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Abstract— This paper provides a summary of our disjunctive test over the components the probe depends
recent work on cost-efficient probabilistic diagnosis in (it returns OK if and only if all components on its path
Bayesian networks with applications to fault diagnosis are OK). In case of noisy probe outcomes, we address
in distributed computer systems. We focus on achieving . ; S ! .
good trade-offs between the diagnostic accuracy versusdIagnOSIS as a probabilistic inference !n a Bayesian
the cost of testing and computational complexity of di- N€twork that represents the dependencies between the
agnosis. We present (1) theoretical results characterizn unobserved states of system components and observed
these trade-offs, such as lower bound on the number probe outcomes; conditional probabilities for probe
of probes necessary to achieve asymptotically error-free outcomes given the corresponding components are

diagnosis, (2) adaptive online approach to selecting most- . . ; .
informative tests, as well as (3) approximation techniques defined by thenoisy-OR model which generalizes

using "loopy” belief propagation for handling intractable ~ disjunctive tests to the case of noisy environment.
inference problems involved in both diagnosis and most- ~ We consider the test selection problem in botn-
informative test selection in large-scale problems. Em- adaptive and adaptive settings. Nonadaptive setting
pirical results on realistic systems demonstrating the o imes that a subset of tests must be selected offline
effectiveness of our approaches can be found in [9], [16], _ . - . o .
[13], [15]. prior to dlagn05|s, while in adaptlve_case the ou_tcomes
of the previous tests are known prior to selecting the
|. INTRODUCTION next test. The nonadaptive probe selection problem
The problem of diagnosing an unobserved “staie NP-hard [9], but the greedy approaches based on
of the world” from a set of available measurementsiaximizing information gain (i.e. minimizing the con-
and/or tests is quite common in practice. Exampleditional entropy about the unobserved nodes) work
include medical diagnosis, computer system trowite well in practice, particularly in cases when the
bleshooting, and decoding messages sent througmwamber of faults is small and thus the state space of
noisy channel. However, there is a trade-off betwearmobserved variables can be easily enumerated.
the quality of diagnosis and its cost, which involves However, in a general multi-fault case the state
both the cost of testing (e.g., the number of test Bpace is exponential in the number of variables, and
their costs are equal) and the computational cost af compact representation such as Bayesian network
performing diagnosis. must be used. Unfortunately, exact computation of
One way to look at diagnostic problem is to viewconditional entropies in a general Bayesian network
it as a combined source-channel coding, where tlsan be intractable. While much existing research has
unknown state of the world described by a set aiddressed the problem of efficient and accurate prob-
hidden variableX = (X1, ..., X,,) represents an input abilistic inference, other probabilistic quantities, lsuc
message, while the set of observed test outcovhes as conditional entropy and information gain, have
(T, ...,T,n) corresponds to the output message thabt received nearly as much attention. Most of the
results from sending some "encoding” &, defined existing literature on value of information and most-
by the nature of tests, through a "noisy channelinformative test selection [8], [2], [7], [15] does not
determined by the nature of environment. The maigeem to focus on the computational complexity of
difference from classical coding problem is that (1inost-informative test selection in a general Bayesian
source and channel coding are not always separablketwork setting, except for the most recent work by
and (b) coding is constrained: we can only choodél]. However, [11] focus on the nonadaptive ("non-
from a set of available tests rather than freely selentyopic”) problem and provide algorithms for efficient
arbitrary encoding functions. selection of a most-informative test subset given a
Particularly, in this paper, we will focus atisjunc- bound on its size. Our problem is different as we
tive testingmotivated by fault diagnosis problem inconsider adaptive ("myopic”) test selection without
distributed computer systems usipgobes A probe a particular bound on the number of tests. We will
is an end-to-end test transaction (e.g., ping, webpadescribe our approximation algorithm for computing
access, database query, an e-commerce transactimarginal conditional entropy [16]. The algorithm is
etc.) sent through the system for the purposes based on loopy belief propagation, a successful ap-
performance monitoring. A probe can be viewed as@oximate inference method. We illustrate the algo-



rithm at work in the setting of fault diagnosis for
distributed computer networks. However, the method
is general enough to be used in other applications
of Bayesian networks that require the computation of
information gain and conditional entropies of subsets
of nodes.

