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ABSTRACT 
 
Virtualization technology is becoming increasingly common in 
datacenters, since it allows for collocation of multiple workloads, 
consisting of operating systems, middleware and applications, in 
different virtual machines (VMs) on shared physical hardware 
platforms. However, when coupled with the ease of VM 
migration, this trend increases the potential surface for security 
attacks. Further, the simplified management of VMs, including 
creation, cloning and migration, makes it imperative to monitor 
and guarantee the integrity of software components running 
within VMs.  
This paper presents the IBM Trusted Virtual Datacenter (TVDc) 
technology developed to address the need for strong isolation and 
integrity guarantees, thus significantly enhancing security and 
systems management capabilities, in virtualized environments. It 
signifies the first effort to incorporate trusted computing 
technologies directly into virtualization and systems management 
software. We present and discuss various components that 
constitute TVDc: the Trusted Platform Module (TPM), the virtual 
TPM, the IBM hypervisor security architecture (sHype) and the 
associated systems management software. 

 

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection – Access 
control, Authentication, Cryptographic controls, Information flow 
controls. 

General Terms: Management, Design, Security. 

Keywords: Virtualization, Mandatory Access Control, 
Integrity, Isolation, Virtual Trusted Platform Module, Security 
 
 

1. INTRODUCTION 
 
Datacenters such as web hosting facilities are increasingly 
virtualized to reduce their total cost of ownership. Cost reductions 
are realized by sharing each hardware platform among multiple 

software workloads, with each workload running in its own set of 
virtual machines. Consolidating workloads in this fashion has 
become possible because ever more powerful hardware becomes 
increasingly underutilized when used to run a single workload. 
The resulting reduction in hardware acquisition costs is 
accompanied by perhaps more important reductions in space, 
power, and cooling costs. 
However, along with these cost benefits come added security 
concerns. Workloads that share hardware must often be kept 
separate for a multitude of reasons. For example, government 
regulations may require an investment bank to maintain a strict 
separation between its market analysis and security underwriting 
departments, including their respective information processing 
facilities. Similarly, commercial interests may dictate that the web 
sites of competing businesses not have access to each other’s data.  
Furthermore, concerns about malicious software become 
especially acute in these shared hardware environments. For 
example, the owner of a medical services site would like to 
guarantee that its software has not been co-opted by another 
workload to expose private information. The increased sharing of 
hardware by multiple workloads thus gives rise to stringent 
security requirements in the areas of workload isolation and 
software integrity. 
In addition to requiring new infrastructure support for isolation 
and integrity, virtualized datacenters introduce difficult system 
management challenges. Managing the security of a networked 
server running a single workload is already complex. This 
complexity is compounded when a server is shared among 
multiple, possibly adversarial workloads. Appropriate 
mechanisms are needed to allow system managers to concisely 
express the rules that should govern the sharing of resources 
among all the workloads in a datacenter. Similarly, mechanisms 
are needed to monitor the integrity of all these workloads. 
This paper presents the Trusted Virtual Datacenter (TVDc), a 
security solution that addresses both infrastructure and 
management issues introduced by datacenter virtualization. TVDc 
groups virtual machines and resources that collaborate towards a 
common purpose into workloads called Trusted Virtual Domains 
(TVDs) [7]. It provides strong isolation between workloads by 
enforcing a Mandatory Access Control (MAC) policy throughout 
a datacenter. This policy defines which virtual machines can 
access which resources, and by extension which virtual machines 



can communicate with each other. TVDc also provides integrity 
guarantees to each workload by leveraging a hardware root of 
trust in each platform to determine the identity and integrity of 
every piece of software running on a platform. In addition, TVDc 
allows centralized management of the underlying isolation and 
integrity infrastructure. 
 

2. TVDc INFRASTRUCTURE 
 
The Trusted Virtual Datacenter (TVDc) is a technology designed 
to enhance security and management capabilities in virtualized 
datacenters. It is designed to provide: 

• A safety net that reduces the risk of security exposures by 
preventing the incorrect assignment of resources to VMs, as 
well as preventing unintended data from leaking and 
malicious software from spreading from one workload to 
another.  

• Simplified security management based on the abstraction of 
Trusted Virtual Domains (TVD) [7]. 

