
RC24418 (W0711-096) November 14, 2007
Computer Science

IBM Research Report

End-to-End Performance of Commercial Applications in the
Face of Changing Hardware

Joefon Jann, R. Sarma Burugula, Niteesh Dubey, Pratap Pattnaik
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

End-to-End Performance of Commercial Applications in
the face of changing Hardware

Joefon Jann, R. Sarma Burugula, Niteesh Dubey, Pratap Pattnaik

IBM T. J. Watson Research Center, 1101 Kitchawan Rd.,Yorktown Heights, NY 10598,USA
{joefon,burugula,niteesh,pratap}@us.ibm.com

ABSTRACT
This paper investigates the changes in AIX behavior, or the lack
of them, and the resulting performance impact from a generational
change in servers in a typical large scale eCommerce application
environment without extensive tuning of the OS and the
application stack for the changing hardware. We have
investigated the performance and impediments to performance at
the microprocessor level and at the OS level. This paper dissects
the performance data as observed from the OS and from hardware
performance counters, and suggests areas for further
improvements.

Categories and Subject Descriptors
D.4.0 [Operating Systems]:
-Process Management – Multiprocessing, scheduling, Synchronization.
-Storage Management – Virtual Memory, Secondary storage.
-Performance – Measurements.

General Terms
Measurement, Performance, Experimentation.

Keywords
AIX, POWER5+, POWER6, WebSphere.

1. INTRODUCTION
In the early days of the Information Technology (IT) industry,
software and hardware were developed and released in close
coordination, such that the software was well tuned to perform
well on the hardware platform. However, in the past few years,
several factors have led to the existence of multiple generations of
hardware running the same software version and vice versa,
resulting in suboptimal (from the performance point of view)
combinations of software and hardware. One of the reasons is the
deviation between release dates of the software and those of the
hardware, as depicted in Figure 1. Another important reason is
that IT has become a critical and embedded part of business
processes in today’s organizations. As a result, businesses are
reluctant to make changes to their IT environment unless these
changes result in a significant improvement in the performance of
the business process. In this new environment, IT reliability and
non retrogression of performance is much more important than IT
performance. The businesses’ unwillingness to make changes to
their IT infrastructures has led to the separation of the IT stack
into multiple layers – hardware, operating system, databases,
middleware, applications.

General Availability Dates spacing, starting from 3Q1999

6

7

2

2

3

2

8

6

4

9

4

4

4

7

12

11

8

4

8

12

4

10

1

4

5

8

6

16

1

2

2

2

4 4

0 5 10 15 20 25 30 35

POWER Processors

AIX Versions

Sparc Processsors

Solaris Versions

HP Processors

HP-UX Versions

Number of Quarters

Figure 1: General Availability and lifetime the various
releases of different Software and Hardware components.

Another trend in the IT industry is that the applications are
increasingly being developed using reflective and dynamic
languages and hence are becoming increasingly containerized.
This implies that application developers are increasingly detached
from the core technological changes taking place in the lower
layers such as operating systems and microprocessors. The
applications’ interactions with the lower layers are left entirely to
the middleware which provides container abstractions to the
applications. Application developers nowadays focus primarily
on object life-cycle management, object instantiation, inheritance
and passivation, etc., rather than on the memory layout, the
scheduling, the I/O issues, etc. This separation of the application
developers from the underlying hardware and systems software
technologies has led to significant growth in the application
developers’ productivity. However, it also implies that the
burden of optimization shifts from the application developers to
the systems architects of the lower layers.

In light of the above trends, this paper investigates the
performance benefits that are obtained from a generational change
in servers in a typical large scale electronic commerce application
without tuning the application stack. We have investigated the
factors of performance and impediments to performance at the
microprocessor level and at the OS level. The focus of this paper
is not to fine-tune a given application for the best performance on
a platform, but to get a measure of how much performance
benefits are obtained from a generational change in the hardware,
and to identify areas for further improvements. In this paper we
used the following setup to do our performance evaluations:

1. A system built with IBM POWER5+ processors [1] (1.9
GHz, 4 processors, each with 2 Simultaneous Multi
Threading (SMT) threads) and a system with IBM
POWER6 processors [2] (4.7 GHz, 4 processors, each
with 2 SMT threads).

