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Abstract

Accurate estimation of the amplitude and frequency parameters of sinusimdals from noisy observa-
tions is an important problem in many signal processing applications. In thex,ghe problem is investi-
gated under the assumption of non-Gaussian noise in general andé_apiae in particular. It is proven
mathematically that the maximum likelihood estimator derived under the conditionptdideawnhite noise
is able to attain an asymptotic CrémRao lower bound which is one half of that achieved by periodogram
maximization and nonlinear least squares. It is also proven that when épplien-Laplace situations,
the Laplace maximum likelihood estimator, which may also be referred to as tiaewrieast-absolute-
deviations estimator, can achieve an even higher statistical efficiencgi@bpehen the noise distribution
has heavy tails. A computational procedure is proposed to overcome ficaltyifof local extrema in the

likelihood function. Simulation results are provided to validate the analyticahfisd

Keywords:Frequency estimation, harmonic retrieval, heavy tail, impulsive noise, Laplatribution, least

absolute deviation, robust, spectral analysis.



1 Introduction

Consider the problem of estimating the paramétet: [A B, w|" of a sinusoidal signal from a time series

of noisy observations
Vi '=Acoqwt) +Bsin(wt)+& (t=1,...,n), 1)

whereA e R, B e R, andw € Q := (0, i) are unknown constants afé } is a white noise process with zero
mean and unknown finite variane& > 0. The literature on this subject is extensive [1] [2]. Among the
most popular approaches to this problem are Fourier transform (pegriaah) [3]-[6], Gauss maximum like-
lihood (also known as nonlinear least squares) [7]-[9], autorsigme$10]-[13], and eigen-decomposition
(signal/noise subspace) [14]-[19].

It is well known that if {&} is Gaussian white noise (GWN), then the asymptotic GraRao lower
bound (CRLB) for the frequency parametercan be expressed &2/y)n—3, wherey := %(A2 +B?)/0?
is the signal-to-noise ratio (SNR). We shall refer to this bound as the @HisB. A number of analytical
and simulation studies suggest [5] [7] that the Gauss CRLB can be attanegttically by the maximum
likelihood estimator (MLE) that maximizes the Gauss likelihood function, or edemtly, that minimizes

the sum of squared errors

lo(8) := i]yt — (91c0993t) + Fzsin(Iat))|?, (2)
t=

whered :=[91,92,33]" € @g:=R xR x Q. Rigorous proofs of this assertion are provided recently in [20]
and [21]. Several numerical procedures have been proposediaute the estimator [7]—[9].

The minimizer ofl(#) in (2) is known as the nonlinear least-squares (NLS) estimator when applied
to non-Gaussian situations. It can be shown [20] [21] that the NLS estira#tins the Gauss CRLB
asymptotically for any white noise process, Gaussian or non-Gausstargzeso mean and finite variance.

Typical estimators in the literature either reach the Gauss CRLB asymptoticgllyN&S and periodogram



maximization) or fall short of it (e.g., the signal/noise subspace methodsjnté&resting question is: can
we do better than the Gauss CRLB under non-Gaussian conditions?

In this paper, we provide an affirmative answer to this question. Towatdetid, we first examine
the CRLB under non-Gaussian noise and show that the Gauss CRLB iothe-vase performance limit,
namely, the largest lower bound, among a large family of noise distributioegh®& focus on the special
case of Laplace white noise (LWN) and prove that the Laplace MLE attainkaplace CRLB asymptoti-
cally which is only one half of the Gauss CRLB.

The Gaussian assumption is often made in practice not because of its fitnegsetdata but because of
its mathematical tractability. In reality, departures from the Gaussian assurngtiatcur in many different
forms, one of which is in the form of heavy tails. A heavy-tailed distributios tpaeater tail probabilities
than suggested by the Gaussian model. It manifests itself in practice as irpngivs and outliers in the
observations, capable of causing algorithms developed under thei@aassumption to malfunction. The
Laplace (or double exponential) distribution is an example of heavy-tailédbdisons. This model has
been employed to describe impulsive noise as well as to serve as a selirmogveloping robust algorithms
against outliers and in solving problems that have no solution under thesi@awssumption [22]-[24].
The alpha-stable distribution considered in [25]-[27] is another popubalel for heavy-tailed noise.

Like the Gauss MLE, the Laplace MLE is difficult to compute without an extrergebyd initial guess,
because the likelihood function has numerous local extrema in the vicinity defieed solution. To obtain
the initial value, we use an iterative filtering method called the three-step algof®8A) [28] [29]. In
addition to its unified architecture suitable for practical implementation, the TSAhleaanalytically proven
property of fast and virtually global convergence to an estimate asatecas the Gauss MLE. We present
some simulation results to confirm the validity of the TSA as an initialization proeefurthe Laplace
MLE.

