3) is positive definite in the null-space of AT

k , or—
equivalently—that the matrix in (3) has exactly n positive and m negative eigenvalues. In Ipopt,
if the linear solver determines at an iteration that the number of negative eigenvalues is more than
m, the matrix Hk in (3) or (4) is replaced by Hk + δI for some δ > 0; a sufficiently large value of δ
is determined by a trial-and-error procedure.

In summary, the considered IPM requires solutions of linear systems

Kv =

[

H A
AT −C

]

v = b, (5)

where the n × n matrix H is symmetric and potentially indefinite, C is a non-negative diagonal
regularization matrix which is often zero, and the n × m matrix A has full column rank. Although
we motivated this linear system in the context of the particular IPM implemented in Ipopt, we
emphasize that many currently proposed IPMs compute steps by solving different variations of (5),
including those implemented in popular software packages such as Knitro [41] and Loqo [39].
An efficient solution methods for (5) that is able to provide inertia information could benefit these
optimization algorithms as well.

For a detailed survey on solution techniques for large linear saddle-point systems (5), the in-
terested reader should consult [3]. Most direct factorization methods for such indefinite symmetric
systems (usually based on variations of the Bunch-Kaufman algorithm [11]) can very easily compute
the inertia of the factorized matrix. However, iterative linear solvers do not compute such informa-
tion on the fly. In the next section we discuss a preconditioner that aims to recover the inertia of
the original matrix. Even though this approach is a heuristic, we show that it is working very well
in practice.

3 An efficient heuristic to reveal the inertia using multilevel

incomplete factorizations

The inertia of a symmetric matrix K—denoted by In(K)—is the integer triple (n, m, z), where
n, m and z denote the nonnegative numbers of positive, negative and zeros eigenvalues of K. In
this section we make use of Sylvester’s law of inertia [22], which states that if K is a symmetric
matrix, and T is a nonsingular matrix of the same dimension as K, then In(K) = In(TKT T ). For
a symmetric Karush-Kuhn-Tucker matrix K, which may be partitioned with a permutation matrix
P and scaled with a scaling matrix D into

PDKDT PT =

(

B FT

F C

)

with B nonsingular, the Schur complement of B in K is defined as SC = C −FB−1FT . The matrix
PDKDT PT can be decomposed into

PDKDT PT =

(

B FT

F C

)

=

(

LB 0
LF I

)(

DB 0
0 SC

)(

LT
B LT

F

0 I

)

. (6)

Sylvester’s law of inertia applied to (6) gives the relation

In(K) = In(PDKDT PT ) = In(DB) + In(SC) (7)
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When solving an equation with a decomposition approach involving a symmetric indefinite matrix
K, which is large and sparse, the permutation matrix P must be chosen in order to maintain
both sparsity and numerical accuracy. One can use a diagonal pivoting factorization of the form
PKPT = LDLT , where L is a unit lower triangular matrix, P is a permutation matrix and D is a
diagonal matrix; we refer to such a factorization as an LDLT -factorization. However, for a general
indefinite symmetric matrix K, one also has to allow pivots of dimension 1 × 1 and 2 × 2. This
gives PKPT = LBLT , where B is a symmetric block-diagonal matrix whose diagonal blocks are of
dimension 1 × 1 and 2 × 2. We refer to such a factorization as an LBLT -factorization. Different
pivoting strategies have been suggested, see e.g. [10, 11].

The key idea here is to define a series of permutation matrices P and nonsingular scaling matrices
D without performing a complete factorization in such a way that the resulting incomplete LBLT -
factorization is as stable as possible and that most of the globally important numerical entries in K
are permuted into the diagonal block DB to serve as potential 1× 1 and 2× 2 pivots for the inertia
computation.

The resulting incomplete factorization leads to a 1× 1 and 2× 2 diagonal block DB and a Schur
complement SC . We now present the heuristic to reveal the inertia by an indefinite incomplete multi-
level factorization that is mainly based on three parts, which are repeated in a multilevel framework
in each subsystem. The components consist of (i) reordering of the system using weighted graph
matchings to approximate Gaussian scaling and Gaussian 1×1 and 2×2 pivoting ordering as good as
possible, (ii) approximate factorization using inverse-based pivoting and Eigenvalue decompositions
of 1× 1 and 2× 2 diagonal blocks, and (iii) recursive application to the system of the pivot elements
that are permuted into the Schur complement.

3.1 Symmetric 1 × 1 and 2 × 2 block weighted matchings

The key ingredient for turning this approach into an efficient inertia-revealing multilevel solver
consists of the symmetric maximum weighted matching [16, 27, 36]. After the system is reordered
into a representation

PsDsKDT
s PT

s = K̂, (8)

where Ds ∈ R
n×n is a diagonal matrix and Ps ∈ R

n×n is a permutation matrix, K̂ is expected
to have many diagonal blocks of size 1 × 1 or 2 × 2 that are well conditioned. Once the diagonal
blocks of size 1× 1 and 2× 2 are built, the associated block graph of K̂ is reordered by a symmetric
reordering, such as Metis [28], to obtain

ΠT PT
s DsKDsPsΠ = K̃, (9)

where Π ∈ R
n×n refers to the associated symmetric block permutation that preserves the 1× 1 and

2 × 2 pivot blocks.

