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Abstract. We propose a simple and efficient approach to building undi-
rected probabilistic classification models (Markov networks) that extend
näıve Bayes classifiers and outperform existing directed probabilistic clas-
sifiers (Bayesian networks) of similar complexity. Our Markov network
model is represented as a set of consistent probability distributions on
subsets of variables. Inference with such a model can be done efficiently
in closed form for problems like class probability estimation. We also
propose a highly efficient Bayesian structure learning algorithm for con-
ditional prediction problems, based on integrating along a hill-climb in
the structure space. Our prior based on the degrees of freedom effectively
prevents overfitting.

1 Introduction

Learning probabilistic models from data has been an area of active and fruitful
research in machine learning due to several reasons. First, despite its simplicity,
the näıve Bayes (NB) classifier demonstrated surprisingly high accuracy in many
domains, and became a popular choice in practice. Its success also led to multiple
extensions that attempted to further improve the performance of näıve Bayes by
incorporating higher-order dependencies (e.g., tree-augmented naive Bayes and
Bayesian networks [1]). Second, in practical applications we are often interested
not just in accurate classification, but also in accurate estimation of class prob-
ability for solving ranking and cost-based decision problems. Moreover, we may
need to learn joint distribution models that allow answering various probabilis-
tic queries besides computing the conditional class probability. A popular choice
are graphical probabilistic models such as Markov and Bayesian networks, which
also have an advantage of interpretability as they explicitly represent interactions
among features.

In this paper, we propose a simple and efficient Bayesian approach that learns
undirected probabilistic models (Markov networks). We evaluate our approach
on the tasks of class probability estimation and classification. We have cho-
sen undirected models over directed ones since computing the conditional class
probability is an easy inference problem that does not require an explicit model
of a joint distribution provided by a Bayesian network; it suffices to have an
unnormalized representation given by a set of potentials in a Markov network.



We also adopt a discriminative structure learning approach [2–4], using a condi-
tional likelihood function to score model structures. Being Bayesian about the
structure, we integrate it out, rather than search for a single optimal struc-
ture. Our empirical results demonstrate that such Bayesian approach frequently
outperforms existing directed probabilistic classifiers of similar complexity (e.g.,
Bayesian networks with same maximal clique size), while also being extremely
fast, sometimes order of magnitudes faster than some competing approaches.

2 Related Work

Most of previous work on probabilistic classifiers focused on directed models, or
Bayesian networks. However, we decided to focus on undirected graphical models
(Markov networks) since learning explicit (normalized) joint probability distri-
bution P (X, Y ), as in case of Bayesian networks, is unnecessary if our goal is
just computing the conditional class probability P (Y |X). This is an easy infer-
ence problem even with an unnormalized distribution represented by a Markov
network. Undirected models permit the inclusion of a larger number of connec-
tions between variables, as we are no longer restricted by the decomposability
requirements imposed by the chain rule.

Previous approaches to learning Markov networks often focused on bounded-
treewidth models [5–8], in order to bound the inference complexity; again, this
restriction is unnecessary if we are only concerned with the queries described
above. In our approach, we only have to bound the original hyperedge cardinality
in a Markov network, for the sake of representation efficiency. Note that removing
the bounded-treewidth constraint allows to account for important k-way inter-
actions between the variables that the corresponding bounded-treewidth model
would ignore.

Note that despite being related, our approach is also different from the con-
ditional random fields (CRFs) [9]. We focus on “standard” i.i.d. rather than
sequential non-i.i.d. classification problem, and learn a Markov network over the
features and class, rather than (conditional) Markov network (random field) over
a sequence of dependent class labels. Extending our approach to CRFs would
be an interesting direction for future work. Our Bayesian prior which depends
on the complexity of the structure can be seen as an approach to penalization
of complex structure, just as the maximum-margin criterion penalizes unusually
oriented decision boundaries.

