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ABSTRACT 
 
As medical image data sets are digitized and the number of 
data sets is increasing exponentially, there is a need for 
automated image processing and analysis technique.  Most 
medical imaging methods require human visual inspection 
and manual measurement which are labor intensive and 
often produce inconsistent results.  In this paper, we 
propose an automated image segmentation and classification 
method that identifies tumor cell nuclei in medical images 
and classifies these nuclei into two categories, stained and 
unstained tumor cell nuclei.  The proposed method 
segments and labels individual tumor cell nuclei, separates 
nuclei clusters, and produces stained and unstained tumor 
cell nuclei counts.  The representative fields of view have 
been chosen by a pathologist from a known diagnosis (clear 
cell renal cell carcinoma), and the automated results are 
compared with the hand-counted results by a pathologist. 
 
Keywords:  Immunohistochemistry, Medical Image 
Segmentation and Analysis, and Digital Pathology 
 
 

1. INTRODUCTION 
 
The quantification of immunohistochemically stained 
medical image provides numerous technical challenges.  
More specifically, pathologists quantify 
immunohistomically stained medical images by manual cell 
counting, and it is very time consuming process and 
sometimes produces subjective and inconsistent results.  
The automated technique capable of replacing traditional 
pathological examination of the slides from the tumor tissue 
can produce more objective and stable quantification results 
than manual cell counting.  In the past years, many medical 
image segmentation and analysis techniques have been 
presented.  Those techniques [1]-[10] are based on 
morphological techniques, threshold-based techniques, 
region-based techniques, and so on.  Most of these 
algorithms use initial threshold-based techniques to segment 
cell nuclei followed by region-based techniques to separate 
clusters of cell nuclei.   Separation of clusters of cell nuclei 

into individual objects is a very important issue because it 
may separate clusters into too few objects (under-
segmentation) or too many objects (over-segmentation).  To 
improve over-segmentation or under-segmentation of 
marker-controlled segmentation algorithm, various 
enhanced marker detection algorithms based on adaptive 
erosion [4], hierarchical clustering [5], and supervised 
learning [6]-[8] are introduced, and  mathematical 
morphology based classifiers are proposed in [1]-[3].   

In this paper, we have developed an automated image 
segmentation and classification algorithm which quantifies 
immunohistochemically stained medical images of a known 
diagnosis (clear cell renal cell carcinoma).  Renal cell 
carcinoma (RCC) is the most common renal malignancy 
which represents 3% of adult neoplasms [12].  Clear cell 
renal cell carcinoma (ccRCC) is a main histological subtype, 
accounting for more than 80% of RCC [13].  Pathological 
stage remains the best prognostic factor for RCC.  However, 
new biomarkers are needed to improve prognosis and 
identify patients with distinct clinical outcome.  Survivin is 
an antiapoptotic protein that belongs to the inhibitor of 
apoptosis protein family [14].  It has been shown that 
survivin expression is an independent predictor of ccRCC 
pregression and death [15].  In tissue, survivin can be 
reliably detected by means of immunohistochemistry.  
Automated evaluation of survivin expression might portend 
valuable information on ccRCC biology.  A typical stained 
image contains many different types of objects such as 
stained and unstained tumor cell nuclei, stained and 
unstained lymphocytes, stromal cells, neutrophils, and so on 
(Figure 1).  The proposed algorithm mainly uses pixel 
intensity information to segment cell nuclei, and color 
information to identify stained cell nuclei.  The threshold-
based technique classifies a medical image into a binary 
image (foreground and background) by grouping all pixels 
with intensity values greater than a global threshold into one 
class and other pixels into another class.  Segmenting an 
entire image using only one global threshold value doesn’t 
produce good segmentation result.  The robustness of 
segmentation has been improved by using adaptive 
segmentation technique based on local threshold values for 
the foreground object segmentation.  The segmented 



foreground objects are labeled and basic morphological 
operations are applied to each object.  Simple shape 
descriptors (area, perimeter, circularity, average intensity 
value, and so on) are defined and obtained to describe each 
object.  The shape descriptors will be used to identify cell 
nuclei among foreground objects.  The region-based 
technique is to separate object clusters into separate objects 
based on region growing and region splitting/merging 
techniques.  We applied a widely used technique called 
Watershed Transform to separate nuclei clusters into small 
objects representing individual nucleus.  The watershed 
transform is based on number of markers, and determining 
correct number of markers is very important to avoid under 
or over segmentation.   The proposed algorithm is based on 
a modified h-minima transform to overcome under/over 
segmentation problem.  Finally, the cell nuclei are classified 
into stained or unstained nuclei according to the fraction of 
stained pixels. 

