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Abstract— This paper provides a summary of our
recent work on cost-efficient probabilistic diagnosis in
Bayesian networks with applications to fault diagnosis
in distributed computer systems. We focus on achieving
good trade-offs between the diagnostic accuracy versus
the cost of testing and computational complexity of di-
agnosis. We present (1) theoretical results characterizing
these trade-offs, such as lower bound on the number
of probes necessary to achieve asymptotically error-free
diagnosis, (2) adaptive online approach to selecting most-
informative tests, as well as (3) approximation techniques
using ”loopy” belief propagation for handling intractable
inference problems involved in both diagnosis and most-
informative test selection in large-scale problems. Em-
pirical results on realistic systems demonstrating the
effectiveness of our approaches can be found in [9], [16],
[13], [15].

I. I NTRODUCTION

The problem of diagnosing an unobserved ”state
of the world” from a set of available measurements
and/or tests is quite common in practice. Examples
include medical diagnosis, computer system trou-
bleshooting, and decoding messages sent through a
noisy channel. However, there is a trade-off between
the quality of diagnosis and its cost, which involves
both the cost of testing (e.g., the number of test if
their costs are equal) and the computational cost of
performing diagnosis.

One way to look at diagnostic problem is to view
it as a combined source-channel coding, where the
unknown state of the world described by a set of
hidden variablesX = (X1, ..., Xn) represents an input
message, while the set of observed test outcomesY =
(T1, ..., Tm) corresponds to the output message that
results from sending some ”encoding” ofX, defined
by the nature of tests, through a ”noisy channel”,
determined by the nature of environment. The main
difference from classical coding problem is that (1)
source and channel coding are not always separable
and (b) coding is constrained: we can only choose
from a set of available tests rather than freely select
arbitrary encoding functions.

Particularly, in this paper, we will focus ondisjunc-
tive testingmotivated by fault diagnosis problem in
distributed computer systems usingprobes. A probe
is an end-to-end test transaction (e.g., ping, webpage
access, database query, an e-commerce transaction,
etc.) sent through the system for the purposes of
performance monitoring. A probe can be viewed as a

disjunctive test over the components the probe depends
(it returns OK if and only if all components on its path
are OK). In case of noisy probe outcomes, we address
diagnosis as a probabilistic inference in a Bayesian
network that represents the dependencies between the
unobserved states of system components and observed
probe outcomes; conditional probabilities for probe
outcomes given the corresponding components are
defined by thenoisy-OR model which generalizes
disjunctive tests to the case of noisy environment.

We consider the test selection problem in bothnon-
adaptive and adaptive settings. Nonadaptive setting
assumes that a subset of tests must be selected offline
prior to diagnosis, while in adaptive case the outcomes
of the previous tests are known prior to selecting the
next test. The nonadaptive probe selection problem
is NP-hard [9], but the greedy approaches based on
maximizing information gain (i.e. minimizing the con-
ditional entropy about the unobserved nodes) work
quite well in practice, particularly in cases when the
number of faults is small and thus the state space of
unobserved variables can be easily enumerated.

However, in a general multi-fault case the state
space is exponential in the number of variables, and
a compact representation such as Bayesian network
must be used. Unfortunately, exact computation of
conditional entropies in a general Bayesian network
can be intractable. While much existing research has
addressed the problem of efficient and accurate prob-
abilistic inference, other probabilistic quantities, such
as conditional entropy and information gain, have
not received nearly as much attention. Most of the
existing literature on value of information and most-
informative test selection [8], [2], [7], [15] does not
seem to focus on the computational complexity of
most-informative test selection in a general Bayesian
network setting, except for the most recent work by
[11]. However, [11] focus on the nonadaptive (”non-
myopic”) problem and provide algorithms for efficient
selection of a most-informative test subset given a
bound on its size. Our problem is different as we
consider adaptive (”myopic”) test selection without
a particular bound on the number of tests. We will
describe our approximation algorithm for computing
marginal conditional entropy [16]. The algorithm is
based on loopy belief propagation, a successful ap-
proximate inference method. We illustrate the algo-



rithm at work in the setting of fault diagnosis for
distributed computer networks. However, the method
is general enough to be used in other applications
of Bayesian networks that require the computation of
information gain and conditional entropies of subsets
of nodes.