We also provide an asymptotic analysis of the Laplace MLE when it is appliezhtd.aplace situations,



where the estimator will be referred to as nonlinear least absolute devi@tibA®) in analogy to the Gauss
MLE being referred to as nonlinear least squares when applied to aaesian cases. It is shown that the
NLAD estimator has an asymptotic normal distribution, just like the NLS estimatdorihleuasymptotic
variance of the NLAD estimator can be much smaller than the Gauss CRLB aasnbi Laplace CRLB,
especially for heavy-tailed noise. This result justifies the NLAD estimatorsagarior alternative to the

NLS estimator under non-Laplace heavy-tailed conditions.

The rest of the paper is organized as follows. Section Il discussesRh8 Gnder non-Gaussian con
ditions; Section Il contains the result regarding the asymptotic distributidheof aplace MLE; Section
IV focuses on the computational issues; Section V provides an asymptaligsanof the Laplace MLE
under non-Laplace conditions; and Section VI demonstrates an applicatiom asymptotic results in con-
structing confidence regions for the amplitude and frequency paraméemnsluding remarks are given in

Section VII.

2 CRLB Under Non-Gaussian Noise

In this paper, we always assume tHat} is a sequence of independent and identically distributed (i.i.d.)
random variables with a common probability distribution functiax) such thak (&) = [xdF(x) = 0 and

0< 02:=Var(g) = [X2dF(X) < co.

Proposition 1. If F is twice differentiable everywhere except a finite number of pointssatidfiesO <

Ar = 0? [{F(X)/F(x)}2dF(x) < o, whereF and F denote the first and second derivatives of F, then
the Fisher information matrix of/ := [y1,...,yn]T with respect to the parametd can be expressed as
I£(0) = A 1g(8), where (0) := (1/0?) XT X is the Fisher information matrix under the GWN assumption,

with X := [X1, X2, X3], X1 := vedcog wt)], X2 := vedsin(wt)], andxs := ved—Atsin(wt) + Btcog wt)].



Proof. The log-likelihood function of/ can be written a&(8|y) = ¥ logF (y; — s(8)), wheres (6) :=
Acog wt) +Bsin(wt). Therefore,dL/dA = —5 cogwt)F(&)/F (&), dL/IB = — sin(wt)F(&)/F (&),
anddL/dw = — 3 {—~Atsin(wt) + Btcogwt)} F (&)/F (&). This yieldslr (8) := E{0L(0]y) OTL(]y)} =
E{(F(&1)/F(£1))%} (XTX) = (Ae/0?) (XTX). If F is Gaussian, thehr = 1. O

From Proposition 1, the following result can be obtained.

Proposition 2. Let the conditions in Proposition 1 be satisfied. Assume further that theoruppF

is equal toR and F(x) is continuous for almost every&R. Then, the Crai@r-Rao inequality holds
for any unbiased estimator @ on the basis ofy, and the CRLB can be expressed as CRIB =
Ar1CRLE;(@), where CRLB(8) := 15%(0) = 0?(XTX) ! is the CRLB under the GWN assumption, sat-
isfying Dy 1CRLBs(8) Dyt =271+ O(n™1) for large n, with

A24+4B2 _3AB -6B

s l== A2+ B2 BA

symmetry 12

and D, := diag(n~¥/2,n"%2, n=3%/2),

Proof. By the fundamental theorem of calculus for Lebesgue integration, wevdss/F (X+ h) —
F(x) = fol%hlf(er uh)/+/F (X+uh)du. It follows that+/F (x) is differentiable in quadratic mean ([30],

pp. 95-96). Moreover, by Proposition 2.29 in [30] (p. 2R)E (x+4-h)/+/F (x+h) —F (x)/+/F(x)|?dx— 0

ash — 0. Finally, (1/0?)X™X = D;H{Z+ 0(n"1)} D1, where

1 1Rp2
3 0o 1B
1

symmetry  1(A2+B?)
Combining these results with the assumption that the suppéttxifis equal toR proves that the regular-
ity conditions in [32] (p. 65) are satisfied. The assertion follows fronpBsition 1 and the Craér-Rao

inequality ([32], Theorem 7.3, p. 73). O



The next proposition asserts that the Gauss CRLB is the worse-cdeenmaice limit among a large

family of noise distributions.