2. IBM AIX 5.3 operating system [4]
3. Advanced and production level middleware such as

WebSphere v6.1 and DB2 v9, which reflect realistic
scenarios, and which themselves contain a number of
optimizations of their own.

4. A realistic eCommerce workload, namely Trade6,
which simulates a commercial web-based business. [5]

The following section describes this experimental setup in more
details.

2. EXPERIMENTAL SETUP
We have primarily used 3 different system configurations for our
experiments, as given below.

Table 1: Configurations of the machines used in the
Experiments
Name of
Experiment

Processor
Type

of
Clients

Amount of
Memory

of
Disks

Exp1P5+_1D POWER5+
 1.9GHz

75 20GB 1

Exp2P6_1D POWER6
 4.7GHz

75 20GB 1

Exp3P6_4D POWER6
 4.7GHz

75 20GB 4

Each of the experiments uses a 4-processor system with SMT
turned on, so that AIX views the system as having 8 logical
processors. We have used 64KB page sizes for WebSphere and
DB2 in all the experiments. The memory size has been kept the
same in all 3 experiments. In Exp3P6_4D, we have quadrupled
number of disks used, after we observed a significant amount of
CPU idle time due to I/O wait in Exp2P6_1D. More details about
this performance gap are given in a later section (3.3.4).

The next few subsections describe in more details the components
of the experimental setup.

2.1 WebSphere and Trade6

Web application servers (WAS) provide a framework for
executing eCommerce transactions. The interaction between the
stateless HTTP browser and the potentially stateful back-end
application which executes the business logic needed for the
specific commercial tasks is handled by the application server.
The execution of the business logic for some of the commercial
transactions involves interaction of the application server with
major subsystems, such as databases, transaction monitors,
messaging subsystems, etc., and some of them may even be

executed under separate OS instances. In the current eCommerce
deployments, most of this framework is built using the Enterprise
Java Bean (EJB) and Java servelet technologies, and the
following is simplified explanation of the typical Web application
flow, using the J2EE framework, through a Web application
sever.
 A user's request (for information such as a stock quote, or for

updating an account) is presented to the eCommerce site
through a web browser. The computer executing the browser
(which we will refer to as client) sends this request as an
HTTP request to the Web server. The Web server, using its
configuration data, identifies that the request is destined for a
Java servlet and passes the request onto the servlet runtime
engine code. The appropriate servlet is invoked by the
engine. In our experiment, this engine is a part of
WebSphere.

 The servlet knows which method it needs to invoke to obtain
the information to satisfy the client request. The servlet calls
on an Enterprise JavaBean (EJB) to conduct the query. An
EJB is a collection of Java objects, encapsulating a particular
business process and embodies the appropriate business
logic. The operating environment (such as the model used
for security, recovery, transactional integrity, and the
logistics to access databases to create persistent information)
is handled by WebSphere or similar middleware.

 The business logic is written into an EJB, and if needed, a
connection is made to the back-end database.

 Upon completion of the business logic, via EJB, the Java
servlet engine regains control and manages the generation of
the response page which is served back to the client that
made the original request. To do that, an appropriate Java
Server Page (JSP) is selected to help generate the dynamic
content. The computed Web page containing the results of
the query is then sent back to the client via the Web server.

IBM WebSphere Application Server (WAS) is a popular, Java
technology based, Web application server which provides a rich,
e-business application deployment environment with a complete
set of application services, including capabilities for transaction
management, security, clustering, performance, availability,
connectivity and scalability. In keeping with the J2EE component
architecture, which WebSphere implements, the servlets and JSPs
run in a Web container, and EJBs run in an EJB container.