Finally, we present some theoretical results for
efficiency versus accuracy trade-off in diagnosis. Mo-
tivated by the Shannon’s channel capacity result that
provides conditions for asymptotically error-free de-
coding, one may ask whether similar conditions can be
stated for certain classes of diagnostic problems (such

as noisy disjunctive testing, or noisy-OR problems)here 7 is a normalization constant called tparti-

as both the number of hidden and observed variablggp, function and the index: ranges over all factors
increase. While deriving achievable limit for SUChfa(xa), defined on the corresponding subsétsof X.
constrained classes of coding problems appears to bgarticularly, we will consider the following diagnos-
challenging, we are able to derive a lower bound on thg Bayesian networks. LeX = {X1,Xo,...,Xn}
diagnostic accuracy that provideecessarygonditions genote a set of unobserved random variables we wish
for the number of probes needed to achieve asymgy diagnose, and Ik = {T},T%, ..., Ty} denote the
totically error-free diagnosis. Herein, we summarizgyailable set of tests. We assume that test outcomes are
our results from [13], providing lower bounds on thgndependent given the states of components, and that
bit-error rate which assumes most-likely diagnosis for.omponent failures are marginally independent. These
each unobser\(ed variablgbit-wise decodl_ng ). See assumptions are captured by a bipaprtite Bayesian
[14] for analysis ofblock-error rate or Maximum-A- network that represents the above independence as-

Fig. 1. Factor graph of the fault diagnostic Bayes net.

Posteriory (MAP) diagnosis. sumptions about the joint probability (x, t):
Il. BACKGROUND AND DEFINITIONS Plx.t) = ﬁP(w») ﬁP(t-|pa(t-)) 3)
) - (2 ] ] .
Let X = {X;,Xs,...,Xn} denote a set of i=1 j=1

N discrete random variables and a possible re- g 1 shows a factor graph representation of our
alization of X. A Bayesian networks a directed podel.

acyclic graph (DAG)G with nodes corresponding  Gijven the probe outcomes, we wish to find the most-
to X1, Xs,..., Xy and edges representing direct defiely assignment (callednaximum aposteriory prob-
pendencies [12]. The dependencies are quantified gm"tyi or MAP) to all X; nodes given the probe out-
associating each node&; with a local conditional ¢omes, i.ex* = arg max, P(x|t). Since P(x|t) =
probability distributionP(z; | pa;), wherepa, is an FEA), where P(t) does not depend o, we get
assignment to the parents &f (nodes pointing toX; x* = argmaxx P(x,t). An alternative approach is
in the Bayesian network). The set of nodes, pa; }

) : e Coe Pl to find the most likely valuer] of each nodeX;
is ca_IIed afamily. The_ joint probability distribution separately, i.e. to find an assignmefit= (z/, ..., z’,)
function (PDF) oveiX is given as product

wherex) = arg max,, P(z;|t), i = 1,...,n. We refer
N to the latter approach dsit-wise diagnosis (bit-wise
P(x) = H P(z; | pa;). (1) decoding)while the MAP approach can be viewed as
i=1 ablock-wise diagnosis (block-wise decodingit-wise
We useE C X to denote a possibly empty set Ofdiagnosis is more suited when_using belic_efupdating al-
evidencenodes for which observation is available. gorithms that compute posterior probabllfs(_Xi_|T)_
for each X;, rather than perform global optimization

For ease of presentation, we will also use the te{- find MAP. usi ith hord X
minology of factor graphs[6], which unifies directed o fin » USINg €ither search or dynamic program-

: . : . ng [4].
and undirected graphical representations of joint PDFY! . .
A factor graph is an undirected bipartite graph tha Unfortunately, both MAP inference and belief up-

contains factor nodes (usually shown as squares) al %tlng are known t_o be NP-hard [1]’ and_ the complgx-
ty of best-known inference techniques is exponential

variable nodes (shown as circles). (See Fig. 1 for éche graph parameter known sewidth o induced

. . I
example.) There is an edge between a variable node ! . ) .
and a factor node if and only if the variable participatewIdth [3], which reflects the size of a largest clique in

in the potential functionof the corresponding factor. ﬁ]e_graph (and thu.s the largest dependengy) creqted by
- L . .~ an inference algorithm. However, there exists a simple
The joint distribution is assumed to be written in

