
RC24417 (W0711-094) November 14, 2007
Computer Science

IBM Research Report

On the Usability of Virtualization Technologies for Application
with Stringent Requirements

Claris Castillo
North Carolina State University

Arun Iyengar, Amol Nayate
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

On the Usability of Virtualization Technologies for Applications with Stringent
Requirements

Claris Castillo1, Arun Iyengar2, Amol Nayate2

Abstract:
Virtualization technology has brought about key benefits - simplified management by
decoupling the virtual machine from the physical hardware it runs on and allowing virtual
machines to be dynamically migrated away from bottlenecked or faulty machines toward
newer or better suited ones, better resource utilization by allowing consolidating multiple
virtual machines onto fewer physical machines to save power, and strong isolation by
ensuring that one faulty virtual machine cannot affect the performance or health of
another. In this paper, we discuss a fourth benefit yielded by virtualization technology –
generating virtual machines checkpoints (snapshots) so that they can be quickly restarted
when they crash – and discuss the cost/benefits trade-offs between various checkpointing
techniques. We evaluate taking periodic checkpoints on Market Matching, a real-world
application with stringent availability and performance requirements, and show that
although existing checkpointing mechanisms can be beneficial for applications with
simple workloads, they are not practical for use with applications with stringent
availability requirements. Finally, we discuss bottlenecks that slow down the process of
taking snapshots in current hypervisor implementations.

Introduction:
In the last five years virtualization technologies have experienced a significant grown in
terms of development and deployment. We have witnessed their application in different
fronts such as in large server infrastructures, Grids and virtual appliances. Despite all
these advances the usability of virtualization in environments with high requirements, e.g.
in financial applications, has been overlooked. This state of affairs has its roots in the fact
that since virtualization emerged in response to the need of consolidating servers and
easing management tasks, considering QoS requirements has been at best a secondary
consideration. Typically, today’s environments exhibit availability requirement values of
99.999%, response time requirement values in the range of tenths of milliseconds and
zero tolerance to losses. To address these challenges system designers rely on the
composition/superposition of multiple technologies which are orchestrated by means of
sophisticated mechanisms. Given the benefits of virtualization in terms of simplifying
and easing the allocation and management of resources, we believe that it has the
potential to alleviate some of the challenges imposed by applications with stringent
requirements.

In this work we investigate the usability of virtualization within such environments. As a
first step we study the potential of existing virtualization tools/mechanisms in providing
high availability. More specifically, we leverage the ability of creating snapshots of
virtual machines for the purpose of providing backup capability in view of failures. In our
study we consider an application with high availability, throughput and reliability

1 North Carolina State University
2 IBM TJ Watson Research Center

requirements - Market Matching - developed in house at IBM. The Market Matching
application is a key component of the market exchange system and has been an
application of interest for IBM. Currently this application is being used at the Chicago
Market Exchange.

In this document we report some preliminary results of our investigation. The results
indicate that although virtualization technologies have achieved remarkable
success/adoption on many fronts such as the ones mentioned earlier in this report, in
environments with more strict requirements virtualization still needs significant
refinement and development. We recommend mechanisms to adapt existing virtualization
tools to accommodate the specific requirements of the application under study and define
future directions of investigation/research.

Application targeted: Market Matching

The market matching application is the core component of a market exchange and is
responsible for managing trading in a set of financial instruments. The market matching
engine maintains a set of order books with a separate order book for each financial
instrument traded, and processes arriving orders to buy and sell those instruments. Each
request arriving at the market matching service consists of a mixture of new orders and
cancellations and modifications of previous orders. Each simple order is a request to buy
or sell a specific quantity of a specific instrument on behalf of a specific customer at a
named price.

Market exchange systems impose several challenges to designers and administrators due
to the stringent requirements associated with the exchange’s business. Such systems
typically require availability index values of 99.999% and average response times (i.e.,
end to end latency) of 50 milliseconds. Moreover, the demand volume is expected to
triple in the next years. As a result of this fact, scalability has become a key design
parameter towards guaranteeing a more efficient and effective market exchange business
in the future.

