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ABSTRACT 
This paper investigates the changes in AIX behavior, or the lack 
of them, and the resulting performance impact from a generational 
change in servers in a  typical large scale eCommerce application 
environment without extensive tuning of the OS and the 
application stack for the changing hardware.  We have 
investigated the performance and impediments to performance at 
the microprocessor level and at the OS level.  This paper dissects 
the performance data as observed from the OS and from hardware 
performance counters, and suggests areas for further 
improvements.  

Categories and Subject Descriptors 
D.4.0 [Operating Systems]:  
-Process Management – Multiprocessing, scheduling, Synchronization.  
-Storage Management – Virtual Memory, Secondary storage. 
-Performance – Measurements. 

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
AIX, POWER5+, POWER6, WebSphere. 

1. INTRODUCTION 
In the early days of the Information Technology (IT) industry, 
software and hardware were developed and released in close 
coordination, such that the software was well tuned to perform 
well on the hardware platform.  However, in the past few years, 
several factors have led to the existence of multiple generations of 
hardware running the same software version and vice versa, 
resulting in suboptimal (from the performance point of view) 
combinations of software and hardware.  One of the reasons is the 
deviation between release dates of the software and those of the 
hardware, as depicted in Figure 1.  Another important reason  is 
that IT has become a critical and embedded part of  business 
processes in today’s organizations.  As a result, businesses are 
reluctant to make changes to their IT environment unless these 
changes result in a significant improvement in the performance of 
the business process.  In this new environment, IT reliability and 
non retrogression of performance is much more important than IT 
performance.  The businesses’ unwillingness to make changes to 
their IT infrastructures has led to the separation of the IT stack 
into multiple layers – hardware, operating system, databases, 
middleware, applications. 
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Figure 1:  General Availability and lifetime the various 
releases of different Software and Hardware components.  
 
Another trend in the IT industry is that the applications are 
increasingly being developed using reflective and dynamic 
languages and hence are becoming increasingly containerized.  
This implies that application developers are increasingly detached 
from the core technological changes taking place in the lower 
layers such as operating systems and microprocessors.  The 
applications’ interactions with the lower layers are left entirely to 
the middleware which provides container abstractions to the 
applications.  Application developers nowadays focus primarily 
on object life-cycle management, object instantiation, inheritance 
and passivation, etc., rather than on the memory layout, the 
scheduling, the I/O issues, etc.  This separation of the application 
developers from the underlying hardware and systems software 
technologies has led to significant growth in the application 
developers’ productivity.   However, it also implies that the 
burden of optimization shifts from the application developers to 
the systems architects of the lower layers. 
 
In light of the above trends, this paper investigates the 
performance benefits that are obtained from a generational change 
in servers in a typical large scale electronic commerce application 
without tuning the application stack.  We have investigated the 
factors of performance and impediments to performance at the 
microprocessor level and at the OS level.  The focus of this paper 
is not to fine-tune a given application for the best performance on 
a platform, but to get a measure of how much performance 
benefits are obtained from a generational change in the hardware, 
and to identify areas for further improvements.  In this paper we 
used the following setup to do our performance evaluations: 



 

1. A system built with IBM POWER5+ processors  [1] (1.9 
GHz, 4 processors, each with 2 Simultaneous Multi 
Threading (SMT) threads) and a system with IBM 
POWER6 processors  [2] (4.7 GHz, 4 processors, each 
with 2 SMT threads). 

2. IBM AIX 5.3 operating system  [4] 
3. Advanced and production level middleware such as 

WebSphere v6.1 and DB2 v9, which reflect realistic 
scenarios, and which themselves contain a number of 
optimizations of their own. 

4. A realistic eCommerce workload, namely Trade6, 
which simulates a commercial web-based business.  [5] 

 
The following section describes this experimental setup in more 
details. 