3 Markov Network Models

3.1 Notation and Overview

Let X = {X1, . . . , Xn} be a set of observed random variables, called attributes,
and let x = (x1, . . . , xn) be a vector of values assigned to variables in X. Herein,
we assume discrete-valued attributes, i.e. x ∈ X = X1×. . .×Xn where each range
Xi is a set of possible values of Xi. Let Y denote an unobserved random variable



called the class, where y ∈ Y, |Y| = m. The set of attributes together with the
class (i.e., all variables) is denoted V = X∪{Y }. An assignment v(i) = (x(i), y(i))
of values to the attributes and the class is called an instance, or example with
index (i). We will use a short notation P (v) = P (x, y) = P (x1, . . . , xn, y) to
describe the joint probability distribution P (X1 = x1, . . . , Xn = xn, Y = y).

Our models will have the undirected structure of Markov networks. We will
define a Markov network, or Markov random field on random variables V as
〈M, T 〉 where M is an (undirected) hypergraph M = {S1, S2, . . . , S`} and
T = (Φ1, . . . , Φ`) is a set of positive functions, called potentials for each of
the ` hyperedges3 in M, such that the joint distribution P̂ (v) factorizes over
them: P̂ (v) = (1/Z)

∏`
i=1 Φ(vi) where Z is a normalization constant. This lat-

ter form is referred to as the Gibbs distribution. We use P̂ (·) as a shorthand for
P (·|〈M, T 〉). Each hyperedge SR contains the variables linked to it. These vari-
ables form a vector VR. The potential Φ(vR) corresponding to each hyperedge
then maps any combination of values of vR into a positive real number.

We now outline our algorithm for class probability estimation. The outline
contains many terms that will be defined later, in the section referenced for each
step.

1. Given V = X ∪ {Y }, and a bound k on hyperedge cardinality, select a set
of hyperedges M = {M |M ⊆ Y} using the approach described in Sect. 4.2.

2. Given M, compute the region graph R using the cluster variation method
(CVM)[10] where each hyperedge corresponds to an initial region (Sect. 3.2).
The region graph captures the overlap between hyperedges.

3. For each region R estimate the submodel P (VR) from data (Sect. 4.1). Each
submodel is an ordinary probabilistic model, but for a subset of variables.

4. Approximate P (V) by the product Φ(v) =
∏
〈R,cR〉∈R P (vR)cR where cR is

the counting number for region R in the region graph (Sect. 3.2).
5. Normalize P̂ (y|x) = Φ(x, y)/

∑
y′ Φ(x, y′); classify y∗(x) = arg maxy P (y|x).

3.2 Computing the Potentials

The general problem with learning Markov networks from data once the struc-
ture is known is how to obtain potentials from the data. Specifically, we tractably
express the potentials in terms of submodels, where a submodel P (vR) is a prob-
ability distribution or mass function on the subset of variables corresponding to
each hyperedge. Each submodel is estimated from the data. We then make use
of the following recursive definition of potentials ΦR [7]:

ΦR(vR) , P (vR)∏
R′⊂R ΦR′(vR′)

. (1)

A particular P (vS), S ⊂ R1 is computed by marginalizing P (vR1), which in
turn is modeled directly from data. As S may be a part of another hyperedge
3 Usually referred to as ‘cliques’, but with hypergraphs the notion of a clique could

be confusing.



S ⊂ R2, there could be several versions of P (vS), depending on what submodel
is marginalized (R1 or R2). To assure consistency we require that there exists
some hypothetical P (V) so that each P (vR) is its marginalization.

It is of practical convenience to construct an intermediate data structure
called a region graph R [10]. Table 1 shows a variant of the cluster variation
method algorithm [10] for constructing a region graph from the set of hyperedges.
The region graph is defined as R = {〈R, cR〉, R ⊆ V}, where for each region R,
there is a corresponding counting number cR, that accounts for the overlaps
between regions, and helps avoid the double-counting of evidence.

Given the region graph, we can compute the joint probability distributions
in terms of the Kikuchi approximation to probability [11, 12]:

P̂ (v) =
1
Z

∏

〈R,cR〉∈R
P (vR)cR . (2)

It is well-known [13] that when the Markov network is triangulated and thus
yields a clique tree, the Gibbs distribution can be represented exactly through (2)
and no normalization is needed, as P (v) =

∏
R∈R ΦR(vR), where the potentials

ΦR(vR) are defined by (1). In general, when the counting numbers are greater
than zero only for the initial regions, the recursive definition of potentials is
exact [10].

Table 1. Cluster variation method for constructing the region graph given a set of
hyperedges M = {S1, S2, . . . , S`}.