Eﬁnear—time approximate inference algorithm known as

factored form ) belief propagation (BP)12]. BP is provably correct on
P(X) = — Hfa(xa)7 ) polytrees (i.e. Bayesian networks with no l_mdlr_ected
Z = cycles), and can be used as an approximation on



general networks. In belief propagation, probabilistic Lemma 2:Given a Bayesian network representing
messages are iterated between the nodes. The progegsint PDF P(X,T), whereVi : pa; C X (i.e.
could diverge; convergence is guaranteed only feestsT; and7}; are independent given a subsebof,

polytrees. the observationt’ of previously selected test set, and
a candidate test’, the conditional marginal entropy
I11. DIAGNOSIS WITH TEST SELECTION H(X | T,t") can be written as
In many diagnosis problems, the user has an oppqg-(x I T,t) = — Z P(Xpay .t | 1) 1og P(t | Xpa,)

tunity to select tests in order to improve the accuracy
of diagnosis. For example, in medical diagnosis, doc-
tors face theexperiment desigproblem of choosing + Zp(t | 1) log P(t | ') + const, (4)
which medical tests to perform next. t

Our objective is to maximize diagnostic qualitvhereconstis a constant expression.
while minimizing the cost of testing. The diagnostic Minimizing conditional entropy is a particular in-
quality of a subset of testf* can be measuredStance ofvalue-of-information(VOI) analysis [7],
by the amount of uncertainty abodt that remains where tests are selected to minimize the expected
after observingT*. From the information-theoretic value of a certaircost functionc(x, ¢,t'). The result
perspective, a natural measurement of uncertainty @§Lemma 2 can be generalized to this case if the cost
the conditional entropy (X | T*). Clearly, H(X | funqtion is decomposable over the families (see [16]).
T) < H(X | T*) for all T* C T. Thus the problem is ~ Since observations of test outcome correlate the
to find T* C T which minimizes bothi (X | T*) and Parent nodes, the exact computation of all the pos-
the cost of testing. When all tests have equal cost, tHgfior probabilities in Eqn. (4) is intractable. We can
is equivalent to minimizing the number of tests.  certainly use an existing approximation method to

This problem is known to be NP-hard [9]. A simpleCOMpute P(Spa,,t | t') and P(t | t'). But a more
greedy approximation is to choose the next test gfficient gpproach is possible if we exploit the belief
be T* = argminy H(X | T,T/), where T’ is the Propagation infrastructure.
currently selected test set. The expected number of | BP FORENTROPY APPROXIMATION
tests produced by the greedy strategy is known to
be within aO(log N) factor from optimal (see [16]).
The same result holds for approximations (within
constant multiplicative factor) to the greedy approach. H(X, |e) = — Z P(xq | €log P(X, | €), (5)
Furthermore, our empirical results show that the ap- Xa
proach works well in practice [9]. . where P(x, | €) = >_,\,. P(x|€), X\, representing
~ We make a distinction between nonadaptive (0ffjariaple nodes not irx,. The trick is to replace
line) test selection and adaptive (online) test selefie marginal posterioP(x, | €) with its factorized
tion. In online select|0_n, previous test outcomes aigp approximation, and make use of the BP message
available when selecting the next test. Off-line teiﬂassing mechanism to perform the summation ayer

selection. attempts to plan a suite of tests before aQye call this process Belief Propagation for Entropy
observations have been made. We will focus on theg,,roximation (BPEA).

online approach, sometimes callegtive diagnosis pick any nodeX, from X, and designate it as the
which is typically much more efficient in practice thanggt node. We modify the final message passed §o

t Xpag

Let us consider the problem of computing the
gonditional marginal entropy

its off-line counterpart [9]. as follows:

Adaptive Test Selection Problem: Given the ob- , - -

served outcomé’ of previously selected sequence of Mg_o(T0) = — Z ba(Xa)logba(Xa).  (6)
tests T’, select the next test to berg miny H(X | Xa\@o

T.t). Here,Ba(xa) is the unnormalized belief o, (i.e.,

In a Bayesian network, the joint entrogy(X) can ba(Xa) = 0ba(Xa), Whereo = 3= ba(Xa))-
be decomposed into sum of entropies over the fam”ieSPlugging inb (X.) in place ofxlg(x | e)in Eqn. 5
and thus can be eas"Y _computed_ using thg INPYfe see that it only remains to sum over the root node
potential functions. Conditional marginal entropies, %, and normalize properly.
the other hand, do not generally have this property -

see the lemmas below (and [16] for the proofs). Un- h(Xa € = > ml g(xo0), (7)
der certain independence conditions they decompose zo
into functions over the families. But computing those B ﬁ(xa | e

functions will require inference h(Xa | €) +logo. (8)

Lemma 1:Given a Bayesian network representing; follows immediately that BPEA is exact whenever
a joint PDFP(X), the joint entropyH (X) can be de- gp is exact.

composed ijgto the sum of entropies over the families: The normalization constant is already computed
H(X) =322, H(X; | Pay). during normal BP iterations. The computatiorbgf-),



!/

m!,_;, and h(-) can all be piggy-backed onto the Let A(T, Xpa, |t') denote the first term in Eqn. (4).
same BP infrastructure, and therefore does not impaltis is the cross entropy between the posterior prob-
its overall complexity. Furthermore, due to the locahbility of 7" and its parents, and the conditional prob-
and parallel message update procedure in BP, we calility of T given its parents. The second term in
compute the marginal posterior entropies of multiplegn. (4) is simply the negative conditional entropy
families in one single sweep. This is an important H(T | t').
advantage for the adaptive testing setup. We deal with the two entropy terms separately. For
It is also easy to show that the approach is exd (T | t’), we may use approximation methods such
tendible beyond the entropy computation, to an arbi&s BP or GBP to calculate the beligft | t'), which
trary cost function decomposable over families (sezan then be used to directly computié7 | t'). (Note
[16]). The cost function replaces the negative logdhat the summation over values ®f is simple since
rithm in Egns. (5) and (6). T is binary-valued.) To calculatel(T, Xpa, | t),
we use the entropy approximation method BPEA, as
described in Section V. Because BP message updates
Suppose we wish to monitor a system of networkeare done locally, we can comput§ 7', Xpa,. | t') for
computers. LetX represent the binary state df all unobserved nodes during a single application of
network elementsX; = 0 indicates that the element iSBP. Thus, picking the next probe requires only one run
in normal operation mode, andl; = 1 indicates that of the BPEA approximation algorithm.
the element is faulty. We can také; to be any system  For each candidate probe, we designate the probe
component whose state can be measured using a suiteleT itself as the root node. The unnormalized belief
of tests. If the system is large, it is often impossiblés b, (¢, Xpa,.) :== P(t | Xpa,.) [Ljcpa, mi—t(x;). This
to test each individual component directly. A commoi used to calculate the modified messagde _, (t) (cf.
solution is to test a subset of components with a singiyn. (6)). However, sincel(T, Sy, | t') is a cross
test probef all the test components are okay, the tesintropy term, we do not take tHeg of b, but rather
would return a 0. Otherwise the test would return kake the logarithm of the known probabilitig3( |
but it does not reveal which components are faulty. x,, ). This simplifies the normalization step described
We assume there are machines designateutai®e iy Eqn. (8) t0A(T, Xpa, | 1) = /I(T,XpaT | t) /o,
stations which are instrumented to send qarbbesto  \yheres — S (D) be(t, Xpa,.)-
test the response of the network elements represented e i
by X. Let T denote the available set of probes. A VI. DIAGNOSTIC ERRORBOUNDS
probe can be as simple apiag request, which detects  An interesting question one may ask is how many
network availability. A more sophisticated probe mightests might be needed to guarantee accurate diagnostic
be an e-mail message or a webpage-access requesesults, assuming an ideal situation when the tests
In the absence of noise a probe is a disjunctive teggrobes) can be constructed rather than selected from
it fails if an only if there is at least one failed nodea predefined set of available probes. We can ask for
on its path. More generally, it is a noisy-OR test [12]Shannon-limit type of a result, i.e. what is the minimal
The joint PDF of all tests and network nodes formgedundancy given by the ratio between the number
the well-known QMR-DT model [10]: of probes versus the number of unobserved nodes,
that can guarantee that diagnostic error will approach

V. DIAGNOSIS WITH DISJUNCTIVE TESTS

N = ()% (1 — ) 73)
Plaj) = (0;)" (1 = ;) ’ ’ (%) zero as the number of components and probes goes to
P(t; =0 spa,) = pio [] £ (10) infinity? While deriving achievable limit is hard, we
j€pa; show below a lower bound on diagnostic error when

Pxt) = [T Pt | Sou. P(z.). 11) Using bit-wise most-likely diagnosis (measured as the
) 1:[ (tl s )1:[ (@) (1) bit error rate (BER), for general bipartite Bayesian
) N . networks and particularly for noisy-OR bipartite net-
Here,a; := P(z; = 1) is the prior fault probability, ks
pij is the so-called inhibition probability, ard — pio) The bit-error rate (BER) of diagnosis can be defined
is the leak probability of an omitted faulty elementas BER — X PXi#EX(T) nare X/(T) =

The |nh|b|t|oq prpbab|I|ty is a measurement of th%rgmaxm P(X; = 2|T) is the most-likely assignment
amount of noise in the network.