Finally, we present some theoretical results for
efficiency versus accuracy trade-off in diagnosis. Mo-
tivated by the Shannon’s channel capacity result that
provides conditions for asymptotically error-free de-
coding, one may ask whether similar conditions can be
stated for certain classes of diagnostic problems (such
as noisy disjunctive testing, or noisy-OR problems)
as both the number of hidden and observed variables
increase. While deriving achievable limit for such
constrained classes of coding problems appears to be
challenging, we are able to derive a lower bound on the
diagnostic accuracy that providesnecessaryconditions
for the number of probes needed to achieve asymp-
totically error-free diagnosis. Herein, we summarize
our results from [13], providing lower bounds on the
bit-error rate which assumes most-likely diagnosis for
each unobserved variable(”bit-wise decoding”). See
[14] for analysis ofblock-error rate, or Maximum-A-
Posteriory (MAP) diagnosis.

II. BACKGROUND AND DEFINITIONS

Let X = {X1, X2, . . . , XN} denote a set of
N discrete random variables andx a possible re-
alization of X. A Bayesian networkis a directed
acyclic graph (DAG)G with nodes corresponding
to X1, X2, . . . , XN and edges representing direct de-
pendencies [12]. The dependencies are quantified by
associating each nodeXi with a local conditional
probability distributionP (xi | pai), wherepai is an
assignment to the parents ofXi (nodes pointing toXi

in the Bayesian network). The set of nodes{xi,pai}
is called a family. The joint probability distribution
function (PDF) overX is given as product

P (x) =

N∏

i=1

P (xi | pai). (1)

We useE ⊆ X to denote a possibly empty set of
evidencenodes for which observation is available.

For ease of presentation, we will also use the ter-
minology of factor graphs[6], which unifies directed
and undirected graphical representations of joint PDFs.
A factor graph is an undirected bipartite graph that
contains factor nodes (usually shown as squares) and
variable nodes (shown as circles). (See Fig. 1 for an
example.) There is an edge between a variable node
and a factor node if and only if the variable participates
in the potential functionof the corresponding factor.
The joint distribution is assumed to be written in a
factored form

P (x) =
1

Z

∏

a

fa(xa), (2)

· · ·

X1 X1 X3 · · · XM

T1 T1 · · · TN

Fig. 1. Factor graph of the fault diagnostic Bayes net.

whereZ is a normalization constant called theparti-
tion function, and the indexa ranges over all factors
fa(xa), defined on the corresponding subsetsXa of X.

Particularly, we will consider the following diagnos-
tic Bayesian networks. LetX = {X1, X2, . . . , XN}
denote a set of unobserved random variables we wish
to diagnose, and letT = {T1, T2, . . . , TM} denote the
available set of tests. We assume that test outcomes are
independent given the states of components, and that
component failures are marginally independent. These
assumptions are captured by a bipaprtite Bayesian
network that represents the above independence as-
sumptions about the joint probabilityP (x, t):

P (x, t) =

n∏

i=1

P (xi)

m∏

j=1

P (tj |pa(tj)). (3)

Fig. 1 shows a factor graph representation of our
model.

Given the probe outcomes, we wish to find the most-
likely assignment (calledmaximum aposteriory prob-
ability, or MAP) to all Xi nodes given the probe out-
comes, i.e.x∗ = arg maxx P (x|t). SinceP (x|t) =
P (x,t)
P (t) , where P (t) does not depend onx, we get

x∗ = argmaxx P (x, t). An alternative approach is
to find the most likely valuex∗

i of each nodeXi

separately, i.e. to find an assignmentx′ = (x′
1, ..., x

′
n)

wherex′
i = argmaxxi

P (xi|t), i = 1, ..., n. We refer
to the latter approach asbit-wise diagnosis (bit-wise
decoding), while the MAP approach can be viewed as
ablock-wise diagnosis (block-wise decoding). Bit-wise
diagnosis is more suited when using belief updating al-
gorithms that compute posterior probabilityP (Xi|T)
for eachXi, rather than perform global optimization
to find MAP, using either search or dynamic program-
ming [4].

Unfortunately, both MAP inference and belief up-
dating are known to be NP-hard [1], and the complex-
ity of best-known inference techniques is exponential
in the graph parameter known astreewidth, or induced
width [3], which reflects the size of a largest clique in
the graph (and thus the largest dependency) created by
an inference algorithm. However, there exists a simple
linear-time approximate inference algorithm known as
belief propagation (BP)[12]. BP is provably correct on
polytrees (i.e. Bayesian networks with no undirected
cycles), and can be used as an approximation on



general networks. In belief propagation, probabilistic
messages are iterated between the nodes. The process
could diverge; convergence is guaranteed only for
polytrees.