2. EXPERIMENTAL SETUP 
We have primarily used 3 different system configurations for our 
experiments, as given below. 

 

Table 1: Configurations of the machines used in the 
Experiments 
Name of 
Experiment 

Processor 
Type 

# of 
Clients 

Amount of 
Memory 

# of 
Disks 

Exp1P5+_1D POWER5+ 
       1.9GHz 

75 20GB 1 

Exp2P6_1D POWER6  
   4.7GHz 

75 20GB 1 

Exp3P6_4D POWER6  
   4.7GHz 

75 20GB 4 

 
Each of the experiments uses a 4-processor system with SMT 
turned on, so that AIX views the system as having 8 logical 
processors.  We have used 64KB page sizes for WebSphere and 
DB2 in all the experiments.  The memory size has been kept the 
same in all 3 experiments.  In Exp3P6_4D, we have quadrupled 
number of disks used, after we observed a significant amount of 
CPU idle time due to I/O wait in Exp2P6_1D.  More details about 
this performance gap are given in a later section (3.3.4). 
 
The next few subsections describe in more details the components 
of the experimental setup. 

2.1 WebSphere and Trade6 
 
Web application servers (WAS) provide a framework for 
executing eCommerce transactions.  The interaction between the 
stateless HTTP browser and the potentially stateful back-end 
application which executes the business logic needed for the 
specific commercial tasks is handled by the application server. 
The execution of the business logic for some of the commercial 
transactions involves interaction of the application server with 
major subsystems, such as databases, transaction monitors, 
messaging subsystems, etc., and some of them may even be 

executed under separate OS instances.  In the current eCommerce 
deployments, most of this framework is built using the Enterprise 
Java Bean (EJB) and Java servelet technologies, and the 
following is simplified explanation of the typical Web application 
flow, using the J2EE framework, through a Web application 
sever. 
 A user's request (for information such as a stock quote, or for 

updating an account) is presented to the eCommerce site 
through a web browser. The computer executing the browser 
(which we will refer to as client) sends this request as an 
HTTP request to the Web server. The Web server, using its 
configuration data, identifies that the request is destined for a 
Java servlet and passes the request onto the servlet runtime 
engine code.  The appropriate servlet is invoked by the 
engine.  In our experiment, this engine is a part of 
WebSphere. 

 The servlet knows which method it needs to invoke to obtain 
the information to satisfy the client request.  The servlet calls 
on an Enterprise JavaBean (EJB) to conduct the query.  An 
EJB is a collection of Java objects, encapsulating a particular 
business process and embodies the appropriate business 
logic.  The operating environment (such as the model used 
for security, recovery, transactional integrity, and the 
logistics to access databases to create persistent information) 
is handled by WebSphere or similar middleware. 

 The business logic is written into an EJB, and if needed, a 
connection is made to the back-end database. 

 Upon completion of the business logic, via EJB, the Java 
servlet engine regains control and manages the generation of 
the response page which is served back to the client that 
made the original request. To do that, an appropriate Java 
Server Page (JSP) is selected to help generate the dynamic 
content. The computed Web page containing the results of 
the query is then sent back to the client via the Web server. 

 
IBM WebSphere Application Server (WAS) is a popular, Java 
technology based, Web application server which provides a rich, 
e-business application deployment environment with a complete 
set of application services, including capabilities for transaction 
management, security, clustering, performance, availability, 
connectivity and scalability. In keeping with the J2EE component 
architecture, which WebSphere implements, the servlets and JSPs 
run in a Web container, and EJBs run in an EJB container. 
 



 
Figure 2:  Trade6 Components 

 
The Trade6 Benchmark (Figure 2) is a WebSphere end-to-end 
performance benchmarking application which allows users to 
perform typical online brokerage-type transactions, such as 
selling shares from existing accounts, purchasing shares of stock, 
browsing current stock price for a ticker symbol, etc.  The Trade6 
application (Figure 2) is a collection of Java classes, Java 
Servlets, Java Server Pages and Enterprise Java Beans that service 
the  requests made by registered users. This application is run and 
managed by the WebSphere Application Server.  
 
WebSphere Application Server uses a back end database to store 
Trade6 transactions.  In our experiments, we used the DB2 V9 as 
the backend database.  DB2 V9 is a Relational Database 
Management System with several advanced features such as 
adaptive, self-tuning memory allocation, which helps reduce or 
eliminate the task of configuring your DB2 server by 
continuously updating configuration parameters, resizing buffer 
pools and dynamically determining the total amount of memory to 
be used by the database. 
 