Figure 2: Trade6 Components

The Trade6 Benchmark (Figure 2) is a WebSphere end-to-end
performance benchmarking application which allows users to
perform typical online brokerage-type transactions, such as
selling shares from existing accounts, purchasing shares of stock,
browsing current stock price for a ticker symbol, etc. The Trade6
application (Figure 2) is a collection of Java classes, Java
Servlets, Java Server Pages and Enterprise Java Beans that service
the requests made by registered users. This application is run and
managed by the WebSphere Application Server.

WebSphere Application Server uses a back end database to store
Trade6 transactions. In our experiments, we used the DB2 V9 as
the backend database. DB2 V9 is a Relational Database
Management System with several advanced features such as
adaptive, self-tuning memory allocation, which helps reduce or
eliminate the task of configuring your DB2 server by
continuously updating configuration parameters, resizing buffer
pools and dynamically determining the total amount of memory to
be used by the database.

2.2 POWER6 vs POWER5+ processors

POWER5+ [1] and POWER6 [2] processors are both dual core
64-bit highly efficient superscalar processors supporting
simultaneous multi-threading (SMT) with 2 threads. While they
share a lot of common architectural features, there are notable
differences between the 2 processor types and some of the major
differences are described below. Figure 3 provides a schematic
diagram of the 2 processor types.

1. Higher processor frequency in POWER6
The POWER6 processor runs at about 2.5 times the
clock frequency of the POWER5+ processor (Table 1).
It accomplishes this by a combination of VLSI
technologies and micro-architectural changes.
POWER5+ was built using 130nm silicon on insulator
(SOI) IBM CMOS technology [1], while POWER6 is

built using 65nm SOI IBM CMOS technology [2]. Also
the POWER6 processor is a 13-FO4 design requiring a
24-stage pipeline, while the POWER5+ is a 23-FO4
design yielding a 16-stage pipeline.

2. In-order vs Out-of-order Execution
The POWER5+ processor uses out-of-order execution,
while POWER6 employs in-order execution. Since
POWER6 uses only in-order execution, it does not need
register renaming. Even though it only has in-order
execution, POWER6 uses the Load Look Ahead (LLA)
technique to bring data into L1 and ERAT during the
stall cycles. Briefly, LLA works by prefetching the
data for the subsequent instructions when there is cache
miss due to a load. The computational results of these
instructions are discarded after the initial load miss
returns, and re-execution of all the instructions starts
from the initial load miss with the expectation that the
LLA primed the cache and ERAT. See reference [2] for
a detailed explanation of LLA. To enhance the
effectiveness of LLA, POWER6 also employs a Load
Miss Queue (LMQ) of 8 entries to support outstanding
L1 cache misses.

3. Dedicated L2 cache per core vs Shared L2
Each core in the POWER6 chip has its own dedicated
4MB L2 cache, whereas in the POWER5+ chip, both
the cores share 1.9MB L2 cache.

4. Store Queue (SQ)
Since both processor types have write-through L1
cache, they employ a Store Queue to keep the contents
of store instructions. When the processor issues a store,
the SQ keeps the contents of the store until the data is
written into L2 cache. If the processor issues any load
instruction while the data is still in SQ, the data is
served by the SQ instead of the L1 cache. Although this
feature is present in both processor types, our results in
section 3.2 show that SQ is more beneficial to
POWER6 because of its higher frequency.

5. Address Translation Tables
POWER6 uses Effective-to-Real-Address-Translation
(ERAT) tables only, instead of both the Translation
Look-aside Buffers (TLB) and ERATs used in
POWER5+. Each POWER5+ core has a 2048-entry
TLB table which is not present in POWER6, whereas
each POWER6 core has a 128-entry Instruction ERAT
(I-ERAT) table and a 128-entry Data ERAT (D-ERAT)
table. The I-ERAT supports 4KB and 64KB page sizes
whereas the D-ERAT supports 4KB, 64KB, and 16MB
page sizes.