The TVDc technology allows for stronger data isolation and 
integrity guarantees than manual resource assignments and 
discretionary communication controls inside the workload VMs, 
and it offers a higher degree of confidence that workloads and 
data are secure.  
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Figure 1: Trusted Virtual Domain View 

 
Figure 1 illustrates how managing systems, virtual machines, and 
resources in highly dynamic virtual environments is simplified by 
the TVD abstraction. Without TVDc, the impact of resource 
assignments, migrating, cloning, suspending, and resuming VMs 
on workload isolation must be carefully considered in each case. 
VMs could migrate onto untrusted systems or could be collocated 
with conflicting workloads. Storage resources that have been used 
by one workload could be accidentally re-assigned to another 
workload without first being sanitized, leading to data leaks. With 
TVDc, each workload type, represented by VMs and resources, 
forms a TVD that can be managed as a whole and whose isolation 
and integrity properties are independent of those dynamics. 
Different TVDs are isolated by default and this isolation is 
preserved across different system architectures (e.g., Power, x86) 

and hypervisors (e.g., PHYP, Xen) as well as during VM lifecycle 
changes and resource assignments. Sharing among VMs 
participating in the same TVD is not restricted by the hypervisor. 
TVDc management ensures that resources assigned to one TVD 
cannot be made accessible to VMs of another TVD. A major 
concern for customers is integrity of each workload. The 
following subsections describe in more detail how TVDs are kept 
isolated from each other and how their integrity can be 
continuously monitored.  
 

2.1 Isolation Infrastructure 
 
Workloads are dynamically collocated in virtual datacenters to 
maximize availability and system utilization and to minimize 
power consumption and floor space. Collocating multiple 
workloads onto a shared physical infrastructure is essential to 
realize the benefits of virtualization. However, workload owners 
worry about isolation and confinement of their workloads when 
they share a common physical infrastructure. We define a 
workload as a set of VMs and resources that contribute to a 
common purpose, e.g., running a company’s market analysis 
services. 

2.1.1 Hypervisor Security Architecture 
The sHype hypervisor security architecture builds on the existing 
isolation provided by the core hypervisor and supervises the 
sharing of resources among VMs as well as inter-VM 
communication to generalize and translate the underlying 
isolation of individual VMs into isolation properties of different 
workloads. It acts as a mediator inside the hypervisor and inside 
the management VM and controls access to inter-VM 
communication and resources according to the active security 
policy.  
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Figure 2: sHype Access Control Architecture 

 
Figure 2 shows the sHype access control architecture as 
implemented for the Xen open source hypervisor. There are two 
sets of access mediation hooks. First, hooks controlling inter-VM 
communication and sharing are located inside the core hypervisor, 
which implements those mechanisms. In Xen, these hooks control 
event channel (remote interrupt) and grant tables (memory page 



sharing) mechanisms on top of which inter-VM communication 
and sharing, such as networking and virtual disk access, is 
implemented. Second, hooks controlling the access of VMs to 
resources (e.g., virtual disks, or disk partitions) are added. Those 
hooks are located in the management VMs; in Xen this would be 
domain 0. Both types of hooks call the same access decision 
functions inside the Access Control Module (ACM), which—in 
Xen—is implemented in the core hypervisor. 
Moving from managing the classical individual-VM isolation to 
workload isolation substantially simplifies security management. 
No longer do administrators need to monitor individual VMs and 
resources but they can focus on workloads as a whole. 

2.1.2 Mandatory Access Control 
sHype guards the assignment of resources to VMs and any 
individual inter-VM communication by implementing mandatory 
access control as a reference monitor [1] inside the virtual 
machine monitor. 
By implementing mandatory access control (MAC) in the VMM 
infrastructure, sHype ensures that system security policies are 
enforced regardless of the behavior of virtual machines. 
Confining different customers’ workloads by mandatory access 
control ensures (a) that viruses and other malicious code cannot 
spread from one customer workload to another and (b) that data 
cannot easily leak from one customer workload to another even if 
VMs running the workloads misbehave. Additionally, it ensures 
(c) that break-ins or exploits in one workload do not expose other 
collocated workloads. 