Proposition 3. Let F be the collection of probability distributions that satisfy the assumptions in Biepo
tion 2. Then, it follows thadg > 1, hence CRLB(8) < CRLBEg(0), for all F € F, where the equality holds

if and only if F is Gaussian.

Proof. Consider the problem of estimatifhc R on the basis of ~ F(y— 0). Itis easy to show that
the Fisher information of equalsAr /o2 andY is an unbiased estimator 6fwith Var(Y) = 2. So, the
Craner-Rao inequality can be written &g > 1, with “=" iff a(y— 8) = (d/d8)logF (y— 0) fory € R,
wherea is nonzero and independenty{[32], p. 77). Withx := y— 0, this condition can be rewritten as
(d/dx)logF (x) = —ax, leading toF (x) = exp(—3ax2+b). Imposing the constraint on the variance and the

fact thatF (x) integrates to unity completes the proof. Ol

Remarkl. A similar conclusion was drawn in [31] for estimating the parameters of nars§ian autore-

gressive processes. For more results under the general signalgidasmodels, see [32] (Chapt. I1).

Remark2. According to Proposition 3, th quantid+ can be regarded as a measure of deviation from the

Gaussian distributions. It is a dimensionless quantity, invariant to the sctide nbise.

Remark3. Because CRLB(8) = o?(XTX)~1, Proposition 3 can be easily extended to cover a larger family
of distributions in whicho? is the upper bound of the variance. Proposition 3 is related to Huber's minimax
approach in robust statistics [33], where the Gaussian distribution with regamnd variance? is known

to be the least favorable distribution, namely, one that minimizes the Fishemiation [34].
An example ofF that satisfies the assumptions is the Laplace distribution with
F(x) = (2¢) Lexp(— [x|/c), (@)

wherec := 0/+/2. The Laplace distribution has higher concentration around zero asisvaktavier tails

than the Gaussian distribution with the same variance. For the Laplace distrildtie 2. This, combined
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Figure 1: (a) Plot ofAr as a function of the shape paramegefor the generalized Gaussian distributions
in (5). (b) Plot of Ap as a function of the degree of freedanfor the T distributions in (6). Dashed line

represents the lower boud= 1.

with Proposition 2, implies that CRLEBO) = 1CRLBg(8), where CRLB (8) denotes the CRLB under the
Laplace assumption, or the Laplace CRLB.

The Laplace distribution in (4) belongs to the family of generalized Gausg#ibdtions with

P00 = 5o (17 @D/l )

whereq > 0 andc > O are the shape and scale parameters. For these distributions, it caowiretbht
A = ?T(2—1/9)T(3/9)/{r(1/9)}°. Fig. 1(a) depicts\¢ as a function ofg. As can be seem is
minimized atq = 2 which corresponds to the Gaussian distribution.

Another example is the family of StudenTsdistributions (denoted by, ) with

00 = o (L (/0 /v) ©

wherev is the degree-of-freedom parameter. To ensure a finite variancegeijusred that > 2. In this

case, one can show that = v(v+1)/{(v—2)(v+3)}. Fig. 1(b) depicts\r as a function of. Note that



Ag > 1forallv > 2 andAg — 1 asv — oo, This limiting value is a manifestation that thg distribution, if

properly scaled, converge to the standard Gaussian distributior-as.

3 Maximum Likelihood Estimation

In this section, we focus on the estimation problem under the condition of ¢eplhaite noise (LWN).
As mentioned in the Introduction, typical frequency estimators in the literaameoly achieve the Gauss
CRLB at best regardless of the noise distribution. The Laplace CRLBigksdl in Section Il suggests the
possibility of reducing the estimation error by 50% when the noise actually baplace distribution. The
key question is whether this reduced CRLB can be achieved at all, andoy schat means.

To answer this question, we turn to the maximum likelihood method, which typicalyuses asymp-
totically efficient estimates. Under the LWN assumption, maximizing the Laplace liaitfiunction is

equivalent to minimizing the sum of absolute deviations
n
0((8):= Zl|yt — (J1c0q93t) + Fzsin(Fat))|. (7)
t=

Therefore, instead of minimizing the error in (2), we propose to minimize the error in (7).

To prove the efficiency of this estimator mathematically is not a simple exerciseakvet adopt the
standard argument used to prove the asymptotic normality of the maximum likeistiotators from i.i.d.
observations [30], not only because thelo not have the same distribution for eacbut also because the
Laplace likelihood function is not everywhere differentiable and the ratemvergence is not the same for
all parameters. Fortunately, by employing more sophisticated mathematicaMieddse able to prove the

following result (see Appendix | for proof).