The schematic diagrams of POWER5+ and POWER6 processors
are given below.

POWER5
Core

Memory
Cntrl

L3 L3
Ctl

Enhanced
Distributed Switch

GX
Bus

L2

POWER5
Core

Memory

POWER5+ POWER6

Memory+
GX+ Bridge

GX Bus CntrlMemory
Controller

Fabric Bus
Controller

POWER6
Core

Alti
Vec

L3
CtrlL3

POWER6
Core

Alti
Vec

4 MB
L2

4 MB
L2

Figure 3: Schematic diagrams of POWER5+ and POWER6
microprocessors

The table below summarizes the feature differences between the 2
processor types used in our experiments.

Table 2: Comparison of POWER5+ and POWER6 processor
Features
 POWER5+ POWER6
Frequency 1.9 Ghz 4.7 Ghz
TLB capacity,
associativity

2048 entries, 4-way N.A.

L1 ICache capacity,
associativity, line size

64 KB,
2-way, 128B

64 KB,
4-way, 128B

L1 DCache capacity,
associativity, line size

32 KB,
4-way, 128B

64 KB,
8-way, 128B

L2 Cache capacity,
associativity, line size

1.9 MB (shared),
10-way, 128B

4 MB,
8-way, 128B

L3 Cache capacity,
associativity, line size

36 MB,
12-way, 256B

32 MB,
16-way, 128B

Address Translation Effective-to-Real :
128-entry I-ERAT,
128-entry D-ERAT
Virtual-to-Real:
2048-entry TLB

Effective-to-Real :
128-entry I-ERAT,
128-entry D-ERAT

2.3 AIX 5.3 Operating System [4]
AIX 5.3 is a highly-scalable, robust, high-performance, and
industry-leading UNIX server operating system with a kernel
optimized for the POWER hardware platforms. AIX shares a lot
of commonalities with other UNIX operating systems,
particularly with respect to commands and application interfaces.
However, there are significant differences in the implementation
of various kernel subcomponents, most prominently in the
memory management subsystem. AIX 5.3 implements many

advanced features such as affinity scheduling, thread-sensitive
scheduling, multiple concurrent page-able page-sizes, hardware-
thread priority management, and hardware-page copier, to
efficiently exploit the POWER architecture, In addition, AIX
supports many industry-leading Advanced Virtualization features
in close collaboration with the POWER hardware and hypervisor.
In this paper, our focus is to observe if there are major changes in
OS behavior when the underlying processor type changes
significantly (from POWER5+ to POWER6), without changing
the application software and the OS levels.

3. RESULTS
This section discusses the results of our experiments on
POWER5+ and POWER6 systems using Trade6 as the workload.

3.1 Results as observed by the client
application (Trade6 driver)

Figure 4 shows the distribution of the application throughput
observed by the Trade6 client for all 3 experiments. The graphs
provide a high level view of the Trade6 throughputs as a function
of elapsed time. In the averages presented in the rest of this
paper, we have eliminated the measurements for the initial warm
up period, and have computed the average values for a typical
“steady-state” period, namely, using the values measured between
elapsed time of 300 and 540 seconds in all 3 experiments.

Figure 4: Throughput observed by the Trade6 application as
a function of Elapsed time

Table 3 summarizes the graphs in Figure 4 by computing the
average throughput after Trade6 has stabilized.