2.2 POWER6 vs POWER5+ processors 
 

POWER5+  [1] and POWER6  [2] processors are both dual core 
64-bit highly efficient superscalar processors supporting 
simultaneous multi-threading (SMT) with 2 threads.  While they 
share a lot of common architectural features, there are notable 
differences between the 2 processor types and some of the major 
differences are described below.  Figure 3 provides a schematic 
diagram of the 2 processor types. 
 

1. Higher processor frequency in POWER6 
The POWER6 processor runs at about 2.5 times the 
clock frequency of the POWER5+ processor (Table 1).  
It accomplishes this by a combination of VLSI  
technologies and micro-architectural changes.  
POWER5+ was built using 130nm silicon on insulator 
(SOI) IBM CMOS technology  [1], while POWER6 is 

built using 65nm SOI IBM CMOS technology  [2].  Also 
the POWER6 processor is a 13-FO4 design requiring a 
24-stage pipeline, while the POWER5+ is a 23-FO4 
design yielding a 16-stage pipeline. 

2. In-order vs Out-of-order Execution 
The POWER5+ processor uses out-of-order execution, 
while POWER6 employs in-order execution.  Since 
POWER6 uses only in-order execution, it does not need 
register renaming.  Even though it only has in-order 
execution, POWER6 uses the Load Look Ahead (LLA) 
technique to bring data into L1 and ERAT during the 
stall cycles.  Briefly, LLA works by prefetching the 
data for the subsequent instructions when there is cache 
miss due to a load.  The computational results of these 
instructions are discarded after the initial load miss 
returns, and re-execution of all the instructions starts 
from the initial load miss with the expectation that the 
LLA primed the cache and ERAT.  See reference  [2] for 
a detailed explanation of LLA.  To enhance the 
effectiveness of LLA, POWER6 also employs a Load 
Miss Queue (LMQ) of 8 entries to support outstanding 
L1 cache misses. 

3. Dedicated L2 cache per core vs Shared L2 
Each core in the POWER6 chip has its own dedicated 
4MB L2 cache, whereas in the POWER5+ chip, both 
the cores share 1.9MB L2 cache. 

4. Store Queue (SQ) 
Since both processor types have write-through L1 
cache, they employ a Store Queue to keep the contents 
of store instructions.  When the processor issues a store, 
the SQ keeps the contents of the store until the data is 
written into L2 cache.  If the processor issues any load 
instruction while the data is still in SQ, the data is 
served by the SQ instead of the L1 cache. Although this 
feature is present in both processor types,  our results in 
section 3.2 show that SQ is more beneficial to 
POWER6 because of its higher frequency. 

5. Address Translation Tables 
POWER6 uses Effective-to-Real-Address-Translation 
(ERAT) tables only, instead of both the Translation 
Look-aside Buffers (TLB) and ERATs used in 
POWER5+.  Each POWER5+ core has a 2048-entry 
TLB table which is not present in POWER6, whereas 
each POWER6 core has a 128-entry Instruction ERAT  
(I-ERAT) table and a 128-entry Data ERAT (D-ERAT) 
table.  The I-ERAT supports 4KB and 64KB page sizes 
whereas the D-ERAT supports 4KB, 64KB, and 16MB 
page sizes. 

 
The schematic diagrams of POWER5+ and POWER6 processors 
are given below. 
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Figure 3:  Schematic diagrams of POWER5+ and POWER6 
microprocessors 
 
The table below summarizes the feature differences between the 2 
processor types used in our  experiments. 
 

Table 2:  Comparison of POWER5+ and POWER6 processor 
Features  
 POWER5+ POWER6 
Frequency 1.9 Ghz 4.7 Ghz 
TLB capacity, 
associativity 

2048 entries, 4-way N.A. 

L1  ICache capacity, 
associativity, line size 

64 KB,  
2-way, 128B 

64 KB,  
4-way, 128B 

L1 DCache capacity, 
associativity, line size 

32 KB,  
4-way, 128B 

64 KB,  
8-way, 128B 

L2 Cache capacity, 
associativity, line size 

1.9 MB (shared),  
10-way, 128B 

4 MB, 
8-way, 128B 

L3 Cache capacity, 
associativity, line size 

36 MB,   
12-way, 256B 

32 MB, 
16-way, 128B 

Address Translation Effective-to-Real : 
128-entry I-ERAT,  
128-entry D-ERAT 
Virtual-to-Real:  
2048-entry TLB 