Theorem 1. Let {y:} be given by (1), wherée } is an LWN process with zero mean and finite variance
02>0. Let®,:= {3 € Oy : |D;1(® — 8)|| < kn”} be a neighborhood o, wherek > 0 and a ¢

(0, %) are some constants. Then, as-, 0, :=argmin{(1(9) : 9 € ©,} is asymptotically distributed as
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Figure 2:Plot of profile/; error as a function of for a noisy sinusoid of length = 100. True frequency i$ = 0.15

(dashed line). Dotted vertical lines represent the Fotiggiuenciek/n (k=1,2,...).

N(6,CRLE, (0)), where CRLB(8) = 1CRLE;(8).

Theorem 1 shows that by minimizing tlgerror, the Laplace MLE is able to attain the Laplace CRLB,
thus reducing the asymptotic variance of the NLS estimator by 50%. Note thatdin 1 not only asserts
the asymptotic normality of the Laplace MLE but also explicitly specifies the neijiitod in which the
Laplace MLE should be obtained as a minimizergf). The neighborhood shrinks as the sample size

increases, an indication of stringent requirements on initial values.

4 A Computational Procedure

Finding the minimizer of;(#) numerically is a challenging problem, not only because the objective func-
tion is not everywhere differentiable, but most importantly because it t@ntaany local minima in the
vicinity of the desired solution. The seriousness of this problem can bre@pted by examining the profile

¢4 error plot shown in Fig. 2, wheré (#) is plotted against the normalized frequerfcy= 93/(2m) with

31 andd;, replaced by their minimizing values (obtained numerically) for each gfven



The methods of NLS and periodogram maximization face a similar problem dfdat@ma. It has
been demonstrated that an initial value of accuragy ') in standard error for the frequency parameter is
required to guarantee the convergence of standard iterative algori2@hg3b]. A typical remedy to the
problem consists of a coarse search ofrthmoint DFT periodogram followed by a fine search based on local
interpolation. This procedure usually generates sufficiently accuratd irdtiges for standard optimization
routines such as the Newton-Raphson algorithm [3]—[9].

Theorem 1 suggests that the Laplace MLE should be obtained in a ndigiooof radiuso(n—4/2) of
the true frequency. To produce an initial value in this neighborhood,reggse to use a unified procedure
derived from the inverse filtering method discussed in [13] [28] [2&8fher than to stitch together various
techniques of different flavors.

The gist of the method is as follows. For any givea (—2n/(1+n?),2n/(1+n?)) with fixed n €
(0,1), letyi(a) := Ha(z Y) yt, whereHa(z 1) := {1— (1+n?)az 1 + n?z 2} tis a second-order IIR filter.
Let pn(@) := (1+n?) "ty v_1(a) {%(a) + n?x_2(a)}/ 3 ¥ ;(a), which is the minimizer of the weighted
sum of forward and backward prediction error sums of squifgs(a) — pyi-1(a)}2+ N2y {yi—2(a) —

pY:_1(a)}2. Using this function of, a sequenc@éﬁm)} is produced by the fixed-point iteration

A(m-1)

alm .~ 2pn(‘(m*1)) —an (m=1,2,...). (8)

It can be shown that with a suitable initial value the sequence convergefsxexgointd, of py(a), i.e.,
éﬁm) — &, = pn(&n) asm — o, and the fixed point leads to a frequency estimadpr= arccosa,). The
consistency and asymptotic normality@f as an estimator ab can be established.

The bandwidth parametey plays an important role in determining the required accuracy of the initial
values and the final accuracy of the frequency estimator. By takingngatya of this relationship, we

proposed a three-step algorithm (TSA) in [28] to bring an initial value otieacyO(1) to a final estimate

of accuracy arbitrarily close t6(n%?) at the cost of computational complexifynlogn):



1. Take 1- n1 = O(1) and iterateO(nlogn) times with an initial value of accurad9(1). This step

produces an estimate of accuradgn—/2).

2. Take 1- N, = O(n~Y/3) and iterated (1) times using the result from Step 1 as initial value. This step

produces an estimate of accurazgn—1).

3. Take I-nz3=0O(n~") with v =1~ and iterate9 (1) times using the result from Step 2 as initial value.

This yields an estimate of accuracy arbitrarily clos@ta3/2).

While the TSA produces a frequency estimate for initializing a general-garpptimization routine to
minimize ¢1(#), the required initial value oA andB can be obtained by linear regression with the TSA
estimates in place of the true frequency values.