3.2 Inverse-based pivoting

Given K̃, we compute an incomplete factorization LBLT = Ã + E of K̃. To do this at step k of the
algorithm, we have

K̃ =

(

B FT

F C

)

=

(

LB 0
LF I

)(

DB 0
0 SC

)(

LT
B LT

F

0 I

)

, (10)

where LB ∈ R
k−1,k−1 is lower triangular with unit diagonal and DB ∈ R

k−1,k−1 is block diagonal
with diagonal blocks of sizes 1 × 1 and 2 × 2. Also, SC = C − LF D−1

B LT
F = (sij)i,j denotes the

approximate Schur complement. To proceed with the incomplete factorization, we perform either a
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1 × 1 update or a 2 × 2 block update. One possible choice could be to use Bunch’s algorithm [9]
and this approach has been used in [27]. Here we use a simple criterion based on block diagonal
dominance of the leading block column. Depending on the values

d1 =
∑

j>1

|sj1|

|s11|
, d2 =

∑

j>2

∥

∥

∥

∥

∥

(sj1, sj2)

(

s11 s12

s12 s22

)−1
∥

∥

∥

∥

∥

, (11)

we perform a 2 × 2 update only if d2 < d1. Here, d1 and d2 represent the diagonal dominance of
the current row/column. The two leading columns of SC can be efficiently computed using linked
lists [29], and it is not required to have all entries of SC available.

When applying the (incomplete) 1 × 1 and 2 × 2 block factorization LBLT to K̃ we may still
encounter a situation where at step k either 1/|s11| or ‖[(sij)i,j62]

−1‖ is large or even infinite.
Since we are dealing with an incomplete factorization, we propose to use inverse-based pivoting [6].
Therefore, we require in every step that

∥

∥

∥

∥

∥

(

LB 0
LF I

)−1
∥

∥

∥

∥

∥

6 κ1 (12)

for a prescribed bound κ1. If after the update using a 1 × 1 pivot (or 2 × 2 pivot) the norm of
the inverse lower triangular factor fails to be less than κ1, the update is postponed and the leading
rows/columns of LF are permuted to the end of SC . Otherwise, depending on whether a 1× 1 or a
2 × 2 pivot has been selected, the entries

(sj1/s11)j>1,

(

(sj1, sj2)

(

s11 s12

s12 s22

)−1
)

j>2

(13)

become the next (block) column of L, and we drop these entries whenever their absolute value is
less than ε/κ1 for some threshold ε. For a detailed description see [6]. The norm of the inverse can
be cheaply estimated using a refined strategy of [14].

3.3 Eigenvalue decomposition of 1 × 1 and 2 × 2 pivots

The inverse-based pivoting approach has been successfully used in [33, 34]. In addition to the inverse-
based pivoting approach we will resort to a second heuristic to permute 1 × 1 and 2 × 2 diagonal
blocks into the Schur complement if the absolute value of the eigenvalues αi of these blocks are
smaller than a prescribed bound κ2:

|α1| < κ2 (for a 1 × 1 pivot); min(|α1|, |α2|) < κ2 (for a 2 × 2 pivot). (14)

This strategy has the effect that diagonal blocks with potentially small eigenvalues are permuted
into the Schur complement and, here, can be computed more exactly in the multilevel framework.
This eigenvalue decomposition is another key component to turn the method into an effective inertia-
revealing preconditioner.

3.4 Recursive application

After the incomplete matching-based factorization we have an approximate factorization

QT DT
s K̃DsQ =

(

L11 0
L21 I

)(

D11 0
0 S22

)(

LT
11 LT

21

0 I

)

, (15)
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where Q represents the product of all permutation matrices that are necessary to maintain sparsity
and accuracy, and Ds is the initial scaling matrix which was obtained as a by-product of the weighted
matchings. It typically does not pay off to continue the factorization for the remaining matrix S22

which consists of the previously postponed updates. Thus, S22 is now explicitly computed and
the strategies for reordering, scaling, and factorization are recursively applied to S22, leading to a
multilevel factorization.

We use a technique called aggressive dropping that sparsifies the triangular factor L a posteriori.
Observe that when applying a perturbed triangular factor L̃−1 for preconditioning, we have

L̃−1 = (I + EL)L−1 with EL = L̃−1(L − L̃),

instead of L−1. We can expect that L̃−1 serves as a good approximation to L−1 as long as ‖EL‖ ≪ 1.
If we obtain L̃ from L by dropping some entry, say lij , from L, then we have to ensure that

‖L̃−1ei‖ · |lij | 6 τ ≪ 1

for some moderate constant τ < 1, e.g., τ = 0.1. This requires that a good estimate for νi ≈ ‖L̃−1ei‖
is available for any i = 1, . . . , n. It can be computed using L̃T instead of L̃ [6, 14]. Finally, knowing
how many entries exist in column j, we drop any lij such that

|lij | 6 τ/(νi · #{lkj : lkj 6= 0, k = j + 1, . . . , n}).

3.5 Iterative solution

By construction, the computed incomplete multilevel factorization is symmetric but indefinite. For
the iterative solution of linear systems using the multilevel factorization, different Krylov sub-
space solvers could be used, such as general methods that do not explicitly use symmetry (e.g.,
GMRES [32]) or methods like SYMMLQ [31], which preserve the symmetry of the original matrix
but are devoted only to symmetric positive definite preconditioners. To fully exploit both symmetry
and indefiniteness at the same time, we choose the simplified QMR method [20, 21].

4 Numerical results

In this section, we present comparative numerical results for the inertia-revealing multilevel pre-
conditioner in large-scale nonconvex optimization. First, we will provide numerical results on the
numerical linear algebra level by using a selection of Karush-Kuhn-Tucker systems. Then, we will
evaluate the performance of the method within an interior-point optimization method on the pop-
ular CUTE [8] and COPS [7] collections of nonconvex optimization problems. Finally, we present
numerical results on several large-scale examples of convex and nonconvex three-dimensional PDE-
constrained optimizations.