R0 ← {∅} {Redundancy-free set of hyperedges.}
for all S ∈M do {for each hyperedge}

if ∀S′ ∈ R0 : S * S′ then
R0 ←R0 ∪ {S} {S is not redundant}

end if
end for
R0 ← {〈S, 1〉; S ∈ R0}
k ← 1
while |Rk−1| > 2 do {there are feasible subsets}
Rk ← {∅}
for all I = S† ∩ S‡ : S†, S‡ ∈ Rk−1, I /∈ Rk do {feasible intersections}

c ← 1 {the counting number}
for all 〈S′, c′〉 ∈ R, I ⊆ S′ do

c ← c− c′ {consider the counting numbers of all regions containing the inter-
section}

end for
R← R∪ {〈I, c〉}
Rk ←Rk ∪ {I}

end for
end while
return {〈R, c〉 ∈ R; c 6= 0} {Region graph.}



3.3 Performing Inference

While in general it is NP-hard to compute P (Q|E), where Q ⊆ V, E ⊆ V, in
a Markov network representing a joint distribution P (V), the problem becomes
easy when the number of unobserved variables V \ E is small, or when the
treewidth of the network is small. Treewidth, also known as induced width, is a
graph parameter that controls the complexity of some commonly used probabilis-
tic inference algorithms (the complexity is exponential in the treewidth). The
treewidth of a network, given a particular variable ordering, equals to largest
clique size of the triangulated network, where the triangulation is performed
along the given ordering and reflects the process of creating new probabilistic
functions by the inference algorithm.

Given a set of random variables V = X ∪ {Y }, a set R = {R|R ⊆ V} of
subsets (regions) of V, where Y belongs to at least one region, and a product
Φ(v) = Φ(x, y) =

∏
R∈R ΦR(vR) of non-negative functions (potentials) defined

on these regions, let P̂ (v) = (1/Z)Φ(v) be the corresponding joint probability
distribution over V, where Z is a normalization constant. It is very easy to see
that:

1. Computing P̂ (Y |x) does not require global normalization, i.e. P̂ (Y |x) =
Φ(x, Y )/

∑
y′ Φ(x, y′);4

2. The classifier can be computed using a product of only those potentials that
contain Y , i.e. h∗(x) = arg maxy

∏
{R∈R|Y ∈R} ΦR(vR).5

Of course, this holds also when we have several query variables Y, but only the
vector is short. More complex queries (e.g. with missing data) might require
several iterations, where each individual iteration can take the simple form as
for inferring the class probability.

4 Bayesian Structure Learning

The above formulation of the Markov network model allows efficient inference.
The task for learning is to determine the parameters of the model: the structure
and the submodels. We will adopt the Bayesian framework, based on an explicit
description of the model in terms of its parameters φ = 〈M, Θ, ϑ〉, where M is
the model structure (hypergraph), while ϑ and Θ are the submodel prior and
the submodel parameters, respectively. Each submodel VR is specified in terms
of a parameter vector θR, so that P (VR|θR).

4 Indeed, the first claim follows from P̂ (y|x) = P̂ (x, y)/P̂ (x) =
(1/Z)Φ(x, y)/

P
y′(1/Z)Φ(x, y′), since by definition Φ(v) = Φ(x, y).

5 The second claim is easily obtained from the definition of Bayesian classifier,
h∗(x) = arg maxy P̂ (y|x), and the following observation: P̂ (y|x) = Φ(x,y)P

y′ Φ(x,y′) =
Q
{Q∈R|Y /∈Q} Φ(vQ)P

y′ Φ(x,y)

Q
{R∈R|Y ∈R} ΦR(vR), where (

Q
{Q∈R|Y /∈Q} Φ(vQ))/

P
y′ Φ(x, y)

is independent of Y .



We will assume a prior distribution over structures P (M), and a prior distri-
bution over the submodel parameters P (Θ|ϑ). The prior for the whole model is
then P (φ) = P (M)P (ϑ)P (Θ|ϑ) = P (M)P (ϑ)

∏
R P (θR|ϑ). Because we assume

independence of Θ and M, the submodels remain the same irrespectively of the
structure: this results in a major speed-up.

