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Foreword

In the late 1990s, IBM Research started a research initia-
tive called the Adventurous Systems and Software Research
program. The goal of this program was to allocate resources
to support longer-term research, removing the shorter-term
horizon implied by the standard funding model, which in-
volves partnering with a development organization. We started
the K42 operating system project under this auspice. We
had the opportunity for the first three years to pursue an
ambitious research agenda because we were not bound by
product impact requirements often seen in industrial re-
search settings, nor immediate publication pressures often
seen in academic settings.
Other factors that impacted the environment in which K42
was conceived are technical. In the mid 1990s vendors were
scaling machines by either shared-memory multiprocessors
(SMMPs) or non-shared-memory clusters. The K42 group
focused on researching how to design systems software for
machines projected by the SMMP scaling model. While this
model did not become dominant, large machines still exist.
Further, the advent of multicore chips makes this research
relevant, and there will likely be a resurgence of parallel
operating systems research.
The initial focus of the K42 group was on scalability, but
as the project progressed other interesting directions were
pursued, motivated primarily by the observation that fewer
projects in complete operating system design were being un-
dertaken in the 2000s than in the previous two decades. We
spend some time in this paper exploring why this trend may
be happening, but an implicit statement by the operating
systems community one could take away may be that ei-
ther Linux or Windows is the correct solution. We felt that
while the inertia of the mass of software designed for these
two models is great, innovation in the system software stack
is also important. This observation motivated the on-the-fly
customizability aspects of K42 as well as subsequent explo-
rations of alternative ways of achieving legacy support while
allowing innovation.

Abstract

We started the K42 project more than ten years ago with the
ambitious goal of developing an operating system for next-
generation hardware that would be widely valued and thus
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widely used. Based on the premise that current operating
systems were not designed to be scalable, customizable, or
maintainable, we set forth to rectify that by applying proven
techniques from other disciplines to operating systems and
by developing additional innovative mechanisms.
Now, ten year later, K42 is used by ten or so universities and
national labs for research purposes, not ten million informa-
tion technology departments desiring better everyday com-
puting platforms. As a presentation to the primary operat-
ing systems community we provide an examination from two
different perspectives as to what went right and what went
wrong. First, we concentrate on what technology worked
well and why, and what technology failed or caused undue
difficulties, and why. Second, based on that experience, we
provide our thoughts on the state and direction of the OS
community at large.
To be clear, this paper is neither a results paper nor an
overview paper; we refer to other papers for background
material. Rather, it is an exploration by researchers with
experience with at least six different previous operating sys-
tems of the merit of technologies investigated in K42, and
an extrapolation of the implications of that experience to
the wider operating system community.

1. INTRODUCTION
Research in complete operating systems, which involves de-
veloping new fully-functional OSes capable of running signif-
icant applications, is hard and resource consuming. First,
operating systems require a tremendous amount of infras-
tructure to present a complete solution to the user, while
the research community and the marketplace are not kind
to those who take time to get that infrastructure right. Sec-
ond, there are rarely clearly right or clearly wrong solutions.
One benchmark will favor mechanism A, while another fa-
vors mechanism B. Third, there are many disciplines, e.g.,
networking, memory management, file system, etc., involved
in putting together an operating system. Fourth, to run
many different applications they need to be ported to the
new OS interfaces or the OS must support a standard set
of interfaces; see the first observation. This list is far from
complete.

A fair question then, is why start a new complete-operating-
system initiative. Our hypothesis was that the operating
systems available did not meet the community’s needs with
regards to scalability, customizability, and maintainability,
or facilitate significant innovation. Other researchers and
developers in the community have also written about the



serious shortcomings of existing solutions [22, 21, 16, 20,
17].

There has been a marked decline in the number of complete-
operating-system initiatives. The environment for such ini-
tiatives is no longer conducive for several reasons. Pressures
from academic publication volume or industrial research de-
liverables have increased. More importantly, the number of
legacy interfaces and applications that must be supported
for a system to be relevant has increased with the growing
user base. In the ten years before we began K42, a large
number of complete OS projects were undertaken, including
Chorus, MACH, Sprite, Synthesis, Peace, Amoeba, Clouds,
Spring, Apertos, Choices, Opal, VINO, Plan9, Exokernel,
SPIN, Rialto, Paramecium, Nemesis, Scout, Tornado, Eros.
In the last ten years, fewer complete OS projects have been
started. Only K42 [18] and Flux [15], and more recently
Singularity [17] and Asbestos [13] are examples. We do not
imply that OS research does not occur, rather that research
into whole or complete operating systems has declined.

