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Abstract 

Legacy application integration is often tedious and 
laborious. IT consultants do not have many tools at 
their disposal that can help them in their efforts. 
Semantics-based intelligent tools can alleviate some 
of the burden on IT consultants. In this paper we 
present the results of a case study on the application 
of our semantic Web service matching system to a 
real-world legacy application integration problem. 
Experimental results on our initial data sets indicate 
that the system on its own is able to achieve close to 
an average of 50% recall and 54% precision meas-
ures in matching the parameters that define the in-
terfaces of business applications. Additional per-
formance enhancements of up to 95% recall and 
72% precision measures were achieved with the 
usage of domain ontologies created by an expert. 
Therefore, we believe a user working with a se-
mantics-based intelligence tool could gain signifi-
cant productivity enhancements in IT projects rather 
than working alone. These productivity enhance-
ments can be quickly translated into savings in time 
and money in business process integration projects. 

1 Introduction 

Business process integration is among the most important 
challenges faced by organizations today. Integrating dispa-
rate business applications is at the heart of this challenge. In 
the context of a large enterprise that was created through 
mergers and acquisitions, there are often thousands of ap-
plications and data repositories, each with associated services 
and interface definitions.  Since these interfaces were created 
for different organizations, over different periods of time and 
for different initial purposes, it is unlikely that they use a 
common set of terms to name services and parameters. This 
leads to substantial heterogeneity in syntax, structure and 
semantics. For example, what one service interface in one 
system may encode as itemID, dueDate, and quantity may be 
referred to by another service interface in a different appli-
cation as UPC (Universal Part Code), itemDeliveryTime and 
numItems. A substantial amount of developer time is spent in 
identifying these kinds of semantic ambiguities and resolving 
them.  

 
In current practice, much of this interface mapping is done by 
consultants manually. Analysts and developers typically pour 
over large spreadsheets or XML documents that describe the 
interface elements of each application and manually create 
the mappings between source application parameters and 
target application parameters.  This process is tedious and 
laborious. Semantics-based intelligent tools can alleviate 
some of the burden on IT consultants. The objective of se-
mantic Web service matching research is to help develop 
(semi) automated tools to help resolve these types of syntac-
tic, structural and semantic differences.  
 
In this paper, we present the results of a case study on the 
application of our semantic Web service matching system to 
a real-world legacy application integration problem. The 
objective of the case study is to assess the performance im-
provements that can be noted when an IT consultant works 
with our semantic Web service matching tool in comparison 
to doing it manually herself. In our work, we model the in-
terfaces of business applications that need to be integrated as 
semantic Web services represented in WSDL-S [WSDL-S]. 
We, then perform semantic matching of these Web services 
to find the semantic similarities between the interfaces of 
their corresponding business applications.  
 
Considerable amount of work has been done on schema 
matching [Madhavan et al. 2001] [ Rahm et al. 2001] and 
more recently on Web service matching [Sycara et al., 1999] 
[Dong et al., 2004] [Syeda-Mahmood et al., 2005]. Specifi-
cally, previously, Syeda-Mahmood et. al [Syeda-Mahmood 
et al., 2005] have shown that combining domain-independent 
and domain-specific ontologies to determine the semantic 
similarity between ambiguous concepts/terms yields better 
results while matching Web services interfaces than could be 
obtained using any one cue alone. In their work, the do-
main-independent relationships are derived using an English 
thesaurus after tokenization and part-of-speech tagging. The 
domain-specific ontological similarity is derived by inferring 
the semantic annotations associated with Web service de-
scriptions using an ontology.  Matches due to the two cues 
are combined to determine an overall similarity score. Our 
semantic matching engine is based on this work.  
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The rest of the paper is organized as follows. Section 2 in-
troduces two accounting applications and their interfaces and 
calls out the interesting characteristics of these applications 
that have a bearing on automatic matching. In Section 3, we 
present an overview of our semantic matching engine so as to 
establish the context for the experiments to follow. We dis-
cuss the details of our experimental design in Section 4. In 
Section 5, we present the experimental results and draw the 
insights obtained from conducting the case study. Finally we 
conclude in Section 6 with a summary and future work items.  

2 Matching the Interfaces of Accounting Ap-

plications – A Case Study Scenario 

 

Our case study scenario consists of integrating two 

real-world accounting applications; Application A and Ap-

plication B. Application A keeps track of various identifiers 

related to project and account controls. These identifiers are 

used within the general ledger as well as the systems that feed 

the ledger to track cost and revenue.  They are also used for 

labor claiming and several types of reporting. Some of the 

types of these identifiers are: Customer Groups, Account 

Groups, Accounts, Billing Code, and Ledger Project Ids. 

 

The client had implemented a new business management 

suite of applications. As part of this effort, the customer 

billing management is to be handled by another system called 

Application B. Application A and B share some common 

information related to customer accounts, billing codes and 

contractual information. Therefore, the key identifiers and 

overlapping information in these two systems have to be kept 

in synchronization to ensure data integrity across the entire 

business management suite of applications. At the heart of 

this data synchronization task is the challenge of mapping the 

interface parameters of these two systems. Since Application 

B has been developed by a vendor different from the one that 

developed Application A, there are both semantic and struc-

tural differences between the interfaces of the two systems. 

For example, what Application A calls as AccountGroup is 

referred to by Application B as a Contract. Similarly, a De-

partment in Application A is called a ServiceOffice in Ap-

plication B. A short list of such vocabulary differences is 

shown in Table 1. The task of an IT consultant is to find these 

commonalities and differences and write the glue code re-

quired to enable smooth data synchronization. 

 

Application A Application B 

Account Group Contract 

Account Worker Number 

Department Service Office 

Customer Group Level 3 Country 

Competency Code Service Line  

 

Table 1: Some terminology differences between Application 

A and Application B  

 

In this case study, we are interested in applying our seman-

tics-based intelligent tool developed using semantic Web 

services matching technology. The hypothesis of this effort is 

that an IT consultant working with a semantic Web service 

matching tool can be more productive in IT integration pro-

jects than doing it manually herself. Detailed evaluation 

criteria are discussed in the Experimental Design and Results 

sections. To investigate this, we selected three transactions 

that trigger the sending of messages from Application A to 

Application B. These transactions typically involve Appli-

cation A sending a subset of information to Application B 

and in return receiving some updated information and con-

firmation codes from Application B.  

 

We model these transactions as three Web services repre-

sented in WSDL [Christenson et al 2001] format, and then 

match the interfaces of these sets of Web services using our 

semantic Web service matching technology. Below, we 

present some of the characteristics of the interfaces of the two 

systems that have an impact on automatic matching. 

 

1) 80% of the parameters are composed of multi-

-part-words (eg: DATE_OPEN, START_DATE etc.). 

2) 70% of the parameters have one or more than one ab-

breviation (eg: CUST_ID for Customer Identifier and, 

CLNT_CDE for Client Code etc.).  

3) Many superficial differences in semantics exist. Some of 

such differences are outlined below. 

a) Ordering differences: eg: 

        “DATE_LAST_UPD”-“Last_update_date”.  

b) Synonyms: “DATE_BEGIN”-“START_DATE”. 

c) Terminology differences: Such as the ones listed 

in table 1.  

4) Some of semantic information has been omitted when 

developers named the parameters. For example, a trans-

action that gets a billing code (called getBillingCode()) 

takes a parameter called ‘description’. In this case, the 

parameter ‘description’ can be complemented with con-

textual information (we refer to this as semantic anno-

tation) such as “BillingCodeDescription”. 

5) Some of semantic information that is omitted by de-

velopers can not be complemented by the contextual 

information. For example, in a parameter that is meant to 

represent “TOTAL_HOURS” ‘TOTAL’ has been 

omitted and it was called ‘HOURS’. Similarly, a pa-

rameter that is meant to represent “estimated_hours”, 

‘estimated’ was omitted and it was simply called 

‘hours’. This could lead to false positives during 

matching. Once eliminated this type of contextual in-

formation cannot be inferred unless it is explicitly stated 

in a domain model. 

 

These characteristics of the problem have a bearing on the 

performance of the heuristics and algorithms that are im-

plemented in our semantic matching engine. To help set the 



context for some of the results presented in Section 4, we 

introduce our semantic matching engine in Section 3 below. 
 

3 An Overview of Our Semantic Matching 

Engine  

Our semantic Web service matching engine is based on 
[Syeda-Mahmood et. al 2005]. We model both a client’s 
request and a service provider’s service as Web services. 
These Web services can be optionally semantically annotated 
with contextual information. We use WSDL-S [Akkiraju et 
al. 2005] mechanism to add semantic annotations to WSDL 
documents. The semantic matching engine uses do-
main-independent and domain-specific ontologies to deter-
mine the semantic similarity between ambiguous con-
cepts/terms in a WSDL document. The domain-independent 
relationships are derived using an English thesaurus after 
tokenization, part-of-speech tagging and abbreviation ex-
pansion. The domain-specific ontological similarity is de-
rived by inferring the semantic annotations associated with 
Web service descriptions using an ontology.  Matches due to 
the two cues are combined to determine an overall similarity 
score. Figure 1 presents a component view of our semantic 
matching engine.  
  
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A component view of our semantic matching en-
gine. 
 
Below we discuss those parts of the system that are relevant 
to matching the interfaces of Application A and Application 
B of our case study. More details about the inner workings of 
the system are presented in the paper [Syeda-Mahmood et. al 
2005].  
 

• Lexical Matching (L): Words are matched for their exact 

lexical similarity. Eg: ‘country_cd’ on one side matches 

with ‘COUNTRY_CD’ on the other side. 

• Word Tokenization (T): Words are tokenized based on the 

common naming conventions used by programmers such 

as underscore, spaces, and camel case letters etc. For 

example, the “BillingCode” will be tokenized into two 

tokens “Billing” and “Code” respectively. This allows for 

semantic matching of the attributes. 

• Abbreviation expansion (X): The abbreviation expansion 

uses domain-independent as well as domain-specific 

vocabularies. It is possible to have multiple expansions 

for a candidate words. All such words are retained for 

later processing. Thus, a word such as “CustPurch” will 

be expanded into CustomerPurchase, CustomaryPur-

chase, etc.   

• Using domain-independent ontologies (D): We used the 

WordNet dictionary/thesaurus [16] to find matching 

synonyms and other related concepts to words. For ex-

ample, the term FINISH in the multi-part word 

DATE_FINISH is a synonym to the term END in 

END_DATE. 

• Using domain-specific ontologies (O): Domain-specific 

ontologies can be created by an expert to provide addi-

tional contextual information to interface parameters. For 

example, in our case study, an expert could create an 

ontology relating the corresponding terms given in table 1 

and annotate the parameters of the interfaces accordingly. 

These annotations help in making matches that could not 

otherwise have been made. 

 

At a high-level, the semantic matcher works as follows. The 

domain independent reasoning module takes the multi-term 

words of a given Web service interface and parses them into 

tokens.  Abbreviation expansion is done for the retained 

words if necessary, and then a thesaurus is used to find the 

similarity of the tokens based on synonyms. The resulting 

synonyms are assembled back to determine matches to can-

didate multi-term word parameters from another Web service 

interface that it is being matched with (whose parameters are 

also treated using the same approach). Scoring is done as 

follows in the case of domain independent reasoner.  

 

The semantic similarity between parameters pAi and pBj (that 

belong to Application A and B respectively) consisting of 

tokens m and n respectively, where k tokens are matched is 

given by:  Score (pAi, pBj) = Min {(k/m), (k/n)}. For example, 

the semantic similarity score between the parameters "Con-

trol_Country_CD" (say pAi) and "Country_CD" (say pBj) 

would be 0.67. This is so because two of the three tokens in 

pAi match with the two of the two tokens in pj. Therefore, 

Score (pAi, pBj) = Min {(2/3), (2/2)}.  

 

If the parameters pAi, pBj have semantic annotations from a 

domain ontology, then the reasoner computes the similarity 

score as follows. Relationships subClassOf(pAi, pBj), sub-

ClassOf(pBj, pAi), and typeOf (pAi, pBj) all are given a score of 

0.5, sameAs(pAi, pBj) is given a score of 1 and no relationship 

gets a score of 0. For example, if both ‘"Con-

trol_Country_CD" and "Country_CD" had the same seman-

tic annotation say ‘domainOntology#CountryCode’, then 

they would match exactly and get a score of 1 according to 

the domain reasoner. In cases where we can compute a score 

from domain-independent reasoner as well as from a do-

main-specific reasoner, we use a winner-take-all approach 

(our system implements other schemes for score combination 

as well but we use this winner-take-all scheme here). 
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Therefore, the parameters "Control_Country_CD" and 

"Country_CD" match with a score of 1. 

 

In the next section, we describe the experimental design. 

4 Experimental Design  

As was noted, the objective of this case study was to assess 

the productivity enhancements that an IT consultant can get 

by using a tool to achieve application interface matching in 

comparison to doing it manually herself. We have selected 

three sets of interfaces that needed be matched between Ap-

plication A and Application B, where each interface pair 

consisting of dozens of parameters (altogether about 85 pa-

rameters in total). While noting the possible productivity 

enhancements that can obtained, we were also interested in 

comparing the incremental benefit of each approach/heuristic 

in our engine. Therefore, we have structured the experiments 

based on the heuristics introduced in section 3 represented by 

the letters L, T, X, D, and O. 

 

1. Experiment L: Matching interfaces using lexical match-

ing approach alone. 

2. Experiment L+D: Matching interfaces using lexical 

matching and domain-independent dictionary/ontology 

approaches. 

3. Experiment L+T+D: Matching interfaces using lexical 

matching, tokenization, and domain-independent dic-

tionary approaches. 

4. Experiment L+T+D+X: Matching interfaces using lexi-

cal matching, tokenization, domain-independent dic-

tionary and abbreviation expansion approaches. 

5. Experiment L+T+D+X+O: Matching interfaces using 

lexical matching, tokenization, domain-independent 

dictionary, abbreviation expansion and domain-specific 

ontology approaches. 

 

To evaluate these experiments we define the following: 

PA = {the set of all parameters pA1….pAn in a Web service 

interface of Application A} 

PB = {the set of all parameters pB1….pBn in a Web service in-

terface of Application B} 

match pair (pAi, pBj) = a mapping between the parameters pAi in 

a Web service interface of Application A and pBj in a Web 

service interface of Application B. (Please note that a match 

pair represents the existence of a link between  pAi and pBj. It 

does not say anything about whether it is correct or not.) 

Generated Matches (PA, PB) (G) = {the set of all match pairs 

generated by the semantic matching engine between PA and 

PB} 

Expected (E) = {the set of match pairs labeled by the expert 

between PA and PB i.e., ‘ground truth’} 

Correct (C) = {G ∩ E} i.e., the number of match pairs which 

are generated by our semantic matching engine between PA 

and PB that are also in the set E. 

Incorrect (I) = {G − E} i.e., the number of match pairs which 

are generated by our semantic matching engine but not in the 

set E. 

Missing (M) = {E – G} i.e., the number of match pairs which 

are in the set E but not generated by our semantic matching 

engine. 

Precision (P): C/(C+I) = C/G 

Recall (R): C/(C+M) = C/E 

F-measure: 2*P*R/(P+R） i.e.，the weighted harmonic mean 

of precision and recall 

 

To obtain (E), we worked with an IT consultant who had 

worked on the actual integration of Applications A and B for 

the client and gathered the expected results. This served as 

our ‘ground truth’. Precision measure gives an indication of 

the quality of matches while recall measure helps measure 

the quantity of matches. F-measure is a harmonic mean of 

precision and recall metrics. It is indicative of both the qual-

ity and the quantity of matches that a semantic Web services 

system is able to make. Higher precision, recall and 

F-measures indicate that the system is able to find most 

number of expected (correct) matches while matching the 

interfaces of applications, while keeping the number of in-

correct matches as low as possible. This would be encour-

aging because it would mean that an IT consultant doesn’t 

have to find these matches manually. Therefore, higher pre-

cision and recall measure indicate the possible productivity 

enhancements that can be obtained.  

 

One has to note that our approach is for a user/IT consultant 

to collaboratively with the system to achieve these results. It 

is not a fully automated system. A consultant is expected to 

work with the system to provide abbreviation expansions and 

domain ontologies where needed to achieve this. Such an 

initial effort on creating abbreviation expansions and domain 

ontologies etc. would be justifiable if multiple transactions 

occur between any given applications that need to be inte-

grated. The initial effort pays-off in the long run because 

once provided, this information can be reused in matching 

the multiple interface pairs of the applications. 

5 Experimental Results  

For each service interface pair that needed to be matched we 
ran five experiments introduced earlier namely L, L+D, 
L+T+D, L+T+D+X, and L+T+D+X+O. For each experiment 
the number of correct and incorrect match pairs obtained was 
noted. Figures 2-10 represent the recall and the precision 
values computed for each of the three experiments, when 
increasing the service matching score threshold. We varied 
the service matching score threshold because the number of 
‘close’ matches obtained depends on the amount of semantic 
ambiguity that was allowed to be resolved. For example, the 
parameters ‘Control-Country-CD’ and ‘Country-CD’ will be 
considered a match only if the semantic similarity threshold 
is set to below 0.6. This is so because the threshold allows 
only those match pairs whose match score is above the set 



threshold. Since these two parameters have a score of 0.67
1
, 

they will be considered a match at this threshold. If the 
threshold is set to 0.7, these parameters will not be consid-
ered a match. Thus by varying the semantic threshold, we 
obtain different match pairs and thereby different precision 
and recall measures. The intuition is that as the service 
matching score threshold increases the number of matches 
decreases. This, in turn, increases the number of missing 
matches. Therefore recall ratio decreases. Whereas precision 
increases because higher thresholds have the effect of low-
ering incorrect matches.  This intuition is confirmed by our 
experiments (as shown in Figures 2-10). The reason for using 
this semantic similarity score threshold in our experiments is 
that we are interested in finding out the optimal threshold at 
which optimal precision and recall can be obtained for our 
data sets. Next, we will explain some of the interesting results 
obtained during the experiments. 
 
In Figures 8 and 9, both the lexical (L) and the dictionary 
(L+D) approaches have a recall and a precision of 0 at all 
thresholds. The lexical approach failed because the two in-
terfaces were developed by different users, thus the chances 
of using exactly the same words to denote identical notions 
were very small. The dictionary approach failed because in 
most cases, users define multi-word tags to better explain the 
concept defined by a tag and a dictionary does not usually 
contain multiword tags. However, this is not always the case. 
 
Figures 3 and 6 suggest that the lexical and dictionary-based 
approaches yield very good precision at all thresholds, i.e., 
the number of incorrect matches found is relatively small 
compared to the number of correct matches found. Exami-
nation of data in service pairs 1 and 2 reveal that there are 
indeed some parameters that can be matched using lexical 
and dictionary-based approaches. These are the parameters 
that matched exactly (or those did not use any abbreviations). 
For example: ‘INDUSTRY_CLASS’ in Application A 
matched with ‘Industry_Class’ in Application B. These types 
of matches contributed to good precision. But it is to be noted 
that in this case, the number of correct matches found is very 
low compared to the total number of expected matches i.e., 
the number of missing matches is high. Therefore, the recall 
is very low (i.e., recall of 0.06 and 0.13 in Figures 2 and 5).  
 
All figures suggest that the most significant increase in per-
formance (both recall and precision) is obtained through 
tokenization. Furthermore, the performance increases even 
more by applying word expansion and ontology-based 
matching techniques. 
 
During our experiments, we noticed that the precision is not 

always increasing with the service match score threshold (see 

Figure 6). The reason is that the number of correct matches 

dropped with the increase of the threshold, while the number 

                                                 
1 Section 3 discussed our score computation scheme that shows 

how we obtain a score of 0.67 between the parameters ‘Coun-

try_Country_CD'’and ‘Country_CD’. 

of incorrect matches remained constant. This break in mon-

otonic rise of precision can be noticed between thresholds 0.6 

and 0.8. The details are shown in table 2. 

 

Threshold # correct 

matches 

# incorrect 

matches 

precision 

0.6 25 8 0.76 

0.7 15 2 0.88 

0.8 11 2 0.84 

Table 2: Table 2 explains the fluctuations in monotonic in-

crease in the precision in the precision curves in figure 5.  

 

Another observation is that L+D+T+X+O approaches have 

the best performance. In particular, Figure 8 shows the ideal 

case when recall is 1. In this particular case, the ontology and 

the ontology-annotations were built together with an expert; 

thus, the experiment obtained perfect results. Even though 

this might not be always the case (see Figures 2 and 5), we 

strongly believe that users can highly improve the quality of 

the matches if they take the time and effort to build a mean-

ingful ontology. 
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Figure 2: Recall curves for Service Pair 1 
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Figure 3: Precision curves for Service Pair 1 Service Pair1 F
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Figure 4: F curves for Service Pair1 
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Figure 5: Recall curves for Service Pair 2 
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Figure 6: Precision curves for Service Pair 2 

 

Figure7: F curves for Service Pair 2 
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Figure 8: Recall curves for Service Pair 3 
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Figure 9: Precision curves for Service Pair 3 
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Figure10: F curves for Service Pair3 

F-measure is a harmonic mean of precision and recall and in 
general, is preferred over an arithmetic mean since it better 
represents the inverse relationship between precision and 
recall. Since precision and recall typically hold an inverse 
relationship with one another, an ideal plot of F-measure 
resembles a bell curve. The objective of matching is to 
maximize both precision and recall which typically occurs at 
the point where precision and recall curves intersect. This 
point is also the point at which an F-measure is highest for 
those given precision and recall metrics. This point at which 
an F-measure is maximized gives us an optimal semantic 
threshold that works for that problem domain. It is to be 
noted that identifying the optimal threshold is a tough prob-
lem in itself and it may vary from problem to problem. Fig-
ures 4, 7 and 10 show plots of F-measures plotted against 
semantic similarity score threshold for the three service pairs 
under consideration. As expected, figures 4 and 6 show 
bell-shaped curves for F-measures for most experiments 
except for the L, and L+D experiments. The F-measures for L 
and L+D stay constant hovering between 0.1 and 0.3 for both 
service pair experiments at all semantic thresholds because of 
the small # of exact matches that could be found with lexical 
and dictionary based matching which improved the precision 
significantly while keeping the recall very low (because of 
the number of missing matches). In the case of service pair 3, 
F-measures when plotted don’t show a drop as expected in a 
pronounced manner because in this experiment human ex-
pert’s annotations have helped match all the match pairs 
thereby making the recall 100% even while the precision was 
improving steadily as the semantic threshold increased. 
While achieving 100% recall is not always possible even 
while keeping the precision high, the F-measure nevertheless 
shows us that peak for all experiments, on an average, occurs 
at around a semantic threshold of 06.  In all three service pair 
experiments, maximum F-measure appears to be occurring 
between the semantic thresholds 0.5-0.7. 
 
At semantic threshold 0.6, on an average, L+D+T+X yields 
49% recall and 54% precision. On the other hand, when 
domain ontologies are added, L+D+T+X+O yields 95% 
recall and 72% precision. These results are very encouraging. 

6 Related Work 

The problem of automatically finding semantic relationships 
between schemas has been addressed by a number of data-
base researchers lately including [Madhavan et al.] [Melnik 
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et al. 2002] [Rahm et al.]. The notion of elemental and 
structural level schema matching has been present in the   
METEOR-S project [Patil et al 2004], where the engine can 
perform both element and structure level schema matching 
for Web services. The element level matching is based on a 
combination of Porter Stemmer for root word selection, 
WordNet dictionary for synonyms, abbreviation dictionary to 
handle acronyms and NGram algorithm for linguistic simi-
larity of the names of the two concepts. The schema match-
ing examines the structural similarity between two concepts. 
Both element match score and schema match score are then 
used to determine the final match score. 
 

Recently, clustering and classification techniques from ma-

chine learning are being applied to the problem of Web ser-

vice matching and classification at either the whole Web 

service level [Hess and Kushmerick 2003] or at the operation 

level [Dong et al 2004]. In [Hess and Kushmerick 2003] for 

example, all terms from portTypes, operations and messages 

in a WSDL document are treated as a bag of words and 

multi-dimensional vectors created from these bag of words 

are used for Web service classification. Although this type of 

classification retrieves matches with higher precision that 

full-text indexed search, the overall matches produced, 

however, do not guarantee a match of operations to opera-

tions, messages to messages, etc. The paper by Madhavan et 

al [Madhavan et al. 2001] addresses this aspect by focusing 

on matching of operations in Web services. Specifically, it 

clusters parameters present in input and outputs of operations 

(i.e. messages) based on their co-occurrence into parameter 

concept clusters. This information is exploited at the pa-

rameter, the inputs and output, and operation levels to de-

termine similarity of operations in Web services. All these 
approaches use simplistic Web services available on the Web. 

Since there are only a handful of parameters per operation, 

and only partial matches of parameters can be expected in 

realistic Web services.  Thus it is not clear how this method 

scales to industrial strength Web services that have few pa-

rameters  each modeled though by complete XSD schemas 

wherein lies the true information for matching parameters. 

Also, this work does not consider ontological reasoning and 

human annotations. Our system [Syeda-Mahmood et al., 

2005], which is used in this case study, is among the first of 

the systems to the best of our knowledge that combines in-

formation retrieval and ontological reasoning with an in-

dexing method to efficiently scale to deal with matching 

large industrial strength Web services. By combining multi-

ple approaches (information retrieval and ontology match-

ing), we show that better relevancy results can be obtained 

for service matches, than could be obtained using any one 

cue alone. 
 
 
Related work in the area of application of (semi) automatic 
Web service matching for industry problems can be classi-

fied into business-2-consumer and business-2-business 
categories. From our experience matching the interfaces of 
business-2-business applications is very different and much 
harder than matching the interfaces of services such as those 
of travel agency services [Zaremba et al 2006] or office 
utility services [Rcal 2002]. This is so because in busi-
ness-2-business setting companies tend to use many acro-
nyms and abbreviations since most of the parameters typi-
cally originate in databases. Also, in legacy application in-
tegration, the structure of the applications that are being 
integrated could be significantly different from one another. 
These characteristics pose interesting challenges that are 
typically absent in business-2-consumer domains. Some 
products such as IBM’s Rational Data Architect [RDA 2006] 
and possibly from other vendors as well provide schema 
matching tools that are grounded in information retrieval 
techniques. However, such approaches do not allow for on-
tological reasoning and human annotations. To the best ex-
tent of our knowledge, our case study is the first of its kind 
that applies a combination of information retrieval and on-
tological reasoning techniques to real-world legacy applica-
tion integration problems. 

7 Conclusions 

In this paper we have presented the results of a case study on 
the application of our semantic Web service matching system 
to a real-world legacy application integration problem. Ex-
perimental results on our initial data sets indicate that the 
system on its own (with minimal help from an IT consultant 
in terms of abbreviation expansions) is able to achieve close 
to an average of 50% recall and 54% precision measures in 
matching the parameters that define the interfaces of business 
applications. Additional performance enhancements of up to 
95% recall and 72% precision measures were achieved with 
the usage of domain ontologies created by an expert. Such an 
initial effort on creating abbreviation expansions and domain 
ontologies etc. would be justifiable if multiple transactions 
occur between any given applications that need to be inte-
grated. The initial effort pays-off in the long run because 
once provided, this information can be reused in matching 
the multiple interface pairs of the applications. These initial 
results are encouraging. Based on this, we believe that an IT 
consultant’s productivity can increase significantly when 
semantics-based intelligent tools are used to integrate 
seemingly disparate but semantically similar applications. 
These productivity enhancements can be quickly translated 
into savings in time and money in business process integra-
tion projects. Currently, we are conducting experiments on 
large data sets to verify our results. As part of our future work 
we are also developing tools that can create domain ontolo-
gies (semi) automatically using machine learning and natural 
language processing techniques. This can further reduce the 
burden on the consultant in providing the initial domain 
ontologies. 
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