The Bayesian paradigm (to be distinguished from the Bayes rule) is that
one should be uncertain about what the exact model is. Instead of finding the
‘best’ model parameters, we assign probabilities to each setting of φ, ‘averaging’
together a weighted ensemble of models (both structures and parameters). For
prediction we make use of all plausible structures instead of arbitrarily picking
just the best one [14]. This has also been shown to improve results in practice
[15]. In a class probability estimation setting, the final result of our inference
based on data D will be the following class predictive distribution:

P (y|x) ∝
∫

P (φ|D)P (y|x, φ)dφ (3)

Here, P (y|x, φ) is based on (2). For efficiency purposes, we employ the formula-
tion of Bayesian model averaging [16], where only those parameter values with
a sufficiently high posterior probability are remembered and used.

4.1 Parameters for Consistent Submodels

Our Markov network model is based on partially overlapping submodels. Al-
though technically not necessary, it is desirable for the submodels to be consis-
tent in the sense that all of them are marginalizations of some joint model. We
model the submodels on discrete variables as multinomials with a symmetric
Dirichlet prior :

P (θR|ϑ) = Dirichlet(αR, . . . , αR), αR =
ϑ∏

V ∈R |V|
Here, |V| denotes the number of values that variable V can take. It is easy to
prove that this prior assures that all the posterior mean submodels are consistent
if the same value of ϑ was used for each of them. This prior is best understood as
the expected number of outliers: to any data set, we add ϑ instances uniformly
distributed across the space of variables. We have set the parameter P (ϑ = 1) =
1, which means that one outlier per dataset was assumed: we see this to be a
reasonable prior assumption that speeds up the learning. Due to conjugacy of
the Dirichlet prior, the desired posterior mean probability given data D within
region R is:

P (vR|D, ϑ) =
ϑ/|VR|+

∑|D|
i I{v(i)

R = vR}
|D|+ ϑ

.

4.2 Structure Learning

Parsimonious Structures The structure in the context of our Markov network
model is simply a selection of the submodels. P (M) models our prior expecta-
tions about the structure of the model. We will now introduce a parsimonious



prior that asserts a higher prior probability to simpler selections of submodels,
and a lower prior probability to complex selections of submodels as to prevent
overfitting. A quantification of complexity based on degrees of freedom is given
by [17]. In many practical applications we are not interested in the joint model.
Instead, we want to predict labels Y from attributes X. In such cases, a con-
siderable part of uncertainty about the value of X gets canceled out, and the
effective degrees of freedom are fewer (“Conditional density estimation is easier
than joint density estimation.”).

Let us assume a set of overlapping submodels of the vector V, and the result-
ing region graph R obtained using the CVM. The number of degrees of freedom
of the model M with a corresponding region graph R intended for predicting Y
from X is:

dfMY
,

∑

〈S,c〉∈R
c

( ∏

V ∈S

|V| −
∏

V ∈S
V 6=Y

|V|
)

(4)

V is either Y or a part of X, and V is the number of values V can take. This
quantification accounts for overlap between submodels in the same fashion as
cluster variation method does for probabilities. Of course, conditional modeling
corresponds to joint modeling when Y = ∅.

The following prior corresponds to the assumption of exponentially decreas-
ing prior probability of a structure with an increasing number of degrees of
freedom (or effective parameters):

P (M) ∝ e−dfM . (5)

The likelihood function for conditional modeling can also be adjusted to ac-
count for the fact that we will be using the model for predicting Y from X.
The non-Bayesian approach searches for the structure that yields the maximum
conditional likelihood [4]. A Bayesian approach instead scores structures by the
means of a conditional likelihood function, as is customary in Bayesian regres-
sion. We hereby use the following conditional likelihood function that assumes
i.i.d.:

P (v(1)...(m)|φ) ,
m∏

i=1

P (y(i)|x(i), φ) (6)

BecauseM was assumed to be independent of ϑ and Θ, we prepare Θ in advance,
before assessing M. The P (y(i)|x(i),M) is obtained using (2).

Sampling the Structure Space In the process of structure learning, we per-
form a walk in the space of structures. For all practical purposes, we are not
interested in the ‘best’ structure, but the walk should nevertheless attempt to
visit more structures with high posterior probability than structures with low
posterior probability, as the latter do not affect the predictive distribution (3)
much. While similar MCMC approaches have been proposed in the past [14], we
apply a simple hill-climbing approach that does not faithfully model the poste-
rior distribution over structures, but does improve the predictive performance
for a considerably lower computational cost.



