
RC24441 (W0711-219) November 28, 2007
Computer Science

IBM Research Report

TVDc: Managing Security in the Trusted Virtual Datacenter

Stefan Berger, Ramón Cáceres, Dimitrios Pendarakis,
Reiner Sailer, Enriquillo Valdez

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Ronald Perez
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Wayne Schildhauer, Deepa Srinivasan
IBM Systems & Technology Group

3039 Cornwallis Road
Research Triangle Park, NC 27709

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

TVDc: Managing Security in the Trusted Virtual Datacenter

Stefan Berger, Ramón Cáceres, Dimitrios Pendarakis, Reiner Sailer, Enriquillo Valdez
IBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA

{stefanb, caceres, dimitris, sailer, rvaldez}@us.ibm.com

Ronald Perez
IBM T. J. Watson Research Center
1101 Kitchawan Road, Route 134
Yorktown Heights, NY 10598, USA

ronpz@us.ibm.com

Wayne Schildhauer, Deepa Srinivasan

IBM Systems & Technology Group
3039 Cornwallis Road

Research Triangle Park, NC 27709, USA

{wschildh, deepas}@us.ibm.com

ABSTRACT

Virtualization technology is becoming increasingly common in
datacenters, since it allows for collocation of multiple workloads,
consisting of operating systems, middleware and applications, in
different virtual machines (VMs) on shared physical hardware
platforms. However, when coupled with the ease of VM
migration, this trend increases the potential surface for security
attacks. Further, the simplified management of VMs, including
creation, cloning and migration, makes it imperative to monitor
and guarantee the integrity of software components running
within VMs.
This paper presents the IBM Trusted Virtual Datacenter (TVDc)
technology developed to address the need for strong isolation and
integrity guarantees, thus significantly enhancing security and
systems management capabilities, in virtualized environments. It
signifies the first effort to incorporate trusted computing
technologies directly into virtualization and systems management
software. We present and discuss various components that
constitute TVDc: the Trusted Platform Module (TPM), the virtual
TPM, the IBM hypervisor security architecture (sHype) and the
associated systems management software.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – Access
control, Authentication, Cryptographic controls, Information flow
controls.

General Terms: Management, Design, Security.

Keywords: Virtualization, Mandatory Access Control,
Integrity, Isolation, Virtual Trusted Platform Module, Security

1. INTRODUCTION

Datacenters such as web hosting facilities are increasingly
virtualized to reduce their total cost of ownership. Cost reductions
are realized by sharing each hardware platform among multiple

software workloads, with each workload running in its own set of
virtual machines. Consolidating workloads in this fashion has
become possible because ever more powerful hardware becomes
increasingly underutilized when used to run a single workload.
The resulting reduction in hardware acquisition costs is
accompanied by perhaps more important reductions in space,
power, and cooling costs.
However, along with these cost benefits come added security
concerns. Workloads that share hardware must often be kept
separate for a multitude of reasons. For example, government
regulations may require an investment bank to maintain a strict
separation between its market analysis and security underwriting
departments, including their respective information processing
facilities. Similarly, commercial interests may dictate that the web
sites of competing businesses not have access to each other’s data.
Furthermore, concerns about malicious software become
especially acute in these shared hardware environments. For
example, the owner of a medical services site would like to
guarantee that its software has not been co-opted by another
workload to expose private information. The increased sharing of
hardware by multiple workloads thus gives rise to stringent
security requirements in the areas of workload isolation and
software integrity.
In addition to requiring new infrastructure support for isolation
and integrity, virtualized datacenters introduce difficult system
management challenges. Managing the security of a networked
server running a single workload is already complex. This
complexity is compounded when a server is shared among
multiple, possibly adversarial workloads. Appropriate
mechanisms are needed to allow system managers to concisely
express the rules that should govern the sharing of resources
among all the workloads in a datacenter. Similarly, mechanisms
are needed to monitor the integrity of all these workloads.
This paper presents the Trusted Virtual Datacenter (TVDc), a
security solution that addresses both infrastructure and
management issues introduced by datacenter virtualization. TVDc
groups virtual machines and resources that collaborate towards a
common purpose into workloads called Trusted Virtual Domains
(TVDs) [7]. It provides strong isolation between workloads by
enforcing a Mandatory Access Control (MAC) policy throughout
a datacenter. This policy defines which virtual machines can
access which resources, and by extension which virtual machines

can communicate with each other. TVDc also provides integrity
guarantees to each workload by leveraging a hardware root of
trust in each platform to determine the identity and integrity of
every piece of software running on a platform. In addition, TVDc
allows centralized management of the underlying isolation and
integrity infrastructure.