Note that a fourth step witlp, = 1 is able to yield an estimator which is mathematically proven to
attain the Gauss CRLB [36]. In practice, this step can be omitted becausssihdboffer any appreciable
improvement in the estimation accuracy. Note also that Prony’s estimator aseleas the initial value
in Step 1. Prony’s estimator equals arqg$0)) with n = 0 (no filtering) and has accura¢y(1) (due to
bias). With this estimator as the initial value instead of other alternatives siug¥ildased estimates, the
entire procedure becomes unified in architecture, thus simplifying the haetsoftware implementation.

Becausé () is not everywhere differentiable, gradient-based algorithms, sucle &&thiton-Raphson
algorithm suitable for NLS, cannot be used to compute the Laplace MLEurkaely, there are many
general-purpose algorithms that do not require the differentiability. Trhplex algorithm of Nelder and
Mead [37], available in software packages such as MathematicR,asnduch an example. This algorithm
is the default choice in the functionoptim; it is employed with all other default options in our simulation.
The interior point algorithm discussed in [38] can also be used, batiitgplementation with the default
options does not seem to be as reliable as the simplex algorithgt iim.

Fig. 3 shows the result of a simulation where the MSE of frequency estin@atassfnusoid in LWN is

10
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Figure 3: Reciprocal MSE of the estimateswf(2m) for a sinusoid plus LWN. Solid line, Laplace CRLB;
dashed line, Gauss CRLB;, Laplace MLE initialized by TSA:+, NLS initialized by TSA;o, TSA initial-

ized by Prony’s estimator;, Prony’s estimator. Results are based on 1,000 Monte Carlo runs.

calculated by the Monte Carlo method for various sample sizes. The sighab&e parameters ar&=1,
B=0, w=0.15x 2, andy = 0 dB. The three values af in the TSA are 85, 1-n~%%, and 1— n~°°,
With Prony’s estimates as initial values, (8) is iterated 6, 3, and 11 times tegheto produce the final
TSA estimates which in turn serve as initial values for the Laplace MLE and tise N

As can be seen, for all sample sizes considered in the simulation, the TSkeitoahke theO(1)-
accurate Prony’s estimator as input and produce a frequency estinfaise WISE follows the Gauss CRLB
closely. The NLS estimates, obtained by minimiziag? ) using the Nelder-Mead algorithm with the TSA
estimates as initial values, do not offer any improvement in the MSE. By minimiziy instead of,(9),
the accuracy is improved considerably: except for the smallest sample=sis€, the MSE of the resulting

Laplace MLE is well approximated by the Laplace CRLB (3 dB improvement).

11



5 Performance Under Non-Laplace Noise

The Laplace MLE, which minimizeé,(#), can also be used to estimate the signal parameters when the
noise is non-Laplace or when the noise distribution is unknown. In thesescave refer to the resulting
estimator as NLAD in analogy to NLS. The following theorem establishes thagsyic normality of the

NLAD estimator under a mild assumption of the noise distribution (see Appentbix proof).

Theorem 2. Let {y:} be given by (1), whergs } is a white noise process with zero mean, finite variance
02 > 0, and marginal distribution function §). Assume that F0) = 1, F(0) >0, and F(x) — F(0) =

F (0)x+ O(xd*1) for some constant ¢ 0 and all |x| < 1. Let®,:= {3 € Oy : |D;1(3 —0)| < kn},
wherek > 0 and a € (0,ap) are constants, withog := min{z,(d—3)/(2d+1)} if d > 3 and ap :=
d/(2d + 4) otherwise. Then, as # o, B, := argmin{(1(8) : 9 € ©,} is asymptotically distributed as

N(8, B °CRLE (0)), where CRLB(8) = 3CRLEs(8), B := 2cF(0), and c:= 0/v/2.

Remarld. If F(x) has a continuous second derivative in a neighborhoad-ad, thend = 1 (andao = %) by
Taylor’s expansion. In general, the smoothnesB ©f) nearx = 0 determines the size of the neighborhood
in which the objective function can be approximated by a quadratic forntharsdhe neighborhood in which

the NLAD estimator should be obtained in order to have the guaranteed asignpptperties.

Remarkb. The quantitySr is the ratio of probability densities at zero: that of the true noise distribution
divided by that of the Laplace distribution which equal$Zc). This ratio is dimensionless and invariant to

the scale of the noise.

As a pleasant surprise, Theorem 2 reveals that the NLAD estimator dzettdothan the Laplace CRLB
if the noise distribution satisfigg > 1. This is in complete contrast with the NLS estimator which in no cir-
cumstances can outperform the Gauss CRLB. Considér,thistribution for example. It is easy to see that
Br > 1ifand only ifv € (2,vp), wherevg ~ 2.724 is the solution td ((v+1)/2) =T (v/2)/m(v — 2) /2.