Table 3: Average throughput observed by Trade6
 Exp1P5+_1D Exp2P6_1D Exp3P6_4D

Throughput
(= #Webpages
served per second)

3466 4458 6001

As we can see from the above results, the throughput increases by
about 30% just by moving from the POWER5+ processor type to

Trade6 Throughput on P5+ and P6

0

1000

2000

3000

4000

5000

6000

7000

8000

0 30 60 90 120150180210240270300330360390 420 450 480 510 540 570 600 630 660690720750780810840870900

Elapsed Time (seconds)

Throughput

exp1P5+_1D exp2P6_1D exp3P6_4D

the POWER6 processor type. Because, the POWER6 clock
frequency is almost 2.5 times that of the POWER5+ processor, ,
but the throughput had not increased 2.5 fold, we set out to
investigate what the reasons could be.
In the following subsections, we analyze the measurements
captured at 2 different levels of the IT stack (namely, at the
processor micro architectural level, and at the OS level) and show
where the performance bottlenecks occurred.

3.2 Results at the Processor Micro-
architectural level

Table 4: Processor Micro-architectural Level Metrics
(Average values)
 Exp1P5+_1D Exp2P6_1D Exp3P6_4D

Trade6 Throughput
(#wPg / sec.)

3466 4458 6001

#Instructions
Completed / wPg

1,104,959 1,048,033 1,083,740

CPI (Cycles Per
Instruction)

3.38 4.49 4.49

#L1 Data Cache Refs
(Loads+Stores) / wPg

630,279 421,667 413,769

#L1 Data Load
references / wPg

386,101 249,598 253,901

#L1 D-Cache Load
misses / wPg

41,876 15,386 15,589

Ratio of (L1 D-Cache
Load misses / L1 D-
Cache Load Refs.)

.11 .06 .06

From the above table, we can see that the numbers of instructions
executed per web-page by the POWER5+ and POWER6
processors are about the same (only 5% difference between Exp1
and Exp2, and 2% difference between Exp1 and Exp3).
However, we can also observe several big differences between the
2 platforms, namely, differences in CPI, and in cache activities.

From Table 4, we see that the CPI for POWER6 is about 33%
higher than that for POWER5+. Figure 5 below gives the
breakdown of the CPI measurements on the POWER5+ AND
POWER6 processors (from Exp3P6_4D experiment).

Breakdown of the CPI for POWER5+

Nothing to
dispatch

Instr
Completion

Dispatch Held /
Stall

L1 data cache miss

D-ERAT miss

Others

FXU Stall

0.86

0.14
0.11

0.37

0.44

0.95

1.99

0.51

TLB Miss

Breakdown of the CPI for POWER6

Nothing to
dispatch

Instr Flush

Instr
Completion

Others

L1 data cache miss

D-ERAT miss

SMT conflicts

GPR dependencies

Dispatch Held /
Stall

0.95

0.31

0.34

0.42

0.24

0.59

1.06

2.6

0.58

Figure 5: Breakdown of the CPI in POWER5+ and POWER6
(Exp3P6_4D) processors

Figure 5 shows that the dominating factors contributing to the CPI
in both processor types are the Data Cache misses, and the
Nothing-to-dispatch situations (which are primarily due to I-
Cache misses). For POWER6, of the 47% of CPI due to Dispatch
Stalls, about 21% are due to L1 Data cache misses. Note that
despite the large number of stalls due to data cache misses, the
POWER6 processor is still able to get significant efficiency by
using techniques such as LLA. Another source of the stalls in
POWER6 is GPR dependencies, which contributes to about 8% of
the CPI. These are caused by the lack of register renaming in
POWER6, as described in section 2.2. The overall distribution of
the cause of high CPI for POWER6 is very similar to that of
POWER5+, even though the 2 processor types have significantly
different micro-architecture. From this we observe that the micro-

architecture of a well designed out-of-order and that of an
aggressive in-order processor are equally suitable for today’s
eCommerce applications, and their significance to performance
will depend on the higher levels of the end-to-end stack.