The paper is structured as follows.  Section 2 describes 
our segmentation and classification algorithm with a simple 
example.  Section 3 presents results of the simulation 
experiments, and conclusions are given in Section 4. 

 

 
Figure 1: Immunohistochemically stained image. 

 
2. IMAGE SEGMENTATION ALGORITHM 
 
This section briefly describes our proposed image 

segmentation and classification algorithm.  The input 
images in RGB format are converted into YUV format, and 
each pixel value is composed of intensity (Y) and color 
components (U and V).  The cell nuclei segmentation is 
based on pixel intensity and stained and unstained cell 
nuclei classification is based on the color components.  The 
color conversion is followed by histogram stretching 
algorithm.  The main purpose of the histogram stretching is 
to improve the contrast considerably by mapping limited 
input histogram range to the full output histogram range 
(from 0 to 255).   

A simple segmentation technique is applied to the 
original image to convert it into a binary image with 

foreground and background objects.  We used a 
segmentation technique proposed by Otsu [10].  Otsu’s 
segmentation method is a widely used thresholding 
segmentation technique, and the goal is to find a threshold 
that classifies the entire image into two clusters using pixel 
intensitie.  The segmented binary image is depicted in 
Figure 2 (b).  The Otsu’s segmentation method introduces 
small size objects (salt-and-pepper noise) and holes in large 
objects.  After this initial segmentation process, we label 
each object, and object shape descriptors are defined and 
obtained for each object.  The background is labeled as 0 
and the foreground objects are labeled with integer numbers 
greater than 0.  The descriptors are set of numbers that are 
produced to describe the shape of a certain object.  Simple 
shape descriptors are defined, and these include area, 
perimeter, compactness, and circularity.  The definitions of 
shape descriptors are 

 
Area : The number of pixels in an object. 
Perimeter : The number of pixels in the boundary of an 
object. 
Compactness : The compactness defines how closely-
packed the shape is (compactness = perimeter * perimeter / 
area). 
Circularity : The circularity of a circle is 1, and all other 
shapes have a circularity less than 1 (circularity = 4π / 
compactness). 
 
The small size objects such as salt-and-pepper noise is 
removed based on the descriptor, and holes in large objects 
are filled by using a simple morphological fill-hole 
operation.  The resulting image is depicted in Figure 2 (c).  
In some cases the image intensity level varies among 
different areas through the entire image, and the Otsu’s 
segmentation technique using a single global threshold 
value introduces missing objects or false objects.  To fix this 
problem, based on the object shape descriptors obtained 
from the initial segmentation, we segment local regions 
again to correct the initially segmented image. 

The adaptive thresholding segmentation method 
segments an image into foreground objects and a 
background, but as noted in Figure 2 (c) the foreground 
objects include nuclei clusters that need to be separated into 
small objects representing individual nucleus.  The 
watershed algorithm [11] is a widely used method that 
segments an image into watershed regions.  However, noise 
and small unimportant fluctuation in the foreground object 
may cause spurious minima which leads to over-
segmentation, and smoothing the image can be an approach 
to overcome this problem.  The algorithm is based on 
markers and determining the correct number of markers is 
very important.  The markers are obtained by applying 
distance transform to the segmented objects as the distance 
transform is very helpful when the segmentation is based on 
the shape of the objects.  Distance transform calculates the 