Providing a complete solution capable of accommodating all these requirements has
proven to be a challenging task. Consequently, most existing systems are built from the
composition of multiple techniques orchestrated by means of sophisticated and complex
mechanisms. For instance, parallelization, deployment of additional hardware, etc have
become the de facto components in market matching systems currently deployed, with
the high cost of ownership and maintenance widely justified by the financial nature of the
application per se. Given the effectiveness of virtualization in providing server
consolidation and simplified resource management we believe that this kind of
application could highly benefit from virtualization technologies and its potential should
be investigated.

Virtualization-- background

Virtualization is an abstraction layer that decouples the physical hardware from the
operating system to deliver greater IT resource utilization and flexibility. It allows
multiple virtual machines, with heterogeneous operating systems to run in isolation, side-
by-side on the same physical machine, which each virtual machine having its own set of
virtual hardware (e.g., RAM, CPU, disk, network interface, etc.)

Since virtual machines are encapsulated into files, virtualization software has the ability
to rapidly save, copy, and provision a virtual machine. Existing implementations leverage
this feature to create snapshots of virtual machine. There are three different techniques to
create snapshots of VMs, referred to as cold, warm and hot backups. Each has a different
level of impact on the services running in the VMs and the way in which recovery actions
are executed. A summary of their main differences is presented in Table 1.

 Colds Warm Hot

Service Impact Complete
shutdown of
application and
server

Momentary
suspension of
processing

Imperceptible

Snapshot File
System Contents

 Closed and
unmounted

Point in time
cached I/O
completely
resumed

IO flushed up to
point in time. File
system unaware

Recovery Process Cold boot guest
OS

Guest OS resumes
from point in time

Guest OS
performs system
crash recovery

Table 1 : Three snapshot techniques, cold, warm and hot snapshot.

In order to provide high availability to the market matching application we propose to run
each market matching engine within a VM and create snapshots of the VM in a periodic
basis. On failure a new VM is then bootstrapped from the latest available snapshot. Given
the application’s requirements the process responsible of creating the snapshot must incur
minimum overhead and be imperceptible to the clients. Note that an intrusive VM
snapshot scheme could delay incoming traffic until the VM undergoing the snapshot
process has fully recovered and is ready to handle requests.

As demonstrated in Table 1, hot backup is the most suitable technique within the context
considered given its imperceptible impact to the service; i.e., the Market Matching engine
continues running while the snapshot is being created. The warm snapshot technique on
the other hand is less suitable since it suspends the market matching while creating the
snapshot. The cold snapshot technique requires a complete shutdown of the VM and
therefore is not discussed in our study. Below we give a description of the warm and hot
snapshot techniques.

Warm Snapshot

A warm snapshot copy makes use of the capability to suspend a guest OS running in a
VM. When the suspend action is performed, the program counter for the VM CPU is
stopped, all active memory is saved to a state file inside the file system of the VM where
the boot disk resides, and the VM is paused. At this point in time, a Snapshot copy can be
taken of the entire VM, including the memory contents file and all logical units with the
associated active file systems. In that copy, the machine and all data will be frozen at the
point in processing time when the suspend operation was completed.

Since all of the contents of memory, the active virtual CPU registers, and the associated
state are written to a file, the instruction pointer, as well as all memory data structures

such as the I/O queue and any applications that were running are included in this
information.

When the Snapshot action is complete, the VM can be restarted and will resume at the
exact point where the suspend action was initiated. The guest OS will continue
processing, including handling I/O activity and any in-memory transactions that were
loaded from the state file. Applications and server processes will resume processing from
the same point in time. The outward appearance is as if a “pause” button had been
pressed for the duration of the snapshot activity. To any network client of the guest OS
server, it will appear that there was a temporary interruption of network service. Our
measurements show that this interruption lasts on the order of 30 to 120 seconds for
moderately loaded servers.