Effective-to-Real : 
128-entry I-ERAT,  
128-entry D-ERAT 

 

2.3 AIX 5.3 Operating System  [4] 
AIX 5.3 is a highly-scalable, robust, high-performance, and  
industry-leading UNIX server operating system with a kernel 
optimized for the POWER hardware platforms.  AIX shares a lot 
of commonalities with other UNIX operating systems, 
particularly with respect to commands and application interfaces.  
However, there are significant differences in the implementation 
of various kernel subcomponents, most prominently  in the 
memory management subsystem.  AIX 5.3 implements many 

advanced features such as  affinity scheduling, thread-sensitive 
scheduling, multiple concurrent page-able page-sizes, hardware-
thread priority management, and hardware-page copier, to 
efficiently exploit the POWER architecture,  In addition, AIX 
supports many industry-leading Advanced Virtualization features 
in close collaboration with the POWER hardware and hypervisor.  
In this paper,  our focus is to observe if there are major changes in 
OS behavior when the underlying processor type changes 
significantly (from POWER5+ to POWER6), without changing 
the application software and the OS levels. 

3. RESULTS 
This section discusses the results of our experiments on 
POWER5+ and POWER6 systems using Trade6 as the workload. 

3.1 Results as observed by the client 
application (Trade6 driver) 
 
Figure 4 shows the distribution of the application throughput 
observed by the Trade6 client for all 3 experiments.  The graphs 
provide a high level view of the Trade6 throughputs as a function 
of elapsed time.  In the averages presented in the rest of this 
paper, we have eliminated the measurements for the initial warm 
up period, and have computed the average values for a typical 
“steady-state” period, namely, using the values measured between 
elapsed time of 300 and 540 seconds in all 3 experiments. 

 
Figure 4:  Throughput observed by the Trade6 application as 
a function of Elapsed time 
 
Table 3 summarizes the graphs in Figure 4 by computing the 
average throughput after Trade6 has stabilized. 

 
Table 3:  Average throughput observed by Trade6 
 Exp1P5+_1D Exp2P6_1D Exp3P6_4D 

Throughput   
(= #Webpages 
served per second) 

3466 4458 6001 

 
As we can see from the above results, the throughput increases by 
about 30% just by moving from the POWER5+ processor type to 
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the POWER6 processor type.  Because, the POWER6 clock 
frequency is almost 2.5 times that of the POWER5+ processor, , 
but the throughput had not increased 2.5 fold, we set out to  
investigate what the reasons could be. 
In the following subsections, we analyze the measurements 
captured at 2 different levels of the IT stack (namely, at the 
processor micro architectural level, and at the OS level) and show 
where the performance bottlenecks occurred. 
 

3.2 Results at the Processor Micro- 
architectural level 
 

Table 4:  Processor Micro-architectural Level Metrics 
(Average values) 
 Exp1P5+_1D Exp2P6_1D Exp3P6_4D 

Trade6 Throughput     
( #wPg / sec. ) 

3466 4458 6001 

#Instructions 
Completed / wPg 

1,104,959 1,048,033 1,083,740 

CPI  (Cycles Per 
Instruction) 

3.38 4.49 4.49 

#L1 Data Cache Refs 
(Loads+Stores) / wPg 

630,279 421,667 413,769 

#L1 Data Load 
references / wPg 

386,101 249,598 253,901 

#L1 D-Cache Load 
misses / wPg 

41,876 15,386 15,589 

Ratio of (L1 D-Cache  
Load misses / L1 D-
Cache Load Refs.)  

.11 .06 .06 

 

From the above table, we can see that the numbers of instructions 
executed per web-page by the POWER5+ and POWER6 
processors are about the same (only 5% difference between Exp1 
and Exp2, and 2% difference between Exp1 and Exp3).  
However, we can also observe several big differences between the 
2 platforms, namely, differences in CPI, and in cache activities. 