III. D IAGNOSIS WITH TEST SELECTION

In many diagnosis problems, the user has an oppor-
tunity to select tests in order to improve the accuracy
of diagnosis. For example, in medical diagnosis, doc-
tors face theexperiment designproblem of choosing
which medical tests to perform next.

Our objective is to maximize diagnostic quality
while minimizing the cost of testing. The diagnostic
quality of a subset of testsT∗ can be measured
by the amount of uncertainty aboutX that remains
after observingT∗. From the information-theoretic
perspective, a natural measurement of uncertainty is
the conditional entropyH(X | T∗). Clearly, H(X |
T) ≤ H(X | T∗) for all T∗ ⊆ T. Thus the problem is
to find T∗ ⊆ T which minimizes bothH(X | T∗) and
the cost of testing. When all tests have equal cost, this
is equivalent to minimizing the number of tests.

This problem is known to be NP-hard [9]. A simple
greedy approximation is to choose the next test to
be T ∗ = arg minT H(X | T, T′), where T′ is the
currently selected test set. The expected number of
tests produced by the greedy strategy is known to
be within aO(log N) factor from optimal (see [16]).
The same result holds for approximations (within a
constant multiplicative factor) to the greedy approach.
Furthermore, our empirical results show that the ap-
proach works well in practice [9].

We make a distinction between nonadaptive (off-
line) test selection and adaptive (online) test selec-
tion. In online selection, previous test outcomes are
available when selecting the next test. Off-line test
selection attempts to plan a suite of tests before any
observations have been made. We will focus on the
online approach, sometimes calledactive diagnosis,
which is typically much more efficient in practice than
its off-line counterpart [9].
Adaptive Test Selection Problem: Given the ob-
served outcomet′ of previously selected sequence of
tests T′, select the next test to bearg minT H(X |
T, t′).

In a Bayesian network, the joint entropyH(X) can
be decomposed into sum of entropies over the families
and thus can be easily computed using the input
potential functions. Conditional marginal entropies, on
the other hand, do not generally have this property -
see the lemmas below (and [16] for the proofs). Un-
der certain independence conditions they decompose
into functions over the families. But computing those
functions will require inference

Lemma 1:Given a Bayesian network representing
a joint PDFP (X), the joint entropyH(X) can be de-
composed into the sum of entropies over the families:
H(X) =

∑N
i=1 H(Xi | Pai).

Lemma 2:Given a Bayesian network representing
a joint PDF P (X, T), where ∀i : paTi

⊆ X (i.e.
testsTi andTj are independent given a subset ofX),
the observationt′ of previously selected test set, and
a candidate testT , the conditional marginal entropy
H(X | T, t′) can be written as

H(X | T, t′) = −
∑

t,xpaT

P (xpaT
, t | t′) log P (t | xpaT

)

+
∑

t

P (t | t′) log P (t | t′) + const, (4)

whereconstis a constant expression.
Minimizing conditional entropy is a particular in-

stance of value-of-information (VOI) analysis [7],
where tests are selected to minimize the expected
value of a certaincost functionc(x, t, t′). The result
of Lemma 2 can be generalized to this case if the cost
function is decomposable over the families (see [16]).

Since observations of test outcome correlate the
parent nodes, the exact computation of all the pos-
terior probabilities in Eqn. (4) is intractable. We can
certainly use an existing approximation method to
computeP (spaT

, t | t′) and P (t | t′). But a more
efficient approach is possible if we exploit the belief
propagation infrastructure.

IV. BP FOR ENTROPY APPROXIMATION

Let us consider the problem of computing the
conditional marginal entropy

H(Xa | e) = −
∑

xa

P (xa | e) log P (xa | e), (5)

whereP (xa | e) =
∑

x\xa
P (x | e), x\xa representing

variable nodes not inxa. The trick is to replace
the marginal posteriorP (xa | e) with its factorized
BP approximation, and make use of the BP message
passing mechanism to perform the summation overxa.
We call this process Belief Propagation for Entropy
Approximation (BPEA).

Pick any nodeX0 from Xa and designate it as the
root node. We modify the final message passed toX0

as follows:

m′
a→0(x0) := −

∑

xa\x0

b̃a(xa) log b̃a(xa). (6)

Here, b̃a(xa) is the unnormalized belief ofXa (i.e.,
b̃a(xa) = σba(xa), whereσ =

∑
xa

b̃a(xa)).
Plugging inb̃a(xa) in place ofP (xa | e) in Eqn. 5,

we see that it only remains to sum over the root node
X0 and normalize properly.

h̃(Xa | e) :=
∑

x0

m′
a→0(x0), (7)

h(Xa | e) :=
h̃(Xa | e)

σ
+ log σ. (8)

It follows immediately that BPEA is exact whenever
BP is exact.