We can also notice from Table 4 that the L1 Data cache load
references and misses per web-page are significantly less on
POWER6 than those on POWER5+. We believe that the
reduction in L1 Data cache load references is due to a higher
utilization of the Store Queue (SQ) in POWER6. The combination
of (1) a 16-entry SQ per POWER6 core, (2) the nature of
eCommerce applications in which loads are closely followed by
stores, and (3) the higher clock frequency of the POWER6 core,
causes a higher utilization of the SQ than on the POWER5+. The
L1 Data Cache references also show that a large portion of the
instructions in today’s eCommerce applications put significant
stress on the memory subsystem in the processor.

This decrease in the L1 D-Cache Load miss ratio from POWER5+
to POWER6 can be attributable to the doubled size and
associativity of the L1 Data cache in POWER6.

Based on these results, we believe that recompilation of today’s
eCommerce applications will not significantly improve their
performance on the POWER6 platform. Recompilation of the
application in our experiments may reduce the stalls due to GPR
conflicts; however, since the portion of Dispatch Stalls due to
GPR dependencies is only .34 (out of total value of 4.49 for the
CPI), recompilation will cause at most 7% reduction in the CPI
value.

The high CPI on both platforms is the reflection of the tendency
in the new generation of eCommerce applications to focus in the
higher level abstractions and issues such as object life-cycle
management, instantiation and passivation rather than on
improving the performance of the application for a given micro
architectural design. We believe that this trend will continue as
the world is increasingly moving towards reflective, dynamic and
object-oriented programming environments such as Ruby, PHP,
Python, Perl, Java, etc.

3.3 Results at the Operating System Level

While the results at the processor level are significantly different
in many parameters, the results at the operating system level
between the three experiments are not much different except in
one area – I/O subsystem. As we have shown below, the results
in process and memory subsystems are quite similar between both
the platforms.

3.3.1 System Calls

Table 5: System Calls

 Exp1P5+_1D Exp2P6_1D Exp3P6_4D

#syscalls / sec 71,591 95,776 131,157

#syscalls / wPg 20.65 21.48 21.85

As we can see from the above table, there are no significant
differences in the number of system calls invoked per web-page
among the 3 different experiments. This can be expected because
we ran the same application in all 3 experiments.

3.3.2 Process Subsystem

We have captured several different metrics in the process
subsystem to see if the OS behaved differently between the 2
hardware platforms.

Table 6: Process or Thread related metrics

 Exp1P5+_1D Exp2P6_1D Exp3P6_4D

User 74.48 47.65 62.58

System 13.50 12.05 15.80

Idle 7.83 29.60 17.0

I/O wait 4.13 10.65 4.65

#runnable threads 28.18 13.33 19.63

#threads waiting for
disk I/O

1.48 1.78 1.10

Table 6 shows that the processor utilization has gone down quite a
bit (from 88% to 60%) when we ran the same application on
POWER5+ versus POWER6. One can also observe that the
number of runnable threads has decreased from Exp1P5+_1D to
Exp2P6_1D. Moreover, the I/O wait time has increased
dramatically. Based on these observations from Exp2P6_1D, we
concluded that the I/O subsystem’s performance had not kept up
with the CPU performance when we moved from POWER5+ to
POWER6. To validate our inference, we constructed experiment
3 (Exp3P6_4D) by increasing number of disks used for DB2 from
1 to 4. As the results in the above table show, this experiment
validated our inference that the performance gap between the
processor and the I/O subsystem has widened going from
POWER5+ and POWER6. In a later section, we discuss this gap
in more details, and also provide a quantitative metric for
measuring this gap.

The 5th row in Table 6 shows the average number of runnable
threads that are either currently running or waiting to be
scheduled on a CPU, and the next row shows the average number
of threads waiting for an I/O to be completed. We can see that in
Exp2P6_1D more threads are waiting for I/O than in
Exp1P5+_1D, which further points to the relative inefficiency of
the I/O subsystem in Exp2P6_1D.