The numerical test in Sections 4.1, 4.3 and 5 were performed on Intel Xeon servers (2.2 GHz)
with either 24 or 32 GB of memory. The results in Section 4.2 were obtained on an AMD Opteron
(2.2GHz, 8 GB memory). All codes were compiled by the GCC compiler suite (including GFortran)
version 4.2 with the −O3 optimization option and linked with the ACML library containing BLAS
and LAPACK subroutines, optimized for AMD architectures.

The linear saddle-point systems (5) are solved by a preconditioned Sqmr iteration, where the
initial vector is always chosen as v0 = (0, · · · , 0)T . We iterate until either the maximum of 200
iterations has been exceeded or until the residual has been reduced by a factor of either 10+4,
10+7 or 10+14. Furthermore, in Sections 4.2–5, where the iterative linear solver is used within the
interior-point optimizer, the Sqmr iteration is terminated if the last 5 residuals do not change within
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4 digits of accuracy. In all experiments, we used the identical set-up for the incomplete multilevel
factorization preconditioner with κ1 = 500 (norm of the inverse), κ2 = 0.01 (eigenvalue bound), and
τ = 10−3 (threshold value for dropping). For completeness, let us recall the main software packages
we used:

• Pardiso is a fast sparse direct solver developed at the Computer Science Department of the
University of Basel [35, 36]. Pardiso/Ml is the multilevel iterative solver package which con-
tains all preconditioners used for the presented numerical results. Both packages are available
at http://www.pardiso-project.org.

• Ipopt is a software package for large-scale nonlinear optimization [40]. This optimization
package has been developed at the Department of Mathematical Sciences of the IBM Thomas
Watson Research Center and the Carnegie Mellon University. It is available at https://

projects.coin-or.org/Ipopt.

The performance of the multilevel incomplete factorization preconditioners are compared with each
other and also compared with the exact factorization solver in Pardiso.

4.1 Performance comparison of the preconditioners for a selection of

Karush-Kuhn-Tucker systems

Our first numerical results compare the computational requirements and inertia approximation of the
preconditioners from Section 3 applied to typical matrices of the form (5) appearing in optimization
problems.

The first Table 1 provides the set-up times (in seconds) for an exact sparse LBLT factorization
with Pardiso. We selected a representative set of matrices that arise in a nonconvex 3D PDE-
constrained optimization process with Ipopt. We also provide the inertia information for these
matrices. As mentioned in Section 2, it is important in nonconvex optimization that the current
iteration matrix has a specific inertia in order to promote convergence to minimizers of the opti-
mization problem. The Ipopt algorithm modifies the Hessian until the inertia of the full matrix is
exactly n positive eigenvalues (number of Hessian equations) and m negative eigenvalues (number
of Jacobian equations). For example, for the Ipopt series A, the inertia of the first two matrices
(pde-a-01-01, pde-a-01-02) is not exactly (n, m, 0) and a regularization based on [40] is performed
until the inertia has exactly the correct number, such as in the third iteration for matrix pde-a-01-03.

The set-up times for the numerical factorization in Table 1 increase significantly with the problem
sizes n and m, up to a fill-in factor of 215 in comparison to the numbers of nonzeros in the KKT
matrix, resulting in an expensive factorization time of over 2, 644 seconds1.

Table 2 shows the set-up information for these matrices for three different incomplete multilevel
factorization preconditioners, using the parameters given in the introduction of Section 4. The first
preconditioner (ildlt) is an incomplete multilevel factorization solver with inverse-based pivoting
and D is a diagonal matrix. The second preconditioner (ildlt-match) is additionally stabilized
using symmetric weighted matchings described extensively in [16, 27, 36]. Our last preconditioner
(ilblt-match) is based on the second preconditioner, but uses in addition a 1×1 and 2×2 diagonal
matrix B based on Bunch and Kaufman pivoting. The set-up time for ilblt-match includes all
processing steps that are necessary to build this preconditioner. Note that the high set-up time for
the exact factorization in Table 1 can be reduced significantly by two orders of magnitude.

Comparing the inertia information of the three preconditioners in Table 2, we note that by using
graph matchings and 1×1 and 2×2 pivoting, we can recover the correct inertia information by using

1Note that the performance of sparse direct solvers for symmetric indefinite matrices have been improved by two
orders of magnitude during the last years, see, e.g., the results in [38].
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a multilevel incomplete factorization method. Also importantly, the fill-in of the last preconditioner
(ilblt-match) for these 3D PDE-constrained optimization matrices is only a factor of four to
five, which makes this kind of multilevel preconditioner very attractive for large-scale optimization
problems, which will be discussed in Section 4.3.

In Tables 3 and 4, we test the preconditioners against the exact sparse factorization for a set
of publicly available symmetric indefinite saddle-point matrices described in [24]. Interestingly, the
preconditioners behave very similar as in Table 2 and almost all inertia information can be revealed
by using the third preconditioner. In order to demonstrate that our inertia revealing method is only
a heuristic (that still performs very well in practise), we point out the results for matrix NCVXQP7.
For this matrix the inertia computed by the preconditioner was not correct and we observed an
overestimate of 15 positive eigenvalues compared to the exact inertia.

Finally, in Table 5 we present the convergence history of the iterative linear solver for a selection
of matrices by using the ilblt-match preconditioner. It can be seen that it the linear systems can
be solved very efficiently, with only a few numbers of Sqmr iterations, even to a very tight tolerance
of a residual reduction of 10−14.

Based on these positive numerical results, we will use ildlt-match with Sqmr in the interior-
point optimization solver in the next sections and will refer to it as the Pardiso/Ml method.