2. TVDc INFRASTRUCTURE

The Trusted Virtual Datacenter (TVDc) is a technology designed
to enhance security and management capabilities in virtualized
datacenters. It is designed to provide:

• A safety net that reduces the risk of security exposures by
preventing the incorrect assignment of resources to VMs, as
well as preventing unintended data from leaking and
malicious software from spreading from one workload to
another.

• Simplified security management based on the abstraction of
Trusted Virtual Domains (TVD) [7].

The TVDc technology allows for stronger data isolation and
integrity guarantees than manual resource assignments and
discretionary communication controls inside the workload VMs,
and it offers a higher degree of confidence that workloads and
data are secure.

TVDcTVDc

Systems ViewSystems View TVD ViewTVD View

321

Hypervisor

654

Hypervisor

987

Hypervisor

121110

Hypervisor

321

Hypervisor

654

Hypervisor

987

Hypervisor

121110

Hypervisor

3

7 9

11

5

1

8

12

2

64

10

3

7 9

113

7 9

113

7 9

11

5

1

8

12

5

1

8

12

5

1

8

12

2

64

10 2

64

10 2

64

10

Figure 1: Trusted Virtual Domain View

Figure 1 illustrates how managing systems, virtual machines, and
resources in highly dynamic virtual environments is simplified by
the TVD abstraction. Without TVDc, the impact of resource
assignments, migrating, cloning, suspending, and resuming VMs
on workload isolation must be carefully considered in each case.
VMs could migrate onto untrusted systems or could be collocated
with conflicting workloads. Storage resources that have been used
by one workload could be accidentally re-assigned to another
workload without first being sanitized, leading to data leaks. With
TVDc, each workload type, represented by VMs and resources,
forms a TVD that can be managed as a whole and whose isolation
and integrity properties are independent of those dynamics.
Different TVDs are isolated by default and this isolation is
preserved across different system architectures (e.g., Power, x86)

and hypervisors (e.g., PHYP, Xen) as well as during VM lifecycle
changes and resource assignments. Sharing among VMs
participating in the same TVD is not restricted by the hypervisor.
TVDc management ensures that resources assigned to one TVD
cannot be made accessible to VMs of another TVD. A major
concern for customers is integrity of each workload. The
following subsections describe in more detail how TVDs are kept
isolated from each other and how their integrity can be
continuously monitored.

2.1 Isolation Infrastructure

Workloads are dynamically collocated in virtual datacenters to
maximize availability and system utilization and to minimize
power consumption and floor space. Collocating multiple
workloads onto a shared physical infrastructure is essential to
realize the benefits of virtualization. However, workload owners
worry about isolation and confinement of their workloads when
they share a common physical infrastructure. We define a
workload as a set of VMs and resources that contribute to a
common purpose, e.g., running a company’s market analysis
services.

2.1.1 Hypervisor Security Architecture
The sHype hypervisor security architecture builds on the existing
isolation provided by the core hypervisor and supervises the
sharing of resources among VMs as well as inter-VM
communication to generalize and translate the underlying
isolation of individual VMs into isolation properties of different
workloads. It acts as a mediator inside the hypervisor and inside
the management VM and controls access to inter-VM
communication and resources according to the active security
policy.

Hardware

Hypervisor / sHype ACM

Security
Hooks

Access
Decision
Requests

VMVM

Management/
Hosting VM

Figure 2: sHype Access Control Architecture

Figure 2 shows the sHype access control architecture as
implemented for the Xen open source hypervisor. There are two
sets of access mediation hooks. First, hooks controlling inter-VM
communication and sharing are located inside the core hypervisor,
which implements those mechanisms. In Xen, these hooks control
event channel (remote interrupt) and grant tables (memory page

sharing) mechanisms on top of which inter-VM communication
and sharing, such as networking and virtual disk access, is
implemented. Second, hooks controlling the access of VMs to
resources (e.g., virtual disks, or disk partitions) are added. Those
hooks are located in the management VMs; in Xen this would be
domain 0. Both types of hooks call the same access decision
functions inside the Access Control Module (ACM), which—in
Xen—is implemented in the core hypervisor.
Moving from managing the classical individual-VM isolation to
workload isolation substantially simplifies security management.
No longer do administrators need to monitor individual VMs and
resources but they can focus on workloads as a whole.