As di d in Section Il dopt the ad to X; given observed vectdI'. Note thatX/(T) is
_As discussed in >ection T, we adopt the adany jeteyministic function if a deterministic tie-breaking
tive testing framework for fault diagnosis, seque

. . S o rule is used for most-likely assignment (e.&; = 0
tially selecting probes to minimize the conditiona P(X; = 0|T) = 0.5)

entropy. Our previous work [14] makes the single- TheZJrem 3: Given a bipartite Bayesian network
fault assumption, which effectively reduc&sto one

d i2ble WithV 4 1 ible states. | Ithat defines a joint distributiorP(x, t) as specified
random variable withiv'+1 possible states. 'n genera by the equation 3, the bit error rate (BER) of bit-wise
however, multiple faults could exist in the syste

. . X . ost-likely diagnosis is bounded from below as follows
simultaneously, which requires the more complicate

conditional entropy given in Eqn. (4). BER > Lgrr =1 — pmaz(ao + 1), (12)



H ) =0.30, ql=0.80
wherec = max; |ch;|, |ch; being the number oX’s -

children, pna, = max; maxjeqo1y P(Xs = j) is
the maximum prior probability over all nodes, and
Q) = MaXjc(1,.. m} MaXpa () P(t; = klpaj(t;))

is the maximum conditional probability of the test
outcomek € {0, 1}, over all test variables and over

all assignments to their corresponding parent nodes.
See [13] for the proof.

Particularly, this can be applied to diagnosis in
noisy-OR networks. To simplify our analysis, let us | eocenee et I
assume a particular structure that we will caffkac)- o
regular bipartite graph, where each node in the lower
layer has exactlyk parents in the upper layer, and a (b)
each node in the upper layer has= km/n children Fig. 2. A lower bound on rate:/n necessary for achieving zero-
in the lower layer (recall that there are nodes in error diagnosis, plotted the versus fault prigrfor different probe
the upper layer aneh nodes in the lower layer). Then'e"9th k-
the following results follow straightforwardly from the
previous theorem:

Corollary 4: Given a Bayesian network having th
(k,c)-regularbipartite graph structure, where is the

m/n ratio

P Loee@®”
. 000272 «»H++H7H+M"'

0.25 03 035 04 045

prior p

02

to know if asymptotically error-free diagnosis is ac-
%ually achievable at finite rate:/n, and under what
conditions on priop, noise parameters, and probe set

number of hidden nodesy is the number of tests, . ; i
- e construction. While there is a large amount of related
and where all conditional probabilitie®(t;|pa(t;)) . . ;
: : : . 277 work in the area of group testing (e.g., see [5]), this
are noisy-OR functions having the link probability at . . .
leastq and the leak probability at mos the bit particular setting does not seem to be studied before.
eak

error rate (BER) of bit-wise most-likely diagnosis i Moreover, taking into account constraints on probe

bounded from below as followB ER > construction (e.g., due to the network topology restric-
ngg =1- pmam(l + qleak(l - qk))km/n (13)
Corollary 5:  Given a bipartite Bayesian network

that defines a joint distributionP(x,t) as specified

by the equation 3, a necessary condition for achievingp)

error-free bit-wise diagnosis is

[3]
log l/pmaz
< >
Lppr <0< c> Tog(ao + a1)’ (14)
[5]

wherec, ag and o are defined as in Theorem 2. Par-
ticularly, for noisy-OR networks defined in Corollary (€]
13, the necessary condition is

[71
1Og1/pmam

LR <0 > . (15
BER N n — klog(l +€ileak(1 —q%)) 13) g
Assuming equal prior fault probabilitie (8]
P(X; = 1), wherep < 0.5 (typically, system’s [9]

components are unlikely to be faulty), we g&t >

log(1/(1—p) i i

TR0 T aecr (=7 In Figure 2a, we illustrate the 20

growth of the lower bound on rate:/n with the
increasing prior fault probability, for different probe
sizesk, and for a fixed noise parameters. As expecteH,1 ]
higher probe to node ratio is necessary for high(ﬁ2
fault probabilityp. Also, somewhat intuitively, longer
probes (larger k) allow to reduce the required numbers;
of probes per node. However, this does not always,
happen in practice, which indicates that the bound is
not tight, and indeed provides only necessary, but nas;
sufficient, conditions for error-free diagnosis.

One direction for future work would be to provide
achievablebounds, similar to Shannon limit, for the[1g]
aboveconstrained codingoroblem that only permits
disjunctive codes, and a particular type of channel
defined by noisy-OR model. Namely, one would like

] J. Pearl. Probab

P ] 1. Rish, M. Brodie, and S. Ma. Accuracy Vs. Efficienc?/

tions) makes the analysis much more complicated.
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