2.1.3 Access Control Policy 
Resource assignments, resource access, and inter-VM 
communication are permitted or denied according to the currently 
active access control security policy. The security policy has two 
parts: (1) the label definitions, which define security contexts for 
VMs and resources, and (2) the anti-collocation definitions, which 
enforce restrictions on which VMs can run on the same system at 
the same time. 
Security labels are composed of a reference name and a set of 
types. During labeling of the system, each VM and resource is 
assigned exactly one security label reference name. The label 
references are stored as part of the meta-information of VMs and 
resources. They are protected against the VMs and can be set and 
changed only through the VMM management. sHype uses those 
label references to determine if VMs can communicate or access 
resources by retrieving the label references associated with VMs 
and resources and permitting communication or access if those 
labels share a common type. This sharing model is similar to the 
non-hierarchical type enforcement security model [3]. 
Figure 3 shows how access is denied or permitted based on the 
security labels assigned to VMs and resources. In the figure, we 
differentiate between Market Analysis (MA) and Security 
Underwriting (SU) workloads. A trusted management virtual 
machine serves both workloads and exports a virtual block device 
that belongs to the Market Analysis workload (labeled MA). Both 
workload VMs can connect to the management VM since their 
labels share a type with the management VM. In case (1), {MA, 
SU} ∩ {MA} = {MA} ≠ Ø and in case (2) {MA, SU} ∩ {SU} = 
{SU} ≠ Ø. Case (3) shows that the workload VMs cannot directly 
communicate since {MA} ∩ {SU} = Ø; they share no common 
type. Decisions 1-3 are enforced by hooks within the hypervisor 

without cooperation of the management or workload VMs. The 
management VM (or domain 0) is trusted in turn to only connect 
VMs to resources, if the label of the VM and the resource share a 
type. This enforcement is entirely under control of the 
management VM, which queries the hypervisor for the label of 
the VM that requests to connect to a resource. It then retrieves the 
label of the local resource. In case (4), the VM label {SU} shares 
a type with the resource label {SU} of the virtual block device 
and the management VM grants access to mount the virtual block 
device. In case (5), the VM label {MA} does not share a type 
with the virtual block device label {SU} and this access is denied. 
This example also shows how the management VM preserves the 
workload isolation by ensuring that resources are not shared 
directly between different workloads. Similarly, all multi-typed 
VMs must be trusted not to enable illegal information flow 
between its types. 
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Figure 3: Controlled Sharing Decisions Based on Labels 

 
Additionally, the security labels are used to authorize a VMM 
system to run a set of VMs. When a VM starts, resumes, or 
migrates onto the system, sHype retrieves the security label of the 
VMM system and the security label of the VM. If the types 
contained in the VMM system label are a superset of the types of 
the VM label, then and only then does sHype permit the VM to 
start. This mechanism offers a simple means to partition the 
physical infrastructure for stronger isolation of certain workloads. 
Finally, the anti-collocation rules of the policy restrict which VMs 
can run simultaneously on the same VMM system. Each rule 
describes a set of types that conflict, i.e., only one of the types of 
a rule is allowed to run at a time. When a VM starts, resumes, or 
migrates onto a VMM system, sHype retrieves the label of the 
VM and derives its types. The VM is permitted to run only if the 
types in its label do not conflict with any type of any running 
VM’s label. For example, to prevent different workloads from 
running on the same system at the same time, the conflict set 
{MA, SU} can be added to the security policy. Then, Market 
Analysis workloads (VMs and resources) must be associated with 
labels including the MA type and Security Underwriting 
workloads must be associated with labels including the SU type. 
sHype will then automatically enforce the collocation restriction. 



sHype has been implemented for multiple hypervisors. For details 
on the open-source Xen implementation and a tutorial about its 
deployment see the Xen Users’ Manual [22]. 