 

From Table 4, we see that the CPI for POWER6 is about 33% 
higher than that for POWER5+.  Figure 5 below gives the 
breakdown of the CPI measurements on the POWER5+ AND 
POWER6 processors (from Exp3P6_4D experiment). 
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Breakdown of the CPI for POWER6
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Figure 5:  Breakdown of the CPI in POWER5+ and POWER6 
(Exp3P6_4D) processors 

 

Figure 5 shows that the dominating factors contributing to the CPI 
in both processor types are the Data Cache misses, and the 
Nothing-to-dispatch situations (which are primarily due to I-
Cache misses).  For POWER6, of the 47% of CPI due to Dispatch 
Stalls, about 21% are due to L1 Data cache misses.  Note that 
despite the large number of stalls due to data cache misses, the 
POWER6 processor is still able to get significant efficiency by 
using techniques such as LLA. Another source of the stalls in 
POWER6 is GPR dependencies, which contributes to about 8% of 
the CPI.  These are caused by the lack of register renaming in 
POWER6, as described in section 2.2. The overall distribution of 
the cause of high CPI for POWER6 is very similar to that of 
POWER5+, even though the 2 processor types have significantly 
different micro-architecture.  From this we observe that the micro- 



architecture of a well designed out-of-order and that of an 
aggressive in-order processor are equally suitable for today’s 
eCommerce applications, and their significance to performance 
will depend on the higher levels of the end-to-end stack.  

We can also notice from Table 4 that the L1 Data cache load 
references and misses per web-page are significantly less on 
POWER6 than those on POWER5+.   We believe that the 
reduction in L1 Data cache load references is due to a higher 
utilization of the Store Queue (SQ) in POWER6. The combination 
of (1) a 16-entry SQ per POWER6 core, (2) the nature of 
eCommerce applications in which loads are closely followed by 
stores, and (3) the higher clock frequency of the POWER6 core, 
causes a higher utilization of the SQ than on the POWER5+.  The 
L1 Data Cache references also show that a large portion of the 
instructions in today’s eCommerce applications put  significant 
stress on the memory subsystem in the processor. 

This decrease in the L1 D-Cache Load miss ratio from POWER5+ 
to POWER6 can be attributable to the doubled size and 
associativity of the L1 Data cache in POWER6.  

Based on these results, we believe that recompilation of today’s 
eCommerce applications will not significantly improve their 
performance on the POWER6 platform.  Recompilation of the 
application in our experiments may reduce the stalls due to GPR 
conflicts; however, since the portion of Dispatch Stalls due to 
GPR dependencies is only .34 (out of  total value of 4.49 for the 
CPI), recompilation will cause at most 7% reduction in the CPI 
value. 

The high CPI on both platforms is the reflection of the tendency 
in the new generation of eCommerce applications to focus in the 
higher level abstractions and issues such as object life-cycle 
management, instantiation and passivation rather than on 
improving the performance of the application for a given micro 
architectural design.   We believe that this trend will continue as 
the world is increasingly moving towards reflective, dynamic and 
object-oriented programming environments such as Ruby, PHP, 
Python, Perl, Java, etc. 

3.3 Results at the Operating System Level 
 
While the results at the processor level are significantly different 
in many parameters, the results at the operating system level 
between the three experiments are not much different except in 
one area – I/O subsystem.  As we have shown below, the results 
in process and memory subsystems are quite similar between both 
the platforms. 
 

3.3.1 System Calls 
 
Table 5:  System Calls 

 Exp1P5+_1D Exp2P6_1D Exp3P6_4D 

#syscalls / sec 71,591 95,776 131,157 

#syscalls / wPg 20.65 21.48 21.85 

 

As we can see from the above table, there are no significant 
differences in the number of system calls invoked per web-page 
among the 3 different experiments.  This can be expected because 
we ran the same application in all 3 experiments. 
 

3.3.2 Process Subsystem 
 

We have captured several different metrics in the process 
subsystem to see if the OS behaved differently between the 2 
hardware platforms. 