Comparing experiments 1 and 3, we see that the processors are
staying idle for a larger percentage of time in Exp3P6_4D. This
is probably due to the fact that the applications WebSphere, DB2
cannot generate enough load to consume the available resources
in experiment 3. When we tuned the WebSphere and DB2 to use
more threads and increased the number of clients, the Idle time
and I/O wait time have been both reduced by than half, resulting
in increase in the throughput.

We have also measured the number of context switches per
second in the OS. These numbers, given in Table 7 below, show
that the number of context-switches per web-page do not
significantly differ across all 3 experiments. The number of
context switches is roughly proportional to the throughput
obtained.

Table 7: Number of Context Switches

 Exp1P5+_1D Exp2P6_1D Exp3P6_4D

#Context Switches
per second

40,924 52,611 70,572

#Context switches
per web-page

11.80 11.80 11.76

3.3.3 Memory Subsystem

Based on the results in Table 8, we can see that the memory
subsystem does not behave very differently on a POWER6 system
compared to that on a POWER5+ system.

Table 8: Memory subsystem Metrics

 Exp1P5+_1D Exp2P6_1D Exp3P6_4D

#Zero
Page-faults / sec

168.08 151.73 153.53

#Zero
Page-faults / wPg

0.048 0.034 0.026

#Non-zero Page-faults /
sec

140.18 163.48 179.98

#Non-zero Page-faults /
wPg

0.040 0.037 0.030

#Page-ins / sec 18.28 38.95 53.53

#Page-ins / wPg 0.005 0.009 0.009

#Page-outs / sec 266.85 300.88 444.23

#Page-outs / wPg 0.077 0.067 0.074

From the above table, we can see that the total number of page-
faults per second is not substantially different across all 3
experiments. However, we can also see that the number of page
faults generated on a per-web-page basis has decreased from
POWER5+ platform to POWER6 platform. One of the reasons
for this behavior could be that there is a lot of memory-page
sharing between the data accessed by Trade6 for serving multiple
requests. As more requests are being served, the memory page-
sharing also increases.
The number of page-ins and page-outs in the above table mainly
represent the I/O activity caused by the database. The DB2

database in our experiments uses a JFS2 file system to store its
data. From the above table, we see that the number of page-outs
is significantly higher than the number of page-ins. This is due to
the fact that DB2 has to store the results of every Trade6
transaction into persistent storage, i.e. a database page will be
written to the disk multiple times during its lifetime.

3.3.4 I/O Subsystem

As described in the 2 subsections above, we can see that most of
the performance issues arose from the I/O subsystem of the
server.

As described before, we have identified the I/O subsystem as the
bottleneck when we noticed that the CPUs were waiting much
more for I/Os to be completed in Exp2P6_1D. Once we
addressed this problem by striping the database across 4 disks
instead of 1, the I/O bottleneck had decreased substantially.

We have also measured the number of device interrupts and the
number of IO starts and completions, to characterize the gap
between CPU and IO performance. The following table lists
these results, and we include our analysis below the table.

Table 9: I/O subsystem Metrics

 Exp1P5+_1D Exp2P6_1D Exp3P6_4D

Device interrupts / sec 5711 5586 7407

Device Interrupts / wpg 1.65 1.25 1.23

start IOs / sec 286 340 498

IOdones / sec 262 289 445

IOdones/ startIOs 0.92 0.85 0.89

From the above table, we can observe the following:

a) The number of device interrupts per web-page decreases as the
processor speed increases.

b) The number of IO-dones per second are less than the number of
startIOs per second. This is because the JFS2 filesystem
coalesces multiple I/O requests into a single one and invokes the
memory subsystem’s I/O-completion-notification interface only
once. We observe that this feature can be used to construct a
metric for measuring the performance gap between the processor
and the I/O subsystem. The metric is the ratio of
IOdones/IOstarts. When the processor subsystem is
significantly faster than the I/O subsystem, the ratio of
IOdones/IOstarts will be much lower than 1. When both the
subsystems are in sync, then this ratio is closer to 1.

4. CONCLUSIONS

In this paper, we have compared 2 generations of the IBM
POWER processors running the same application stack and
operating system. We have primarily analyzed the OS behavior
on these 2 generations of hardware to see if there are significant
changes in the OS behavior. Based on our observations, the
following conclusions can be made:

1. Modern eCommerce applications are increasingly built
out of easy-to-program, generalized but non-optimized
software components, resulting in substantive stress on
the memory and storage subsystems of the computer. A
large portion of the instructions executed for Trade6
application are load/stores, as shown in section 3.2.

2. The increasing integration of IT into the business
processes has pressured the various layers of the IT
stack to be released/updated at different times. Hence,
there is a need for multiple versions of each layer of the
IT stack to coexist and to perform reasonably well with
different releases of the other layers.

3. Merely cranking up the frequency of the processor to a
much higher level does not necessarily provide
proportional performance/throughput increases in the
end-user applications. Nevertheless, we have observed
that one can gain significant improvements in the end-
user application throughput with minor tunings at the
system hardware configuration level or at the OS level.
For example, after observing bottlenecks in the I/O
subsystem, spreading the database across 4 disks instead
of using 1 disk has provided significant throughput
improvements.

4. The higher CPI measured in the POWER6 experiments
persisted despite our tuning attempts at the OS level and
at the I/O hardware level, and despite the increased on-
core cache sizes over POWER5+. And, as our analysis
in section 3.2 shows, recompiling for POWER6 would
not have made much difference to the CPI.

5. From Table 6, we see that the AIX kernel consumed a
larger percent of the CPU time in experiment 3 than in
experiment 2 (both on POWER6). The cause of the
increase is probably the I/O configuration changes
(spreading the database across 4 disks instead of 1) we
made to reduce the CPU idle and I/O wait time.
Because I/O activities at the OS level are mostly kernel
mode activities, more I/O activities in the system
resulted in more CPU cycles being executed in kernel
mode. However, the 4 disk configuration in experiment

3 yielded a significant improvement in throughput,
leading us to conclude that careful balance of resources
by the OS, particularly in the I/O space optimization,
has the potential to yield significant performance for
future eCommerce applications.

6. It is very important to keep the performance of the
memory subsystem and the I/O subsystem in sync with
the processor performance in order to optimize
eCommerce throughput and to maintain similar OS
behavior. We believe that the ratio IOdones/IOstarts
can be used as an indicator of how well balanced the
CPU subsystem and I/O subsystems are on the
AIX/SystemP platform.

7. Within the limited scope of our experiments, we have
shown how to systematically analyze the data to
identify changes in the OS behavior, and have
attempted to explain those changes in light of the
differences in the 2 microprocessor implementations.

8. In summary, the overall OS behavior did not seem to
change significantly across these 2 generations of
hardware processor type.

5. REFERENCES
[1] Sinharoy. B., Kalla. R.N., Tendler. J.M., Eickemeyer. R.J.,

and Joyner. J.B. 2005: POWER5 system Microarchitecture.
IBM Journal of Research and Development, Vol 49, No 4/5,
2005

[2] Le H.Q., Starke W.J., Fields J.S., O’Connel F.P., Nguyen
D.Q., Ronchetti B.J., Sauer W.M., Schwarz E.M., Vaden
M.T. 2007: IBM POWER6 Microarchitecture. IBM Journal
of Research and Development, Vol.51, No. 6, Nov. 2007

[3] Mackerras. P., Mathews. T.S., Swanberg. R.C 2005:
Operating System exploitation of the POWER5 system.
IBM Journal of Research and Development Vol 49, No. 4/5,
July/September 2005.

[4] AIX 5.3 Information Center :
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.j
sp?topic=/com.ibm.aix.doc/doc/base/aixinformation.htm

[5] IBM WebSphere Performance and Trade6 benchmark
http://www.ibm.com/software/webservers/appserv/was/perfo
rmance.html