2.1.4 Network Isolation 
The above has described how a TVDc-enhanced hypervisor 
controls VM access to resources local to the system where the 
hypervisor runs, for example a local disk. It is also important to 
enforce MAC to datacenter resources that are outside the direct 
control of a hypervisor, for example a network. We have thus 
extended our TVDc facility to control VM access to local-area 
networks through the use of Virtual Local-Area Networks 
(VLANs) that obey the IEEE 802.1Q standard [8]. Such VLANs 
emulate separate physical LANs on a single physical LAN by 
prepending to each Ethernet frame the appropriate VLAN ID and 
maintaining strict separation of frames with different IDs. 
The basic concept behind TVDc network isolation is to associate 
with VLANs the same kind of label that we associate with VMs. 
We then restrict VMs to connect only to those VLANs with which 
they share a type, and to no other networks. In this way VMs that 
share a type can communicate through the VLAN with the same 
type, but cannot communicate with any other VMs. 
Figure 4 shows an example of TVDc network isolation. In the 
figure, two physical machines (PMs) are connected through a 
network switch. Each physical machine is running two VMs, one 
labeled Market Analysis (MA) and the other Security 
Underwriting (SU). In addition, there are two VLANs configured 
throughout the system, one labeled MA and the other SU. There 
are two different embodiments of VLANs in the system. One 
embodiment is implemented in software by the VMM within each 
PM. The other is implemented in hardware by the network switch 
external to the PMs. The VMM on each PM restricts the MA VM 
to connect only to the MA software VLAN. Similarly, the 
network switch restricts each physical machine to connect only to 
those hardware VLANs for which the PM has an appropriate 
label. Finally, the VMM on each PM restricts each software 
VLAN to send and receive packets only on the appropriate 
hardware VLAN. The overall result is that MA VMs can 
communicate only with MA VMs, and SU VMs only with SU 
VMs. 
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Figure 4: TVDc Network Isolation 

We have prototyped TVDc network isolation using the Xen 
VMM and one of many commercial off-the-shelf Ethernet 
switches that support 802.1Q VLANs. We wrote software that 
configures the Xen management VM (i.e., domain 0) to connect 
user VMs (i.e., domUs) only to appropriate VLANs. Our software 
creates a software-emulated Ethernet bridge for each VLAN that a 
Xen system is authorized to access. When a user VM starts, our 
software connects it to the bridge(s) for the VLAN(s) the VM is 
authorized to access. In this way two VMs that share a security 
type on the same Xen system connect to the same software bridge 
and can communicate, while VMs that do not share a type cannot 
communicate even if they are on the same Xen system. 
To extend TVDc network isolation beyond a single Xen system, 
our software in the management VM creates a virtual network 
interface with 802.1Q VLAN semantics for each VLAN the 
system is authorized to access, and connects that interface to the 
software bridge corresponding to that VLAN. Finally, we 
configure the external Ethernet switch to connect each Xen 
system only to those VLANs the system is authorized to access. 
In this way VMs can communicate with VMs that share a type on 
other Xen systems, but cannot communicate with any other VMs. 
 

2.2 Integrity Infrastructure 
 
One of our main objectives of the Trusted Virtual Datacenter is to 
provide for users and administrators as well as for software 
entities the ability to establish trust into software components 
running on different virtual machines in the datacenter. For this 
trust establishment to work, we can make use of software that we 
have previously developed for attesting to applications running on 
Linux on a physical machine. This software relies on the Trusted 
Platform Module (TPM) standardized by the Trusted Computing 
Group (TCG), as a hardware basis for providing an anchor for 
establishing a trust chain. 

2.2.1 Integrity Measurement and Attestation 
The TCG designed a transitive trust model architecture for the 
TPM device. It states that individual software components must 
be measured, i.e., the SHA1 hash of an executable is calculated, 
and its value must be extended into a register of the TPM. The 
procedure starts with the Core Root of Trust for Measurement 
(CRTM), which is code that runs early in the BIOS, that performs 
this type of measurement on itself and on next-to-be executed 
code before it transfers execution to other parts of the BIOS. For 
this to work, the BIOS must be instrumented with TCG 
extensions. 
Previous work at IBM Research has extended the commonly used 
Grub bootloader to support the establishment of the trust chain by 
measuring the Grub configuration file as well as the kernel into 
Platform Configuration Registers (PCRs) of the TPM [13]. 
Further, our group developed a Linux kernel module, the Linux 
Integrity Measurement Architecture [18], which measures 
applications, libraries and device drivers launched inside the 
Linux operating system and extends these measurements into a 
dedicated register of the TPM while maintaining a log of all 
measurements. 
A remote challenger interested in establishing trust into another 
system performs remote attestation to determine what software is 



running on the remote system. The challenged system prepares a 
quote of the current state of all PCRs along with a challenger-
provided nonce and returns to the challenger the quote along with 
a list of logged measurements and the measured applications’ 
filenames. The challenger then replays the list of hashes and 
simulates the PCR extend operations and compares the resulting 
PCR values with those provided in the quote. Based on the 
integrity of the measured applications, the challenger can 
determine a level of trustworthiness in the challenged system. 
 