During the hill climb, we seek to greedily maximize the posterior probability
of a structure. Let us assume that we are performing conditional modeling, with
the intention of predicting Y . Our initial structure will have a single initial
hyperedge of cardinality 1, {Y }. In the successive step, we will consider all
possible attributes Xi creating hyperedges {Xi} ∪ {Y }, and pick the one that
yields the highest posterior probability: this corresponds to step-wise forward
selection algorithm with one-step look-ahead. This approach is very efficient:
including a new hyperedge corresponds to just multiplying the predictions for an
individual instance with another term and renormalizing. With the considerable
increase in performance that ensues, we can afford to find the best hyperedge
at every step of the forward selection. All the models that were evaluated are
included in the model average: even if they were not selected, they might still
have a relatively high posterior probability.

With the above algorithm we can discover very interesting structures in a
very short amount of time. An example of a maximum posterior probability
structure for the tic-tac-toe dataset is shown in Fig. 1: the structure was obtained
in 0.03 seconds on an ordinary laptop computer. The hyperedges correspond to
meaningful notions of corner and center points, to connections between them,
and finally to the diagonals and edges: indeed these structures are what humans
examine when playing the game. Another example of structures obtained with
our algorithm appears in Fig. 2.

In the past we evaluated interactions one by one and formed the structure
from such marginal evaluations [11]. However, the results are considerably better
when performing evaluations of complete structures. This effectively implies that
inclusions of individual interactions for the model structure are not independent
decisions.

5 Empirical Evaluation

To validate our modeling approach from Sections 3 and 4, we have applied the
methodology to the problem of class-probability estimation. Numerous tech-
niques exist for this purpose, and they can be roughly divided into those that
pursue a discriminative structure, yet employ the generative chain rule (such as
the näıve Bayes, tree-augmented näıve Bayes [1] and general Bayesian network
classifiers [4]) and those that employ both discriminative structure and discrimi-
native parameter values [3, 19, 20]. It is widely recognized that it is generally too
hard to perform both general structure search and optimization of discriminative
parameter values. Still, a limited amount of structure selection is performed even
with discriminative parameter values, such as step-wise model selection [21] or
TAN-like structures [3, 20], but rarely one can afford an exhaustive search for
interactions.

We will evaluate the benefit gained by a) allowing hyperedges that result in
cyclic dependencies, b) the benefits of Bayesian model averaging, and c) verifying
if our prior protects against overfitting. Furthermore, we compare our approach
to other related approaches.



Fig. 1. Hyperedges of cardinality 4 are not merely a theoretical curiosity. In this il-
lustration we show the tic-tac-toe game board, which comprises 9 squares, each cor-
responding to a 3-valued variable with the range {×, ◦, }. The goal is to develop a
predictive model that will indicate if a board position is winning for × or not: this is
the 2-valued class variable. The illustration shows the hyperedges in the MAP model
identified by our algorithm: 2-way hyperedges (5 green circles), 3-way hyperedges (4
blue serif lines), and 4-way hyperedges (6 red dashed lines). Each hyperedge includes
the class (not shown).
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Fig. 2. This figure shows the Bayesian model average for two real-life datasets: CMC
(contraception use in Indonesia) and Titanic (survival of Titanic passengers). Each
node and each connection is numbered with the step of the hill-climb when it was
selected. We can observe the order in which the edges entered the model: in the case
of Titanic, the ordering was [sex,survival], [status,survival], [age,survival], followed by
the two 3-variable hyperedges, [status, sex, survival] and [status of the passenger, age,
survival]. The percentages indicate the interaction information [18] expressed as a pro-
portion of class entropy: which helps understand the nature of the hyperedge. For
example, bi-directed arrows indicate synergies between variables (such as between age
and number of children: it helps to distinguish young women with children from young
women without children for predicting the contraception method used), and dashed
links indicate partial redundancies between variables (such as between media exposure
and education: the more education, the greater the media exposure). Synergies and re-
dundancies explain the reason for including complex hyperedges, and allow interpreting
the model.