Table 6:  Process or Thread related metrics 

 Exp1P5+_1D Exp2P6_1D Exp3P6_4D 

User 74.48 47.65 62.58 

System 13.50 12.05 15.80 

Idle 7.83 29.60 17.0 

I/O wait 4.13 10.65 4.65 

#runnable threads  28.18 13.33 19.63 

#threads waiting for 
disk I/O 

1.48 1.78 1.10 

 

Table 6 shows that the processor utilization has gone down quite a 
bit (from 88% to 60%) when we ran the same application on 
POWER5+ versus POWER6. One can also observe that the 
number of runnable threads has decreased from Exp1P5+_1D to 
Exp2P6_1D.   Moreover, the I/O wait time has increased 
dramatically.   Based on these observations from Exp2P6_1D, we 
concluded that the I/O subsystem’s performance had not kept up 
with the CPU performance when we moved from POWER5+ to 
POWER6.  To validate our inference, we constructed experiment 
3 (Exp3P6_4D) by increasing number of disks used for DB2 from 
1 to 4.  As the results in the above table show, this experiment 
validated our inference that the performance gap between the 
processor and the I/O subsystem has widened going from 
POWER5+ and POWER6.  In a later section, we discuss this gap 
in more details, and also provide a quantitative metric for 
measuring this gap. 

The 5th row in Table 6 shows the average number of runnable 
threads that are either currently running or waiting to be 
scheduled on a CPU, and the next row shows the average number 
of threads waiting for an I/O to be completed.  We can see that in 
Exp2P6_1D more threads are waiting for I/O than in 
Exp1P5+_1D, which further points to the relative inefficiency of 
the I/O subsystem in Exp2P6_1D. 

Comparing experiments 1 and 3, we see that the processors are 
staying idle for a larger percentage of time in Exp3P6_4D.  This 
is probably due to the fact that the applications WebSphere, DB2 
cannot generate enough load to consume the available resources 
in experiment 3.  When we tuned the WebSphere and DB2 to use 
more threads and increased the number of clients, the Idle time 
and I/O wait time have been both reduced by than half, resulting 
in increase in the throughput. 



 

We have also measured the number of context switches per 
second in the OS.  These numbers, given in Table 7 below,  show 
that the number of context-switches per web-page do not 
significantly differ across all 3 experiments.  The number of 
context switches is roughly proportional to the throughput 
obtained. 

 
Table 7:  Number of Context Switches 

 Exp1P5+_1D Exp2P6_1D Exp3P6_4D 

#Context Switches 
per second 

40,924 52,611 70,572 

#Context switches 
per web-page 

11.80 11.80 11.76 

 
 

3.3.3 Memory Subsystem 
 
Based on the results in Table 8, we can see that the memory 
subsystem does not behave very differently on a POWER6 system 
compared to that on a POWER5+ system. 

 
Table 8:  Memory subsystem Metrics 

 Exp1P5+_1D Exp2P6_1D Exp3P6_4D 

#Zero  
Page-faults / sec 

168.08 151.73 153.53 

#Zero  
Page-faults / wPg 

0.048 0.034 0.026 

#Non-zero Page-faults / 
sec 

140.18 163.48 179.98 

#Non-zero Page-faults / 
wPg 

0.040 0.037 0.030 

#Page-ins / sec 18.28 38.95 53.53 

#Page-ins / wPg 0.005 0.009 0.009 

#Page-outs / sec 266.85 300.88 444.23 

#Page-outs / wPg 0.077 0.067 0.074 

 
 
From the above table, we can see that the total number of page-
faults per second is not substantially different across all 3 
experiments.  However, we can also see that the number of page 
faults generated on a per-web-page basis has decreased from 
POWER5+ platform to POWER6 platform.  One of the reasons 
for this behavior could be that there is a lot of memory-page 
sharing between the data accessed by Trade6 for serving multiple 
requests.  As more requests are being served, the memory page-
sharing also increases. 
The number of page-ins and page-outs in the above table mainly 
represent the I/O activity caused by the database.  The DB2 

database in our experiments uses a JFS2 file system to store its 
data.  From the above table, we see that the number of page-outs 
is significantly higher than the number of page-ins.  This is due to 
the fact that DB2 has to store the results of every Trade6 
transaction into persistent storage, i.e. a database page will be 
written to the disk multiple times during its lifetime. 
 

3.3.4 I/O Subsystem 
 
As described in the 2 subsections above, we can see that most of 
the performance issues arose from the I/O subsystem of the 
server. 
 
As described before, we have identified the I/O subsystem as the 
bottleneck when we noticed that the CPUs were waiting much 
more for I/Os to be completed in Exp2P6_1D.  Once we 
addressed this problem by striping the database across 4 disks 
instead of 1, the I/O bottleneck had decreased substantially. 
 