The normalization constantσ is already computed
during normal BP iterations. The computation ofb̃a(·),



m′
a→i, and h̃(·) can all be piggy-backed onto the

same BP infrastructure, and therefore does not impact
its overall complexity. Furthermore, due to the local
and parallel message update procedure in BP, we can
compute the marginal posterior entropies of multiple
families in one single sweep. This is an important
advantage for the adaptive testing setup.

It is also easy to show that the approach is ex-
tendible beyond the entropy computation, to an arbi-
trary cost function decomposable over families (see
[16]). The cost function replaces the negative loga-
rithm in Eqns. (5) and (6).

V. D IAGNOSIS WITH DISJUNCTIVE TESTS

Suppose we wish to monitor a system of networked
computers. LetX represent the binary state ofN
network elements.Xi = 0 indicates that the element is
in normal operation mode, andXi = 1 indicates that
the element is faulty. We can takeXi to be any system
component whose state can be measured using a suite
of tests. If the system is large, it is often impossible
to test each individual component directly. A common
solution is to test a subset of components with a single
test probe. If all the test components are okay, the test
would return a 0. Otherwise the test would return 1,
but it does not reveal which components are faulty.

We assume there are machines designated asprobe
stations, which are instrumented to send outprobesto
test the response of the network elements represented
by X. Let T denote the available set of probes. A
probe can be as simple as aping request, which detects
network availability. A more sophisticated probe might
be an e-mail message or a webpage-access request.

In the absence of noise a probe is a disjunctive test:
it fails if an only if there is at least one failed node
on its path. More generally, it is a noisy-OR test [12].
The joint PDF of all tests and network nodes forms
the well-known QMR-DT model [10]:

P (xj) = (αj)
xj (1 − αj)

(1−xj), (9)

P (ti = 0 | spai
) = ρi0

∏

j∈pai

ρ
xj

ij , (10)

P (x, t) =
∏

i

P (ti | spai
)
∏

j

P (xj). (11)

Here,αj := P (xj = 1) is the prior fault probability,
ρij is the so-called inhibition probability, and(1−ρi0)
is the leak probability of an omitted faulty element.
The inhibition probability is a measurement of the
amount of noise in the network.

As discussed in Section III, we adopt the adap-
tive testing framework for fault diagnosis, sequen-
tially selecting probes to minimize the conditional
entropy. Our previous work [14] makes the single-
fault assumption, which effectively reducesS to one
random variable withN +1 possible states. In general,
however, multiple faults could exist in the system
simultaneously, which requires the more complicated
conditional entropy given in Eqn. (4).

Let A(T, XpaT
| t′) denote the first term in Eqn. (4).

This is the cross entropy between the posterior prob-
ability of T and its parents, and the conditional prob-
ability of T given its parents. The second term in
Eqn. (4) is simply the negative conditional entropy
−H(T | t′).

We deal with the two entropy terms separately. For
H(T | t′), we may use approximation methods such
as BP or GBP to calculate the beliefb(t | t′), which
can then be used to directly computeH(T | t′). (Note
that the summation over values ofT is simple since
T is binary-valued.) To calculateA(T, XpaT

| t′),
we use the entropy approximation method BPEA, as
described in Section IV. Because BP message updates
are done locally, we can computeA(T, XpaT

| t′) for
all unobservedT nodes during a single application of
BP. Thus, picking the next probe requires only one run
of the BPEA approximation algorithm.

For each candidate probe, we designate the probe
nodeT itself as the root node. The unnormalized belief
is b̃t(t, xpaT

) := P (t | xpaT
)
∏

j∈paT
nj→t(xj). This

is used to calculate the modified messagem′
a→t(t) (cf.

Eqn. (6)). However, sinceA(T, SpaT
| t′) is a cross

entropy term, we do not take thelog of b̃, but rather
take the logarithm of the known probabilitiesP (t |
xpaT

). This simplifies the normalization step described
in Eqn. (8) toA(T, XpaT

| t′) = Ã(T, XpaT
| t′)/σ,

whereσ =
∑

t,xpa(T ) b̃t(t, xpaT
).

