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Abstract

With their increasing capabilities, research efforts in sen-
sor network have been spreading on a variety of aspects. In
this paper, we present a system-oriented, layered approach
for evaluating their application-related performance. Fo-
cusing on sensor-enabled detection systems, an application
planners point of view of the system is considered and a
hypothesis-testing-based analysis framework for evaluat-
ing the quality of information (QoI) supported by a sen-
sor network deployment is explored. The QoI properties
of centralized, distributed and hybrid decision topologies
are investigated and trade-offs explored at the sensor, clus-
ter, and system-level. In the process, the computationally
powerful concept of a QoI equivalent sensor is presented
and applied in the aforementioned explorations. Finite size
networks are considered and limiting behavior and domi-
nance properties are also investigated. Finally, extensions
of the analysis framework to faulty sensor and the impact
of calibration are also investigated.1

1. Introduction

With advances in computing and communication tech-
nologies, low(er) cost, intelligent sensor-enabled systems
(from single-sensor to highly distributed multi-sensor sys-
tems) find their way in a multitude of application environ-
ments in areas as diverse as the habitant monitoring, forest
monitoring, utility grid monitoring, environmental control,

1Research was sponsored by the U.S. Army Research Laboratory and
the U.K. Ministry of Defence and was accomplished under Agreement
Number W911NF-06-3-0001. The views and conclusions contained in
this document are those of the author(s) and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S.
Army Research Laboratory, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K. Governments are
authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

machinery control, intelligence gathering and enemy activ-
ity surveillance, and so on.

Commensurate to their increasing capabilities, recent
years have seen increased research efforts in several areas
related to sensor systems including ad hoc deployment and
operation of sensor networks, energy-aware architectures
and protocols, coverage and localization, efficient query
dissemination, sensor calibration and error-management,
data cleaning, and so on. These broad research efforts
notwithstanding, we find increased need for additional re-
search directions that focus on (or, at least, are highly influ-
enced by) the need to develop generic computational aids
that would allow (sensor) application planners and the sen-
sor system designers that support them to study design al-
ternatives in advance of deploying sensor networks.

Specifically, our work is motivated by the following
usage scenario. An application planner plans the deploy-
ment of a sensor-enabled application. While the plan-
ner sets the requirements for the application, he/she em-
ploys a sensor system designer to design and deploy a sen-
sor system that would (hopefully) meet the information
needs of the application planned. In a fashion analogous
to QoS (quality of service) and SLAs (service level agree-
ments) in networking, the planner specifies the informa-
tion needs of his/her application via the quality of infor-
mation (QoI) derived from the sensor system, underscor-
ing his/her application-centric interest/view of the problem
(i.e., capturing the effectiveness of the end-result), rather
than a sensor-network-centric view of the problem.

QoI has typically tied to the study of structured, in
some sense, information like data residing in databases and
considers such information aspects like data consistency,
completeness, currency, etc. [1, 2, 3]. However, the QoI
topic is very broad and still quite open when applied to
sensor networks. While the development of a definition
for QoI is still a work in progress, we use QoI to capture
the effectiveness or capability of the sensed data and the
information derived from them to “paint” those aspects of



the real world, that are of importance accurately enough
for an application to perform its task at a required level of
effectiveness.

How QoI is expressed is very closely related to the ap-
plication that will use the information. Given the wide ap-
plication space for sensor networks, for our usage scenario
we have elected to consider the family of event detection
applications. This application family is at the core of a
wide range of sensor-enabled decision making (or, action
taking) tasks. Specifically, we consider events that pro-
duce “wave-like” signals, the event signature, like acous-
tic, seismic, electromagnetic, etc., typically encountered
during monitoring for surveillance and intelligence gath-
ering purposes like detecting presence of enemy weaponry,
hostile activities (e.g., gunfire, explosions), monitoring re-
mote territories, and so on. For this family of applications,
how accurately the real world can be painted will depend
on how effectively the sensor-based detection system de-
tects the event. Thus, we elect as QoI attributes of interest
the detection probability Pd of correctly detecting the oc-
currence of the event and the false alarm rate Pf , i.e., the
probability of declaring the occurrence when it did not oc-
cur. Later in the paper, we will use classical hypothesis
testing for detecting signals in noisy environments [4, 5] as
the key analysis technique for these QoI attributes. Note
that we point to explosion and gunfire detection type of ap-
plications as representative of transient events, and under-
score that in our research we do not want to be limited only
to the more traditional persistent events.

In order for the designer in our usage scenario to de-
sign and deploy a detection system that achieves the re-
quired QoI levels set-forth by the application planner, it
would be advantageous that he has at his/her disposal a
computational aid that can use to easily test different design
configurations and evaluate the QoI and sensor-system de-
ployment trade-offs. Furthermore, for this computational
aid to be useful, it must be reusable in many situations and,
thus, it would also be advantageous that it is not limited to
a specific set of system and modeling assumptions, e.g., a
specific sensor node topology, or signal propagation mod-
els but allows different system models and design objec-
tives to be considered. In pursuing these objectives, we
introduced in [6] the first instance of a QoI-inspired analy-
sis framework that can serve as the foundation for creating
the reusable computational aid. The framework serves as
a solutions methodology (a meta-solution, if you like) that
captures the key aspects of solving detection problems that
can be reused as the designer tests for candidate deploy-
ments under various assumptions.

In [6], we highlighted the framework and consid-
ered at a high-level a few study cases. In this paper, we
both broaden and deepen our presentation in these topics.
Specifically, in this paper, we provide analytical results for
QoI for networks with finite number of sensors with ar-
bitrary topologies, along with computationally attractive

evaluation expressions, we also study their limiting behav-
ior and derive fundamental dominance relationships that
aid in establishing bounding approximations to the system
performance. We study the relative performance of various
detection architectures and make use of equivalent sensors
to simplify this analysis. We also study the sensitivity of the
performance results with respect to the positional accuracy
of sensors relative to the event location. Finally, we present
sensor model generalizations that accommodate potentially
faulty operations, e.g., uncalibrated sensors.

