
RC24424 (W0711-114) November 19, 2007
Computer Science

IBM Research Report

User Collaborative Semantic Web Service Matching for
Legacy Application Integration – A Case Study

Hua Fang Tan
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, 100094

P.R.China

Rama Akkiraju, Anca-Andreea Ivan, Richard Goodwin
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598 USA

Diane Knappenberger
IBM Mail Stop: 025A

6300 Diagonal Highway
Boulder, CO 80301 USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Abstract

Legacy application integration is often tedious and
laborious. IT consultants do not have many tools at
their disposal that can help them in their efforts.
Semantics-based intelligent tools can alleviate some
of the burden on IT consultants. In this paper we
present the results of a case study on the application
of our semantic Web service matching system to a
real-world legacy application integration problem.
Experimental results on our initial data sets indicate
that the system on its own is able to achieve close to
an average of 50% recall and 54% precision meas-
ures in matching the parameters that define the in-
terfaces of business applications. Additional per-
formance enhancements of up to 95% recall and
72% precision measures were achieved with the
usage of domain ontologies created by an expert.
Therefore, we believe a user working with a se-
mantics-based intelligence tool could gain signifi-
cant productivity enhancements in IT projects rather
than working alone. These productivity enhance-
ments can be quickly translated into savings in time
and money in business process integration projects.

1 Introduction

Business process integration is among the most important
challenges faced by organizations today. Integrating dispa-
rate business applications is at the heart of this challenge. In
the context of a large enterprise that was created through
mergers and acquisitions, there are often thousands of ap-
plications and data repositories, each with associated services
and interface definitions. Since these interfaces were created
for different organizations, over different periods of time and
for different initial purposes, it is unlikely that they use a
common set of terms to name services and parameters. This
leads to substantial heterogeneity in syntax, structure and
semantics. For example, what one service interface in one
system may encode as itemID, dueDate, and quantity may be
referred to by another service interface in a different appli-
cation as UPC (Universal Part Code), itemDeliveryTime and
numItems. A substantial amount of developer time is spent in
identifying these kinds of semantic ambiguities and resolving
them.

In current practice, much of this interface mapping is done by
consultants manually. Analysts and developers typically pour
over large spreadsheets or XML documents that describe the
interface elements of each application and manually create
the mappings between source application parameters and
target application parameters. This process is tedious and
laborious. Semantics-based intelligent tools can alleviate
some of the burden on IT consultants. The objective of se-
mantic Web service matching research is to help develop
(semi) automated tools to help resolve these types of syntac-
tic, structural and semantic differences.

In this paper, we present the results of a case study on the
application of our semantic Web service matching system to
a real-world legacy application integration problem. The
objective of the case study is to assess the performance im-
provements that can be noted when an IT consultant works
with our semantic Web service matching tool in comparison
to doing it manually herself. In our work, we model the in-
terfaces of business applications that need to be integrated as
semantic Web services represented in WSDL-S [WSDL-S].
We, then perform semantic matching of these Web services
to find the semantic similarities between the interfaces of
their corresponding business applications.

Considerable amount of work has been done on schema
matching [Madhavan et al. 2001] [Rahm et al. 2001] and
more recently on Web service matching [Sycara et al., 1999]
[Dong et al., 2004] [Syeda-Mahmood et al., 2005]. Specifi-
cally, previously, Syeda-Mahmood et. al [Syeda-Mahmood
et al., 2005] have shown that combining domain-independent
and domain-specific ontologies to determine the semantic
similarity between ambiguous concepts/terms yields better
results while matching Web services interfaces than could be
obtained using any one cue alone. In their work, the do-
main-independent relationships are derived using an English
thesaurus after tokenization and part-of-speech tagging. The
domain-specific ontological similarity is derived by inferring
the semantic annotations associated with Web service de-
scriptions using an ontology. Matches due to the two cues
are combined to determine an overall similarity score. Our
semantic matching engine is based on this work.

User Collaborative Semantic Web Service Matching for Legacy Application Inte-
gration– A Case Study

Hua Fang Tan

1
, Rama Akkiraju

2
, Anca-Andreea Ivan

2
, Richard Goodwin

2
 and Diane Knappenberger

3

1
IBM China Research Lab, Building 19 Zhongguancun Software Park, 8 Dongbeiwang WestRoad, Beijing,P.R.C.100094

2
IBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY, 10532, USA

3IBM Mail Stop: 025A 6300 Diagonal Highway Boulder, CO 80301, USA
{tanhuaf@cn, akkiraju@us, ancaivan@us, rgoodwin@us, kberger@us}.ibm.com

The rest of the paper is organized as follows. Section 2 in-
troduces two accounting applications and their interfaces and
calls out the interesting characteristics of these applications
that have a bearing on automatic matching. In Section 3, we
present an overview of our semantic matching engine so as to
establish the context for the experiments to follow. We dis-
cuss the details of our experimental design in Section 4. In
Section 5, we present the experimental results and draw the
insights obtained from conducting the case study. Finally we
conclude in Section 6 with a summary and future work items.

2 Matching the Interfaces of Accounting Ap-

plications – A Case Study Scenario

Our case study scenario consists of integrating two

real-world accounting applications; Application A and Ap-

plication B. Application A keeps track of various identifiers

related to project and account controls. These identifiers are

used within the general ledger as well as the systems that feed

the ledger to track cost and revenue. They are also used for

labor claiming and several types of reporting. Some of the

types of these identifiers are: Customer Groups, Account

Groups, Accounts, Billing Code, and Ledger Project Ids.

The client had implemented a new business management

suite of applications. As part of this effort, the customer

billing management is to be handled by another system called

Application B. Application A and B share some common

information related to customer accounts, billing codes and

contractual information. Therefore, the key identifiers and

overlapping information in these two systems have to be kept

in synchronization to ensure data integrity across the entire

business management suite of applications. At the heart of

this data synchronization task is the challenge of mapping the

interface parameters of these two systems. Since Application

B has been developed by a vendor different from the one that

developed Application A, there are both semantic and struc-

tural differences between the interfaces of the two systems.

For example, what Application A calls as AccountGroup is

referred to by Application B as a Contract. Similarly, a De-

partment in Application A is called a ServiceOffice in Ap-

plication B. A short list of such vocabulary differences is

shown in Table 1. The task of an IT consultant is to find these

commonalities and differences and write the glue code re-

quired to enable smooth data synchronization.

Application A Application B

Account Group Contract

Account Worker Number

Department Service Office

Customer Group Level 3 Country

Competency Code Service Line

Table 1: Some terminology differences between Application

A and Application B

In this case study, we are interested in applying our seman-

tics-based intelligent tool developed using semantic Web

services matching technology. The hypothesis of this effort is

that an IT consultant working with a semantic Web service

matching tool can be more productive in IT integration pro-

jects than doing it manually herself. Detailed evaluation

criteria are discussed in the Experimental Design and Results

sections. To investigate this, we selected three transactions

that trigger the sending of messages from Application A to

Application B. These transactions typically involve Appli-

cation A sending a subset of information to Application B

and in return receiving some updated information and con-

firmation codes from Application B.

We model these transactions as three Web services repre-

sented in WSDL [Christenson et al 2001] format, and then

match the interfaces of these sets of Web services using our

semantic Web service matching technology. Below, we

present some of the characteristics of the interfaces of the two

systems that have an impact on automatic matching.

1) 80% of the parameters are composed of multi-

-part-words (eg: DATE_OPEN, START_DATE etc.).

2) 70% of the parameters have one or more than one ab-

breviation (eg: CUST_ID for Customer Identifier and,

CLNT_CDE for Client Code etc.).

3) Many superficial differences in semantics exist. Some of

such differences are outlined below.

a) Ordering differences: eg:

 “DATE_LAST_UPD”-“Last_update_date”.

b) Synonyms: “DATE_BEGIN”-“START_DATE”.

c) Terminology differences: Such as the ones listed

in table 1.

4) Some of semantic information has been omitted when

developers named the parameters. For example, a trans-

action that gets a billing code (called getBillingCode())

takes a parameter called ‘description’. In this case, the

parameter ‘description’ can be complemented with con-

textual information (we refer to this as semantic anno-

tation) such as “BillingCodeDescription”.

5) Some of semantic information that is omitted by de-

velopers can not be complemented by the contextual

information. For example, in a parameter that is meant to

represent “TOTAL_HOURS” ‘TOTAL’ has been

omitted and it was called ‘HOURS’. Similarly, a pa-

rameter that is meant to represent “estimated_hours”,

‘estimated’ was omitted and it was simply called

‘hours’. This could lead to false positives during

matching. Once eliminated this type of contextual in-

formation cannot be inferred unless it is explicitly stated

in a domain model.