distance for every pixel in each foreground object to the 
nearest background pixel as shown in Figure 2 (d).  The h-
minima transform is applied to Figure 2 (d) to extract 
markers.  However, a simple global h-minima transform 
may produce incorrect number of markers.  The h-minima 
transform is adaptively modified based on the size of a 
certain object, and this plays a vital role in reducing over 
segmentation.  Now there is one marker obtained for each 
object, and we apply the watershed transform.  The 
watershed transform defines watershed lines by means of 
flooding process.  It uses the topographical surface with 
catchment basins obtained from distance transform.  When 
segmenting a dense nucleus cluster, the aforementioned h-
minima transform may not work properly, and cannot 
extract markers for each individual nucleus because the 
bottleneck connection is not clear as depicted in Figure 2 (c).  
To enhance this touching nuclei which are too close 
together to separate, an improved distance transform 
combining distance transform (Figure 2 (d)) and edge 
information (Figure 2 (e)) is used.  The edge information is 
extracted using a well-known Sobel edge detection 
algorithm [12].  The Sobel edge detector uses a pair of 3x3 
convolution masks, one estimating the horizontal gradient 
and the other estimating vertical gradient.  Finally, the 
segmented objects with different shades of gray color 
corresponding to each individual object are depicted in 
Figure 2 (f).  Due to the different shapes of the objects 
within the images, the cell nuclei are identified based on 
object shape descriptor using the segmented image (Figure 
2 (f)), and the unwanted objects such as lymphocytes, 
stromal cells and neutrophils are removed as shown in 
Figure 2 (g).  The proposed algorithm identified six tumor 
cell nuclei (Figure 2 (g)) from the original sample image 
(Figure 2 (a)).   

Finally, the cell nuclei are classified into two 
categories, i.e. stained and unstained.  The color 
components (U and V) are used for the classification, and 
each pixel is classified as a stained or an unstained pixel. A 
color threshold is determined using color component pixel 
values, and all pixels with color component pixel values 
greater than the threshold are classified into a stained group 
and all other pixels are classified into an unstained group.  
Each cell nucleus is classified into stained or unstained 
according to the fraction of stained pixels.  As shown in 
Figure 2 (h), three cell nuclei are classified as stained and 
three cell nuclei are classified as unstained. 

 
3. SIMULATION RESULTS 

 
The comparison of the hand counted results by a pathologist 
and our automated results is listed in Table 1 and Table 2.  
Typical input image size is 2560x1920, and the proposed 
technique was evaluated on a test data set consisting of 50 
images from 5 different patients.  We selected one of 10 
images from each patient to train the proposed algorithm 

(Table 1).  It should be noted that once all the parameters 
are set in the training session, the parameters are fixed while 
processing all 50 test images (Table 2). In Table 2, the first 
column (Total) is the average of ten total numbers of cell 
nuclei of each patient, and the second column (Stained) is 
the average of ten stained nuclei counts of each patient.  The 
comparison shows no significant difference in total and 
stained number of tumor cell nuclei.  However, after 
reviewing the output images, it was noted that even though 
the automated results are identical to the hand counted 
results, it still misses small number of nuclei and includes 
small number of false alarms.   

 

 
             (a)            (b) 

 
                          (c)                                        (d) 

 
(e)                                        (f) 

 
(g)                                        (h) 

Figure 2: Automated image segmentation example.  (a) Original 
image.  (b) Segmented binary image.  (c) Segmented image after 
morphological operations.  (d) Distance transform.  (e)  Edge 
detected image.  (f) Segmented image after watershed transform.  
(g) Segmented cell nuclei.  (h) Classified stained and unstained 
cell nuclei. 



 
    

Hand Counted Results Automated Results Image 
Total Stained % Total Stained % 

image 1 125 26 20.8 129 23 17.8 
image 2 283 1 0.4 310 1 0.3 
image 3 301 6 2.0 307 5 1.6 
image 4 187 3 1.6 168 4 2.4 
image 5 450 7 1.6 419 6 1.4 

Table 1: Comparison of the hand counted results by a pathologist 
and automated results using one field of view from each patient. 

 
Hand Counted Results Automated Results Patient 

Total Stained % Total Stained % 
1 156.9 21.9 14.0 146.9 20.7 14.1 
2 263.9 2.8 1.1 301.0 2.4 0.8 
3 342.9 4.2 1.2 353.3 3.6 1.0 
4 175.6 20.3 11.6 170.0 20.8 12.2 
5 414.1 3.9 0.9 399.1 2.6 0.7 

Table 2: Comparison of the hand counted results and automated 
results. 

 
4.  CONCLUSION AND FUTURE WORK 

 
In this paper, we have proposed an automated medical 
image segmentation technique that identifies cell nuclei in 
medical images for digital pathology, and a quantitative 
results produced on various test images by the technique 
have been provided.  Our current efforts emphasize the 
accuracy of stained and unstained cell nuclei counts.  The 
simulation results are encouraging for the further 
development and evaluation of this method.  Future research 
will be directed to improve the level of accuracy even 
further over a wide set of different test images and tune the 
algorithm to handle different diagnosis. 
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