Note that forv € (2,vp) the noise has a finite variance but an infinite third moment, an indication of heavy

12
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Figure 4: Same as Fig. 3 except the noise has a Studenistribution with 3.3 degrees of freedom. Dash-
dotted line, asymptotic variance in Theorem 2; dotted line, CRLB undeT thestribution. Results are

based on 1,000 Monte Carlo runs.

tails. In generalfr > 1ifand ifF (0) > 1/(v/20). This is a condition that generally favors heavy-tailed dis-
tributions, because more outliers are needed to balance an increasedtcation of probability mass near
the origin in order to maintain a constant variance. It can be shown [B9ilit the Laplace distribution in
(4) is the least favorable distribution among symmetric unimodal distributionsQuith 1.

Of course, it is also possible th8t < 1 for someF, in which case the accuracy of NLAD cannot
reach the Laplace CRLB. For Gaussian noise in particfae= 1//m. This means that the asymptotic
variance of the NLAD estimator under GWN is equa%mz 1.57 times the Gauss CRLB. Therefore, the
efficiency gain of NLAD under heavy-tailed noise is achieved at the resg®f slight loss of efficiency
under the Gaussian and other light-tailed noise. The NLAD estimator exteedsauss CRLB if and
only if Br > 1/v/2, or equivalentlyF (0) > 1/(20). Becausd-(x) = (1/0)p(x/c) for some unit-variance
probability densityp(x), the condition that favors NLAD over NLS can be rewrittenpg8) > 1/2.

Figs. 4-6 present some simulation results of the NLAD estimator for frequestonation under non-

13
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Figure 5: Same as Fig. 4 except the noise has a Studemtistribution with 2.1 degrees of freedom and
all algorithms are initialized by the true parameter value. The MSE of Prostilmator is not presented.

Results are based 10,000 Monte Carlo runs.

Laplace conditions. In Figs. 4 and 5, the noise hasdistribution withv = 3.3 andv = 2.1, respectively.
The first case represents a situation of moderately heavy tailed noishifdr the third moment is finite but
the fourth moment is infinite; the second case represents a situation whamg@das very heavy tails with
an infinite third moment. In both cases, the simulated MSE of the NLAD estimator islglagproximated
by the asymptotic variance in Theorem 2 for all sample sizes consideredsarte is true for the Gaussian
case shown in Fig. 6. It is important to observe that the MSE of the NLAD egimexceeds the Gauss
CRLB in both Figs. 4 and 5, and it does so by a large margin in Fig. 5 whereaplace CRLB is also
exceeded. Of course, the MSE falls short of the Gauss CRLB in Figef wie noise is Gaussian.

The case shown in Fig. 5 deserves some special comments. In this ca$&Atheay fail to reach
the Gauss CRLB, even with the true parameter value as the initial guess. Aflackustness to very
heavy tailed noise is largely responsible for the failure, giving rise to dfahof outliers in the estimates

that inflate the resulting MSE considerably. This is not too surprising tsectine TSA is made of linear

14
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Figure 6: Same as Fig. 4 except the noise is Gaussian.

filtering and linear least-squares estimation, none of which is robust to/ttaded noise. The results of
NLS shown in Fig. 5 are much worse. This may be explained by the compdyrdblem of robustness
and convergence for the optimization routine in calculating the NLS estimates.

Fig. 7 gives an example that illustrates the lack of robustness of NLS aAdirT Sontrast with the
robustness benefit of NLAD. Shown in Fig. 7(a) is a time series of 108rgaBons with the noise generated
from theT distribution withv = 2.1. This particular time series contains a large outlier, so large that the
periodogram reverses its typical behavior by producing a valley r#itlaera peak at the signal frequency,
making the method of periodogram maximization completely invalid. The outlier hiamsilarsimpact on
the mappingon(a) shown in Fig. 7(b), where the fixed point closest to the signal frequeecomes a
repeller instead of an attractor, causing the TSA to diverge from theldigrmaency. Thel, error that
the NLS estimator minimizes also exhibits reversed characteristics in this casef(dhighows that the
signal frequency is closer to a maximizer rather than a minimizer of;tkeror. In complete contrast to the
TSA and NLS, the NLAD estimator remains intact: Fig. 7(c) shows thatitegror continues to provide a

well-defined minimizer at the signal frequency in spite of the outlier contamination
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Figure 7: (a) Time series (top) of a sinusoid plusistributed noise with 2.1 degrees of freedom and its
periodogram (bottom). (b) TSA mappirfg— arccog pn(cog2rtf))}/(2m) (n = 0.984). (c) Profile/; error,

similar to Fig. 2. (d) Profil¢, error. Dotted lines indicate the true frequerfcy: 0.15.
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Note that an alternative method to deal with impulsive noise is to clip large @is®ars whose mag-
nitude exceeds a certain threshold [41]. This is a simple and effectiveitgehif the range of “normal”
observations is known a priori so that the right threshold can be sevanad. Selection of the threshold
ultimately depends on the magnitude of the signal as well as the tail behaviag obtbe. Such a priori
knowledge is not assumed in our problem.