While, we are not aware of a prior work on a frame-
work along the aforementioned objectives, considerable
amount of work has been done in modeling and analyz-
ing the detection systems considering various parameters
and models for signal-to-noise ratio (SNR), channel fad-
ing, spatial correlations, and so on [7, 8, 9, 10, 11]. In
[12] an optimum fusion rule for a multi-sensor system is
derived, when the probabilities of detection and false alarm
of each sensor is known to the fusion center. In [9] a deci-
sion fusion rule is proposed based on a “counting” policy,
where the analysis is based on a Poisson sensor distribu-
tion model and consider the limiting performance of the
system as the number of sensors increases. In [10] a inho-
mogeneous situation has been considered as a result of the
spatial distribution of the nodes and channel fading and a
system-level analysis is provided just for large number of
sensors. In [11] the decision fusion algorithm is also stud-
ied and system level performances for large networks. Ad-
ditionally, an approximation for the system decision thresh-
old is derived that provides performance guarantees when
the false alarm probabilities are identical for all sensors. In
[13] and [14] a hybrid (neither centralized, nor distributed)
energy-driven detection scheme is proposed based on the
binary observations of the sensors and study the trade-off
between detection accuracy and energy consumption. The
above studies consider fixed and persistent events.

Any of these analysis can be incorporated within the
framework to provide performance results for the the spe-
cific models studied in them. The organization of the pa-
per is as follows: In section 2, we introduce the reference
model for the system under consideration and the general
toolkit framework. In section 3, we present the core analy-
sis approach based on hypothesis testing. In section 3, we
discussed the application of the core QoI analysis in detec-
tion sensor-systems. In sections 5 and 6, we studied two
steps that can be incorporated as a part of post-processing
and preprocessing layers of our framework, and finally we
conclude in section 7 with some concluding remarks.

2. The reference detection system model and
QoI analysis framework

The analysis framework is based on a fairly general
detection system model, which we introduce next.
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Figure 1. Functional architecture of the reference
detection system.

2.1. The reference detection system

Figure 1 shows the reference architecture of our
sensor-based detector system. It partitions the sensing op-
eration into three functional subsystems: (a) the sensor
subsystem or sampler; (b) the fusion subsystem; and (c) the
detection subsystem. Each of these subsystems operates at
a different level of the event detection process. The sensor
subsystem, comprising a collection of M ≥ 1 sensor nodes,
samples the physical world (in search for an event signa-
ture) and pass these samples to the fusion subsystem. The
fusion subsystem, comprising a collection of L ≥ 1 fusion
centers, operates on the samples it receives (which could
be corrupted by noise) to produce a “summary” description
of the samples. Finally, this summary is used by the detec-
tion subsystem to decide whether an event of interest has
occurred or not.

Based on the system topology considered, there could
be multiple detection subsystems, some of them perform-
ing local detection (concerned with what a subset of sen-
sors “says” about the event occurrence) and one associated
with the system-level detection (concerned with what the
overall system says about the event occurrence). The three
subsystems may be collocated or separated as could be the
case of a networked sensing system. At current time, we
focus only on the information, e.g., samples, to be trans-
ferred between these subsystems and not how the transfer
process may affect them.

According to the reference model, the sensor subsys-
tem records observations {r1,r2, . . .} from environmental
samples that it takes. These records comprise samples
{s1,s2, . . .} of the event signature (if the event occurred,
otherwise the si’s are null) and noise. When the event has
occurred, the sequence {sk

1,s
k
2, . . .} (we will use the sensor

index k only when necessary) can be thought of as sam-
ples of the signal sk(t) that is the projection of the original
event signature s∗(t) projected at the location of the k-th
sensor, k ∈ {1, . . . ,M}. As discussed in [6], the projection
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Figure 2. Multi-tiered detection topology.

metaphor is key in developing our framework, to be dis-
cussed shortly.

The general system model in figure 1 is applicable
to a variety of detection architectures/topologies includ-
ing single- and multiple-sensor networks, centralized, dis-
tributed, single-tiered and multi-tiered hybrid topologies
(where detection decisions made at one tier combine their
decisions to support decision making at a higher tier). Fig-
ure 2 shows a fairly general sensor detection topology that
covers the aforementioned alternatives. Note that for sim-
plicity reasons, the fusion and detection subsystems for the
detection system in figure 2 are assumed to be co-located,
however, we do not restrict our system to this case only. Fi-
nally, the figure eludes to the rather general area of engage-
ment for the sensor deployment that we consider. The area
of engagement comprises a deployment field where sen-
sor can be deployed and an observation field (or, incident
field) where the events of interest occur. These two fields
may have an arbitrary geography, comprised contiguous or
non-contiguous regions, overlap or not, etc. This area of
engagement represents a generalization of the sensor cov-
erage models typically considered in the literature where
sensors are located in the midst of the area that they sense.

2.2. The QoI analysis framework

Prior research in the area has studied sensor-network
based detection for very specific system models, e.g., for
a given signal signature (quite often a persistent one with
constant amplitude), a given deployment architecture, e.g.,
either centralized and/or distributed, possibly a given prop-
agation/attenuation model for the event signature, and so
on. While such analysis provides significant insight to
the performance of a potential deployment, such an in-
sight would closely reflect and be intimately tied to the
analysis assumptions made. However, the specific analy-
sis assumptions may bear limited (if any) resemblance to



the application realities and requirements (e.g., transient
vs. persistent signals, non-overlapping deployment and ob-
servation fields, non-homogenous deployment and obser-
vation fields, different signal propagation models, and so
on). Therefore, we have opted to consider a “higher-level”
analysis methodology, or analysis framework, that will al-
lows us to compose specific solutions from any number of
existing or new analysis techniques.

Our framework is based on identifying key analysis
procedures within general context of our reference sys-
tems. Based on the aforementioned projection metaphor,
we noted that anything that influences the event signature
propagation from an event location to a sensor can be sepa-
rated from the subsequent detection (QoI) analysis. Specif-
ically, since decision making is really made based on the
recorded observations, if the signature projections were
somehow known, one could have proceeded with the detec-
tion QoI analysis unbeknownst to how they were formed,
which in general is the result of the original event signature,
of course, and the geometry of the system and the geogra-
phy it is deployed in.

With the above observations in hand, we proposed
in [6] an analysis framework comprised three major pro-
cessing layers: (a) input pre-processing; (b) detection QoI
analysis (the core analysis engine); and (c) output post-
processing. The input pre-processing is related to any-
thing that may influence the original event signature until
it is recorded by the sensor (i.e., it generates the sequence
of projection samples) like the deployment and observa-
tion topologies (which determine the relative geography
between sensors and events), the signal propagation and at-
tenuation models (which determine how the original signal
projects itself at the sensor locations), the sampling policies
(which determine which sensors contribute which samples
to the detection process), the noise models (which deter-
mine the distortion process of the signal), the measurement
error models (which model the errors in the reported value
from the sensor platform faults) and so on. The QoI core
analysis engine calculates the QoI attributes for the derived
set of projection samples based on a hypothesis testing for-
mulation, to be highlighted later in the section. Finally,
given the application requirements, post-processing of the
QoI analysis results may be necessary, for example, to cal-
culate averages over an observation region, or to calculate
optimal position of sensors, performance sensitivity analy-
sis (which we give an example of later in the paper), and so
on. During post-processing, services of the core analysis
engine may be requested again for the QoI analysis of the
system for a different set of system parameters.

The analysis framework is summarized in figure 3,
which shows an instance of the framework on the right and
the role of its users, the planner and the designer, on the
left. Specifically, the planner specified the desired applica-
tion and its constraints, e.g., the area of engagement, the ap-
plication domain, which may reflect the class of event sig-
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Figure 3. The QoI analysis framework and toolkit.

natures to be detected, the desired QoI levels, budget con-
straints, and so on. Consequently, the designer supplements
these in his/her analysis tool with system level models, e.g.,
propagation models, noise models, communication and in-
terference models, sampling policies, and so on, that are
appropriate for the the deployment in the area of engage-
ment. These libraries may already be present in an analysis
toolkit built around the framework or be custom built for
the specific deployment, and thus becoming part of the li-
brary for future use. The framework in figure 3 was drawn
with this system-oriented toolkit view of it. The clouds
shown in the processing layers of the framework represent
analysis libraries that the designer can choose from to eval-
uate the QoI performance of alternative deployment plans.
Finally, when a deployment plan with the corresponding
QoI levels have been evaluated, the designer in consulta-
tion with the planner may decide as to whether the expected
performance of the system is satisfactory enough, or addi-
tional analysis and trade-off studies for “what if” situations
are required. Note that in addition, to planning a future de-
ployment, the designer can use the toolkit to evaluate the
QoI performance of an existing system and study whether
any fine-tuning of its operational parameters is required.

Each of the processing layers can be studied on its
own right separately to the extend necessary, e.g., utilize
portions of existing studies like the ones referenced in
this paper. Under the framework umbrella, these separate
studies can be combined to provide answers to a variety
of deployment situations in a reusable fashion. Note that
prior detection system studies that focus a specific set of
system assumptions represent monolithic (non-layered)
top-down interpretations of the framework which increases
analysis complexity (the entire problem needs to be studied
in one-shot) and reduces application adaptability.

We close this section with a definition of an equivalent
sensor, introduced in [6], that we use for simplifying the



analysis of certain sensor fusion topologies.

Definition 1. The equivalent sensor of a multi-sensor sys-
tem is a single-sensor sensing system that achieves the
same QoI level as the multi-sensor system using the same
observation set.

Equivalent sensors are not real sensors but rather math-
ematical artifacts to aid analysis. When an equivalent sen-
sor, e.g., detector sensor, can be constructed, analysis tools
(including both analytical and simulation ones) could be
built that serve the user of the sensor-enabled applications
much better than tools that expose the complexity of the
entire sensor network to them.

3. The core QoI analysis engine: Likelihood
ratio tests & hypothesis testing

We build or core QoI analysis engine for our frame-
work around the hypothesis testing analysis techniques
[5, 4] Event detection analysis is based on tests to decide
whether the hypothesis of the occurrence of an event is
supported by the observations made or not. Next, we high-
light the key results from these techniques and later on we
apply them for the QoI analysis of specific detection ar-
chitectures. We consider binary testing, but extensions to
multiple-hypothesis testing are also possible.

In order to test the hypothesis that an event of interest
occurred (hypothesis H1), or not (the null hypothesis H0)
the detector accumulates observations r1, . . . ,rN which sat-
isfy under

hypothesis H1 : ri = si+ni, or, under (1a)
hypothesis H0 : ri = ni, (1b)

where, under hypothesis H1, si represents the value of the
signal at the i-th sampling instance, while, under both hy-
potheses, ni represents an additive noise component that is
added to the i-th sample, and ri represents the i-th measure-
ment that is contributed to the fusion subsystem. The test
is represented by the likelihood ratio test (LRT) comparing
a ratio of conditional probabilities to a threshold:

Λ(rN) =
P(rN |H1)
P(rN |H0)

select H1
≷

select H0

η , (2)

where P(rN |Hz) represents the probability density func-
tion for the observation vector rN = [r1, . . . ,rN ]T condi-
tioned on hypothesis Hz, z ∈ {0,1}; for notational brevity,
in the sequel, we will skip the size index N unless neces-
sary. For a zero mean, additive and stationary Gaussian
noise process with covariance matrix C = E

(
nT n

)
, where

n = [n1, . . . ,nN ], the LRT in (2) becomes:

l , rT C−1s
H1
≷
H0

η
∗ , ln(η)+0.5sT C−1s. (3)

The expression ψ2 = sT C−1s represents the signal-to-noise
ratio (SNR) for this system. The covariance matrix C of
the noise process in (3) can capture correlations across both
the spatial (i.e., across the sensors) and temporal (along a
single sensor) dimensions. Actually, the entries in the co-
variance matrix are strongly related to the way that samples
from the various sensors contribute to the decision making,
which we refer to as the sampling policy. Note that if the
noise samples exhibit only spatial or only temporal correla-
tion we may reorder the sample contributions at the fusion
subsystem in such a way that C becomes block diagonal,
and hence C−1 is block diagonal too with each block in the
latter being the inverse of each block in the former matrix.

With regard to the reference system in figure 1, l,
which is a sufficient statistic for this test, represents the
summary operation performed by the fusion subsystem. On
the other hand the comparison between l and η∗, for decid-
ing in favor of the one or the other hypothesis, is performed
by the the detection subsystem. The Bayesian hypothesis
testing, where the a priori probabilities for the two hypothe-
ses, P0 and P1 are assumed known, minimizes the cost of
making a decision and [5]

η =
P0

P1
· C10−C00

C01−C11
, (4)

where Ci j represents the cost of deciding in favor of Hi
when H j is true. The Neyman-Pearson test is an alterna-
tive LRT which does not utilize a priori probabilities and its
objective is to maximize the probability of detection main-
taining a predefined false alarm rate.

4. Detection sensor-system topologies

In this section, we apply the core QoI analysis from
the last section to a collection of specific but very important
sensor systems: (a) single-sensor detector; (b) centralized
multi-sensor detector; (c) fully distributed multi-sensor de-
tector; and (d) hybrid multi-sensor detector. While results
presented have independent merit, like the dominance rela-
tionships in section 4.3, the following presentation should
also be viewed as a series of steps followed within the core
QoI engine to accommodate even more advanced deploy-
ment scenarios.

4.1. The single-sensor detection system

The single-sensor detection systems and its QoI per-
formance serves as the building block for the QoI analysis
of the multi-sensor considered later in the paper. The prob-
ability of detection Pd and false alarm rate Pf are given by
[5, 15]:

Pd = Pr(l ≥ η
?|H1) = 1−Φ

(
ln(η)

ψ
− ψ

2

)
, and (5a)

Pf = Pr(l ≥ η
?|H0) = 1−Φ

(
ln(η)

ψ
+

ψ

2

)
, (5b)



respectively, where Φ(·) is the cumulative distribution
function of the normalized Gaussian random variable
N (0,1). For uncorrelated noise samples, the SNR ψ2 is
given by ψ2 =

(
∑

N
i=1 s2

i
)
/σ2.

Variations and different interpretations of the formulae
in (5) will be used subsequently in the analysis of multi-
sensor detection systems.

4.2. L=1: Centralized multi-sensor detection sys-
tem

The centralized multi-sensor system with only one fu-
sion subsystem (L = 1) and one detection subsystem serves
a performance benchmark for any detection topology and
we highlight here a key result from [6]. Specifically, the
expressions in (5) still holds true with ψ2 = sT C−1s, see
discussion following (3). For a diagonal covariance ma-
trix of the form C = diag

(
σ2

1 IN1 ,σ
2
2 IN2 , . . . ,σ

2
MINM

)
, the

system-wide SNR is given by

ψ
2
sys = sT C−1s =

M

∑
k=1

{
1

σ2
k

Nk

∑
i=1

(sk
i )

2
}

=
M

∑
k=1

ψ
2
k , (6)

where ψ2
k is the SNR attributed to samples from sensor k.

In other words, the system-wide SNR is decomposable to
the SNRs at the individual sensor level.

It follows from the above and definition 1 that:

Corollary 1. A centralized multi-sensor detection system
with a Gaussian noise process possesses an equivalent sen-
sor with SNR ψ2 = sT C−1s. If in addition the noise process
is an independent process as well, the SNR is decomposable
as in (6).

We will make use of the uniformly equivalent sensor
when later in this section we consider the performance of
2-tier (hybrid) architectures like the one shown in figure 2
with only tiers 0 and 1 involved.

4.3. L=M: Fully distributed multi-sensor detec-
tion system

At the other end the broad spectrum of detection archi-
tectures lies the fully distributed (L = M) detector. In the
fully distributed (or, simply, distributed) case, each sensor
is bound to a separate, dedicated fusion and detection sub-
systems. In the distributed detector (and more generally
in any non-centralized detector), decision is made in two
steps. In the first step, sensors make sensor- or local-level
decision and then the local decisions are fused to obtain
the system-level ones. Clearly the QoI performance at the
sensor level follows from the study of the single-sensor de-
tector in section 4.1, where the SNR ψk (instead of ψ) in
(5) is calculated separately for each sensor k.

Fusing the local decision to derive the system-level de-
cision requires the use of a detection policy. A variety of

policies can and have been considered and typically will in-
volve some form of a counting strategy, e.g., decide that the
event has occurred if at least, say, Q out of the M sensors
indicate that it has. A more general weighted sum approach
has been studied in [12] where each sensor’s decision (+1 in
favor of H1 and -1 in favor of H0) is weighted by the proba-
bility of miss and false alarms. As previously mentioned, a
library from these policies can easily be adopted and incor-
porated with the library of models and analysis techniques
that a toolkit build around our framework can have. The
rather elaborate expression that results from the weighted
policy in [12] is not very amenable to analytical evaluation
with regard to the QoI analysis. Instead, next we will study
the QoI performance of a counting-based detection policy.

Definition 2. Let a Q-count policy be the detection policy
according to which a decision in favor of H1 is made if at
least Q out of the M sensors decide in favor of the event
occurrence. We will refer to this as the {Q,M} detection
system.

Let Pd
k and P f

k represent the probability of detection
(under hypothesis H1) and false alarm (under hypothesis
H0) for sensor k, respectively. Due to the similarity of sev-
eral of the expressions involving these two probabilities,
we may will also write generically Pz

k , where z ∈ {d, f} for
these probabilities. The system-wide probability Pz(Q;M)
is equal to the probability that of all collections S M

q of sets
of sensors xq with exactly q sensors, there is at least one
set xq with q ≥ Q sensors all of which declare in favor of
the event occurrence, i.e., (where y = 1 when z = d, and 0
when z = f ):

Pz(Q;M) = Pr(q≥ Q|Hy)

=
M

∑
q=Q

{
∑

xq∈S M
q

[(
∏

sensor
m∈xq

Pz
m
)(

∏
sensor
n/∈xq

(1−Pz
n)
)]}

. (7)

Admittedly as the number of sensors M increases, the
computation burden of (7) becomes daunting. However,
assuming knowledge of the QoI performance of the {Q−
1,M− 1} and {Q,M− 1} detection systems and tallying
the cases that will bring it up to the {Q,M} system, the
following simple recursion can be derived:

Pz(Q;M) = (1−Pz
M)Pz(Q;M−1)+Pz

MPz(Q−1;M−1).
(8)

The recursions have the following trivial boundary condi-
tions, which follow directly from (7):

Pz(1;M) = 1−
M

∏
k=1

(
1−Pk

z
)
, and Pz(M;M) =

M

∏
k=1

(Pk
z ). (9)

In recursion (8), the M-sensor system must be a direct aug-
mentation of the M−1-sensor system, i.e., constructed by
simply adding the M-th sensor to the already existing M−1



sensors of the “smaller” network without moving any of
them.

In the special, albeit unlikely case, where the proba-
bilities Pk

z are independent of the sensor k, i.e., Pz
k = pz for

all k ∈ {1, . . . ,M}, (7) reduces to the well known tail of a
binomially distributed random variable:

Peq
z (Q;M) =

M

∑
q=Q

[(M
q

)(
pz
)q(1− pz

)M−q
]
. (10)

Such equiprobable detection systems have been considered
in the past, especially for Neyman-Pearson LRTs where the
false alarm rate (i.e., the p f in the above notation) is set at
its maximum allowable value [9, 11]; [10] analyzes a sys-
tem under the simplifying assumption that both the proba-
bility of detection and false alarm are equal for all sensors.
For such systems, it follows from the central limit theorem
(CLT) applied to the i.i.d. Bernoulli random variables that
“add-up” to the aforementioned binomially distributed ran-
dom variable, that as M increases:

Peq
z (Q;M)−−−→

M→∞
1−Φ

( Q−Mpz√
Mpz(1− pz)

)
, (11)

where the convergence is in the sense that the difference of
the two terms reduces to 0 with increasing M. However,
the above limiting behavior is not unique to the equiprob-
able system only. It follows from the the generalized CLT
[16] applied to the “well-behaved” 0-1 Bernoulli random
variables that

Pz(Q;M)−−−→
M→∞

1−Φ

( Q−∑
M
i=1 Pz

i√
∑

M
i=1 Pz

i (1−Pz
i )

)
. (12)

Next we establish an important dominance property
between the “equiprobable” system above and the general
distributed detection system considered here. Let µx and
σ2

x represent the mean and variance of a random variable x.

Lemma 4.1. Let Ik, k ∈ {1, . . . ,M} be a collection of M in-
dependent indicator (i.e., Bernoulli) random variables and
pk = Pr(Ik = 1). Let also Ik, k ∈ {1, . . . ,M} be a collec-
tion of corresponding “average” i.i.d. indicators such that
p = Pr(I1) = . . . = Pr(IM = 1) where p =

(
∑

M
i=1 pi

)
/M.

Then, the counter functions C = ∑
M
i=1 Ii and C = ∑

M
i=1 Ii sat-

isfy
µC = µC and σ

2
C ≤ σ

2
C, (13)

with equality holding if-and-only-if p1 = . . . = pM = p.

Proof. The equality of the means follows directly from the
definition of C and C; each of these means is equal to Mp =
∑

M
i=1 pi. From the independence of the Ik’s and Ik’s, the

variances for the two counter functions are given by:

σ
2
C =

M

∑
i=1

pi(1− pi) =
M

∑
i=1

pi−
M

∑
i=1

(pi)2, and (14a)

σ
2
C = Mp(1− p) =

M

∑
i=1

pi−
(
∑

M
i=1 pi

)2

M
. (14b)

Therefore, σ2
C ≤ σ2

C
⇔
(
∑

M
i=1 pi

)2 ≤ M ∑
M
i=1(pi)2, which

holds true from Chebyshev’s inequality with equality hold-
ing true iff p1 = . . . pM .

Let us consider a distributed detection system (the
original system) and its corresponding equiprobable sys-
tem that “happens” to satisfy Peq

z =
(
∑

M
k=1 Pk

z
)
/M. Then,

given that decision making in these systems depends on the
number of sensors that decide that the event has occurred,
it follows directly from the above lemma that:

Corollary 2. The decision process of the equiprobable de-
tection system exhibits higher variability than that of its
corresponding original system.

Theorem 4.1. Given an original distributed system em-
ploying Q-count detection policy, the system-wide QoI at-
tribute probabilities Pz(Q;M) and Peq

z (Q;M), z ∈ {d, f},
satisfy:

as M → ∞, Pz(Q;M)≤ Peq
z (Q;M). (15)

Proof. For a sufficiently large M, the two probabilities can
come and remain arbitrarily close to their Gaussian limit-
ing values in (11) and (12), in which case they will also
remain distinctively apart from each other. Since Φ(·) is an
increasing function of its argument, it follows from Lemma
4.1 and the definition of the equiprobable system that

Φ

( Q−∑
M
i=1 Pz

i√
∑

M
i=1 Pz

i (1−Pz
i )

)
≥Φ

( Q−MPeq
z√

MPeq
z (1−Peq

z )

)
. (16)

The theorem now follows from (11) and (12) again.

Corollary 3. As M increases, the performance the QoI at-
tribute for the {Qeq,M} equiprobable system is a close ap-
proximation to that of the {Q,M} original system, when

Q = MPeq
z +

σ

σ eq

(
Qeq−MPeq

z
)
=

M

∑
i=1

Pz
i +

σ

σ eq

(
Qeq−

M

∑
i=1

Pz
i
)
,

(17)

where σ =
√

∑
M
i=1 Pz

i (1−Pz
i ) and σ eq =

√
MPeq

z (1−Peq
z ).

4.4. 1 < L < M: Hybrid multi-sensor detection sys-
tems

For completeness, we briefly discuss the hybrid detec-
tion system where the number of fusion subsystems are
somewhere between 1 and M. Assuming a two-tier sys-
tem, this means that clusters of sensors contribute their
samples to tier-0 fusion subsystems, i.e., operate in a cen-
tralized detection manner analogous to the centralized sys-
tem in section 4.2. Also, there may be additional sensors
that make decisions locally in a manner analogous to the
single-sensor system in section 4.1. Decisions from the
clusters then fuse with the later local decisions at a tier-1



fusion subsystem in a manner analogous to the second de-
cision step discussed for the distributed detection system in
section 4.3. Thus, hybrid detection systems combine ele-
ments from all previous architectures presented and their
QoI performance analysis follows from a combination of
the previous analyses. Note by substituting entire clusters
of sensors with their equivalent sensors, this case reduces
to the study of a distributed sensor system with L sensors.

The assignment of sensors to clusters is an open
research issue but we expect that both performance
objectives and geography constraints (e.g., proximity
constraints) may influence the assignment. In such assign-
ments, there is an additional trade-off to be considered
between cost of data communication and achievable QoI,
as it “costs” more to transmit data to a central location to
achieve higher QoI.

Next the QoI performance of the various topologies
through some numerical examples.

4.5. Sensor topology comparisons

In this subsection, we will compare the QoI perfor-
mance of two hybrid systems with a fully distributed sys-
tem and also with its corresponding centralized system as
discussed in sections 4.2, 4.3 and 4.4. For this compar-
isons we assume the observation of an event occurring at a
specific location, i.e., the observation field is a single-point
set and the sensors are deployed at specific locations rel-
ative to the event location. This is indeed a simple case,
but since we are interested in comparing different systems
against this case, it provides a clear basis for the compari-
son. More elaborate deployment and observation field are
under study.

Let the physical topology of the system be represented
by the distance vector d = [d1, . . . ,dM]T , where dk is the
distance of the path k that a signal takes from the event
location to sensor k. Over path k, let ak(t) be the attenu-
ation the signal experiences, and let v be the propagation
speed for the signal. Assuming that an event occurs at time
t = 0 and possesses the (transient) event signature s∗(t),
the signal signature seen by sensor k (the k-th event signa-
ture projection), 1≤ k≤M, would be (excluding any noise
components):

sk(t) = ak(t)s∗(t− τk)u(t− τk), (18)

where u(t) is the unit step function. The time shift τk
is due to the propagation delay to sensor k and equals
τk = dk/v. This pre-processing relates to the physical topol-
ogy (geometry) of the sensor network and has been used
in this numerical results. Note that the expression in (18)
represents an example of a pre-processing operation that
projects the original event signature from the location of
the event occurrence to the location of the sensor. For
our comparisons, we assume the attenuation function to be
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Figure 4. Topology of the network and two differ-
ent detection architecture

ak(t) = ak = 1/(1 + d2
k ). As discussed in [17], attenuation

function of acoustic signals may change at different dis-
tances from the source of the signal and the best attenuation
models can be obtained via experimental data on specific
sensor deployments.

We start with the multi-sensor system (M = 15) in fig-
ure 4. We have assumed that event signature is the transient
s∗(t) = 1− t2 (with a lifespan of one time unit) and that
each sensor contributes N = 20 samples. We consider vary-
ing number L of fusion subsystems where L = [1,3,5,15];
the two end cases represent the centralized and distributed
cases respectively, the rest are examples of hybrid topolo-
gies.

The upper part of the figure (4) shows the case that
L = 5, with each clusters having 3 sensors contributing
samples to the (tier-0) fusion subsystem. The fusion sub-
systems, then, send their local decisions to a single decision
subsystem for the system-wide decision making. The lower
part of the figure (4) shows the case where we have 3 clus-
ters of sensors. The clustering in both cases are based on
the relative distance between the neighboring sensors and
the event location.

When L 6= 1, the decision subsystems uses a Q-count
policy to make its system-wide decision based from the
lower tier-decisions. Figure 5 summarizes this results in
this case. Assuming Additive White Gaussian (AWG)
noise with the same variance level σ for each sensor, we
study the QoI performance for various σ and a priori prob-
abilities P0 and P1; we use η = P0/P1 assuming C00 =C11 =
0 and C01 = C10 = 0 in (4). The cases η = 1, i.e., P0 = P1
which will serve as our reference point, η = 1.3 (> 1) and
η = 0.7 (< 1) as well. We capture QoI through a single
metric the probability of error Pe which aggregates the QoI
attributes: Pe = P1(ηPf +1−Pd);(for notational brevity, we
have dropped the Q and M from the notation. As expected,
centralized architecture achieves the best (i.e. smallest) Pe
of all architectures as it makes best use of the all available
information.
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Figure 5. Hybrid approach((a)M=15,L=5 and η = [.7,1,1.3],(b)M=15,L=3 and η = [.7,1,1.3],(c)M=15,L=15
and η = [.7,1,1.3]

For η = 1 when comparing the QoI performance of the
different detection policies for a specific clustering and de-
tection architecture,the Qopts for the cases of L = 5, L = 3
and L = 15 are Q = 3, Q = 2 and Q = 8 which is compatible
with the discussion in section 4.3. Note that Pf and Pd , not
shown, decrease with increasing Q as the detection policy
decides in favor of H0 more liberally; this trend holds true
for all cases of η studied.

The case where η = 1.3 is shown in figure 5 on third
column. First of all, with η > 1 (i.e., P0 > P1), the condi-
tion for deciding in favor of H1 becomes harder to achieve
when compared with the η = 1 case, see (3). Therefore, Pd
and Pf decrease in magnitude when compared with these
probabilities when η = 1 (for the same σ ) for both archi-
tectures. We again see the centralized one achieving the
best performance. With respect to the distributed architec-
ture. It is also notable that the best detection policy for all
three cases is attained at a Q value that is smaller than the
best Q of the similar case with η = 1. The reduction of the
optimal Q threshold in the case where η > 1 when com-
pared with that for η = 1 follows from the fact that with
decreasing P1 it becomes harder for any sensor to declare
in favor of H1. Therefore, having even a small number of
sensors declaring in favor of H1 is reason enough to decide
in favor of H1 system-wide.

Finally, the case where η = 0.7 is shown in figure 5.
Arguing as before, the behavior of the QoI metrics in this
case relative to those of the η = 1 case is in reverse order to
the behavior experienced when η = 1.3. With respect to Pe,
while the centralized architecture still performs the best.

Regarding the best Q at least when η = 1, it follows

from (5) that Pd
k ≥ P f

k for any k and, furthermore, when
η = 1, Pd

k = 1−P f
k ; see [18] for an extensive discussion

regarding these probabilities in relation to η . The error
probability in this case is Pe = P1(Pf + 1− Pd). Based
on the relationship between Pd

k and P f
k for the various

sensors and (7), it follows that Pe exhibits a symmet-
rical behavior with Q centered at M/2 and, hence, Pe
possesses an extremum at (or the floor or ceiling of)
this value. By calculating the sign of the difference
∆Pe = Pe(Q;M)− Pe(Q + 1,M) close to M/2 it can be
shown that this extremum is actually a minimum for Pe.
For other ηs, we conjecture that in general the best detec-
tion policy for the distributed architectures is achieved at a
threshold Q that decreases away from M/2 (and possibly
toward 1) as η increases above 1, and increases away
from M/2 (and possibly toward M) as η decreases below 1.

Next we study an evaluation step that may occur in
the post processing layer of our framework. It relates to
location sensitivity analysis that may performed after the
QoI results have been obtained via the core QoI analysis.

5. Position sensitivity analysis

It should be clear that the QoI performance will de-
pend on the distance between the sensor and event, there-
fore it would be desirable to study the sensitivity of the
performance on location errors, e.g., what if sensors were
not placed exactly where they were supposed to, or have an
erroneous understanding of their exact location.

If the received signal follows the model in (18), then
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sensitivity in the probability of detection Sd for a single
sensor system can be derived as follows:

Sd =
∂Pd

∂d
=− 1√

2πσ2E
exp
(−( lnη

ψ
− ψ

2 )2

2
)
∗

(− lnη

ψ2 − 1
2
)(E

a
∂a
∂d

−E ′ ∂τ

∂d

)
,

(19)

where E = a2(d)∑
i=N
i=1 S2(ti−τ(d)) and E ′ = ∂E/∂ t. Sim-

ilarly, the sensitivity of the false alarm is:

Sd =
∂Pd

∂d
=− 1√

2πσ2E
exp
(−( lnη

ψ
+ ψ

2 )2

2
)
∗

(− lnη

ψ2 +
1
2
)(E

a
∂a
∂d

−E ′ ∂τ

∂d

)
,

(20)

Finally Se = P0∂Pf /∂ f + P1∂Pd/∂d. It follows from (19)
and (20) that when η = 1 then Se = S f .

Equations (19), (20) show how sensitivity of the QoI
metrics relates to the selected propagation model and also
the received signal power (E) at sensors. Figure 6, shows
the sensitivity of the QoI metrics of a single sensor sys-
tem where source generates the signal of s∗(t) = 10(1− t2)
(with a lifespan of one time unit) and the signal attenuates
with a = 1/(1 + d2), and the noise level is σ2 = 1; sensor
takes N = 20 samples, and η = 3. As figure 6 shows, the
QoI metrics face different level of sensitivity by changing
the relative distance. As expected, as the sensor is located
further from the event the location sensitivity decreases.

6. Faulty sensors and measurements

In this section, we introduce a new modeling contribu-
tion to our analysis framework. Specifically, in addition to
the additive environmental noise, the ni samples in (1), we
consider sensor systems with faulty, biased, uncalibrated
sensors. Enriching our framework with sensor fault models
and analysis techniques will allow us (or better, the frame-
work users like the system designer) to accommodate the

calibration errors, while these errors are one of the major
obstacles to practical use of the sensor networks [19].

Starting with a single sensor system, we first consider a
linearly biased measurement model [20], where the sensor
response exhibits an unknown gain a and offset b, so that
instead of sampling si as in (1), the sensor reports asi +
b, plus noise, instead. Incorporating this fault model as a
preprocessing step in our framework, the hypothesis testing
formulation in (1) becomes:

hypothesis H1 : ri = asi+b+ni, (21)
hypothesis H0 : ri = b+ni. (22)

If we were to consider a multi-sensor system the gains and
offsets for the different sensors may vary, but we don’t pur-
sue this case further in this paper. Since the gain and offset
parameters are unknown, the hypothesis test of (21) will be
a composite one, where we not only decide in favor of one
of the hypotheses but estimate the unknown parameters a
and b as well.

To model the problem under each hypothesis, we can
use linear model [4] as following:

r|Hi = Hiθi +n, where i ∈ {0,1} (23)

Where r = [r1, ...,rN ]T is column vector of all observa-
tions and the noise vector n = [n1, ...,nN ]T has a N (0,C)
distribution and is independent of θi. H1 comprises of
two columns, the first containing the samples si and the
second being the unity vector and H0 comprises of two
columns, the first being the zero vector and the second be-
ing the unity vector. The unknown parameter vectors are
θ1 = [a,b]T ,and θ0 = [0,b]T . If we assume parameters are
deterministic, then the linear model becomes classical lin-
ear model, however no Uniformly Most Powerful (UMP)
test for classical linear model exists[4]. Moreover, in our
specific application, specially for a situation of the tran-
sient events, we have to be able to make the decision based
on the limited (relatively few) number of available sam-
ples in timely manner. Since there is no UMP test avail-
able for classical linear model, the precision of its estimate
with relatively small number of samples in not guaranteed.
However in real experiments and based on available train-
ing data, we may be able to assume a gaussian distribution
for parameter vectors θi ∼ N (µθi ,Cθi). With this prior
distribution assumption for parameters, the model (23) will
be considered as bayesian linear model, then the posterior
distribution p(θi|r) is also Gaussian with mean and covari-
ance matrix given by (see [4, Th. 10.3]):

E(θi|r) = µθi +CθiH
T
i (HiCθiH

T
i +C)−1(r−Hiµθi)and,

(24)

C(θi|r) = Cθi −CθiH
T
i (HiCθiH

T
i +C)−1(HiCθi), (25)

respectively.



Then the Minimum Mean Square Error (MMSE) Esti-
mate of the θi will be θ̂i = E(θi|R) where i∈{0,1}. Having
these estimates for the unknown parameters, we can substi-
tute them in the (21) and reuse the likelihood ratio test with
estimated parameters. Then the decision test can be reduces
to the following:

l̂ , rT C−1(s1(θ̂1)− s0(θ̂0))
H1
≷
H0

η
∗ , ln(η)+

1
2
(s1(θ̂1)

T C−1s1(θ̂1)− s0(θ̂0)
T C−1s0(θ̂0)). (26)

Where si(θ̂i) = Hiθ̂i. To compute the QoI metrics, assum-
ing ∆ = s1(θ̂1)− s0(θ̂0), we have µl̂|Hi

= si(θ̂i)TC−1∆, and
σ2

l̂|Hi
= ∆TC−1∆, where i ∈ {0,1}. Then QoI metrics can

be computed with the following formulation:

Pz = Pr(l̂ ≥ η
?|Hi) = 1−Φ

(
η∗−µl̂|Hi

σl̂|Hi

)
, (27)

where i = 1 when z = d, and 0 when z = f . If we are
not aware of calibration error, then under both hypotheses
θ̆ = [1;0] will be considered; which results in s1(θ̆) = s,
and s0(θ̆) = 0, but it is notable that observations come from
the sensor samples with gain a and offset b, so µl̂|H1

= (as+

b~1)TC−1s and µl̂|H0
= b~1

T
C−1s and σ2

l̂|H1
= σ2

l̂|H0
= σ2 =

sTC−1s, then using the similar approach as (27), we can
compute the probability of detection and false alarm for
this case.

Figure 7 compares the probability of error (Pe) of three
specific cases as noise level (σ ) changes; in the first case,
the complete knowledge of the sensors gain and offset is
provided, in this case equation (27) with θ equal to the ex-
act values of a and b. The second case is the situation that
calibrated error model is considered, but the deterministic
knowledge of the parameters is not available, and the esti-
mated parameters is required, and the third case is the situa-
tion that we have not considered any measurement error for
the sensor-collected data, and we use the gain of one and
offset of zero in sensor measurements. In this study case
it is assumed that, we have a single-sensor system which
contributes N = 20 samples in detection process, and is lo-
cated in distance of d = 3, from a source with signal sig-
nature of s∗(t) = 1− t2. It is also assumed that in reality
sensor has a gain of a = 1.4 and offset of b = 0.4, and we
have prior knowledge of θ ∼ N ([1,0.2], I2) for parame-
tres. As figure 7 shows, if we don’t have any knowledge
about sensor’s gain and offset, we will face large proba-
bility of error in decision making, for this particular case
since actual gain is larger than one and we have positive
offset, for smaller noise levels(σ ) we have large probabil-
ity of false alarm which results in large probability of error
as well. As it is expected and shown in figure 7 for a case
of perfect knowledge of the calibration factors, probability
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Figure 7. Pe analysis of the un-calibrated sensors

of error will become less, and this result also shows that
using the estimated version of the calibration factors will
help us to get close to the exact model. It is notable that
when the noise level increases, it affects the estimator per-
formance; results in figure 7 also confirms this situation. It
is also notable that using larger number of samples from
observations, can improve the estimator performance. Fi-
nally this discussion and the provided approach and results,
show that to achieve a better QoI, it is required to consider
faults and measurement errors in the system.

7. Discussion and Concluding Remarks

Research output on sensor networks has been increas-
ingly covered many different aspects. Operation, configu-
ration, management, information retrieval and dissemina-
tion, hardware and software applications, middleware ser-
vices, programming paradigms, are just few of the areas
that considerable research capital has been invested and
output has been generated the past few years. Within this
sea of groundbreaking research, the research area that has
attracted our interest did not, to the best of our knowledge,
exist, at least not in any form of distinctively identifiable
manner. We have decided to study sensor networks from
the vantage point of applications, that have interest to use
them not only to receive data from them, but also have
knowledge of their quality.

For our setting, quality of information (QoI) represents
the level of confidence that sensor-data-dependent appli-
cations may place on derived information from the sensor
network(s) that support the application. Knowledge of the
QoI allows mission/application planners to enhance their
system with contingency plans in anticipation of “errors”
that the network of sensors and their fusion modules accu-
rately capturing and interpreting the real world.

Our research anchors around the mission or applica-
tion planner who would like to deploy a sensor-enabled ap-
plication, and is interested to know the level (or at least the
ranges) of QoI which will be receiving; therefore the appli-
cation can be trained or designed to accommodate uncer-



tainties in the received data flows. Within this context, we
anticipate that an evaluation toolkit will be very effective
aid in calculating QoI. The toolkit will comprise a collec-
tion of analysis methodologies that a system designer (sup-
porting the application planner) can choose for the evalua-
tion. The design philosophy behind such a toolkit is what
we are currently researching.

Considering the rather broad application space of de-
tection of signal-producing events, we have proposed and
studied a layered analysis framework that allows the com-
position of performance analysis solutions from a number
of constituent analysis techniques. The layered approach
separates the solution approach into tree steps: a prepro-
cessing step that focuses on what affects signals from their
source to their destination; a core analysis of QoI; and, fi-
nally, a post processing layer that operates on the results of
the QoI analysis to build the final desired solution. While
we have presented mostly the QoI analysis layer consider-
ing various decision topologies, we presented examples of
both preprocessing (like signal attenuation and sensor de-
ployment) and postprocessing (like the position sensitivity
analysis).

We have based our QoI analysis on hypothesis testing,
and derived QoI performance for a number of topologies.
We made use of equivalent sensors to reduce the analysis
of hybrid system to those of fully distributed systems, and
derive both sensor level and system-level QoI performance
metrics. In the latter case, we study both finite and “infi-
nite” sensor systems and derived a continuum of computa-
tionally attractive solutions spanning both small and large
systems. We derived dominant relationships, that allow to
calculate performance metrics by constructing and analyz-
ing simpler systems.

As we move forward with research we will be pursu-
ing enriching our framework with additional capabilities
studying big problems at small atomic steps. While in [6]
we discusse how we may accommodate the lack of knowl-
edge of when a signal have started , by bounding the per-
formance of our system, we recognize that additional work
is needed in this area. Along with it we see the need to
study sampling policies and how they may influence the
decision. Our focus now is purely on the information pro-
cessing, however if we were to consider the time it takes to
propagate sensor samples and local decision to higher-tier
fusion and decision subsystems, the impact of communica-
tion will need to be studied.
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