4.2 Numerical results for standard NLP test sets

In this section we assess the practical performance of the inertia revealing heuristic described earlier.
The goal is to see whether the inertia information made available by the preconditioner ildlt-
match is sufficiently reliable for a general-purpose optimization code to solve nonlinear nonconvex
optimization problems contained in standard collections of test problems.

The first test set consists of 720 problems from the CUTE [8] collection, as provided by Benson [2]
in the AMPL modeling language [19]. Here, we omitted problems which are unbounded, infeasible,
or have too few degrees of freedom. The size of the problems varies between 1 – 50,000 variables
(including slack variables for reformulated inequality constraints) and 0 – 14,000 constraints. The
second test consists of 65 COPS [7] problems (Version 3.0)2. Those problems have 150 – 20,496
variables, and 0 – 20098, constraints. We note here that the AMPL preprocessor was disabled for
the CUTE problems, and enabled for the COPS problems.

Tables 6 and 7 show the outcome of the optimization for the two test sets with different options
to solve the linear systems. Comparing the iterative solver with the direct linear solver shows that
the robustness is almost identical, and most cases with unsuccessful outcome for the iterative solver
that have been solved with the direct solver are due to exceeding the time limit. Since these problems
are not large, the iterative solve option usually requires more CPU time than the direct linear solver.
Furthermore, ignoring the inertia leads to a significant reduction in robustness of the optimization
code. In particular, in a number of problems the iterates diverge or the optimization algorithm fails
because the generated steps do not have the descent properties that are required in order for Ipopt
to generate a new iterate.

A comparison of the final objective function values in successful outcomes obtained for different
options is presented in Table 8. As can be seen, ignoring the inertia leads to worse final objective
function values in many cases, while the values are identical for the direct linear solver and the iter-
ative solver options, in almost all cases. We note here that problems in the test sets have frequently
several local minimizers, so that a convergence to different final solutions is not unexpected. How-
ever, the fact that the inertia-ignoring option leads to worse solutions in so many cases seems due to

2We excluded the first instance of the tetra example since the gradient of the objective function could not be
evaluated at the starting point provided by AMPL.
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convergence to maximizers or saddle-points since the search directions do not promote necessarily a
decrease in the objective function.

These observations show that the inertia-revealing preconditioner is indeed able to provide esti-
mates of the inertia of the linear systems encountered in the optimization algorithm that is sufficiently
close to the exact inertia to allow robust optimization in most practical cases, at least measured in
the standard and non-trivial test sets CUTE and COPS.

4.3 Numerical results for convex and nonconvex three-dimensional PDE

constrained optimization problems

As a large-scale nonlinear programming example we choose a nonlinear PDE-constrained optimiza-
tion problem with homogeneous Neumann boundary conditions. The domain is Ω = (0, 1)× (0, 1)×
(0, 1), and the goal is to compute the optimal boundary control u(x) and state y(x) with respect to
x = (x1, x2, x3) that minimizes a convex

f(y, u) =
1

2

∫

Ω

(y(x) − yt(x))2 dx +
α

2

∫

Ω

u(x)2 dx (16)

or nonconvex

f(y, u) =
1

2

∫

Ω

BT (y(x) − yt(x)) dx +
α

2

∫

Ω

u(x)2 dx (17)

objective function. Here, the parameter in the Tikhonov regularization is chosen as α = 10−4, and
BT (t) is a C2 approximation of the nonconvex Beaton-Tukey function, given as

BT (t) =

{

(3
2 − 9C

8B
)t2 + (7

4
C
B3 − 3

2B2 )t4 + ( 1
2B4 − 5C

8B5 )t6 if |t| ≤ B
B2

2 + C(|t| − B) if |t| > B

with a cutoff value B = 0.25 and with C = 0.01. The original Beaton-Tukey function [1] has a
discontinuous second derivative at |t| = B, and is constant for |t| > B. While the original function is
a popular robust quality measure for the fit of observations y(x) with respect to given data yt(x), our
approximation provides the smoothness properties required by a second-order optimization method,
and the slope |BT ′(t)| = C > 0 informs the optimizer that smaller deviations are more desirable,
even if |t| > B.

The PDE constraints in our example are defined by the elliptic operator

in Ω : − ∆y(x) = 20, y(x) ≤ 3.5, yt(x) = 3 + 5x1(x1 − 1)x2(x2 − 1), (18)

and the boundary conditions are

on ∂Ω : y(x) = u(x), 0 ≤ u(x) ≤ 10. (19)

This problem is a variation of Example 5.1 in [30].
We use an equidistant Cartesian grid with N points in each space direction to discretize (16)–

(19), where the usual 7-point stencil is used for discretizing the Laplace operator. The size of the
nonlinear programming problem as a function of the discretization parameter N is shown in Table
9.

Tables 10 (convex) and 11 (nonconvex) shows the timing results for the complete interior-point
optimization algorithm with Ipopt and the ilblt-match preconditioner.

In the convex PDE optimization example in Table 10, a residual reduction of already four orders of
magnitude is sufficient to converge to the correct solution of the optimization problem. The iterative



INERTIA REVEALING PRECONDITIONING 11

1 2 3 4 5 6 7 8 9 10
20

40

60

80

100

120

140

Newton iteration in IPOPT for the convex example with M=80

S
Q

M
R

 It
er

at
io

ns

Numbers of SQMR iteration for the convex PDE−constrained optimization problem

 

 

Rel. Residual = 10−4

Rel. Residual = 10−7

Rel. Residual = 10−14

0 20 40 60 80 100 120
20

40

60

80

100

120

140

160

180

200

220

Newton iteration in IPOPT for the convex example with M=80

S
Q

M
R

 It
er

at
io

ns

Numbers of SQMR iteration for the nonconvex PDE−constrained optimization problem

 

 

Rel. Residual = 10−7

Rel. Residual = 10−14

Figure 1: Number of Sqmr iterations for the convex (left) and nonconvex (right) PDE-constrained
optimization example with N = 80 to reduce the residual by either 4, 7 or 14 order of magnitudes.

solver performs very well in this example and it is very memory efficient. For the larger example that
have more than N = 80 discretization points in each direction we observed a 32-bit integer overflow
in the direct solver, whereas with our preconditioner it was possible to solve a 3D PDE-constrained
optimization problem with N = 150 in less than 3 hours on a single processor. This problem has
more than 3 million state variables with upper bounds, over one hundred thousand control variables
with both upper and lower bounds, and about 91 millions of nonzeros in the Jacobian matrix.

The nonconvex optimization example in Table 10 is computationally challenging and a higher
residual reduction is necessary in order to converge to the optimal solution while not impeding the
convergence of Newton’s method. In general, the iterative method requires slightly more Newton
iterations than the direct solver for convergence. The reason is that the preconditioner has not always
computed the inertia correctly and a slight increase in Newton iterations is visible by comparing
the results for the direct and iterative solver. However, the iterative method is much more memory
efficient and faster even if a residual reduction of 14 orders of magnitude is requested. Note that
all these nonconvex examples would fail if one would ignore the inertia in Ipopt during the Newton
iteration.

Finally, in Figure 4.3, we plot the convergence histories of Sqmr iterations for both the convex
and nonconvex example with N = 80. It is clearly shown that the number of iterations is in general
rather small. For example, it is possible to reduce the residual by 14 orders of magnitude within
typically 100 Sqmr iterations. Note that N = 80 represents already a large-scale saddle-point matrix
with over 500,000 equations.

5 Numerical results for three-dimensional optimal hyperther-

mia treatment planning problems

Regional hyperthermia is a cancer therapy that aims at heating large and deeply seated tumors by
means of radio wave absorption. Heating tumors above a temperature of about 41◦C makes them
more susceptible to an accompanying radio or chemo therapy. Modern hyperthermia applicators
operating at around 100MHz provide 12 antennas for which the amplitude and phase can be con-
trolled independently. The squared amplitude of the resulting superposed electrical field gives the
energy density absorbed by the tissue. The generated heat is dissipated and transported by blood
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Figure 2: Left: Coarse finite element grid of the patient geometry. Shown are bones, large vessels,
the bladder, and the tumor located in the lower right part of the pelvic region. Right: Optimal
temperature distribution in the vicinity of the tumor.

flow, which finally results in a temperature profile inside the patient’s body.
For designing an individually optimal therapy, amplitudes and phases have to be selected such

that the tumor temperature is maximized. On the other hand, in order not to damage healthy
tissue, certain temperature constraints have to be respected. A simple model leads to the following
nonlinear nonconvex optimal control problem:

min
y∈H1(Ω),u∈C12

−

∫

Ωt

f(y) dx

subject to

−div(κ∇y) + cbw(y) (y − ya) =
σ

2

∣

∣

∣

∣

∣

∑

i

uiEi

∣

∣

∣

∣

∣

2

in Ω (20)

γ∂ny = g − y on ∂Ω

y ≤ ymax in Ω\Ωt.

Here, Ω is the part of the patient’s body that is affected, Ωt ⊂ Ω is the domain occupied by
tumor tissue, κ is the heat diffusion coefficient, cb the specific heat of blood, w(y) the temperature-
dependent perfusion, ya the arterial blood temperature, g the exterior temperature, γ the heat
transfer coefficient, σ the electrical conductivity, ui the complex control of antenna i, and Ei the
corresponding electrical field. The temperature constraint ymax is piecewise constant on each tissue
type. For actual data we refer to [15]. Different types of cost functionals are in use. For simplicity,
here we use a tracking type form with f(y) = (y − 50)2. As is apparent from (20), a simultaneous
phase shift of all antennas has no effect on the temperature distribution. For this reason, one of the
phases can been fixed, such that the control variables can be interpreted as a vector in R

23.
The problem has been discretized by finite elements (FE) on a tetrahedral grid with 14334 vertices

(see Fig. 2). For the simple case of constant perfusion, the FE discretization yields the following
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finite-dimensional NLP:

min
1

2
(y − 50)T Mht(y − 50)

subject to

Ahy + Mhw(y − ya) + Dh(y − g) − uT Ehu = 0

y ≤ ymax

Here, Ah is the stiffness matrix, Mht and Mhw denote the mass matrices scaled by χΩt
and w,

respectively, Dh discretizes the Robin boundary conditions, and Eh is the tensor mapping the
control to the SAR. The associated KKT matrix is





λT
h Eh (Ehu)T

Mht Ah + Mhw + Dh

Ehu Ah + Mhw + Dh



 .

For the simple case of linear finite elements, the discretized NLP data scales with the mesh size h as
specified in Table 12. The size of the nonlinear programming problem for different FE discretizations
is shown in Table 13. Table 14 shows the timing results for Ipopt combined with the ilblt-match
preconditioner. For some discretizations, the iterative solver leads to much more Newton iterations
than the direct solver, even with a requested residual reduction factor of 10−14. This indicates
that the inertia is not always computed correctly. However, the approximation of the inertia is
still sufficiently accurate to allow a robust and reliable convergence of the NLP solver. Since on
the one hand the evaluation of the NLP functions is quite expensive and on the other hand the
problem structure leads to relatively low fill-in in the direct solver, the larger number of Newton
iterations compensates the efficiency gained by the iterative solution. The remaining advantage
of the incomplete factorization in this particular FE application is its lower memory requirement,
which allows to solve larger problems than those that could be addressed by the direct solver.

6 Conclusion

We considered the use of preconditioned iterative linear solvers to solve large-scale nonlinear opti-
mization problems. One way to handle nonconvexity and generate search directions that promote
convergence to local minimizers is to ensure a specific inertia of the saddle-point matrix used in the
computation of optimization steps. We examined the effectiveness of several new preconditioners
for nonconvex problems. At the heart of these preconditioners lies the use of symmetric matchings
[27] on each level, and in the preconditioning stage the use of the inertia-revealing, inverse-based
and eigenvalue-bounded incomplete factorization preconditioner Pardiso/Ml [37]. The method is
able to reveal the inertia of the original matrix sufficiently accurate. It is reliable and robust enough
to allow a general-purpose interior-point optimization code to solve a large variety of nonlinear
nonconvex optimization problems.

The resulting algorithm was shown to be able to solve very large-scale difficult discretized three-
dimensional PDE-constrained optimization problems, which were intractable when a direct linear
solver was used. The practical relevance was demonstrated on a hyperthermia cancer treatment
application.

The encouraging results presented in this paper indicate that this method might also be suc-
cessfully applied to other large-scale problems arising in convex and nonconvex large-scale PDE-
constrained optimizations.
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Table 1: Characteristics of sample matrices from 3D PDE-constrained optimization problems. Key:
n = number of Hessian equations; m = number of Jacobian equations; nnz(A),nnz(H) = number
of nonzeros in A and H ; inertia = inertia of the KKT matrix; fill-in = fill-in of the complete factor
during a sparse direct factorization in % compared to the original matrix; anal. and fact. = times for
analysis and factorization to compute inertia information with sparse direct solver (in CPU seconds)
.

Problem inertia sparse LBLT

fill-in anal. fact.
Ipopt series A, n = 2,331, m =1,331
nnz(A) = 37,791, nnz(H) = 17,892

pde-a-01-01 (2059, 1603, 0) 18.5 0.03 0.38
pde-a-01-02 (2067, 1595, 0) 18.5 0.03 0.38
pde-a-01-03 (2331, 1331, 0) 18.5 0.04 0.38
pde-a-02-01 (2073, 1589, 0) 18.5 0.05 0.38
pde-a-02-02 (2331, 1331, 0) 18.5 0.02 0.36

Ipopt series B, n = 17,261, m = 9,261
nnz(A)=290,981, nnz(H) = 135,382

pde-b-01-01 (15618, 10904, 0) 60.1 0.24 17.1
pde-b-01-02 (15623, 10899, 0) 60.2 0.34 16.4
pde-b-01-03 (17261, 9261, 0) 59.9 0.25 16.6
pde-b-02-01 (15633, 10889, 0) 60.4 0.26 16.0
pde-b-02-02 (17261, 9261, 0) 59.2 0.27 16.7

Ipopt series C, n = 132,921, m = 68,921
nnz(A) = 2,283,561, nnz(H) = 1,053,162

pde-c-01-01 (132921, 68921, 0) 212. 4.3 2644.
pde-c-02-01 (68921, 132921, 0) 214. 4.4 2532.
pde-c-02-02 (132921, 68921, 0) 215. 4.2 2612.
pde-c-03-01 (68921, 132921, 0) 216. 4.4 2622.
pde-c-03-02 (132921, 68921, 0) 215. 4.3 2634.

Table 2: Inertia-revealing KKT preconditioner applied to matrices from Table 1. Key: fill-in =
fill-in of the preconditioner in % compared to the original matrix; inertia = is the computed inertia
correct? set-up= time to compute the preconditioner (in CPU seconds).

Problem ildlt ildlt-match ilblt-match
fill-in inertia set-up fill-in inertia set-up fill-in inertia set-up

Ipopt series A, fill-in sparse direct solver: ≈ 18.5
pde-a-01-01 4.91 wrong 0.33 9.92 wrong 1.30 3.15 ok 0.12
pde-a-01-02 5.12 wrong 0.34 7.15 ok 0.58 3.17 ok 0.07
pde-a-01-03 5.51 wrong 0.37 8.39 ok 0.50 3.00 ok 0.07
pde-a-02-01 6.52 wrong 0.38 7.83 ok 0.67 3.29 ok 0.08
pde-a-02-02 5.19 wrong 0.34 7.31 ok 0.69 3.16 ok 0.07

Ipopt series B, fill-in sparse direct solver: ≈ 60.2
pde-b-01-01 6.03 wrong 13.4 17.7 ok 7.38 4.23 ok 0.96
pde-b-01-02 5.83 wrong 12.4 67.7 wrong 1044 4.34 ok 1.00
pde-b-01-03 3.87 wrong 7.41 16.3 ok 4.48 4.16 ok 0.96
pde-b-02-01 6.03 wrong 13.4 18.2 ok 6.96 4.29 ok 0.99
pde-b-02-02 6.05 wrong 13.4 61.5 wrong 1019 4.37 ok 1.01

Ipopt series C, fill-in sparse direct solver: ≈ 212.2
pde-c-01-01 18.4 wrong 2901 112. ok 5915 4.53 ok 9.47
pde-c-02-01 21.4 wrong 4130 35.1 wrong 2915 4.57 ok 9.86
pde-c-02-02 29.4 wrong 4530 45.1 ok 3215 4.52 ok 9.56
pde-c-03-01 12.4 wrong 1031 15.1 ok 1015 4.56 ok 9.73
pde-c-03-02 11.4 wrong 1041 25.1 ok 2115 4.53 ok 9.66



INERTIA REVEALING PRECONDITIONING 18

Table 3: Characteristics of publicly available indefinite saddle-point matrices. Key: n = number of
Hessian equations; m = number of Jacobian equations; nnz(A),nnz(H) = number of nonzeros in
A and H ; H spd.? = is the Hessian H(x) positive definite?; fill-in = fill-in of the complete factor
during a sparse direct factorization in % to the original matrix; anal. and fact.= times for analysis
and factorization to compute inertia information with sparse direct solver (in CPU seconds)
.

Problem n m H spd.? nnz(A) nnz(H) sparse LBLT

fill-in anal. fact.
A0NSDSIL 60,012 20,004 no 115,005 100,020 3.49 0.11 0.08
A2NNSNSL 60,012 20,004 no 111,099 100,020 3.31 0.23 0.07
A5ESINDL 45,006 15,002 no 15,002 75,010 4.89 0.07 0.04
AUG3DCQP 27,543 8,000 yes 50,286 27,543 43.0 0.41 1.58
BLOWEYA 20,002 10,002 no 50,003 40,003 1.75 0.19 0.02
BRAINPC2 13,807 13,800 yes 82,794 13,807 3.82 6.25 0.27
BRATU3D 15,625 12,167 no 15,625 85,169 49.8 0.30 2.35
c-55 19,121 13,659 yes 185,335 19,121 49.5 1.02 8.36
c-58 22,461 15,134 yes 257,481 22,461 30.1 1.18 6.51
c-59 23,813 17,469 yes 219,627 23,813 43.5 1.19 9.66
c-62 25,158 16,573 yes 258,806 25,158 67.3 1.41 20.9
c-63 25,505 18,729 yes 195,235 25,505 26.4 1.08 4.26
c-71 44,814 31,824 yes 391,458 44,814 89.2 2.48 72.7
DIXMAANL 234,128 155,746 yes 466,319 701,366 10.8 3.27 1.53
NCVXQP1 7,111 5,000 no 14,998 25,539 76.2 0.25 2.13
NCVXQP7 50,000 37,500 no 112,497 199,984 70.0 14.6 116.

Table 4: Inertia-revealing preconditioner applied to matrices from Table 3. Key: fill-in = fill-in of
the preconditioner in % to the original matrix; inertial = is the computed inertia correct? (number
of incorrect sign in parentheses); set-up = time to compute the preconditioner (in CPU seconds). †
indicates that the process was terminated due to a significantly higher computation time compared
to the direct solver
.

Problem ildlt ildlt-match ilblt-match
fill-in inertia set-up fill-in inertia set-up fill-in inertia set-up

A0NSDSIL 0.94 yes 0.88 0.92 no (9) 0.52 2.28 yes 3.79
A2NNSNSL 0.85 no (2) 0.82 0.94 no (4) 0.51 2.22 yes 0.56
A5ESINDL 0.85 yes 0.40 0.90 no (3) 0.38 2.98 yes 0.36
AUG3DCQP 0.49 no (8000) 0.49 0.99 yes 0.31 2.88 yes 0.30
BLOWEYA 0.78 no (100) 1.04 2.54 yes 0.56 0.79 yes 0.18
BRAINPC2 0.99 no (89) 0.87 2.50 no (1762) 3.97 0.68 yes 1.70
BRATU3D † † † 49.1 yes 9.66 2.04 yes 0.22
c-55 † † † 1.62 yes 0.87 1.24 yes 0.82
c-58 † † † 0.89 yes 1.40 1.07 yes 0.97
c-59 † † † 1.52 yes 0.97 1.96 yes 1.04
c-62 † † † 1.16 yes 1.61 1.65 yes 1.24
c-63 † † † 1.46 yes 0.90 1.45 yes 0.89
c-71 † † † 1.77 yes 2.01 1.80 yes 2.01
DIXMAANL 1.86 no (2) 0.47 1.88 no (5) 0.54 1.86 yes 0.53
NCVXQP1 2.94 no (2712) 0.96 1.21 yes 0.28 1.00 yes 0.28
NCVXQP7 † † † 10.0 no (2) 20.8 5.5 no (15) 11.55
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Table 5: Inertia-revealing KKT preconditioner ilblt-match. Numbers of Sqmr iterations for
different value of the initial residual reduction for several KKT matrices.

Relative residual
Problem 10−4 10−7 10−14

pde-a-01-03 12 20 25
pde-a-02-02 14 20 27
pde-b-01-03 14 18 24
pde-b-01-02 17 21 27
pde-c-01-01 17 23 26
pde-c-02-02 16 23 29
pde-c-03-02 18 20 26
AUG3DCQP 16 41 59
BRAINPC2 19 23 27
c-55 6 15 21
c-58 27 39 54
c-59 14 18 23
c-62 13 19 28
c-63 10 18 21
c-71 10 17 22
DIXMAANL 73 95 131

Table 6: Optimization outcome for CUTE test set. Key: “Direct” uses the regular Pardiso code;
“Direct w/o inertia” uses the regular Pardiso code, but the inertia of the linear system was ignored
and no modifications for the Hessian block to treat negative curvature were done; “Iterative” uses
the iterative linear solver with the inertia-revealing preconditioner Pardiso/Ml (for two residual
reduction tolerances for the iterative solver). The possible outcomes are: Successful termination
due to satisfaction of the tolerances for the optimizer; exceeding maximal iteration count (3000) or
CPU time limit (30min); convergence to points that satisfy the optimizer’s tolerances to determine
local infeasibility; divergence of the iterates; other failures (including Ipopt’s termination in the
restoration phase)

Outcome Direct Direct Iterative Iterative
w/o inertia (res=10−7) (res=10−14)

Success 688 627 674 667
Max iter 14 40 15 16
Time limit 1 0 11 14
Local infeas 2 7 1 5
Diverging 0 7 0 0
Other failure 15 39 19 18

Table 7: Optimization outcome for COPS test set. Column and row labeling as in Table 6.
Outcome Direct Direct Iterative Iterative

w/o inertia (res=10−7) (res=10−14)
Success 64 49 64 64
Max iter 0 4 0 0
Local infeas 0 1 0 0
Diverging 0 3 0 0
Other failure 1 8 1 1
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Table 8: Comparison of final objective function values for CUTE and COPS test problems. For
a given pair of linear solver options the entries in the table list the number of problems that were
successfully solved by both options and for which the final objective function values are more than
1% for the option names in the row compared to the option named in the column. The two numbers
in each entry correspond to the number of CUTE and COPS problems, respectively.

Direct Direct Iterative Iterative
w/o inertia (res=10−7) (res=10−14)

Direct — 95/1 5/0 0/0
Direct w/o inertia 0/0 — 5/0 6/0
Iter (res=10−7) 2/0 90/1 — 1/0
Iter (res=10−14) 0/0 88/1 0/0 —
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Table 9: Size of nonlinear programming problems for the 3D PDE-constrained optimization problem
with boundary control as a function of the discretization parameter N using second-order finite
difference approximations.

Problem Variables with Variables with Number of Number of nonzeros in
Size upper bounds lower/upper bounds equality constraints Jacobian matrix

N = 20 8,000 2,400 8,000 215,296
N = 40 64,000 9,600 64,000 1,726,576
N = 60 216,000 21,600 216,000 5,829,856
N = 80 512,000 38,400 512,000 13,821,136

N = 150 3,510,000 135,400 3,510,000 91,119,616

Table 10: Timing results for the convex 3D PDE-constrained optimization problem (with objective
(16)) as a function of the discretization parameter N . Key: MByte = Memory consumption in
MByte; it. = total number of Newton iterations in Ipopt; secs = CPU time in seconds. The
numerical experiments for the iterative solver Pardiso/Ml are performed with a relative residual
(res.) of either 10−4, 10−7 or 10−14. † indicates a 32-bit integer overflow for the direct solver
Pardiso.

Problem Ipopt — Pardiso Ipopt — Pardiso/Ml
res.= 10−4 res.= 10−7 res.=10−14

MByte it. secs MByte it. secs it. secs it. secs

N = 20 56 9 13 11 9 7 9 8 9 10
N = 40 952 9 604 96 9 78 9 87 9 118
N = 60 4,484 9 6473 336 9 311 9 362 9 554
N = 80 15,784 10 35,710 808 10 935 9 1,016 9 1,536
N = 100 † † † 1,600 10 2,121 9 2,324 9 3,789
N = 150 † † † 5,400 10 9,588 9 10,607 9 16,491

Table 11: Timing results for the nonconvex 3D PDE-constrained optimization problem (with objec-
tive (17)) as a function of the discretization parameter N . Key: MByte = Memory consumption in
MByte; it. = total number of Newton iterations in Ipopt; secs = CPU time in seconds. The numer-
ical experiments for the iterative solver Pardiso/Ml are performed with a relative residual (res.)
of either 10−4, 10−7 or 10−14. † indicates a 32-bit integer overflow for the direct solver Pardiso
and ‡ a convergence problem in Ipopt.

Problem Ipopt — Pardiso Ipopt — Pardiso/Ml
res.= 10−4 res.= 10−7 res.=10−14

MByte it. secs MByte it. secs it. secs it. secs

N = 20 56 68 272 12 44 70 49 94 67 136
N = 40 952 49 8,157 96 69 1,083 56 947 54 1,068
N = 60 4,484 58 104,837 384 67 4,029 67 4,501 66 5,701
N = 80 15,784 102 1,234,345 832 ‡ ‡ 115 21,772 109 28,524
N = 100 † † † 1,603 ‡ ‡ 381 197,323 345 258,369
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Table 12: Scaling of NLP data with mesh size h for linear elements. n is the number of grid points,
k the number of boundary points, “spd” = symmetric positive definite, “sp semidef” = symmetric
positive semidefinite

quantity dimension scaling structure

Ah m × m h spd
Mht m × m h3 sp semidef
Mhw m × m h3 spd
Eh m × 23 × 23 h3

Dh m × m h2 sp semidef

Table 13: Characteristic of the hyperthermia treatment planning problem. Key: n = number of
Hessian equations; m = number of Jacobian equations; nnz(A),nnz(H) = number of nonzeros in A
and H(x).

Discretization
FE order grid refinements n m nnz(A) nnz(H)

1 0 14,357 14,334 529,084 107,144
2 0 106,891 106,868 5,398,662 1,524,059
1 1 106,891 106,868 3,999,824 824,640
2 1 824,387 824,364 42,139,056 12,001,800

Table 14: Memory consumption in MByte, total number of Newton iterations in Ipopt, and CPU
in seconds for the linear solvers in the nonconvex hyperthermia 3D PDE-constrained optimization
problem. The numerical experiments for the iterative solver Pardiso/Ml are performed with a
relative residual reduction (res.) of either 10−7 or 10−14. † indicates a 32-bit integer overflow for
the direct solver Pardiso.

Discretization Ipopt — Pardiso Ipopt — Pardiso/Ml
FE grid res.= 10−7 res.=10−14

order refinements MByte it. secs MByte it. secs it. secs

1 0 72 93 580 32 90 469 87 476
2 0 1,352 118 35,379 288 165 44,461 194 50,836
1 1 1,120 83 20,151 392 374 34,251 223 28,118
2 1 † † † 7,005 — — 113 482,786