To end this section, we should point out that whereas the simulation is fboumsthe frequency esti-
mation, similar remarks concerning the efficiency and robustness behkiitAD can be made about the

amplitude estimation as well.

6 Confidence Regions

Although useful in practice and common in the literature, directly comparing tBE Mith the asymptotic
variance is not entirely appropriate in general, because convergemtistribution does not necessarily
imply convergence in the first and second moments. A more proper wayngf e results in Theorems 1
and 2 is to construct confidence regions for the parameters. In thisaipplica smaller asymptotic variance
will yield a tighter confidence region for the same coverage probability.

For example, levs be the(3,3) entry of 28- 2CRLBg(8) and ay, be the 3rd element iB,. By The-
orem 2,(w— &n)?/vs 2 x? asn — o, meaning that R{w — én)2/vs < x?(p)} — p for any p € (0,1),
wherex?(p) is thepth quantile ofy2. If ¥s is a consistent estimator of, then, by substitutingsfor v¢, we
obtain a confidence interval for the frequency parame®arp) := {w € (0,7) : (w— &n)?/9¢ < x2(p)}.
By Theorem 2, the coverage ©f,(p), defined as Riw € Qn(p)}, is approximately equal tp for largen.

Similarly, a confidence elliptic region for the amplitude parameters is giver {fp) := {a € R?:
(a—a,) "V, (a—a,) < x2(p)}, whered, := [Ay, By]T consists of the amplitude estimatesin andV, is
a consistent estimator of the corresponding 2 submatrix of ﬁgZCRLBG(G). A confidence ellipsoidal

region for all three parameters is given By(p) := {8 € G : (8 —0,)™V 13 —8,) < x2(p)}, with V
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being a consistent estimator g82°CRLBg(8).

To obtainv;, Va, andV, one can plug in the NLAD estimat@, := [Aq, By, éx]T for 8 in CRLBg(8)
and replacé (0) in B by a density estimator such é&nh,) 15 1(|&| < hy), whereh, > 0 is a bandwidth
parameter satisfyingp, — 0 asn — o and & = y; — {Ancos(dht) + énsin(obnt)} (t=1,...,n) are the
residuals from the NLAD fit (the unknowa? in Bz2 cancels out with that in CRLE(H)). If the noise
distribution is knowra priori except for the variance, which is the scenario of our simulation study in this
section, therB is known and the unknowa? in CRLBg(8) can be substituted by the MLE of on the
basis of; acting likeg (t = 1,...,n), which, in the Laplace case for example, equdls 25 |&])2.

Tables I-l1l contain the results of a simulation study where the coveragmpilities ofQ,(p), An(p),
andCn(p) are computed on the basis of 10,000 Monte Carlo runs for the nominal patu@.95 and for
various sample sizes and noise distributions. The signal and noise pasmeteA =1, B=0, w =
0.15x 2m, andy = 0 dB. In addition to the finite-sample CRLB in Proposition 1 that requires thesiome
of XTX, the asymptotic CRLB, defined &%,X 1D, with =~ given by Proposition 2, is also used as a
computationally simpler alternative in the construction of the confidence region

As can be seen, the simulated coverage does approach the nominal valledses as the sample
size grows; but the speed of convergence depends on the noiseudiistribfor example, it requires a
larger sample size to reach the nominal value under the Laplace distributioaritiar ther, ; distribution.
Moreover, for small sample sizes (e.g+ 50,100), the finite-sample CRLB is superior to the asymptotic
CRLB, but the superiority diminishes as the sample size grows. The plugiime¢ss of CRLB are effective

as a substitute for the exact CRLB, especially for larger sample sizes.