To evaluate a class-probability estimate, we will use the expected negative
log-likelihood (log-loss) of class assignment −E[log P (y|x)]. For each UCI data
set, we performed 5 replications of 5-fold cross-validation. The data sets were all
discretized with the Fayyad-Irani method [22] beforehand. The missing values
were interpreted as special values. Structure learning with our procedure for all
the 46 datasets using our method implemented in Python and C++ took less
than 9 minutes, in comparison to over 686 minutes consumed by a C++ imple-
mentation of Bayesian network classifiers which also yielded worse performance.

Judging from the rankings in Table 2, we can conclude that the single best-
performing feature is Bayesian model averaging: it has consistently outperformed
the maximum a posteriori structures. The second important conclusion is that
our Bayesian prior successfully prevents overfitting in a systematic way: as we
increase the depth of structure search, the results improve (although B2 does win
by performing essentially just feature selection in a number of cases when there
seem to be no higher-order hyperedges). The third conclusion is that Markov
networks perform well regardless of whether the task is classification (as assessed
via error rate), or class probability estimation (log-loss). The fourth conclusion
is that allowing cycles does help, but not in a radical way (of course this may
be simply due to our simplified way of computing potentials).

6 Conclusion

In summary, we feel that undirected models have many advantages over di-
rected models: it is not possible or at least controversial to establish causal
direction from observational data. Our definition of potentials avoids problems
with sparse conditional probability tables. Our priors and Bayesian model av-
eraging work surprisingly well and effectively prevent overfitting. Our heuristic
structure search is also much faster than most alternatives, and we hope that
it would inspire others not to rigidly follow the posterior sampling approach in
complex parameter spaces, but instead to seek combining search and averaging.
Because methods such as Bayesian logistic regression continue to outperform our
approach on datasets without interactions, it would be highly desirable to com-
bine the handling of higher-order interactions in Markov networks with effective
discriminative parameter learning in regression models. This could perhaps be
achieved by finding discriminative parameters for well-performing discrimina-
tive structures, or by finding an equally efficient way of performing inference on
Markov networks but for the specific purpose of conditional prediction.
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Table 2. A comparison of different undirected and directed probability models on 46
datasets. NB is näıve Bayes, TN is tree-augmented näıve Bayes, BC is the discriminative
search for Bayesian network classifiers [4], M2-M4 is the maximum a posteriori Markov
network with structure search with maximum hyperedge cardinality of 2 through 4,
B2-B4 are corresponding Bayesian model averaged Markov networks, and BT is the
Bayesian model averaging (BMA) on cycle-free Markov hypertrees with hyperedges of
cardinality less than 4. The best result is typeset in bold, the results of those methods
that outperformed the best method in at least 2 of the 25 experiments on each dataset
are underlined (because they are not significantly worse). The worst result is marked
with (·). At the bottom we list the average rank of a method across all the datasets,
both for log-loss (LL) and error rate (ER).