Despite the challenges, we were motivated to undertake K42
because we believed there was a fundamental need based on
future software requirements to examine the core design of
kernels. Based on the premise that existing operating sys-
tems were not designed to be scalable, customizable, and
maintainable, we set forth to apply proven techniques from
other disciplines and develop additional innovative mecha-
nisms to address these needs.

Today, there are a growing number of research organizations,
including universities and national labs, that are using K42
for research. Because, as noted above, such undertakings
are rare in the operating systems community, we present to
the primary research operating systems community an open
evaluation from two different perspectives as to what went
right and what went wrong.

A fundamental decision was to apply object-oriented design
using C++ throughout the system. Ten years ago object
orientation in the operating system was viewed as highly
controversial, at least as witnessed by reviewer comments
and conversations with other OS researchers. More recently,
operating systems, including commercial ones, are becoming
more modular, with more tightly defined interfaces between
components. As modularity was both a pervasive design
decision and viewed with skepticism, this decision receives
considerable attention throughout the paper. In short, the
researchers involved with K42 unanimously viewed this de-
cision as a success.

Another important design decision was avoiding the use of
centralized code paths and data structures. We accom-
plished this by having separate sets of object instances man-
age each operating system resource. This design was mo-
tivated by the desire to scale, but also positively impacts
customizability and maintainability. It too is viewed as a
success.

Customization was another technology explored extensively
in K42. The goal was to combine on-the-fly customization
of K42 with Linux API support to allow innovation by re-
searchers and developers while supporting legacy interfaces

and running legacy applications. Code, we reasoned, could
use the standard interfaces and directly call native K42 ser-
vices when performance was needed or to take advantage
of new innovations. The customization was successful in its
own right, but because of Linux API support issues did not
lead to allowing innovation while providing legacy support.

Of all our decisions, the decision to make the system com-
plete and not just a research prototype was the one with the
biggest impact. Although at the outset, we all agreed this
was a good thing, with positive and important consequences,
it proved to be a mammoth time sink and is viewed with
very mixed opinions among the K42 team. The reasons we
chose this path and ensuing complications have significant
implications for the operating systems research community
and the systems community as a whole. In particular, we
describe the impact of the perceived or real need to support
legacy software and interfaces. Unless the OS community
believes that the two popular systems, Linux and Windows,
are the right answer for the future, serious soul searching
into fundamental technology that allows modification of un-
derlying structure and techniques to break away from sup-
porting legacy interfaces, needs to occur. In later sections
we describe how some of our techniques, combined with vir-
tualization, has potential to address these challenges.

Other principles we discuss in the paper include leverag-
ing the performance advantages of 64-bit processors, mov-
ing traditional system functionality out of the kernel, the
use of an integrated performance monitoring infrastructure,
and our open-source software model.

We have demonstrated the efficacy of the techniques we em-
ployed that allow K42 to scale, and of the mechanisms we
implemented for customizability. The jury is still out as to
whether the techniques we applied for maintainability will
prove effective.

This paper is neither a results paper [25, 5, 6, 8, 26, 27,
4, 24, 3] paper nor an overview paper; these are available
on our web page [18]. Rather, it is an exploration by re-
searchers with experience with several operating systems,
including AIX, Hurricane, IRIX, Linux, RP3 Mach, Solaris,
and Tornado, of the merit of technologies investigated in K42
and an extrapolation of the implications of that experience
to the wider operating system community. The best single
reference providing an overview of K42 is a 2006 Eurosys
paper [19].

The rest of the paper is structured as follows. Section 2
contains our evaluation of, and experience regarding, the
decisions we made. Section 3 describes why we chose to
implement a complete OS, why this was a bad idea, and
the implications for the OS community at large. Section 4
concludes.

2. EVALUATION AND EXPERIENCE
This section of the paper describes our experience and lessons
learned from K42. For each area we indicate what we did
right and what we did wrong. We generalize these expe-
riences and describe their implications on other complete
operating systems projects.



2.1 An OO OS
Object-Oriented (OO) programming — everyone says what
a wonderful thing. Well maybe not everyone — OS re-
searchers, at least those that reviewed early papers and those
we met at conferences, were skeptical. For those espousing
OO benefits, high on the list is code re-usability; few men-
tion scalability. That, however, was our primary motivation.
Succinctly stated, implement OS resource management by
grouping the needed code and data together in local ob-
jects, then place the object on the processor requesting the
resource. Most OS resource requests, especially in a multi-
processor, are independent. Thus, the model should scale
well. Continuing with the OO motivation list one will find
flexibility and encapsulation. We used those in K42 to pro-
vide customizability and maintainability.

Throughout the paper when we refer to the OO design or
model we mean K42’s use of an object-oriented paradigm,
where each OS resource is implemented by an independent
set of one or more object instances, and where the code,
locks, and data structures for managing that resource are
encapsulated in those objects.

Customizability: We used our object-oriented design to
address four broad areas in K42, one of which was customiz-
ability. Each resource K42 manages is implemented by a set
of one or more objects. For example, within a process each
open file has a set of objects that represent it. Thus, if a
file is known to be small or read-only, an object optimized
for that behavior can be used thereby achieving the signif-
icant performance improvements demonstrated by previous
work. A wider-scope example is the process object. In K42
we have uniprocessor and multiprocessor versions of the pro-
cess object optimized to match the behavior exhibited by a
given process.

In addition to customization at process creation, K42 pro-
vides the ability to hot-swap objects and dynamically up-
grade the system. This significantly increases the usefulness
of customization, because for example, when a file is opened,
the future usage pattern is not known by the OS. We discuss
dynamic customization in more detail in Section 2.2.

In addition to our work, many other groups have looked at
OS customization. In practice, little of this work is being
utilized in mainstream operating systems. Although cus-
tomization sounds attractive, either the technology is not
yet mature enough for the mainstream audience, or there is
not sufficient motivation. Even in K42, which makes cus-
tomization easier, there is not widespread usage. In K42,
this may be because the core team are kernel developers
rather than users. We, like other researchers, believe in the
long term usefulness of this customizability. An OO model
is mechanistically the right approach, but policy-wise the
fruits have not yet been borne out.

Scalability: A second area in which OO design was useful
was in scaling the OS. The goal is to localize in individ-
ual objects the data and code needed to service a request
for each instance of an OS-managed resource. By so do-
ing, we avoid using global locks and global data structures.
Using local objects was successful, with the caveat that we
introduced interesting challenges when trying to implement

global policies. For example, because memory is tracked in
separate objects, there was no single list from which to per-
form a working set computation or on which to run a clock
algorithm. Similarly, when trying to find the thread with
the next highest priority, there was no one place to look. In
both instances, the solutions we produced were efficient with
similar policy characteristics to the central solution, and be-
cause they were implemented in the K42 model they scaled
well.

An OO design is not the only way to avoid global locks
and global code paths. In fact, operating systems, over the
last ten years, have been removing them. The difference is
the effort it takes to remove them in a given model. As
an example, when we were tuning K42 to scale, there were
times we found a lock had become global due to a change in
how the object was used from how it was originally designed.
However, because an OO model enforced a limited scope the
lock could affect, removing it was not difficult. A very well
modularized OS would have allowed the same, and one does
not technically need OO to accomplish that; however, one
does not write GUIs in assembly, i.e., use the right tool for
the job. Using an OO model for reasons we stated provides
a much smoother path to scalability. This we got right; an
OO model for designing a scalable OS works.

Quick Bringup and Porting: A third area in which we
utilized OO design was in facilitating quick system bringup
and simplifying porting. We utilized the notion that with
an OO model we could design the needed interfaces then
quickly implement simple versions of non-critical code. Im-
provements and optimizations to the code could be made
later as needed. K42 can be ported quickly to a new ar-
chitecture using generic code and over time more optimized
versions that are architecture specific can be implemented.
The model has been a effective.

A caution though needs to be raised for new functionality. In
a large space such as OS infrastructure, it is rare the motiva-
tion is found to go back and write the better version of code
that was done quickly for the initial implementation. Thus,
while the OO model does allow quick bringup, it can lead to
later performance issues. We often did not find ourselves im-
plementing the better version until performance debugging
uncovered a problem. Whether this is because our group is
small for an OS development effort, or whether the problem
is endemic to large infrastructure undertakings such as an
OS, is not clear, but the lure and trap exist.

Maintainability: A fourth area in which we utilized OO
design was for improving system maintainability. The the-
ory is that an OO design increases the likelihood that re-
quired changes to the system are contained to local objects,
and therefore would be simpler to change and test. This
property is especially useful in operating systems where tra-
ditionally code manipulates other components’ data, for ex-
ample, the file system and memory management code. The
model makes it easier to isolate bugs because objects touch
only data local to an object. While the original K42 team
feels this was a success, it is viewed less enthusiastically by
developers not as intimately familiar with K42 due to the
increased complexity.



General OO Issues: There are two issues we encountered
when using an OO model to implement K42. This first is
that the use of implementation inheritance increased the
complexity of the system, especially to users not familiar
with OO programming. Good OO tools can help ameliorate
the difficulty. The second is a greater need for achieving the
good breakdown between functionality and object decompo-
sition.

With the OO model we found it relatively easy to special-
ize objects. Our memory and I/O hierarchies are examples
of this. In addition, the OO model allowed implementation
inheritance. Both specialization and especially inheritance
make the system appear complex to a new K42 developer.
One idea that did help in the few places we used it, is to
encapsulate functionality into common classes. This still
preserves the OO model but reduces the complexity. It is
more difficult to program without implementation inheri-
tance, but it was a mistake to use it as much as we did
because it leads to a more-complex-than-needed system, es-
pecially visible to those that have not programmed the sys-
tem since inception.

A second related issue is determining the correct break-
down of functionality between objects. The original design
of K42 was targeted at remaining personality independent,
i.e., not coupling the underlying mechanisms with the sup-
ported API. As we embraced the Linux API and faced the
reality of a timely implementation, we gave up on personal-
ity independence, and some coding assumptions and mod-
els from Linux were foisted onto the base infrastructure of
K42. This was especially noticeable in the I/O space where
K42 code was less developed and where we used more Linux
code. However, the most pronounced disturbance was in
implementing fork(). In addition to the well-known perfor-
mance problems, the number of objects fork impacted was
substantial. It caused us to implement additional special
objects, to coalesce objects we intended to remain indepen-
dent, and caused additional complexity due to unanticipated
increased inter-object interaction.

The previous two experiences are more about OO design
then OS design. But because we have described the use-
fulness of OO design throughout this section, we felt it was
important to temper it with the pitfalls we fell into when
using that model.

For maintainability, the jury is still out. Because required
updates are self-contained and individual objects implement
particular software or hardware requirements, updating code
for specific functionality is easier. However, until the sys-
tem is used by more application developers, and has gone
through several versions, a definitive answer can not be pro-
vided.

2.2 Dynamic Customizability
Hardware and software are becoming more complex. Our
approach to addressing the increasingly disparate needs of
different applications was to provide first-class customiza-
tion of operating system resources. In K42, each resource
is managed by a set of one or more objects that can be
chosen to match the specific needs of a given application
or hardware platform. There has been considerable work

that has examined customizing operating systems [9, 23, 14]
and a much longer list of work showing how one-off special-
ized implementations of a particular service would be benefi-
cial [25]. Recent work has argued that operating systems are
not flexible enough [21]. In Section 2.1 we described static
customization, here we focus on dynamic customization.

A crucial aspect of providing customizability is defining the
boundaries at which customization may occur. In a tradi-
tional operating system it would be difficult to, for example,
modify on a region-by-region basis how in-core page faults
are handled, or to have different behaviors for different files.
In K42, objects provide a natural boundary at which to cus-
tomize. They also allow us to relatively easily provide the
more challenging aspect of dynamic customization, namely
changing data structures, versus modifying only code. The
tight integration of dynamic customization with K42’s OO
model proved to be a large win.

As we noted in previous examples, an implementation with
local-only objects as encouraged by the OO model can lead
to challenges. The desire to perform a dynamic upgrade
of the system is a good example. We distinguish hot swap-
ping [25], which we define as switching one object on-the-fly,
from dynamic upgrade [6, 7], which we define as switching
all objects of a given type. Dynamic upgrade would be use-
ful, for example, in applying a patch to fix a security hole,
or when upgrading the version of a given object. Because
everything was local, we had no easy way of performing a
dynamic upgrade in K42. This is representative of issues
that occur in highly modularized systems. We solved it by
introducing factory objects that, when an object is created,
track that object, thereby building up a notion of global
state, but remained scalable by using clustered objects [4].

We have programmed some objects motivated by examples
from the literature, and a few other objects allowed for
by K42’s clustered objects to transparently trade-off dis-
tributed versus shared implementations. However, we do
not have a large base of multiple object implementations for
users of the system to switch among.

Mechanistically our dynamic customizability has been a suc-
cess. The implementation was relatively easy and clean.
Because there has not been widespread use of the facility in
K42, it is difficult to evaluate whether as a generic program-
ming paradigm it is easy to integrate with application-level
programming. To aid in this direction we are exploring auto-
matic ways to utilize the technology [27]. However, the best
method to validate the usefulness of this technology is for
the wider research community using K42 to implement many
different alternatives to allow the user community choices,
and evaluate whether the users make effective use of the
different implementations.

A reason that dynamic customization is not widely available
is that operating systems like K42 that have implemented
it do not have a large user base, so many alternative ob-
ject implementations have not been written. In operating
systems such as Windows or Linux, the underlying capabil-
ity does not exist, and the marketplace is not demanding
its implementation because the benefits are not proven by
a large user base. More recently however, the ability to ap-



ply patches without having to schedule system downtime is
receiving considerable interest from customers and the mar-
ketplace. This requirement could be satisfied by techniques
like dynamic upgrade and is a good path for OS researchers
interested in seeing this technology take hold.

2.3 Scalability
K42 was designed from the beginning for scalability. There
is a design tradeoff in determining how to achieve scalability.
Existing operating systems had been designed for uniproces-
sors, with multiprocessor support retrofitted, sometimes at
significant cost. SMPs with large numbers of processors have
not become as prevalent as was predicted in the mid 1990s.
However, some of the technology developed for scalability
in K42 will be applicable to the machines built with a few
chips per box and many cores per chip as per current trends.

As we mentioned in the previous section, an object-oriented
design was a key towards achieving scalability. Clustered
objects [3] were built following this model. They paid off.
Clustered objects provide a good model for how to scale
OS resources as the demand for the underlying managed
resource grows. They provide an interface behind which,
transparently to the client, an appropriate level of distribu-
tion can be implemented. For example, the process object
was implemented as shared version and later as a distributed
version. The researchers who had been involved with scaling
previous operating systems agree that the clustered object
model makes scaling easier.

We invested in a couple other pieces of infrastructure that
helped us achieve scalability in K42. Our IPC model helped
achieve scalability by automatically localizing requests from
client to servers. We implemented processor-conscious mem-
ory allocators. These allocate memory on a specific proces-
sor or node, and track that memory so when it is freed it re-
turns to the correct pool. We employ fine-grain locking. We
also avoided locking hierarchies. Instead, in K42’s program-
ming model, locks are not held when calling other objects.
This simplifies avoiding deadlock, but increases difficulties
with timing windows of multiple in-flight calls. Also in some
situations it increased programming complexity because it
imposed additional constraints on cross-object calls.

While we have been successful in scaling K42, the result is
tempered by the fact that we have run only on a 24-way
system. While it scaled well that far, better than other op-
erating systems, that does not mean it would scale to 1000s
of processors. Likely, some issues would arise. The question
is could they be addressed reasonably easily. Demonstrating
the infrastructure by showing scaling to a larger number of
processors would be more convincing. This was not a lack
of interest and time but of available hardware.

2.4 Integrated Performance Monitoring
From K42’s beginning, and throughout the project, we inte-
grated an infrastructure that allowed for correctness debug-
ging, performance debugging, and performance monitoring
of the system [26]. We place such a high priority on this
capability that at boot time we dedicate a piece of mem-
ory for this purpose. This has proven extremely valuable
throughout the life of K42, not only for helping understand
the performance of K42 itself, but also for understanding

the performance of applications on K42. In fact, we have
had Linux users run their applications on K42 so they could
utilize the performance monitoring infrastructure.

In retrospect, it is obvious that such an infrastructure would
prove useful. However, both on this project, and in a previ-
ous one, there was initial resistance to putting in such an in-
frastructure, and such resistance continues in Linux, for ex-
ample. In both cases though, the infrastructure solved prob-
lems that would otherwise have been difficult or unsolvable
without such integrated performance monitoring support.
Contrary to some espoused wisdom, simple examination of
the code can not uncover some types of performance issues.
The infrastructure provides both a horizontally (different
components within a given layer) and vertically (different
layers in the execution stack) integrated framework. Hor-
izontal integration allows, for example, anomalies between
the virtual memory system and the scheduler to be detected
because each use the same interface. This integration is not
uniformly agreed as the way to go. For example, an ap-
proach advocated in Linux is for each subsystem to have its
own patched version. Integration applies to more than just
horizontally across the OS, but vertically to all the layers
in the execution stack including hardware. Our recent work
on PEM [27, 12] demonstrates the effectiveness of vertically
integrated performance data.

The model we chose to use in K42 allows efficient logging
of data from kernel and user space. In addition we have
defined aggregation interfaces similar to Sun’s DTrace or
Linux’s System Tap. The advantage we have found from
the additional functionality, is that while aggregation is use-
ful for many problems, having an efficient mechanism for
getting out all the data is invaluable for detailed visualiza-
tion or for post-process analysis [12]. Unlike some other
systems, we have been willing to “clutter” up our code with
static trace points. This provides the advantage of allow-
ing more efficient data gathering, versus dynamic tracing,
and thus allows greater amounts of data to be available for
post-processing.

Because this effort was well-integrated from the beginning,
the developers of K42 have used the tracing infrastructure
throughout the project. It has been used to correctness de-
bug the filesystem, to performance debug odd behavior in
our polling mechanisms, and to performance tune our scal-
ability through lock analysis. Perhaps though, the most
important testimony is that is has been used by researchers
outside the K42 group in preference to other operating sys-
tems’ performance monitoring infrastructure to understand
and characterize application behavior.

2.5 Linux Compatibility and Sandboxing
Near the beginning of the project we decided that it would be
important to support an existing interface that had a large
base of users and applications, and minimize our investment
in supporting hardware. Thus, we chose to support a Linux
API and ABI. In order to be fully functional and to minimize
our investment in supporting specific hardware, we chose to
also use Linux device-driver code. While the decision to
implement a complete OS is the focus of Section 3, here we
describe our specific experiences with the Linux API, and
sandboxing low-level Linux code for use in the kernel.



We provide a common API by incorporating non-performance-
sensitive portions of code from Linux and implementing our-
selves the parts needed to fulfill K42’s goals. In areas where
a glibc interface impedes performance, applications can in-
voke a native K42 object directly. We have implemented
significant Linux functionality, enough so that we could run
the IBM JVM J9, the IBM database DB2, Supercomput-
ing ASCII benchmarks, and various SPEC benchmarks, .
The challenge of fully supporting Linux was not the system
call interface, but features like /proc and SysV shmem and
semaphores.

To minimize our investment in supporting hardware we used
Linux device-driver code. Because early device code con-
tained certain firmware expectations, we were also strongly
encouraged to use much of the Linux boot code. What
started off as a minimal amount of Linux functionality, piece
by piece snowballed into a large intrusion into K42. It is dif-
ficult to take just a small portion of some large infrastructure
because those pieces make use of other parts of the large in-
frastructure and have assumptions about the environment.
For example, Linux device drivers make specific assump-
tions about the concurrency and preemption model. These
assumptions did not match K42’s original model and addi-
tional sandboxing was needed to maintain our model while
still providing the environment the Linux code needed. As
more Linux code was used, there was pressure to use even
more, and our sandboxing environment became more com-
plicated.

Another issue is that Linux is a rapidly moving target and
trying to stay current with our support is challenging. Even
code that we believed relatively stable gets outdated quickly
as other portions of the OS progresses. In short attempting
to support a wide range of hardware while still providing a
common API requires a lot of investment in “uninteresting”
infrastructure that detracts from a project’s main goals. We
discuss the consequences of this and the implications for the
OS community more in Section 3.

2.6 Cats and Dogs
There are several more experiences that do not fit neatly
into any of the other sections.

Early in the project we invested in optimizing the exception-
level paths. Days were spent optimizing away a couple
of register uses saving handfuls of cycles. While early on
this appeared useful and improved micro-benchmark results,
once we incorporated other code that was less careful about
such optimizations, all the early efforts were swamped.

Nevertheless, some portions of the K42 low-level paths such
as IPCs between servers in different address spaces continue
to pay off. In K42, we can perform an IPC without context
switching to the kernel. We do not need to use any kernel
buffer space and only a handful of registers need to be saved,
most are passed through intact. The low-level exception
code authenticates the originator of the IPC. Servers can
then validate that the calling client has access to make a
given request. This was a clean idea and has served us well.

Another area of K42 that worked well were the decisions we
made regarding scheduling. In conjunction with our IPC

mechanism, we use hand-off scheduling [10] to efficiently
switch between different address spaces. The only down-
side is that because the kernel is not involved, we could
not do accounting on this transition should we desire it.
We also provide a fully user-level thread scheduling capa-
bility. All threads within a given address space are mul-
tiplexed on a single kernel entity. This binds few kernel
resources and provides efficient thread scheduling. We do
not block the user-level scheduler when one of its threads
blocks for I/O, instead we return control and it blocks only
the thread. This model also worked well. Finally, frustrated
with the Unix model of priority scheduling and the lack of
ability to reason about what it was actually doing, we im-
plemented a proportional-share scheduler tempered with five
fixed-priority bands. This allows full control of I/O versus
CPU threads, to really nice a process, and to provide for
both soft real-time and gang-scheduled jobs. While we have
not fully explored real-time and gang-scheduling, the other
aspects have worked out well.

Early on we predicted cheap 64-bit architectures would be
mainstream and we designed our code to take advantage of
that, for example by using sparse virtual addressing. Given
this expectation, the delays in wide availability of 64-bit
hardware hindered our ability to run K42 on widely available
machines. Thus, it was much later before collaborators had
easy access to running K42. This is now remedied and K42
is being ported to more readily available platforms allowing
wider use.

Similar to the Exokernel, we moved functionality tradition-
ally in the kernel to user-space servers, and to the address
space of the process. In many cases this allowed short-
circuiting what would typically be system calls. For ex-
ample, for small files we track the cursor position and map
in the file data to the process’s address space. This type
of work can occur in other operating systems and with a
correct authentication model is a win.

K42 is open source. We believe this, combined with the
OO design, allows developers a novel opportunity to con-
tribute code [2]. Many Linux developers write code that is
useful to a subset of Linux users, but is never taken back
into the main kernel, e.g., scalability patches. K42’s model
of customizability, in which objects only need affect users
that invoke them, provides a unique opportunity for users
to contribute code back to the K42 base without the tension
of determining how widely applicable it is.

3. IMPLEMENTING A COMPLETE OS
Without a doubt, the biggest frustration of the team was
the immense amount of time and effort we spent implement-
ing and supporting the Linux API, which was motivated by
the goal of implementing a complete operating system. We
use “a complete OS” to mean a fully-functional system that
could be used by a large community, and that would run a
large set of existing significant applications with no porting.
The intent to build a complete OS was motivated by several
factors.

First, demonstrating the value of the project to potential
users can better be accomplished by running real applica-
tions and providing a familiar environment. Second, stated



in the positive direction, the ability to produce results on
meaningful applications beyond microbenchmarks is valued
by the academic community. This was supported by early
feedback on K42 before it was as complete as it is now.
Third, the intent of the project was to provide more than
research results, it was to offer a real alternative solution.