2.2.2 Virtual TPM  
When we migrated our operating system installations from 
physical to virtualized platforms, we wanted to maintain the 
ability to attest to software running inside VMs as well as the 
ability to run all other TPM-aware software, such as the TrouSerS 
open source TCG Software Stack (TSS) developed by IBM. We 
achieved this by making a private TPM available to each VM on 
the platform by implementing TPM functionality in a software-
based virtualized TPM capable of spawning multiple virtual TPM 
instances [2]. We placed the virtual TPM into Xen’s management 
VM, domain 0, for easier control over it through management 
software in the same domain, see Figure 4. Control over the 
virtual TPM is necessary for the purpose of life-cycle 
management for each of its virtual TPM instances, such as for 
example spawning a new virtual TPM instance when a virtual 
machine requires access to a private TPM, or deleting the virtual 
TPM instance when the VM’s configuration is removed. 
Virtualization of hardware devices is typically achieved through 
emulation of device functionality. In case of the TPM this is an 
important part of how to achieve virtualization. However, a 
couple of challenges arise, which are directly related to the TPM 
being a security device. First, a TPM is usually equipped with a 
certificate for its endorsement key, which is issued by the device 
manufacturer. In the virtualized world, however, such certificates 
do not pre-exist for a newly created virtual TPM instance but can 
be created by the management software controlling the virtual 
TPM. Second, the transitive trust chain that is usually rooted in 
the CRTM in the physical machine’s BIOS may now be rooted in 
the virtual machine’s BIOS and measured into the virtual TPM 
instance associated with the VM. The problem with this is that an 
outside challenger would not see the complete trust chain that is 
relevant for not only establishing trust into software running 
inside the VM, but also into software relevant for the VM and 
hypervisor implementation. In this case, the certificate can 
indicate that a quote is generated by a virtual TPM and the 
challenger can determine to follow the additional steps and attest 
the underlying virtualization infrastructure. 
Figure 5 shows the architecture of the virtualized system with the 
virtual TPM inside the system’s management VM. A system 
management stack, based on the Common Information Model 
(CIM), is used to control the life cycle of virtual machines and 
that of virtual TPM instances. VMs that use TPM functionality 
only have access to only their own virtual TPM instance. 
An important part of the trust establishment architecture is the 
verification of the hashes of software reported to be running on a 
system. Since there are many different pieces of software 
available in various versions, a very large number of hashes can 
be expected to exist, and along with that a scalability problem 
arises that requires centralized management of hash information 

along with annotations about the quality of the software. 
Annotations may for example include known vulnerabilities or 
even information about malicious software. By maintaining a 
centralized database of hashes we relieve every challenger from 
maintaining its own database. This model turns out to fit nicely 
into the concept of system management, which by its nature 
implements a centralized point for remotely managing virtual 
machines in a datacenter. 
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Figure 5: Virtual Trusted Platform Module Architecture 

 
Another important aspect of TVDc is the ability of the system 
administrator to monitor the status and trust level of software 
running inside deployed virtual machines, i.e. for Integrity 
Management. To support this, an agent monitors measurements 
occurring inside a virtual machine and forwards them to the 
management application for continuous tracking of system health 
status. 

 

3. TVDc MANAGEMENT  
 
Critical for enabling isolation and integrity is a central point from 
which an administrator can simply establish and deploy security 
policies and consolidate measurement data for analysis. A 
systems management application designed to exploit the 
infrastructure and features described in the previous sections 
provides these capabilities. 
Figure 6 shows a three-tiered systems management application, 
such as IBM Systems Director. The top block represents the user 
interface through which the administrator interacts with the 
isolation and integrity management functions provided on the 
systems management application server. It also presents the 
configuration of the datacenter and the results of the requested 
operations. The user interface may be a web browser, a graphical 
console, or a command line. The second tier is the systems 
management application server. The third tier includes the 
management VMs, which are the entities through which the 
systems management server controls the host environments and 
their virtual machines. (Please see Figure 5 for a detailed block 
diagram of the Management VM platform.) The systems 



management server communicates with its endpoints using the 
Common Information Model. 
For isolation operations, the systems management server enables 
the setting and verification of isolation policies, and the creation 
and assignment of labels to the virtual machines and their 
resources. For integrity, the systems management server allows 
the administrator to attest the management VMs and their 
respective virtual machines. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Systems Management Application Stack 
 
In addition to managing the isolation and integrity functions on 
the management VMs, the Trusted Virtual Datacenter requires the 
following facilities of the systems management server. First, the 
TVDc implies different levels of administration: administrators of 
the IT datacenter (physical resources) must be able to manage all 
the resources allocated and available for use in the physical 
datacenter, while the administrators of a virtual datacenter should 
only manage resources allocated to that virtual datacenter. 
Second, a TVDc should implement only one policy for all the 
management VMs it contains. Third, as a consequence of the first 
two requirements, the management VMs of the virtual datacenter 
should be grouped together and administered as a group. Fourth, 
the systems management application must provide an event, or 
notification, infrastructure that indicates anomalies and allows for 
their remediation. 
 

3.1 Isolation Management 
 
The systems management functions for isolation enable the 
administrator of the IT datacenter to group the management VMs 
into a TVDc and to create the policies and isolation labels 
necessary for the virtual machines within the group.  Generally, 
the tasks of this administrator include: 

o Policy creation, modification, deployment, and 
enabling  

o Isolation label creation and deletion 
o Remediating notifications of policy violations or 

attempted modifications 
 

As shown in Figure 7, the administrator of the TVDc must have 
the ability to assign the isolation labels created by the overall 
Datacenter Administrator to virtual machines and their resources 
with his group. Error messages or indications must be displayed 
for mis-assigned or conflicting resources. 
A use case for creating and configuring a TVDc follows.  The 
overall Datacenter Administrator: 

1. Discovers the management VMs within the datacenter. 
2. Assigns the management VMs to a group to be 

managed as a TVDc.  Systems Management 
User Interface/Console 

 Systems Management 
Server 

CIMOM 

 CIM Providers 

 

Management VM 

3. Defines the isolation labels and exclusion rules (anti-
collocation rules) for the TVDc. 

4. Deploys the resulting policy from the previous step to 
the management VMs in the TVDc. 

5. Authorizes the TVDc Administrator to view the created 
TVDc and assign isolation labels. 

After authorization and authentication, the TVDc Administrator: 
6. Uses the labels created by the overall Datacenter 

Administrator and assigns them to the VMs of the 
management VMs within the group. 

Note that the TVDc Administrator cannot create or alter the 
isolation policy or labels.   
The systems management application should allow both 
administrators to easily and clearly view the security attributes of 
the TVDc, its domains, and the resources of the domains. 
For VLAN isolation, it is desirable, but not essential, for the 
overall Datacenter Administrator to have the ability to create new 
virtual interfaces and bridges necessary to assign the correct 
isolation labels for connecting virtual machines in a TVDc. 
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Figure 7: Administration Responsibilities for Isolation 
 
 



3.2 Integrity Management 
 
Fundamentally, the systems management application 
implementing integrity management performs remote attestation 
on a management VM or a virtual system, acting as the 
challenging party. In a Xen installation, it gathers the integrity 
measurements for domain 0 and its user domains from the virtual 
TPM on domain 0 via CIM and compares the received list with 
the database of known, trusted measurements. If an unknown or 
untrusted measurement is found, it generates an event to the 
administrator for remediation. 
If the systems management application has an automated event 
facility, e.g. the IBM System Director Event Action Plans, the 
administrator can set up an action prior to an event being 
received. Depending on the criticality of the virtual system under 
test, it can be shutdown, restarted, an e-mail sent, etc.  
For the trust chain to be unbroken, the system hosting the 
management VM can be equipped with TPM 1.2 and have static 
Core Root of Trust for Measurement, such as the IBM System x 
3850 M2. In addition, a measured boot-loader, such as Grub with 
the TCG patch to support trusted boot, must be installed and the 
Integrity Measurement Architecture (IMA) enabled. 
An important goal of the integrity management design, met by the 
virtual TPM, is the capability to obtain measurements for the 
virtual machines from the management VM to eliminate or 
minimize any potential agent on the virtual machines themselves. 
Additionally, by using the virtual TPM with the CIM providers 
shown in the example, the measurements can be obtained securely 
without requiring a quote containing the current PCR values 
signed by the virtual TPM. 
The systems management application must have access to a 
reference measurements list of trusted components, as described 
in Section 2.2.2. The systems management application can be 
configured with a default list of measurements, but it must 
provide the administrator the ability to add new measurements 
from a trusted environment including those for a new virtual 
image, configuration files, updates for packages contained in the 
original list, etc. Likewise, the administrator must be able to 
delete stale or untrusted measurements from the reference list in 
the case of updates or security patches. 
A use case for integrity management includes the following steps.   
The overall Datacenter Administrator:  

1. Ensures that the necessary reference measurements are 
provided in the reference database or are imported from 
a trusted source. 

The TVDc Administrator: 
2. Identifies the criticality of the VMs to be measured and 

the remediation. 
3. Sets an action plan on the systems management server 

to react to events indicating untrusted measurements.  
For example, the action may be to ‘shutdown’ an 
untrusted VM. 

4. Enables the systems management application to monitor 
the VMs to be attested, either via agents or by 
scheduling the integrity attestation task. 

 

4. RELATED WORK 
 
The TVDc work integrates virtualization-based security and 
system management to provide trust and containment guarantees 
to the datacenter environment. This work is an implementation of 
the Trusted Virtual Domain (TVD) abstraction [5] and [6], which 
aims to simplify user and administration interactions on large 
scale systems by offloading the security enforcement onto the 
infrastructure. TVDc builds on previous work on trusted 
computing [19], virtual TPM [2], trust measurement architecture 
 [10],[18], and sHype mandatory access control extensions to the 
Xen  [17] and PHYP  [20] hypervisors. Independently of our work, 
Cabuk et al. [1] developed a method that assigns VLANs to 
separate TVDs, which is similar to our own network isolation 
approach as described in Section 2.1.4. 
Other related work in [11] and [12] strengthens grid security by 
proposing the use of TPMs to provide cryptographic credentials, 
remote attestation, and integrity protection. This is similar to our 
distributed mandatory access control work  [15], which establishes 
verifiable trust in virtualized environments running a grid 
distributed application. Another ongoing work is the Open 
Trusted Computing  [16] initiative which proposes to develop a 
trusted and secure computing system based on open-source 
software. 
NetTop [14] provides similar functionality as TVDc for client 
systems using commercial-off-the-shelf hardware and software. 
NetTop leverages virtualization to replace multiple end-user 
workstations having different security labels with VMs on a 
single physical system and utilizes virtual network configurations 
to interconnect VMs with secure enclaves. However, the NetTop 
architecture relies on the security controls of the host OS, since 
the VMM runs on top of the underlying OS. Our approach, in 
contrast, provides VM access control at the lowest levels of the 
system. 
For future work, we can leverage hardware security features such 
as Intel’s Trusted Execution Technology [9]  to establish protected 
environments without the need to reboot systems. 
 

5. CONCLUSIONS AND FUTURE WORK  
 
Our prototype has proven the feasibility of managing Trusted 
Virtual Domains across servers, networks and storage resources. 
However, several research challenges need to be addressed in 
order to facilitate TVDc deployment and operation. Some of these 
challenges that we are currently addressing are listed next. 
An obstacle to the adoption of virtualization is the complexity of 
customer on-boarding onto a TVDc. Solutions that migrate a 
group of physical servers along with their interconnected 
networking and storage recourses in such a way as to preserve, or 
even improve, the security and isolation of the original 
configuration are needed. Such solutions will alleviate the 
concerns that customers legitimately have regarding potential 
security vulnerabilities introduced by the migration of pre-
existing workloads onto a shared physical infrastructure. 
The current TVDc prototype provides strong, but coarse grain 
isolation; this complicates the sharing of datacenter-hosted 



services that need to be visible to clients or between business 
partners. We are currently working on the design, automatic 
configuration and optimal placement of controlled sharing devices 
that could be implemented in special VMs or within the 
hypervisor and that can provide controlled sharing between 
different TVDs within a TVDc. Controlled sharing policies 
should be linked with higher level business process management 
policies. We envision the automatic configuration of these 
mechanisms that enable external service requests to be safely 
routed to the corresponding TVD while minimizing the related 
security exposure. 
Another area of future work relates to the interaction of different 
management constraints, such as availability and resource 
management, with security constraints, such as anti-collocation 
rules. When these capabilities are managed independently, sub-
optimal or even conflicting decisions may result. Finally an 
important area of future work regards the extension of our current 
prototype to management of a heterogeneous environment 
consisting of different hypervisors, in addition to Xen and PHYP, 
as well as different networking technologies. In such a 
heterogeneous environment, different APIs and isolation 
capabilities may be present in each hypervisor and must be 
coordinated to achieve the overall TVD-based isolation 
guarantees. 
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