VI. D IAGNOSTIC ERROR BOUNDS

An interesting question one may ask is how many
tests might be needed to guarantee accurate diagnostic
results, assuming an ideal situation when the tests
(probes) can be constructed rather than selected from
a predefined set of available probes. We can ask for
Shannon-limit type of a result, i.e. what is the minimal
redundancy given by the ratio between the number
of probes versus the number of unobserved nodes,
that can guarantee that diagnostic error will approach
zero as the number of components and probes goes to
infinity? While deriving achievable limit is hard, we
show below a lower bound on diagnostic error when
using bit-wise most-likely diagnosis (measured as the
bit error rate (BER)), for general bipartite Bayesian
networks and particularly for noisy-OR bipartite net-
works.

The bit-error rate (BER) of diagnosis can be defined
as BER =

Pn
i=1

P (Xi 6=X′

i(T))

n , where X ′
i(T) =

argmaxx P (Xi = x|T ) is the most-likely assignment
to Xi given observed vectorT. Note thatX ′

i(T) is
a deterministic function if a deterministic tie-breaking
rule is used for most-likely assignment (e.g.,X ′

i = 0
if P(Xi = 0|T ) = 0.5).

Theorem 3: Given a bipartite Bayesian network
that defines a joint distributionP (x, t) as specified
by the equation 3, the bit error rate (BER) of bit-wise
most-likely diagnosis is bounded from below as follows

BER ≥ LBER = 1 − pmax(α0 + α1)
c, (12)



wherec = maxi |chi|, |chi being the number ofXi’s
children, pmax = maxi maxj∈{0,1} P (Xi = j) is
the maximum prior probability over all nodes, and
αk = maxj∈{1,...,m} maxpaj(tj) P (tj = k|paj(tj))
is the maximum conditional probability of the test
outcomek ∈ {0, 1}, over all test variables and over
all assignments to their corresponding parent nodes.
See [13] for the proof.

Particularly, this can be applied to diagnosis in
noisy-OR networks. To simplify our analysis, let us
assume a particular structure that we will call a(k,c)-
regular bipartite graph, where each node in the lower
layer has exactlyk parents in the upper layer, and
each node in the upper layer hasc = km/n children
in the lower layer (recall that there aren nodes in
the upper layer andm nodes in the lower layer). Then
the following results follow straightforwardly from the
previous theorem:

Corollary 4: Given a Bayesian network having the
(k,c)-regularbipartite graph structure, wheren is the
number of hidden nodes,m is the number of tests,
and where all conditional probabilitiesP (tj |pa(tj))
are noisy-OR functions having the link probability at
least q and the leak probability at mostqleak, the bit
error rate (BER) of bit-wise most-likely diagnosis is
bounded from below as follows:BER ≥

LNOR
BER = 1 − pmax(1 + qleak(1 − qk))km/n. (13)

Corollary 5: Given a bipartite Bayesian network
that defines a joint distributionP (x, t) as specified
by the equation 3, a necessary condition for achieving
error-free bit-wise diagnosis is

LBER ≤ 0 ↔ c ≥
log 1/pmax

log(α0 + α1)
, (14)

wherec, α0 andα1 are defined as in Theorem 2. Par-
ticularly, for noisy-OR networks defined in Corollary
13, the necessary condition is

LNOR
BER ≤ 0 ↔

m

n
≥

log 1/pmax

k log(1 + qleak(1 − qk))
. (15)

Assuming equal prior fault probabilitiesp =
P (Xi = 1), where p < 0.5 (typically, system’s
components are unlikely to be faulty), we getm

n ≥
log(1/(1−p)

k log(1+qleak(1−qk))
. In Figure 2a, we illustrate the

growth of the lower bound on ratem/n with the
increasing prior fault probabilityp, for different probe
sizesk, and for a fixed noise parameters. As expected,
higher probe to node ratio is necessary for higher
fault probabilityp. Also, somewhat intuitively, longer
probes (larger k) allow to reduce the required number
of probes per node. However, this does not always
happen in practice, which indicates that the bound is
not tight, and indeed provides only necessary, but not
sufficient, conditions for error-free diagnosis.

One direction for future work would be to provide
achievablebounds, similar to Shannon limit, for the
aboveconstrained codingproblem that only permits
disjunctive codes, and a particular type of channel
defined by noisy-OR model. Namely, one would like
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Fig. 2. A lower bound on ratem/n necessary for achieving zero-
error diagnosis, plotted the versus fault priorp, for different probe
length k.

to know if asymptotically error-free diagnosis is ac-
tually achievable at finite ratem/n, and under what
conditions on priorp, noise parameters, and probe set
construction. While there is a large amount of related
work in the area of group testing (e.g., see [5]), this
particular setting does not seem to be studied before.
Moreover, taking into account constraints on probe
construction (e.g., due to the network topology restric-
tions) makes the analysis much more complicated.
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