While this may seem ambitious, the alternative is to accept
that the fundamental structure of Linux or Windows is the
right solution for ten years from now; if that is plausible,
then what about twenty or thirty years out. The operat-
ing systems research community has undertaken increasingly
fewer new complete OS efforts. It is not clear if this is be-
cause researchers feel that Linux or Windows is the right an-
swer, or if new complete OS research has become too costly,
or even potentially if the increasing maturity and competi-
tiveness of the OS research field has created an environment
that discourages such attempted innovation because of pub-
lication requirements. Whatever the reason, we believe it is
important for the OS research community to drive whole-
OS innovation in addition to incremental improvements. In
addition to being a complete OS, K42 is a good vehicle on
which to try new research approaches.

While we acknowledged we needed to support legacy inter-
faces, we did not recognize early in the project the amount
of effort and the impact that fully supporting them would
involve. Having to support the increasing number of legacy
interfaces will weigh heavily on future systems. What is
needed therefore, is technology that will allow the OS com-
munity to phase out old interfaces and introduce new ones,
while still providing a usable computing platform.

With K42 we believed we could address these issues. The
new flexible customizable structure we definitely had. The
thought that some objects could be written to support the
needed legacy interfaces and then switch to new ones seemed
plausible. It failed. In part, it failed because we did not rec-
ognize ahead of time the significant ramifications of needing
to support legacy interfaces with reasonable performance.
Perhaps if we had pursued the personality independent re-
search angle we had started with or if instead we had used
hot swapping to instantiate new objects when an application
forked, we may have been able to avoid affecting the inter-
nal structure as dramatically. Time and resources however
dictated that we take a more expedient route that involved
a deeper intertwining of the Linux and native K42 code.
Fully supporting the Linux API significantly changed the
structure of K42.

In retrospect, we chose an inopportune place to separate out
what we utilized from Linux and what we implemented to
achieve our goals. In a successor “library OS” project called
Libra [1], we chose to package performance-critical kernel
functionality with the application and use virtualization to
call out to a standard Linux to handle non-performance-
sensitive requests. Innovative designs for managing kernel-
level resources are linked in with the application from a li-
brary of such functionality allowing the customization that
proved effective in K42, but without the burden of support-
ing legacy interfaces. Instead these calls, such as miscel-
laneous requests to /proc can be shipped to the compan-
ion Linux OS. This approach offers potential to allow sys-

tem stack innovation while supporting applications written
against legacy interfaces. In a paper in this issue [11] we
provide early insight into the effectiveness of this type of
approach and vision into its potential.

4. CONCLUSIONS
Nearly ten years ago, the K42 team embarked on the ambi-
tious journey of designing and implementing a kernel that
would scale to the increasing number of shared cores, that
would be customizable allowing the increasingly disparate
application set to have resources managed as needed by the
individual applications, and that would be more maintain-
able in the face of an increasing amount of functionality and
platforms that operating systems need to support. In this
paper we provided experiences and insight into what we did
right and what we did not, and how those experiences apply
to other OS efforts.

We were successful with the techniques we employed to allow
an operating system to scale and be customized. In both ar-
eas, we demonstrated good results and published our work.
Whether the techniques we applied for maintainability will
be effective remains to be decided.

Another goal of the project was to implement a complete op-
erating system supporting legacy interfaces usable by a large
community. We are currently short of this mark. Whether
these difficulties are endemic is unclear. We believe that
some of the more recent virtualization work provides the po-
tential to achieve legacy support while allowing innovation.
We hope other research is undertaken, and that research on
K42 continues, to better answer this.

Status and Availability
K42 now runs significant applications, including web servers
such as Apache, scientific libraries such as MPI, JVMs such
as J9, and databases such as DB2. Recent work has signifi-
cantly eased the effort needed to get K42 built and running.
K42 is available open source under an LGPL license and
may be downloaded via instructions from our web page at
www.research.ibm.com/K42. Also there, are papers on K42,
pointers to the K42 discussion list, and suggestions on how
to participate in this research project.
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