We have also measured the number of device interrupts and the 
number of IO starts and completions, to characterize the gap 
between CPU and IO performance.  The following table lists 
these results, and we include our analysis below the table. 
 

Table 9:  I/O subsystem Metrics 

 Exp1P5+_1D Exp2P6_1D Exp3P6_4D 

# Device interrupts  / sec 5711 5586 7407 

# Device Interrupts  / wpg 1.65 1.25 1.23 

#  start IOs / sec 286 340 498 

# IOdones / sec 262 289 445 

# IOdones/ startIOs 0.92 0.85 0.89 

 

From the above table, we can observe the following: 

a) The number of device interrupts per web-page decreases as the 
processor speed increases. 

b) The number of IO-dones per second are less than the number of 
startIOs per second.  This is because the JFS2 filesystem 
coalesces multiple I/O requests into a single one and invokes the 
memory subsystem’s I/O-completion-notification interface only 
once.  We observe that this feature can be used to construct a 
metric for measuring the performance gap between the processor 
and the I/O subsystem.  The metric is the ratio of 
IOdones/IOstarts.  When the processor subsystem is 
significantly faster than the I/O subsystem, the ratio of 
IOdones/IOstarts will be much lower than 1.  When both the 
subsystems are in sync, then this ratio is closer to 1. 

4. CONCLUSIONS 
 



In this paper, we have compared 2 generations of the IBM 
POWER processors running the same application stack and 
operating system.  We have primarily analyzed the OS behavior 
on these 2 generations of hardware to see if there are significant 
changes in the OS behavior.  Based on our observations, the 
following conclusions can be made: 

1. Modern eCommerce applications are increasingly built 
out of easy-to-program, generalized but non-optimized 
software components, resulting in substantive stress on 
the memory and storage subsystems of the computer.  A 
large portion of the instructions executed for Trade6 
application are load/stores, as shown in section 3.2. 

2. The increasing integration of IT into the business 
processes has pressured the various layers of the IT 
stack to be released/updated at different times.  Hence, 
there is a need for multiple versions of each layer of the 
IT stack to coexist and to perform reasonably well with 
different releases of the other layers. 

3. Merely cranking up the frequency of the processor to a 
much higher level does not necessarily provide 
proportional performance/throughput increases in the 
end-user applications.  Nevertheless, we have observed 
that one can gain significant improvements in the end-
user application throughput with minor tunings at the 
system hardware configuration level or at the OS level. 
For example, after observing bottlenecks in the I/O 
subsystem, spreading the database across 4 disks instead 
of using 1 disk has provided significant throughput 
improvements.  

4. The higher CPI measured in the POWER6 experiments 
persisted despite our tuning attempts at the OS level and 
at the I/O hardware level, and despite the increased on-
core cache sizes over POWER5+.   And, as our analysis 
in section 3.2 shows, recompiling for POWER6 would 
not have made much difference to the CPI. 

5. From Table 6, we see that the AIX kernel consumed a 
larger percent of the CPU time in experiment 3 than in 
experiment 2 (both on POWER6). The cause  of the 
increase is probably the I/O configuration changes 
(spreading the database across 4 disks instead of 1) we 
made to reduce the CPU idle and I/O wait time.   
Because I/O activities at the OS level are mostly kernel 
mode activities, more I/O activities in the system 
resulted in more CPU cycles being executed in kernel 
mode.  However, the 4 disk configuration in experiment 

3 yielded a significant improvement in throughput, 
leading us to conclude that careful balance of resources 
by the OS, particularly in the I/O space optimization, 
has the potential to yield significant performance for 
future eCommerce applications. 

6. It is very important to keep the performance of the 
memory subsystem and the I/O subsystem in sync with 
the processor performance in order to optimize 
eCommerce throughput and to maintain similar OS 
behavior.  We believe that the ratio IOdones/IOstarts 
can be used as an indicator of how well balanced the 
CPU subsystem and I/O subsystems are on the 
AIX/SystemP platform. 

7. Within the limited scope of our experiments, we have 
shown how to systematically analyze the data to 
identify changes in the OS behavior, and have 
attempted to explain those changes in light of the 
differences in the 2 microprocessor implementations.  

8. In summary, the overall OS behavior did not seem to 
change significantly across these 2 generations of 
hardware processor type. 
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