7 Concluding Remarks

In this paper we have demonstrated analytically and numerically that undebaossian noise conditions

the amplitude and frequency parameters of sinusoidal signals can be edtimmate accurately than the
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TABLE |

COVERAGE 0F95% CONFIDENCE REGION FORFREQUENCY

Noise CRLB n=50 n=100 n=300 n=500 n=700 n=900

Laplace Estim(A) 0.83 0.87 0.91 0.92 0.93 0.93
Estim(F) 0.88 0.90 0.92 0.93 0.93 0.94
Exact(F)  0.89 0.91 0.92 0.93 0.93 0.94
To1 Estim (A) 0.92 0.93 0.94 0.95 0.95 0.95
Estim (F) 0.93 0.93 0.94 0.95 0.95 0.95
Exact(F) 0.94 0.94 0.94 0.95 0.95 0.95
T3 Estim (A) 0.87 0.90 0.93 0.94 0.94 0.94
Estim(F) 0.92 0.94 0.94 0.95 0.95 0.95
Exact(F) 0.94 0.94 0.95 0.95 0.95 0.95
Gauss Estim (A) 0.86 0.89 0.92 0.93 0.94 0.94
Estm(F) 0.94 0.94 0.95 0.95 0.95 0.95

Exact(F) 0.94 0.95 0.95 0.95 0.95 0.95

Results are based on 10,000 Monte Carlo runs. (A) = Asymptotic CREB; Finite-sample CRLB,

Estim = Plug-in estimate of CRLB, Exact = True CRLB.
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TABLE Il

COVERAGE OF95% CONFIDENCE REGION FORAMPLITUDE

Noise CRLB n=50 n=100 n=300 n=500 n=700 n=900

Laplace Estim(A) 0.81 0.86 0.90 0.92 0.93 0.93
Estim(F) 0.84 0.88 0.92 0.92 0.93 0.93
Exact(F)  0.87 0.90 0.92 0.93 0.93 0.93
To1 Estim(A) 0.91 0.92 0.94 0.95 0.95 0.95
Estm(F) 0.92 0.93 0.94 0.95 0.95 0.95
Exact(F)  0.93 0.94 0.95 0.95 0.95 0.95
T33 Estim (A) 0.87 0.90 0.93 0.94 0.94 0.94
Estm(F) 0.91 0.93 0.94 0.95 0.95 0.95
Exact(F)  0.93 0.94 0.95 0.95 0.95 0.95
Gauss Estim (A) 0.86 0.89 0.92 0.93 0.94 0.94
Estim(F) 0.91 0.93 0.94 0.95 0.95 0.95

Exact(F)  0.93 0.94 0.95 0.95 0.95 0.95

20



TABLE Il

COVERAGE OF95% DINT CONFIDENCEREGION FORALL PARAMETERS

Noise CRLB n=50 n=100 n=300 n=500 n=700 n=900

Laplace Estim(A) 0.77 0.84 0.90 0.91 0.92 0.93
Estim(F) 0.80 0.86 0.91 0.92 0.92 0.93
Exact(F) 0.84 0.88 0.91 0.92 0.93 0.93
To1 Estim (A) 0.89 0.92 0.94 0.95 0.95 0.95
Estm(F) 0.91 0.92 0.94 0.95 0.95 0.95
Exact(F)  0.93 0.93 0.94 0.95 0.95 0.95
T33 Estim(A) 0.85 0.90 0.93 0.94 0.94 0.94
Estim (F)  0.89 0.93 0.94 0.95 0.95 0.95
Exact(F) 0.92 0.94 0.95 0.95 0.95 0.95
Gauss Estim (A) 0.85 0.89 0.92 0.93 0.94 0.94
Estim (F)  0.90 0.93 0.94 0.94 0.95 0.95

Exact(F) 0.92 0.94 0.94 0.95 0.95 0.95
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Gauss CRLB suggests. We have shown in particular that the maximum likeldsbiogator derived under
the Laplace white noise assumption, which minimizes the sum of absolute devidtiaide to attain the

Laplace CRLB asymptotically, which is 50% lower than the Gauss CRLB attaipgdebmost efficient

methods available such as nonlinear least squares and periodogram ratimimi¥Ve have also provided
an asymptotic analysis of the Laplace MLE for non-Laplace noise andrstiawit produces highly efficient
estimates that outperform the nonlinear least squares considerabbefor-tailed noise.

Furthermore, we have proposed a computational procedure for the nradtikelihood estimation. The
procedure employs a simple iterative algorithm called TSA to obtain sufficientyrate initial values
for standard optimization routines. Owing to the global convergence pyoptthe TSA, the proposed
procedure is able to accommodate poor initial values of accupéty for the frequency parameter and
produce a final frequency estimator of accur@gy/?) that attains the Laplace CRLB asymptotically.

Itis straightforward to generalize the analytical results in this paper to #eeafanultiple sinusoids with
i = Sp_ {Accos ) + