
RC24412 (C0711-010) November 13, 2007
Computer Science

IBM Research Report

A Database Scale-Out Solution for Emerging
Write-Intensive Commercial Workloads

Yi Ge, Chen Wang, Xiaowei Shen, Honesty Young
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, 100094

P.R.China

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Database Scale-Out Solution for Emerging Write-
Intensive Commercial Workloads

Yi Ge, Chen Wang, Xiaowei Shen, Honesty Young
IBM China Research Lab

Contact email: {geyi,wangcwc,xwshen,honesty}@cn.ibm.com

ABSTRACT
Among the increasing number of online businesses, a series of
write-intensive commercial workloads are emerging recently on
the Internet. These workloads generate many more write
transactions on the backend database than read transactions. Most
of such workloads require the database to handle high-volume
write transactions in real-time. Based on the observation on the
workloads, this paper proposes a multi-tier database scale-out
architecture with the write caching technology. Our preliminary
result shows that the database scale-out architecture can handle
extremely high-volume write transactions with excellent
scalability.

1. Introduction
A large number of commercial workloads are shifted from offline
to online, and converged to a small number of web-based
enterprises, such as eBay, Yahoo and Google. To cope with
extremely high-volume transactions in these workloads, scale-out
technologies have been introduced in database configurations and
implementations. For example, Data Partitioning is one of the
most popular features in commercial database products to scale
out the database system for performance. Moreover, for read-
intensive commercial workloads, the database bottleneck could be
eliminated or reduced by leveraging the scale-out capability of
middleware in a 3-tier database access architecture. Database
caching technology [1][2] provides a mechanism to maintain data
records or query results at the middleware layer, therefore
applications do not need to access the backend database at run
time. The total amount of cache size grows with the number of
servers. The emergence of rack-mounted servers and blade
servers makes it cost-effective to build a scale-out solution for
commercial workloads.

With increasing number of businesses on the network, a series of
the write-intensive commercial workloads are emerging. In
commercial workloads such as billing, monitoring on-the-fly,
online gaming and virtual community, more write transactions are
generated than read transactions. In a typical online lottery
application, for example, seventeen of total twenty-seven SQL
transactions in a core function are write operations. The database
is responsible for logging all the steps of lottery games in real-
time. Near a billion transactions can be issued to the backend
database in a day. In most cases, database write operations are the
bottleneck for such write-intensive workloads. Not only the
majority of database operations are update transactions
(Insert/Update/Delete SQLs), but also the write transaction
processing is more complex and easier to cause I/O and lock
contentions. A new database solution is required to handle such
high-volume write-intensive workloads. Database scale-out is
probably the only feasible solution to meet the throughput
requirement. However, resource contentions and consistence

synchronization can greatly impair the effectiveness and
scalability of the solution. It becomes even worse on write-
intensive workloads that usually involve frequent
synchronizations for data consistency. Based on the analysis of
database systems and the characteristics of emerging write-
intensive workloads, this paper proposes a novel architecture for
building a scale-out solution for such commercial applications.

2. Database Scale-out Architecture
For emerging write-intensive commercial workloads, we find that
the heavy load of write transactions comes from the confluence of
multiple user threads. Each thread focuses on the transactional
logic to deal with a single user status or account. Most of the time
transactions associated with an account can be processed on the
same node of a cluster system. The most severe contention
happens for the branch balance. However, the business logic does
not check the branch balance frequently. A middleware level
solution could be devised to provide the current branch balance
when requested.

Furthermore, simple SQL commands are commonly used in write
transactions. That is, each operation modifies only on a single
table or just a single row. And, a couple of most frequently
updated tables in the database receive most of the write requests.
For those infrequently modified tables, previous database scale-
out technologies such as database caching can be adopted. In the
following discussion, we only focus on the scale-out solution for
frequently updated tables.

As shown in Fig.1, the proposed system architecture introduces a
new database caching layer (front-end layer) between normal
application logic and the global database layer. In other words,
database write transactions are processed and temporarily cached
at the local databases of the caching layer. The local databases
only keep the most frequently updated tables and provide the

Fig.1 database scale-out architecture for write transactions

Batch Interface

Cache Interface

 Cache Manager

Replication anager*

Application Logic

In-memory Data

Global Database

Application Tier

Caching Tier

Local Database

 Cache Manager

Application Logic

In-memory Data

Replication Manager*

Local Database

same database interface to application logics. From the aspect of
application logics, transactions behave as if they were committed
or aborted at the unified database layer. In fact, transaction
requests arriving at database caching interface are properly routed.
Database hit requests are handled at the caching layer: the records
of the corresponding requests are cached in local databases and
the results are returned to applications. Meanwhile, other
transaction requests bypass the caching layer, and are directly
processed at the global database(backend database). The caching
layer validates transaction requests, and logs the corresponding
data records separately. Alternatively, the system may choose to
log the SQL commands and submit them to the global database
for later execution. The replication manager first replicates the
completed records to the global database in a batch mode
periodically and asynchronously, and then drops those temporary
copies at the caching layer.

Each node or partition handles write transaction requests
separately, and replicates the latest records of completed
transactions to the global database. By maintaining data
dependency only within the single node, the caching layer can
scale out without synchronization overhead, achieving close to
linear scalability. Front-end nodes are treated as the transaction
processing engines rather than record owners. This greatly
simplifies the configuration of traffic router and load balancer, as
well as node failure recovery.

In our proposed architecture, arriving requests are first maintained
in buffers at the caching layer for a short duration, and later
submitted in a batch to the local database. The application returns
after obtaining the results from the corresponding local database.
General performance enhancement is achieved from the batch
operation to reduce time spent on the execution plan, log entry
I/O, and spare space seeking. Requests are dispatched to caching
buffers according to the policies as following:

1) Single-statement transactions can go to any pending buffer.
When the buffer is full, all the transactions in the buffer are
submitted to the local database in a batch.

2) All requests from a multi-statement transaction are
scheduled into one buffer. The transactions are committed
as a whole when a user performs the commit operation.

This technique helps guarantee the ACID properties of
transactions while still maintaining low response time for
database write requests. Moreover, an adaptive sizing technique
has been developed for the balance between the response latency
and the transaction throughput.

Leveraging the spare data storage and processing capabilities at
the front-end layer, a replication manager has little performance
impact on the transaction, in terms of transaction response time
and throughput. Asynchronous and batch replication can
significantly reduce the contention at the global database. The
integrity and constraint checking could be skipped in the backend
database, since the corresponding validations have already been
performed at the front-end layer. In our scale-out prototype, the
gross overhead for one node replication is less than 2% at the
backend database server. For workloads with burst transactions,
the adaptive batching technique in replication manager can
achieve load-balance between application servers and the backend
database.

3. Experiment Results
In the scale-out experiments, 16 IBM blade servers are used as the
front-end database caching nodes. The backend node is an X-
server with two AMD dual-core processors (OpteronTM 64, 8GB
memory). Multiple application servers simulate an online lottery
gaming logic and generate the corresponding transaction requests,
including read and write operations. The requests are distributed
to the front-end nodes, handled in this layer or routed to the
backend database. Both the throughput and backend CPU
utilization are monitored to evaluate the overall scalability. Two
kinds of the scalabilities are evaluated in the tests: 1) the
scalability of front-end nodes(backend nodes perform no write
caching and are not considered in the scalability calculation); 2)
and the overall scalability among all the database nodes, including
both front-end and backend(the backend node also has caching
logic to get full utilization on the system). For n-node scalability,
we divide the n-node throughput by means of n single node
throughput. The results are shown in Fig.2.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Nodes

sc
al

ab
ili

ty

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

B
E

 c
pu

 u
til

iz
at

io
n

scalibility w/o backend scalability w/ backend

CPU utilization w/o backend CPU utilization w/ backend

e
Fig.2 Scalability and CPU utilization of database write caching architectur
The database write caching architecture has close to linear
scalability. As can be seen in Fig.2, our preliminary experiment
result shows that the database write caching architecture achieves
the scalability over 0.97 on a sixteen-node platform. The overall
CPU utilization for sixteen-node replication in the backend node
is approximately 10%, which is equivalent to less than 1% per
front-end node. This has further demonstrated that the backend
server can efficiently support a large number of front-end nodes
simultaneously.

4. REFERENCES
[1] C. Bornhövd, M. Altinel, Sailesh K., etc., DBCache: middle-

tier database caching for highly scalable e-business
architectures. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data，San Diego,
California, 2003, 662.

[2] C. Bornhövd, M. Altinel, C. Mohan, etc., Adaptive Database
Caching with DBCache. IEEE Data Eng. Bull. 27(2), 2004,
11-18.

[3] Philip A. Bernstein, Alan Fekete, Hongfei Guo, etc.,
Relaxed-currency serializability for middle-tier caching and
replication. In Proceedings of the ACM SIGMOD’06, 599-
610.

http://portal.acm.org/citation.cfm?id=1142473.1142540&coll=ACM&dl=ACM&type=series&idx=1142473&part=Proceedings&WantType=Proceedings&title=International%20Conference%20on%20Management%20of%20Data&CFID=4281308&CFTOKEN=43789307
http://portal.acm.org/citation.cfm?id=1142473.1142540&coll=ACM&dl=ACM&type=series&idx=1142473&part=Proceedings&WantType=Proceedings&title=International%20Conference%20on%20Management%20of%20Data&CFID=4281308&CFTOKEN=43789307

	ABSTRACT
	Introduction
	Database Scale-out Architecture
	Experiment Results
	REFERENCES