These characteristics of the problem have a bearing on the

performance of the heuristics and algorithms that are im-

plemented in our semantic matching engine. To help set the

context for some of the results presented in Section 4, we

introduce our semantic matching engine in Section 3 below.

3 An Overview of Our Semantic Matching

Engine

Our semantic Web service matching engine is based on
[Syeda-Mahmood et. al 2005]. We model both a client’s
request and a service provider’s service as Web services.
These Web services can be optionally semantically annotated
with contextual information. We use WSDL-S [Akkiraju et
al. 2005] mechanism to add semantic annotations to WSDL
documents. The semantic matching engine uses do-
main-independent and domain-specific ontologies to deter-
mine the semantic similarity between ambiguous con-
cepts/terms in a WSDL document. The domain-independent
relationships are derived using an English thesaurus after
tokenization, part-of-speech tagging and abbreviation ex-
pansion. The domain-specific ontological similarity is de-
rived by inferring the semantic annotations associated with
Web service descriptions using an ontology. Matches due to
the two cues are combined to determine an overall similarity
score. Figure 1 presents a component view of our semantic
matching engine.

Figure 1: A component view of our semantic matching en-
gine.

Below we discuss those parts of the system that are relevant
to matching the interfaces of Application A and Application
B of our case study. More details about the inner workings of
the system are presented in the paper [Syeda-Mahmood et. al
2005].

• Lexical Matching (L): Words are matched for their exact

lexical similarity. Eg: ‘country_cd’ on one side matches

with ‘COUNTRY_CD’ on the other side.

• Word Tokenization (T): Words are tokenized based on the

common naming conventions used by programmers such

as underscore, spaces, and camel case letters etc. For

example, the “BillingCode” will be tokenized into two

tokens “Billing” and “Code” respectively. This allows for

semantic matching of the attributes.

• Abbreviation expansion (X): The abbreviation expansion

uses domain-independent as well as domain-specific

vocabularies. It is possible to have multiple expansions

for a candidate words. All such words are retained for

later processing. Thus, a word such as “CustPurch” will

be expanded into CustomerPurchase, CustomaryPur-

chase, etc.

• Using domain-independent ontologies (D): We used the

WordNet dictionary/thesaurus [16] to find matching

synonyms and other related concepts to words. For ex-

ample, the term FINISH in the multi-part word

DATE_FINISH is a synonym to the term END in

END_DATE.

• Using domain-specific ontologies (O): Domain-specific

ontologies can be created by an expert to provide addi-

tional contextual information to interface parameters. For

example, in our case study, an expert could create an

ontology relating the corresponding terms given in table 1

and annotate the parameters of the interfaces accordingly.

These annotations help in making matches that could not

otherwise have been made.

At a high-level, the semantic matcher works as follows. The

domain independent reasoning module takes the multi-term

words of a given Web service interface and parses them into

tokens. Abbreviation expansion is done for the retained

words if necessary, and then a thesaurus is used to find the

similarity of the tokens based on synonyms. The resulting

synonyms are assembled back to determine matches to can-

didate multi-term word parameters from another Web service

interface that it is being matched with (whose parameters are

also treated using the same approach). Scoring is done as

follows in the case of domain independent reasoner.

The semantic similarity between parameters pAi and pBj (that

belong to Application A and B respectively) consisting of

tokens m and n respectively, where k tokens are matched is

given by: Score (pAi, pBj) = Min {(k/m), (k/n)}. For example,

the semantic similarity score between the parameters "Con-

trol_Country_CD" (say pAi) and "Country_CD" (say pBj)

would be 0.67. This is so because two of the three tokens in

pAi match with the two of the two tokens in pj. Therefore,

Score (pAi, pBj) = Min {(2/3), (2/2)}.

If the parameters pAi, pBj have semantic annotations from a

domain ontology, then the reasoner computes the similarity

score as follows. Relationships subClassOf(pAi, pBj), sub-

ClassOf(pBj, pAi), and typeOf (pAi, pBj) all are given a score of

0.5, sameAs(pAi, pBj) is given a score of 1 and no relationship

gets a score of 0. For example, if both ‘"Con-

trol_Country_CD" and "Country_CD" had the same seman-

tic annotation say ‘domainOntology#CountryCode’, then

they would match exactly and get a score of 1 according to

the domain reasoner. In cases where we can compute a score

from domain-independent reasoner as well as from a do-

main-specific reasoner, we use a winner-take-all approach

(our system implements other schemes for score combination

as well but we use this winner-take-all scheme here).

Thesaurus

(WordNet/SureWord etc).

EANCodeEANC ode

UPC

UPC Vers ion A
UPC Vers ion E

EANCode
EAN 8

EANCodeEAN 13
subClas sOf

typ e
typ e

type

typ e

EANCo de

Par tNu mber

subC lassOf

Ontology
Repository

Lexical Matcher

Thesaurus Matcher

Expansion List Matcher

Type Matcher

Structure Matcher

Ontology Matcher

T
o

k
e
n

iz
e
r

Semantic Matcher

Domain-independent
ontology reasoning

Domain-specific
ontology reasoning

Thesaurus

(WordNet/SureWord etc).

EANCodeEANC ode

UPC

UPC Vers ion A
UPC Vers ion E

EANCode
EAN 8

EANCodeEAN 13
subClas sOf

typ e
typ e

type

typ e

EANCo de

Par tNu mber

subC lassOf

Ontology
Repository

Lexical Matcher

Thesaurus Matcher

Expansion List Matcher

Type Matcher

Structure Matcher

Ontology Matcher

T
o

k
e
n

iz
e
r

Semantic Matcher

Thesaurus

(WordNet/SureWord etc).

EANCodeEANC ode

UPC

UPC Vers ion A
UPC Vers ion E

EANCode
EAN 8

EANCodeEAN 13
subClas sOf

typ e
typ e

type

typ e

EANCo de

Par tNu mber

subC lassOf

EANCodeEANC odeEANCodeEANC ode

UPCUPC

UPC Vers ion AUPC Vers ion A
UPC Vers ion EUPC Vers ion E

EANCode
EAN 8

EANCode
EAN 8

EANCodeEAN 13EANCodeEAN 13
subClas sOf

typ e
typ e

type

typ e

EANCo de

Par tNu mber

EANCo de

Par tNu mber

subC lassOf

Ontology
Repository

Lexical Matcher

Thesaurus Matcher

Expansion List Matcher

Type Matcher

Structure Matcher

Ontology Matcher

T
o

k
e
n

iz
e
r

Semantic Matcher

Domain-independent
ontology reasoning

Domain-specific
ontology reasoning

Therefore, the parameters "Control_Country_CD" and

"Country_CD" match with a score of 1.

In the next section, we describe the experimental design.

4 Experimental Design

As was noted, the objective of this case study was to assess

the productivity enhancements that an IT consultant can get

by using a tool to achieve application interface matching in

comparison to doing it manually herself. We have selected

three sets of interfaces that needed be matched between Ap-

plication A and Application B, where each interface pair

consisting of dozens of parameters (altogether about 85 pa-

rameters in total). While noting the possible productivity

enhancements that can obtained, we were also interested in

comparing the incremental benefit of each approach/heuristic

in our engine. Therefore, we have structured the experiments

based on the heuristics introduced in section 3 represented by

the letters L, T, X, D, and O.

1. Experiment L: Matching interfaces using lexical match-

ing approach alone.

2. Experiment L+D: Matching interfaces using lexical

matching and domain-independent dictionary/ontology

approaches.

3. Experiment L+T+D: Matching interfaces using lexical

matching, tokenization, and domain-independent dic-

tionary approaches.

4. Experiment L+T+D+X: Matching interfaces using lexi-

cal matching, tokenization, domain-independent dic-

tionary and abbreviation expansion approaches.

5. Experiment L+T+D+X+O: Matching interfaces using

lexical matching, tokenization, domain-independent

dictionary, abbreviation expansion and domain-specific

ontology approaches.

To evaluate these experiments we define the following:

PA = {the set of all parameters pA1….pAn in a Web service

interface of Application A}

PB = {the set of all parameters pB1….pBn in a Web service in-

terface of Application B}

match pair (pAi, pBj) = a mapping between the parameters pAi in

a Web service interface of Application A and pBj in a Web

service interface of Application B. (Please note that a match

pair represents the existence of a link between pAi and pBj. It

does not say anything about whether it is correct or not.)

Generated Matches (PA, PB) (G) = {the set of all match pairs

generated by the semantic matching engine between PA and

PB}

Expected (E) = {the set of match pairs labeled by the expert

between PA and PB i.e., ‘ground truth’}

Correct (C) = {G ∩ E} i.e., the number of match pairs which

are generated by our semantic matching engine between PA

and PB that are also in the set E.

Incorrect (I) = {G − E} i.e., the number of match pairs which

are generated by our semantic matching engine but not in the

set E.

Missing (M) = {E – G} i.e., the number of match pairs which

are in the set E but not generated by our semantic matching

engine.

Precision (P): C/(C+I) = C/G

Recall (R): C/(C+M) = C/E

F-measure: 2*P*R/(P+R） i.e.，the weighted harmonic mean

of precision and recall

To obtain (E), we worked with an IT consultant who had

worked on the actual integration of Applications A and B for

the client and gathered the expected results. This served as

our ‘ground truth’. Precision measure gives an indication of

the quality of matches while recall measure helps measure

the quantity of matches. F-measure is a harmonic mean of

precision and recall metrics. It is indicative of both the qual-

ity and the quantity of matches that a semantic Web services

system is able to make. Higher precision, recall and

F-measures indicate that the system is able to find most

number of expected (correct) matches while matching the

interfaces of applications, while keeping the number of in-

correct matches as low as possible. This would be encour-

aging because it would mean that an IT consultant doesn’t

have to find these matches manually. Therefore, higher pre-

cision and recall measure indicate the possible productivity

enhancements that can be obtained.

One has to note that our approach is for a user/IT consultant

to collaboratively with the system to achieve these results. It

is not a fully automated system. A consultant is expected to

work with the system to provide abbreviation expansions and

domain ontologies where needed to achieve this. Such an

initial effort on creating abbreviation expansions and domain

ontologies etc. would be justifiable if multiple transactions

occur between any given applications that need to be inte-

grated. The initial effort pays-off in the long run because

once provided, this information can be reused in matching

the multiple interface pairs of the applications.

5 Experimental Results

For each service interface pair that needed to be matched we
ran five experiments introduced earlier namely L, L+D,
L+T+D, L+T+D+X, and L+T+D+X+O. For each experiment
the number of correct and incorrect match pairs obtained was
noted. Figures 2-10 represent the recall and the precision
values computed for each of the three experiments, when
increasing the service matching score threshold. We varied
the service matching score threshold because the number of
‘close’ matches obtained depends on the amount of semantic
ambiguity that was allowed to be resolved. For example, the
parameters ‘Control-Country-CD’ and ‘Country-CD’ will be
considered a match only if the semantic similarity threshold
is set to below 0.6. This is so because the threshold allows
only those match pairs whose match score is above the set

threshold. Since these two parameters have a score of 0.67
1
,

they will be considered a match at this threshold. If the
threshold is set to 0.7, these parameters will not be consid-
ered a match. Thus by varying the semantic threshold, we
obtain different match pairs and thereby different precision
and recall measures. The intuition is that as the service
matching score threshold increases the number of matches
decreases. This, in turn, increases the number of missing
matches. Therefore recall ratio decreases. Whereas precision
increases because higher thresholds have the effect of low-
ering incorrect matches. This intuition is confirmed by our
experiments (as shown in Figures 2-10). The reason for using
this semantic similarity score threshold in our experiments is
that we are interested in finding out the optimal threshold at
which optimal precision and recall can be obtained for our
data sets. Next, we will explain some of the interesting results
obtained during the experiments.

In Figures 8 and 9, both the lexical (L) and the dictionary
(L+D) approaches have a recall and a precision of 0 at all
thresholds. The lexical approach failed because the two in-
terfaces were developed by different users, thus the chances
of using exactly the same words to denote identical notions
were very small. The dictionary approach failed because in
most cases, users define multi-word tags to better explain the
concept defined by a tag and a dictionary does not usually
contain multiword tags. However, this is not always the case.

Figures 3 and 6 suggest that the lexical and dictionary-based
approaches yield very good precision at all thresholds, i.e.,
the number of incorrect matches found is relatively small
compared to the number of correct matches found. Exami-
nation of data in service pairs 1 and 2 reveal that there are
indeed some parameters that can be matched using lexical
and dictionary-based approaches. These are the parameters
that matched exactly (or those did not use any abbreviations).
For example: ‘INDUSTRY_CLASS’ in Application A
matched with ‘Industry_Class’ in Application B. These types
of matches contributed to good precision. But it is to be noted
that in this case, the number of correct matches found is very
low compared to the total number of expected matches i.e.,
the number of missing matches is high. Therefore, the recall
is very low (i.e., recall of 0.06 and 0.13 in Figures 2 and 5).

All figures suggest that the most significant increase in per-
formance (both recall and precision) is obtained through
tokenization. Furthermore, the performance increases even
more by applying word expansion and ontology-based
matching techniques.

During our experiments, we noticed that the precision is not

always increasing with the service match score threshold (see

Figure 6). The reason is that the number of correct matches

dropped with the increase of the threshold, while the number

1 Section 3 discussed our score computation scheme that shows

how we obtain a score of 0.67 between the parameters ‘Coun-

try_Country_CD'’and ‘Country_CD’.

of incorrect matches remained constant. This break in mon-

otonic rise of precision can be noticed between thresholds 0.6

and 0.8. The details are shown in table 2.

Threshold # correct

matches

incorrect

matches

precision

0.6 25 8 0.76

0.7 15 2 0.88

0.8 11 2 0.84

Table 2: Table 2 explains the fluctuations in monotonic in-

crease in the precision in the precision curves in figure 5.

Another observation is that L+D+T+X+O approaches have

the best performance. In particular, Figure 8 shows the ideal

case when recall is 1. In this particular case, the ontology and

the ontology-annotations were built together with an expert;

thus, the experiment obtained perfect results. Even though

this might not be always the case (see Figures 2 and 5), we

strongly believe that users can highly improve the quality of

the matches if they take the time and effort to build a mean-

ingful ontology.

Service Pair 1 Recall

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Semantic Similarity Score Threshold

R
ec

a
ll

V
a

lu
e L

L+D

L+D+T

L+D+T+E

L+D+T+E+O

Figure 2: Recall curves for Service Pair 1

Service Pair 1 Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Semantic Similarity Score Threshold

P
re

ci
si

o
n

 V
a
lu

e

L

L+D

L+D+T

L+D+T+E

L+D+T+E+O

Figure 3: Precision curves for Service Pair 1 Service Pair1 F

00.10.20.30.40.50.60.70.80.91 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9semantic similarity scoreF value LL+DL+D+TL+D+T+EL+D+T+E+O

Figure 4: F curves for Service Pair1

Service Pair 2 Recall

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Semantic Similarity Score Threshold

R
ec

a
ll

 V
a
lu

e

L

L+D

L+D+T

L+D+T+E

L+D+T+E+O

Figure 5: Recall curves for Service Pair 2

Service Pair 2 Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Semantic Similarity Score Thresold

P
re

ci
si

o
n

 V
a

lu
e

L

L+D

L+D+T

L+D+T+E

L+D+T+E+O

Figure 6: Precision curves for Service Pair 2

Figure7: F curves for Service Pair 2

Service Pair 3 Recall

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Semantic Similarity Score Threshold

R
e
c
a
ll

 V
a
lu

e

L

L+D

L+D+T

L+D+T+E

L+D+T+E+O

Figure 8: Recall curves for Service Pair 3

Service Pair 3 Precision

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Semantic Similarity Score Threshold

P
re

ci
si

o
n

 V
a
lu

e

L

L+D

L+D+T

L+D+T+E

L+D+T+E+O

Figure 9: Precision curves for Service Pair 3

Service Pair3 F
00.20.40.60.811.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9semantic similarity scoreF value LL+DL+D+TL+D+T+EL+D+T+E+O

Figure10: F curves for Service Pair3

F-measure is a harmonic mean of precision and recall and in
general, is preferred over an arithmetic mean since it better
represents the inverse relationship between precision and
recall. Since precision and recall typically hold an inverse
relationship with one another, an ideal plot of F-measure
resembles a bell curve. The objective of matching is to
maximize both precision and recall which typically occurs at
the point where precision and recall curves intersect. This
point is also the point at which an F-measure is highest for
those given precision and recall metrics. This point at which
an F-measure is maximized gives us an optimal semantic
threshold that works for that problem domain. It is to be
noted that identifying the optimal threshold is a tough prob-
lem in itself and it may vary from problem to problem. Fig-
ures 4, 7 and 10 show plots of F-measures plotted against
semantic similarity score threshold for the three service pairs
under consideration. As expected, figures 4 and 6 show
bell-shaped curves for F-measures for most experiments
except for the L, and L+D experiments. The F-measures for L
and L+D stay constant hovering between 0.1 and 0.3 for both
service pair experiments at all semantic thresholds because of
the small # of exact matches that could be found with lexical
and dictionary based matching which improved the precision
significantly while keeping the recall very low (because of
the number of missing matches). In the case of service pair 3,
F-measures when plotted don’t show a drop as expected in a
pronounced manner because in this experiment human ex-
pert’s annotations have helped match all the match pairs
thereby making the recall 100% even while the precision was
improving steadily as the semantic threshold increased.
While achieving 100% recall is not always possible even
while keeping the precision high, the F-measure nevertheless
shows us that peak for all experiments, on an average, occurs
at around a semantic threshold of 06. In all three service pair
experiments, maximum F-measure appears to be occurring
between the semantic thresholds 0.5-0.7.

At semantic threshold 0.6, on an average, L+D+T+X yields
49% recall and 54% precision. On the other hand, when
domain ontologies are added, L+D+T+X+O yields 95%
recall and 72% precision. These results are very encouraging.

6 Related Work

The problem of automatically finding semantic relationships
between schemas has been addressed by a number of data-
base researchers lately including [Madhavan et al.] [Melnik

Service Pair2 F
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Semantic Similarity Score Threshold F value L L+D L+D+T L+D+T+E L+D+T+E+O

et al. 2002] [Rahm et al.]. The notion of elemental and
structural level schema matching has been present in the
METEOR-S project [Patil et al 2004], where the engine can
perform both element and structure level schema matching
for Web services. The element level matching is based on a
combination of Porter Stemmer for root word selection,
WordNet dictionary for synonyms, abbreviation dictionary to
handle acronyms and NGram algorithm for linguistic simi-
larity of the names of the two concepts. The schema match-
ing examines the structural similarity between two concepts.
Both element match score and schema match score are then
used to determine the final match score.

Recently, clustering and classification techniques from ma-

chine learning are being applied to the problem of Web ser-

vice matching and classification at either the whole Web

service level [Hess and Kushmerick 2003] or at the operation

level [Dong et al 2004]. In [Hess and Kushmerick 2003] for

example, all terms from portTypes, operations and messages

in a WSDL document are treated as a bag of words and

multi-dimensional vectors created from these bag of words

are used for Web service classification. Although this type of

classification retrieves matches with higher precision that

full-text indexed search, the overall matches produced,

however, do not guarantee a match of operations to opera-

tions, messages to messages, etc. The paper by Madhavan et

al [Madhavan et al. 2001] addresses this aspect by focusing

on matching of operations in Web services. Specifically, it

clusters parameters present in input and outputs of operations

(i.e. messages) based on their co-occurrence into parameter

concept clusters. This information is exploited at the pa-

rameter, the inputs and output, and operation levels to de-

termine similarity of operations in Web services. All these
approaches use simplistic Web services available on the Web.

Since there are only a handful of parameters per operation,

and only partial matches of parameters can be expected in

realistic Web services. Thus it is not clear how this method

scales to industrial strength Web services that have few pa-

rameters each modeled though by complete XSD schemas

wherein lies the true information for matching parameters.

Also, this work does not consider ontological reasoning and

human annotations. Our system [Syeda-Mahmood et al.,

2005], which is used in this case study, is among the first of

the systems to the best of our knowledge that combines in-

formation retrieval and ontological reasoning with an in-

dexing method to efficiently scale to deal with matching

large industrial strength Web services. By combining multi-

ple approaches (information retrieval and ontology match-

ing), we show that better relevancy results can be obtained

for service matches, than could be obtained using any one

cue alone.

Related work in the area of application of (semi) automatic
Web service matching for industry problems can be classi-

fied into business-2-consumer and business-2-business
categories. From our experience matching the interfaces of
business-2-business applications is very different and much
harder than matching the interfaces of services such as those
of travel agency services [Zaremba et al 2006] or office
utility services [Rcal 2002]. This is so because in busi-
ness-2-business setting companies tend to use many acro-
nyms and abbreviations since most of the parameters typi-
cally originate in databases. Also, in legacy application in-
tegration, the structure of the applications that are being
integrated could be significantly different from one another.
These characteristics pose interesting challenges that are
typically absent in business-2-consumer domains. Some
products such as IBM’s Rational Data Architect [RDA 2006]
and possibly from other vendors as well provide schema
matching tools that are grounded in information retrieval
techniques. However, such approaches do not allow for on-
tological reasoning and human annotations. To the best ex-
tent of our knowledge, our case study is the first of its kind
that applies a combination of information retrieval and on-
tological reasoning techniques to real-world legacy applica-
tion integration problems.

7 Conclusions

In this paper we have presented the results of a case study on
the application of our semantic Web service matching system
to a real-world legacy application integration problem. Ex-
perimental results on our initial data sets indicate that the
system on its own (with minimal help from an IT consultant
in terms of abbreviation expansions) is able to achieve close
to an average of 50% recall and 54% precision measures in
matching the parameters that define the interfaces of business
applications. Additional performance enhancements of up to
95% recall and 72% precision measures were achieved with
the usage of domain ontologies created by an expert. Such an
initial effort on creating abbreviation expansions and domain
ontologies etc. would be justifiable if multiple transactions
occur between any given applications that need to be inte-
grated. The initial effort pays-off in the long run because
once provided, this information can be reused in matching
the multiple interface pairs of the applications. These initial
results are encouraging. Based on this, we believe that an IT
consultant’s productivity can increase significantly when
semantics-based intelligent tools are used to integrate
seemingly disparate but semantically similar applications.
These productivity enhancements can be quickly translated
into savings in time and money in business process integra-
tion projects. Currently, we are conducting experiments on
large data sets to verify our results. As part of our future work
we are also developing tools that can create domain ontolo-
gies (semi) automatically using machine learning and natural
language processing techniques. This can further reduce the
burden on the consultant in providing the initial domain
ontologies.

7 References

[Akkiraju et al. 2005] R. Akkiraju, J. Farrell, J. Miller, M.

Nagarajan, A Sheth, K. Verma. “Web Services Semantics -

WSDL-S. A W3C submission”. 2005.

http://www.w3.org/Submission/WSDL-S/

[Christenson et al 2001] E. Christenson, F. Curbera, G.

Meredith, and S. Weerawarana. “Web services Description

Language” (WSDL) 2001. www.w3.org/TR/wsdl

[Dong et al., 2004] X. Dong, A. Halevy, J. Madhavan, E.

Nemes, and J. Zhang. Similarity search for web services. In

Proceedings of VLDB, 2004.

[Hess and Kushmerick 2003] A. Hess and N. Kushmerick,

“Learning to attach metadata to Web services,” in Proc. Intl.

Semantic web conference, 2003.

[Madhavan et al 2001] J. Madhavan et al, “Generic schema

matching with cupid” in Proc. VLDB 2001.

[Melnik et al. 2002] S. Melnik, H. Garcia-Molina and E.

Rahm, “Similarity flooding: A versatile graph matching

algorithm and its application to schema matching,” in Proc.

ICDE, 2002.

[Miller 1983] G. Miller. Wordnet: A lexical database for the

english language. In Comm. ACM, 1983.

[Patil et al 2004] A.Patil, S. Oundhakar, A. Sheth, K. Verma.

“Meteor-s Web service annotation framework”, in Proc.

WWW conference, pp. 553-562, 2004.

[Payne et al 2002] T. Payne, R. Singh, K. Sycara, “Rcal: A

Case Study on Semantic Web Agents”, in the Proc of

AAMAS’02 July 15-19, Bologna, Italy 2002.

[Rahm et al. 2001] E. Rahm and P. Bernstein, “A survey of

approaches to automatic schema matching,” in the VLDB

Journal, vol.10, pp.334-350 2001.

[RDA 2006] IBM Rational Data Architect

http://www-306.ibm.com/software/data/integration/rda/

[Sycara et al., 1999] K. Sycara et al. “Dynamic service match

making among agents in open information environments,” in

Jl. ACM SIGMOD Record, 1999.

[Syeda-Mahmood et al., 2005] T. Syeda-Mahmood, G. Shah,

R. Akkiraju, A. Ivan, and R. Goodwin. Searching service

repositories by combining semantic and ontological match-

ing. In Proceedings of 2005 IEEE International Conference

on Web Services, 2005.

[Zaremba et al 2006] M. Zaremba, M. Moran, T. Hasel-

wanter Applying Semantic Web services to Virtual Travel

Agency Case Study. Third European Semantic Web Con-

ference, Budava June 2006.

http://www.eswc2006.org/poster-papers/FP04-Zaremba.pdf