Hot Snapshot

Virtual disks that contain the boot partition for a guest OS running in a VM should be
configured as “Persistent” files inside of the file system of the VM. In that state, all writes
that occur are immediately applied to the virtual disk to maintain a high level of
consistency in the file system. Virtualization software (e.g., VMware) provides a facility
to place a persistent virtual disk into a hot backup mode for the purposes of taking
snapshot copies at the disk subsystem layer by adding a REDO log file. When the REDO
log file mode is initiated, all outstanding writes are flushed to the virtual disk file and all
future writes are written as log data into the REDO file. Much like putting a database into
hot backup mode, the guest OS root disk or any other virtual disk is placed into hot
backup mode with this operation.

Once the REDO log has been activated, it is safe to take a snapshot of the logical unit
containing the file system of the VM. After the snapshot operation is complete, another
command can be issued which will commit the REDO log transactions to the underlying
virtual disk file. When the commit activity is complete, all log entries will have been
applied and the REDO file will be removed. During this operation, a marginal slowdown
of processing will occur, but all operations will continue to function. It is possible to
stack a secondary REDO file behind primary REDO in order to smooth the application of
log entries via staging.

Maintaining as short a time window as possible to perform the snapshot prevents
excessive transactions from queuing in the REDO log, which in turn minimizes the
external impact of the commit phase of the operation.

The snapshot copy is taken of a “running” process, but typically without any provision
for dumping the contents of RAM in the manner that the warm snapshot copy maintains;
thus, recovery of a hot Snapshot copy will appear to the guest OS as if it is cold booting
after a total loss of power. Applications running during a hot snapshot operation will also
require media or transaction recovery as appropriate for the software product.

The outward appearance during a hot snapshot operation is an imperceptible server
slowdown. At worst, it will appear that network congestion or an overloaded CPU may
be causing general server sluggishness. At best, there is no noticeable impact.

There are three kinds of hot backups: full, differential and incremental snapshots. A full
snapshot includes all persistent data and machine state and takes time proportional to the
size of the VM. A differential snapshot provides a faster mechanism for backing up VMs
than a full backup since it only includes those blocks that have changed since the last full
snapshot. An incremental backup is the fastest backup mechanism since it only includes
those files that have changed since the most recent backup. The advantage of the fast
incremental backups comes with a price, however; the process of restoring a VM
potentially takes a long time since it involves reading the most recent full backup as well
as every incremental backup made since then. In our experiments we favor the use of the
differential backup since it offers a good compromise between the time it takes to create
the snapshot and the restore time.

Conventional High Availability mechanisms

Below, we describe two techniques currently implemented in systems in production to
guarantee high availability: primary-backup and primary-primary scheme. Both schemes
rely on some sort of hardware replication to guarantee the availability of the market
matching service upon failure; with the primary-primary being the successor of the
primary-backup technique.

Primary-Backup
In the primary-backup scheme, every primary node is associated with a backup node.
The backup node behaves as a follower, in that it receives the same set of requests as the
primary. To do so, it subscribes to responses sent by the primary to request originators
and extracts the order in which the primary executed those requests. It then applies these
messages to its in-memory copy of the book and performs an “assertion” comparison of
the result with the intercepted response generated by the primary.

On a failure of the primary node, the primary node is locked out of the log and the
backup node effectively becomes the new primary node. To do so, the backup-node
catches up to the log tail, processing all requests which have been completed and logged
in the order of arrival at the primary.

Figure 1: Primary-Backup Scheme.

Gw 1

Gw 2

Primary Backup Ordered
request

Verify

Primary-Primary

In the Primary-Primary scheme, there are two primary nodes functioning continuously.
Different from the Primary-Backup, both nodes are an exact copy of each other; both
primary nodes subscribe to the same set of messages and execute all orders in the same
exact number. To guarantee the order requirement, a coupling facility determines a total
order among all the orders as they arrive and informs the nodes of this order before they
can execute them.

On a failure, the failing node is locked out of the system for maintenance. The second
primary node continues handling existing and incoming requests.

Figure 2 The Primary-Primary scheme

Gw 1

Gw 2

Primary
1

Primary
2

Request
serialize

Verify

Experimental Setup

Figure 3 illustrates the test bed used in our study. We set up three servers: one VM
server running the market matching engine (VM MM in figure), one VM server serving
the role of a gateway responsible of forwarding incoming requests (VM GW in figure)
and one server responsible for creating snapshots of the VM hosting the Market Matching
engine (MM). The physical node hosting the MM VM runs VMware.

G
W

Physical
G
W

G
W

M
M

Physical

Snaps
hot

Order

Taking
snapshots
periodically

Network

ev.watson.ibm.co

gw1.watson.ibm.co

snap.watson.ibm.co

Figure 3: Experimental Setup in our study

Results and Discussion
To measure the efficiency of our approach we measure the elapsed time between the time
the snapshot process is invoked and the time it finishes the creation of the snapshot as a
function of the size of the virtual machine. In Figure 4 we plot our measurements for the
hot and warm snapshot. In our experiment a VM hosting a market matching application
has a size of ~6 GB; from Figure 4 we can see that the maximum feasible frequency to
create snapshots is ~2 minutes and ~20 seconds for hot and warm snapshot, respectively.
Considering that a typical market matching engine receives between 2,000 and 5,000
requests per second, the loss window resulting from using snapshots is ~(240,000,
600,000) and ~(40,000, 100,000) requests for hot and warm snapshot respectively. Such
large loss windows are prohibited by the reliability requirements of the application.

A naive approach to overcome this problem is to use a mechanism similar to the one used
in the backup-primary approach; i.e., by logging transactions into a file. In the event of a
failure, the application can be restarted from the latest available snapshot and can catch
up to its pre-failure state by replaying the transactions extracted from the log file. While
this approach requires additional memory and may incur some delay, it still represents
significant savings on hardware and maintenance cost.

Notice that although using warm snapshots results in a smaller loss window when
compared to using hot snapshots, the warm snapshot process suspends the VM, dropping
existing and incoming connections. To have a secondary VM executing incoming
transactions one would have to transfer the books in memory to an external storage

device for their access. Unfortunately, such an approach would incur a high overhead
and therefore was discarded in our study. A more interesting/appealing solution would
be to buffer incoming requests during the time the VM is suspended; doing so would
appear as if network congestion or an overloaded CPU may be causing the server
sluggishness.

Elapsed time for snapshot vs VM size

0

2

4

6

8

10

0 2 4 6 8 10 12

VM Size (G)

Ti
m

e
(m

in
)

Hot Snapshot Warm Snapshot

To create the snapshots both methods scan the VM in its totality, the only difference
being that in the hot snapshot all futures writes are written as log data into a REDO file.
Two processes influence the performance of the hot snapshot: the logging process
responsible of writing into the REDO file all futures writes in the VM, and the process
responsible of committing the REDO file into the VM once the snapshot has been
created. The former is I/O intensive and therefore is the primal factor responsible of the
duration of the whole process. The outward appearance of the former is an overloaded
VM (slowdown) and is perceived only when the REDO file is significantly large. In our
experiments the REDO file corresponding to the market matching application grows as
large as 0.6 Gigabyte; therefore, the impact of committing the changes to the VM is
imperceptible.

Since in our experiments we perform hot differential snapshots the amount of data that
needs to be stored in checkpoint is fairly small when compared to performing a full
snapshot. On average the size of the checkpoint file for the market matching VM was
near 30M, which represents only 0.005 fraction of the full size of the VM. Notice that
the size of the REDO file is an important parameter to consider in the design of backup
systems since typically one wants to transfer the snapshot to an external database over the
network as soon as the snapshot has been created.

Backup from within the application

Given the discouraging results obtained when using virtualization based backup, we
looked at the viability of providing additional availability support from within the
application. More specifically, we measured the overhead incurred by the application if it
has to dump the average loss window of 540,000 orders into the file system. We found
that doing so takes an additional 115 seconds, which represent an overhead of 63%
(relative to the 3 minutes window for the virtualization based backup). Pursuing such an
approach would be detrimental given the high requirements of the application under
consideration; however, by utilizing parallelization it may be possible to have an
additional thread playing the role of the backup agent and dumping the online book into
the file system.

Conclusions
In this report we have presented preliminary results on the usability of virtualization to
provide with high availability to application with stringent requirements. Our results
indicate that virtualization still needs significant refinement to overcome the challenges
imposed by this kind of application.