log-loss / instance
domain NB TN BC M2 M3 M4 B2 BT B3 B4

adult ·0.42 0.33 0.39 0.31 0.30 0.30 0.31 0.30 0.30 0.30
audiology 3.55 ·5.56 2.95 1.69 1.69 1.69 1.65 1.65 1.65 1.65
glass 1.25 ·1.76 1.21 1.19 1.19 1.19 1.10 1.10 1.10 1.10
horse-colic 1.67 ·5.97 3.36 0.84 0.85 0.85 0.82 0.82 0.82 0.82
krkp ·0.29 0.19 0.12 0.26 0.08 0.05 0.26 0.11 0.08 0.05
lung 5.41 ·6.92 3.05 3.12 3.12 3.12 2.15 2.15 2.15 2.15
lymph 1.10 1.25 1.23 1.04 1.04 1.04 0.90 0.90 0.90 0.90
monk2 0.65 0.63 0.61 ·0.65 0.53 0.43 0.65 0.60 0.53 0.43
p-tumor 3.17 ·4.76 2.84 2.58 2.58 2.58 2.51 2.51 2.51 2.51
promoters 0.60 ·3.14 2.56 0.67 0.67 0.67 0.55 0.55 0.55 0.55
soy-large 0.57 0.47 0.71 0.47 0.47 0.47 0.44 0.44 0.44 0.44
spam ·0.53 0.32 0.32 0.21 0.19 0.19 0.21 0.19 0.19 0.19
tic-tac-toe ·0.55 0.49 0.52 0.53 0.40 0.03 0.53 0.53 0.40 0.03
titanic 0.52 0.48 0.48 ·0.52 0.48 0.48 0.52 0.48 0.48 0.48
zoo 0.38 0.46 0.51 0.28 0.28 0.28 0.24 0.24 0.24 0.24
segment 0.38 1.06 ·1.29 0.17 0.17 0.17 0.17 0.17 0.17 0.17
cmc 1.00 ·1.03 1.00 0.93 0.94 0.94 0.93 0.92 0.92 0.92
heart 1.25 ·1.53 1.38 1.10 1.12 1.12 1.10 1.09 1.09 1.09
ionosphere 0.64 0.74 ·1.70 0.38 0.40 0.40 0.34 0.32 0.32 0.32
vehicle ·1.78 1.14 1.29 0.81 0.72 0.72 0.80 0.69 0.69 0.69
wdbc 0.26 0.29 0.39 0.14 0.15 0.15 0.13 0.13 0.13 0.13
australian 0.46 ·0.94 0.78 0.37 0.40 0.41 0.36 0.38 0.38 0.39
balance 0.51 ·1.13 0.74 0.51 0.57 0.57 0.51 0.52 0.52 0.52
breast-LJ 0.62 0.89 0.80 0.57 0.69 0.69 0.56 0.59 0.59 0.59
breast-wisc 0.21 0.23 0.25 0.17 0.21 0.21 0.17 0.18 0.18 0.18
crx 0.49 ·0.93 0.91 0.37 0.38 0.38 0.35 0.36 0.36 0.36
german 0.54 ·1.04 1.00 0.53 0.70 0.70 0.53 0.64 0.64 0.64
hepatitis 0.78 ·1.31 1.11 0.48 0.58 0.58 0.44 0.44 0.44 0.44
lenses 2.44 ·2.99 1.15 0.69 0.69 0.69 0.37 0.37 0.37 0.37
post-op 0.93 1.78 1.25 0.80 0.80 0.80 0.68 0.68 0.68 0.68
voting ·0.60 0.53 0.48 0.16 0.23 0.23 0.15 0.15 0.15 0.15
hayes-roth 0.46 ·1.18 0.76 0.45 0.45 0.45 0.45 0.45 0.45 0.45
monk1 ·0.50 0.09 0.09 0.49 0.08 0.00 0.49 0.08 0.08 0.00
pima 0.50 0.49 0.50 0.48 0.49 0.51 0.48 0.48 0.48 0.48
ecoli 0.89 0.94 0.67 0.91 0.91 0.91 0.85 0.85 0.85 0.85
iris 0.27 0.32 0.20 0.28 0.28 0.28 0.23 0.23 0.22 0.22
monk3 0.20 0.11 0.08 ·0.20 0.11 0.11 0.20 0.11 0.11 0.11
o-ring 0.83 0.76 0.59 1.14 1.14 1.14 0.68 0.68 0.67 0.67
bupa 0.62 0.60 0.61 0.62 0.62 0.63 0.62 0.61 0.61 0.61
car 0.32 0.18 0.18 0.32 0.19 0.19 ·0.32 0.19 0.19 0.19
mushroom ·0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00
shuttle 0.16 0.06 0.06 0.16 0.06 0.06 ·0.17 0.06 0.06 0.06
soy-small 0.00 0.00 ·0.39 0.05 0.05 0.05 0.03 0.03 0.03 0.03
anneal 0.07 0.17 ·0.24 0.09 0.09 0.09 0.10 0.09 0.09 0.09
wine 0.06 0.29 ·0.46 0.17 0.17 0.17 0.13 0.13 0.13 0.13
yeast-class 0.01 0.03 ·1.96 0.23 0.23 0.23 0.21 0.21 0.21 0.21

avg rank (LL) 7.45 7.74 7.41 6.03 6.00 6.00 4.67 3.66 3.17 2.86
avg rank (ER) 5.84 6.24 5.85 6.58 5.47 5.28 6.04 4.82 4.49 4.40
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