2.1.2 Mandatory Access Control
sHype guards the assignment of resources to VMs and any
individual inter-VM communication by implementing mandatory
access control as a reference monitor [1] inside the virtual
machine monitor.
By implementing mandatory access control (MAC) in the VMM
infrastructure, sHype ensures that system security policies are
enforced regardless of the behavior of virtual machines.
Confining different customers’ workloads by mandatory access
control ensures (a) that viruses and other malicious code cannot
spread from one customer workload to another and (b) that data
cannot easily leak from one customer workload to another even if
VMs running the workloads misbehave. Additionally, it ensures
(c) that break-ins or exploits in one workload do not expose other
collocated workloads.

2.1.3 Access Control Policy
Resource assignments, resource access, and inter-VM
communication are permitted or denied according to the currently
active access control security policy. The security policy has two
parts: (1) the label definitions, which define security contexts for
VMs and resources, and (2) the anti-collocation definitions, which
enforce restrictions on which VMs can run on the same system at
the same time.
Security labels are composed of a reference name and a set of
types. During labeling of the system, each VM and resource is
assigned exactly one security label reference name. The label
references are stored as part of the meta-information of VMs and
resources. They are protected against the VMs and can be set and
changed only through the VMM management. sHype uses those
label references to determine if VMs can communicate or access
resources by retrieving the label references associated with VMs
and resources and permitting communication or access if those
labels share a common type. This sharing model is similar to the
non-hierarchical type enforcement security model [3].
Figure 3 shows how access is denied or permitted based on the
security labels assigned to VMs and resources. In the figure, we
differentiate between Market Analysis (MA) and Security
Underwriting (SU) workloads. A trusted management virtual
machine serves both workloads and exports a virtual block device
that belongs to the Market Analysis workload (labeled MA). Both
workload VMs can connect to the management VM since their
labels share a type with the management VM. In case (1), {MA,
SU} ∩ {MA} = {MA} ≠ Ø and in case (2) {MA, SU} ∩ {SU} =
{SU} ≠ Ø. Case (3) shows that the workload VMs cannot directly
communicate since {MA} ∩ {SU} = Ø; they share no common
type. Decisions 1-3 are enforced by hooks within the hypervisor

without cooperation of the management or workload VMs. The
management VM (or domain 0) is trusted in turn to only connect
VMs to resources, if the label of the VM and the resource share a
type. This enforcement is entirely under control of the
management VM, which queries the hypervisor for the label of
the VM that requests to connect to a resource. It then retrieves the
label of the local resource. In case (4), the VM label {SU} shares
a type with the resource label {SU} of the virtual block device
and the management VM grants access to mount the virtual block
device. In case (5), the VM label {MA} does not share a type
with the virtual block device label {SU} and this access is denied.
This example also shows how the management VM preserves the
workload isolation by ensuring that resources are not shared
directly between different workloads. Similarly, all multi-typed
VMs must be trusted not to enable illegal information flow
between its types.

VM

Management
VM

MA,SU

MA
SU

SU

(1)

(5)

.. .. Security Label

MA, SU .. Workload types

.. Access Permitted

.. Access Denied

VM

(2)

(4)

(3)
Hyper-
visor

Figure 3: Controlled Sharing Decisions Based on Labels

Additionally, the security labels are used to authorize a VMM
system to run a set of VMs. When a VM starts, resumes, or
migrates onto the system, sHype retrieves the security label of the
VMM system and the security label of the VM. If the types
contained in the VMM system label are a superset of the types of
the VM label, then and only then does sHype permit the VM to
start. This mechanism offers a simple means to partition the
physical infrastructure for stronger isolation of certain workloads.
Finally, the anti-collocation rules of the policy restrict which VMs
can run simultaneously on the same VMM system. Each rule
describes a set of types that conflict, i.e., only one of the types of
a rule is allowed to run at a time. When a VM starts, resumes, or
migrates onto a VMM system, sHype retrieves the label of the
VM and derives its types. The VM is permitted to run only if the
types in its label do not conflict with any type of any running
VM’s label. For example, to prevent different workloads from
running on the same system at the same time, the conflict set
{MA, SU} can be added to the security policy. Then, Market
Analysis workloads (VMs and resources) must be associated with
labels including the MA type and Security Underwriting
workloads must be associated with labels including the SU type.
sHype will then automatically enforce the collocation restriction.

sHype has been implemented for multiple hypervisors. For details
on the open-source Xen implementation and a tutorial about its
deployment see the Xen Users’ Manual [22].

2.1.4 Network Isolation
The above has described how a TVDc-enhanced hypervisor
controls VM access to resources local to the system where the
hypervisor runs, for example a local disk. It is also important to
enforce MAC to datacenter resources that are outside the direct
control of a hypervisor, for example a network. We have thus
extended our TVDc facility to control VM access to local-area
networks through the use of Virtual Local-Area Networks
(VLANs) that obey the IEEE 802.1Q standard [8]. Such VLANs
emulate separate physical LANs on a single physical LAN by
prepending to each Ethernet frame the appropriate VLAN ID and
maintaining strict separation of frames with different IDs.
The basic concept behind TVDc network isolation is to associate
with VLANs the same kind of label that we associate with VMs.
We then restrict VMs to connect only to those VLANs with which
they share a type, and to no other networks. In this way VMs that
share a type can communicate through the VLAN with the same
type, but cannot communicate with any other VMs.
Figure 4 shows an example of TVDc network isolation. In the
figure, two physical machines (PMs) are connected through a
network switch. Each physical machine is running two VMs, one
labeled Market Analysis (MA) and the other Security
Underwriting (SU). In addition, there are two VLANs configured
throughout the system, one labeled MA and the other SU. There
are two different embodiments of VLANs in the system. One
embodiment is implemented in software by the VMM within each
PM. The other is implemented in hardware by the network switch
external to the PMs. The VMM on each PM restricts the MA VM
to connect only to the MA software VLAN. Similarly, the
network switch restricts each physical machine to connect only to
those hardware VLANs for which the PM has an appropriate
label. Finally, the VMM on each PM restricts each software
VLAN to send and receive packets only on the appropriate
hardware VLAN. The overall result is that MA VMs can
communicate only with MA VMs, and SU VMs only with SU
VMs.

Virtual LAN 1

Virtual LAN 2
Virtual LAN 1

Virtual LAN 2
Virtual LAN 1

Virtual LAN 2

VM 1 VM 2 VM

VMM VMM

Physical Machine 1 Physical Machine 2

Network Switch

VM 3 VM 4

MA

SU

SU

SU
MA

MA

Figure 4: TVDc Network Isolation

We have prototyped TVDc network isolation using the Xen
VMM and one of many commercial off-the-shelf Ethernet
switches that support 802.1Q VLANs. We wrote software that
configures the Xen management VM (i.e., domain 0) to connect
user VMs (i.e., domUs) only to appropriate VLANs. Our software
creates a software-emulated Ethernet bridge for each VLAN that a
Xen system is authorized to access. When a user VM starts, our
software connects it to the bridge(s) for the VLAN(s) the VM is
authorized to access. In this way two VMs that share a security
type on the same Xen system connect to the same software bridge
and can communicate, while VMs that do not share a type cannot
communicate even if they are on the same Xen system.
To extend TVDc network isolation beyond a single Xen system,
our software in the management VM creates a virtual network
interface with 802.1Q VLAN semantics for each VLAN the
system is authorized to access, and connects that interface to the
software bridge corresponding to that VLAN. Finally, we
configure the external Ethernet switch to connect each Xen
system only to those VLANs the system is authorized to access.
In this way VMs can communicate with VMs that share a type on
other Xen systems, but cannot communicate with any other VMs.

2.2 Integrity Infrastructure

One of our main objectives of the Trusted Virtual Datacenter is to
provide for users and administrators as well as for software
entities the ability to establish trust into software components
running on different virtual machines in the datacenter. For this
trust establishment to work, we can make use of software that we
have previously developed for attesting to applications running on
Linux on a physical machine. This software relies on the Trusted
Platform Module (TPM) standardized by the Trusted Computing
Group (TCG), as a hardware basis for providing an anchor for
establishing a trust chain.

2.2.1 Integrity Measurement and Attestation
The TCG designed a transitive trust model architecture for the
TPM device. It states that individual software components must
be measured, i.e., the SHA1 hash of an executable is calculated,
and its value must be extended into a register of the TPM. The
procedure starts with the Core Root of Trust for Measurement
(CRTM), which is code that runs early in the BIOS, that performs
this type of measurement on itself and on next-to-be executed
code before it transfers execution to other parts of the BIOS. For
this to work, the BIOS must be instrumented with TCG
extensions.
Previous work at IBM Research has extended the commonly used
Grub bootloader to support the establishment of the trust chain by
measuring the Grub configuration file as well as the kernel into
Platform Configuration Registers (PCRs) of the TPM [13].
Further, our group developed a Linux kernel module, the Linux
Integrity Measurement Architecture [18], which measures
applications, libraries and device drivers launched inside the
Linux operating system and extends these measurements into a
dedicated register of the TPM while maintaining a log of all
measurements.
A remote challenger interested in establishing trust into another
system performs remote attestation to determine what software is

running on the remote system. The challenged system prepares a
quote of the current state of all PCRs along with a challenger-
provided nonce and returns to the challenger the quote along with
a list of logged measurements and the measured applications’
filenames. The challenger then replays the list of hashes and
simulates the PCR extend operations and compares the resulting
PCR values with those provided in the quote. Based on the
integrity of the measured applications, the challenger can
determine a level of trustworthiness in the challenged system.

2.2.2 Virtual TPM
When we migrated our operating system installations from
physical to virtualized platforms, we wanted to maintain the
ability to attest to software running inside VMs as well as the
ability to run all other TPM-aware software, such as the TrouSerS
open source TCG Software Stack (TSS) developed by IBM. We
achieved this by making a private TPM available to each VM on
the platform by implementing TPM functionality in a software-
based virtualized TPM capable of spawning multiple virtual TPM
instances [2]. We placed the virtual TPM into Xen’s management
VM, domain 0, for easier control over it through management
software in the same domain, see Figure 4. Control over the
virtual TPM is necessary for the purpose of life-cycle
management for each of its virtual TPM instances, such as for
example spawning a new virtual TPM instance when a virtual
machine requires access to a private TPM, or deleting the virtual
TPM instance when the VM’s configuration is removed.
Virtualization of hardware devices is typically achieved through
emulation of device functionality. In case of the TPM this is an
important part of how to achieve virtualization. However, a
couple of challenges arise, which are directly related to the TPM
being a security device. First, a TPM is usually equipped with a
certificate for its endorsement key, which is issued by the device
manufacturer. In the virtualized world, however, such certificates
do not pre-exist for a newly created virtual TPM instance but can
be created by the management software controlling the virtual
TPM. Second, the transitive trust chain that is usually rooted in
the CRTM in the physical machine’s BIOS may now be rooted in
the virtual machine’s BIOS and measured into the virtual TPM
instance associated with the VM. The problem with this is that an
outside challenger would not see the complete trust chain that is
relevant for not only establishing trust into software running
inside the VM, but also into software relevant for the VM and
hypervisor implementation. In this case, the certificate can
indicate that a quote is generated by a virtual TPM and the
challenger can determine to follow the additional steps and attest
the underlying virtualization infrastructure.
Figure 5 shows the architecture of the virtualized system with the
virtual TPM inside the system’s management VM. A system
management stack, based on the Common Information Model
(CIM), is used to control the life cycle of virtual machines and
that of virtual TPM instances. VMs that use TPM functionality
only have access to only their own virtual TPM instance.
An important part of the trust establishment architecture is the
verification of the hashes of software reported to be running on a
system. Since there are many different pieces of software
available in various versions, a very large number of hashes can
be expected to exist, and along with that a scalability problem
arises that requires centralized management of hash information

along with annotations about the quality of the software.
Annotations may for example include known vulnerabilities or
even information about malicious software. By maintaining a
centralized database of hashes we relieve every challenger from
maintaining its own database. This model turns out to fit nicely
into the concept of system management, which by its nature
implements a centralized point for remotely managing virtual
machines in a datacenter.

Hypervisor

Management VM

vT
PM

 In
st

an
ce

vTPM Manager

VM

CIMOMvT
PM

 In
st

an
ce

TPM request/response path

CIM
Providers

VM

Figure 5: Virtual Trusted Platform Module Architecture

Another important aspect of TVDc is the ability of the system
administrator to monitor the status and trust level of software
running inside deployed virtual machines, i.e. for Integrity
Management. To support this, an agent monitors measurements
occurring inside a virtual machine and forwards them to the
management application for continuous tracking of system health
status.

3. TVDc MANAGEMENT

Critical for enabling isolation and integrity is a central point from
which an administrator can simply establish and deploy security
policies and consolidate measurement data for analysis. A
systems management application designed to exploit the
infrastructure and features described in the previous sections
provides these capabilities.
Figure 6 shows a three-tiered systems management application,
such as IBM Systems Director. The top block represents the user
interface through which the administrator interacts with the
isolation and integrity management functions provided on the
systems management application server. It also presents the
configuration of the datacenter and the results of the requested
operations. The user interface may be a web browser, a graphical
console, or a command line. The second tier is the systems
management application server. The third tier includes the
management VMs, which are the entities through which the
systems management server controls the host environments and
their virtual machines. (Please see Figure 5 for a detailed block
diagram of the Management VM platform.) The systems

management server communicates with its endpoints using the
Common Information Model.
For isolation operations, the systems management server enables
the setting and verification of isolation policies, and the creation
and assignment of labels to the virtual machines and their
resources. For integrity, the systems management server allows
the administrator to attest the management VMs and their
respective virtual machines.

Figure 6: Systems Management Application Stack

In addition to managing the isolation and integrity functions on
the management VMs, the Trusted Virtual Datacenter requires the
following facilities of the systems management server. First, the
TVDc implies different levels of administration: administrators of
the IT datacenter (physical resources) must be able to manage all
the resources allocated and available for use in the physical
datacenter, while the administrators of a virtual datacenter should
only manage resources allocated to that virtual datacenter.
Second, a TVDc should implement only one policy for all the
management VMs it contains. Third, as a consequence of the first
two requirements, the management VMs of the virtual datacenter
should be grouped together and administered as a group. Fourth,
the systems management application must provide an event, or
notification, infrastructure that indicates anomalies and allows for
their remediation.

3.1 Isolation Management

The systems management functions for isolation enable the
administrator of the IT datacenter to group the management VMs
into a TVDc and to create the policies and isolation labels
necessary for the virtual machines within the group. Generally,
the tasks of this administrator include:

o Policy creation, modification, deployment, and
enabling

o Isolation label creation and deletion
o Remediating notifications of policy violations or

attempted modifications

As shown in Figure 7, the administrator of the TVDc must have
the ability to assign the isolation labels created by the overall
Datacenter Administrator to virtual machines and their resources
with his group. Error messages or indications must be displayed
for mis-assigned or conflicting resources.
A use case for creating and configuring a TVDc follows. The
overall Datacenter Administrator:

1. Discovers the management VMs within the datacenter.
2. Assigns the management VMs to a group to be

managed as a TVDc. Systems Management
User Interface/Console

 Systems Management
Server

CIMOM

 CIM Providers

Management VM

3. Defines the isolation labels and exclusion rules (anti-
collocation rules) for the TVDc.

4. Deploys the resulting policy from the previous step to
the management VMs in the TVDc.

5. Authorizes the TVDc Administrator to view the created
TVDc and assign isolation labels.

After authorization and authentication, the TVDc Administrator:
6. Uses the labels created by the overall Datacenter

Administrator and assigns them to the VMs of the
management VMs within the group.

Note that the TVDc Administrator cannot create or alter the
isolation policy or labels.
The systems management application should allow both
administrators to easily and clearly view the security attributes of
the TVDc, its domains, and the resources of the domains.
For VLAN isolation, it is desirable, but not essential, for the
overall Datacenter Administrator to have the ability to create new
virtual interfaces and bridges necessary to assign the correct
isolation labels for connecting virtual machines in a TVDc.

Create

Deploy

Overall Datacenter
Administrator Activate

Assign

TVDc Administrator

Figure 7: Administration Responsibilities for Isolation

3.2 Integrity Management

Fundamentally, the systems management application
implementing integrity management performs remote attestation
on a management VM or a virtual system, acting as the
challenging party. In a Xen installation, it gathers the integrity
measurements for domain 0 and its user domains from the virtual
TPM on domain 0 via CIM and compares the received list with
the database of known, trusted measurements. If an unknown or
untrusted measurement is found, it generates an event to the
administrator for remediation.
If the systems management application has an automated event
facility, e.g. the IBM System Director Event Action Plans, the
administrator can set up an action prior to an event being
received. Depending on the criticality of the virtual system under
test, it can be shutdown, restarted, an e-mail sent, etc.
For the trust chain to be unbroken, the system hosting the
management VM can be equipped with TPM 1.2 and have static
Core Root of Trust for Measurement, such as the IBM System x
3850 M2. In addition, a measured boot-loader, such as Grub with
the TCG patch to support trusted boot, must be installed and the
Integrity Measurement Architecture (IMA) enabled.
An important goal of the integrity management design, met by the
virtual TPM, is the capability to obtain measurements for the
virtual machines from the management VM to eliminate or
minimize any potential agent on the virtual machines themselves.
Additionally, by using the virtual TPM with the CIM providers
shown in the example, the measurements can be obtained securely
without requiring a quote containing the current PCR values
signed by the virtual TPM.
The systems management application must have access to a
reference measurements list of trusted components, as described
in Section 2.2.2. The systems management application can be
configured with a default list of measurements, but it must
provide the administrator the ability to add new measurements
from a trusted environment including those for a new virtual
image, configuration files, updates for packages contained in the
original list, etc. Likewise, the administrator must be able to
delete stale or untrusted measurements from the reference list in
the case of updates or security patches.
A use case for integrity management includes the following steps.
The overall Datacenter Administrator:

1. Ensures that the necessary reference measurements are
provided in the reference database or are imported from
a trusted source.

The TVDc Administrator:
2. Identifies the criticality of the VMs to be measured and

the remediation.
3. Sets an action plan on the systems management server

to react to events indicating untrusted measurements.
For example, the action may be to ‘shutdown’ an
untrusted VM.

4. Enables the systems management application to monitor
the VMs to be attested, either via agents or by
scheduling the integrity attestation task.

4. RELATED WORK

The TVDc work integrates virtualization-based security and
system management to provide trust and containment guarantees
to the datacenter environment. This work is an implementation of
the Trusted Virtual Domain (TVD) abstraction [5] and [6], which
aims to simplify user and administration interactions on large
scale systems by offloading the security enforcement onto the
infrastructure. TVDc builds on previous work on trusted
computing [19], virtual TPM [2], trust measurement architecture
 [10],[18], and sHype mandatory access control extensions to the
Xen [17] and PHYP [20] hypervisors. Independently of our work,
Cabuk et al. [1] developed a method that assigns VLANs to
separate TVDs, which is similar to our own network isolation
approach as described in Section 2.1.4.
Other related work in [11] and [12] strengthens grid security by
proposing the use of TPMs to provide cryptographic credentials,
remote attestation, and integrity protection. This is similar to our
distributed mandatory access control work [15], which establishes
verifiable trust in virtualized environments running a grid
distributed application. Another ongoing work is the Open
Trusted Computing [16] initiative which proposes to develop a
trusted and secure computing system based on open-source
software.
NetTop [14] provides similar functionality as TVDc for client
systems using commercial-off-the-shelf hardware and software.
NetTop leverages virtualization to replace multiple end-user
workstations having different security labels with VMs on a
single physical system and utilizes virtual network configurations
to interconnect VMs with secure enclaves. However, the NetTop
architecture relies on the security controls of the host OS, since
the VMM runs on top of the underlying OS. Our approach, in
contrast, provides VM access control at the lowest levels of the
system.
For future work, we can leverage hardware security features such
as Intel’s Trusted Execution Technology [9] to establish protected
environments without the need to reboot systems.

5. CONCLUSIONS AND FUTURE WORK

Our prototype has proven the feasibility of managing Trusted
Virtual Domains across servers, networks and storage resources.
However, several research challenges need to be addressed in
order to facilitate TVDc deployment and operation. Some of these
challenges that we are currently addressing are listed next.
An obstacle to the adoption of virtualization is the complexity of
customer on-boarding onto a TVDc. Solutions that migrate a
group of physical servers along with their interconnected
networking and storage recourses in such a way as to preserve, or
even improve, the security and isolation of the original
configuration are needed. Such solutions will alleviate the
concerns that customers legitimately have regarding potential
security vulnerabilities introduced by the migration of pre-
existing workloads onto a shared physical infrastructure.
The current TVDc prototype provides strong, but coarse grain
isolation; this complicates the sharing of datacenter-hosted

services that need to be visible to clients or between business
partners. We are currently working on the design, automatic
configuration and optimal placement of controlled sharing devices
that could be implemented in special VMs or within the
hypervisor and that can provide controlled sharing between
different TVDs within a TVDc. Controlled sharing policies
should be linked with higher level business process management
policies. We envision the automatic configuration of these
mechanisms that enable external service requests to be safely
routed to the corresponding TVD while minimizing the related
security exposure.
Another area of future work relates to the interaction of different
management constraints, such as availability and resource
management, with security constraints, such as anti-collocation
rules. When these capabilities are managed independently, sub-
optimal or even conflicting decisions may result. Finally an
important area of future work regards the extension of our current
prototype to management of a heterogeneous environment
consisting of different hypervisors, in addition to Xen and PHYP,
as well as different networking technologies. In such a
heterogeneous environment, different APIs and isolation
capabilities may be present in each hypervisor and must be
coordinated to achieve the overall TVD-based isolation
guarantees.

6. ACKNOWLEDGMENTS

Several people in IBM have contributed to TVDc, as well as the
related secure virtualization and trusted computing efforts. We
would like to especially thank William Armstrong, Steven Bade,
Leendert van Doorn, Kenneth Goldman, Peter Heyrman, Stephen
Levesque, José Moreira, Eran Rom, Sivan Tal, the PHYP team,
the System x Virtualization team, and the Linux Technology
Council (LTC) Security team. We would also like to thank the
Xen community for their support.

7. REFERENCES

[1] J. P. Anderson. Computer Security Technology Planning Study.

ESD-TR-73-51, Vols. I and II, Air Force Electronic Division
Systems, Hanscom AFB, Bedford, MA, Oct. 1972.

[2] S. Berger, R. Cáceres, K. Goldman, R. Perez, R. Sailer, and L. van
Doorn. vTPM: Virtualizing the Trusted Platform Module. 15th
USENIX Security Symposium, July 2006.

[3] W. E. Boebert and R. Y. Kain. A Practical Alternative to
Hierarchical Integrity Policies. 8th National Computer Security
Conference, 1985.

[4] D. F. C. Brewer and M. J. Nash. The Chinese Wall Security Policy.
IEEE Symposium on Security and Privacy, May 1989.

[5] A. Bussani, J. L. Griffin, B. Jasen, K. Julisch, G. Karjoth, H.
Maruyama, M. Nakamura, R. Perez, M. Schunter, A. Tanner, L. van

Doorn, E. V. Herreweghen, M. Waidner, S. Yoshihama. Trusted
Virtual Domains: Secure Foundations for Business and IT Services.
Research Report RC23792, IBM Research, November 2005.

[6] S. Cabuk, C. I. Dalton, H. Ramasamy, and M. Schunter. Towards
Automated Provisioning of Secure Virtualized Networks. Research
Report RZ3692. IBM Research, June 2007.

[7] J. L. Griffin, T. Jaeger, R. Perez, R. Sailer, L. van Doorn, and R.
Cáceres. Trusted Virtual Domains: Toward Secure Distributed
Services. 1st IEEE Workshop on Hot Topics in System
Dependability, June 2005.

[8] IEEE Std. 802.1Q-2003, Virtual Bridged Local Area Networks;
ISBN 0-7381-3662-X.

[9] Intel Corporation. Trusted Execution Technology Preliminary
Architecture Specification, August 2007.
URL:http://www.intel.com/technology/security/downloads/315168.h
tm

[10] T. Jaeger, R. Sailer, and U. Shankar. PRIMA: Policy-Reduced
Integrity Measurement Architecture. 11th ACM Symposium on
Access Control Models and Technologies (SACMAT), June 2006.

[11] W. Mao, H. Jin, and A. Martin. Innovations for Grid Security from
Trusted Computing. White paper, June 2005.

[12] W. Mao, F. Yan, and C. Chen. Daonity-Grid Security with Behavior
Conformity from Trusted Computing. 1st ACM Workshop on
Scalable Trusted Computing (STC 2006).

[13] H. Maruyama, F. Seliger, N. Nagaratnam, T. Ebringer, S. Munetoh,
S. Yoshihama, and T. Nakamura. Trusted Platform on Demand.
Technical Report RT0564, IBM, February 2004R.

[14] Meushaw and D. Simard. NetTop-Commercial Technology in High
Assurance Applications. National Security Agency Tech Trend
Notes, Fall 2000.

[15] J. M. McCune, S. Berger, R. Cáceres, T. Jaeger, and R. Sailer.
Shamon–A System for Distributed Mandatory Access Control. 22nd
Annual Computer Security Applications Conference (ACSAC),
December 2006.

[16] Open Trusted Computing. URL:http://www.opentc.net.

[17] R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez, S. Berger, J. L.
Griffin, and L. van Doorn. Building a MAC-based Security
Architecture for the Xen Opensource Hypervisor. 21st Annual
Computer Security Applications Conference (ACSAC), December
2005.

[18] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
Implementation of a TCG-based Integrity Measurement Architecture.
13th USENIX Security Symposium, August 2004.

[19] Trusted Computing Group.
URL:https//www.trustedcomputinggroup.org.

[20] E. Valdez, R. Sailer, and R. Perez: Retrofitting the IBM POWER
Hypervisor to Support Mandatory Access Control. 23rd Annual
Computer Security Applications Conference (ACSAC), December
2007 (Accepted for publication).

[21] F. Yan, W. Quang, Z. Shen, C. Chen, H. Zhang, and D. Zou.
Danoity: An Experience on Enhancing Grid Security by Trusted
Computing Technology. ATC, volume 4158 of LNCS, Springer,
2006.

[22] Xen Users’ Guide Chapter 10 for the Xen sHype/Access Control
Module: http://www.cl.cam.ac.uk/research/srg/
netos/xen/readmes/user/user.html

	1. INTRODUCTION
	2. TVDc INFRASTRUCTURE
	2.1 Isolation Infrastructure
	2.1.1 Hypervisor Security Architecture
	2.1.2 Mandatory Access Control
	2.1.3 Access Control Policy
	2.1.4 Network Isolation

	2.2 Integrity Infrastructure
	2.2.1 Integrity Measurement and Attestation
	2.2.2 Virtual TPM

	3. TVDc MANAGEMENT
	3.1 Isolation Management
	3.2 Integrity Management

	4. RELATED WORK
	5. CONCLUSIONS AND FUTURE WORK
	6. ACKNOWLEDGMENTS
	7. REFERENCES

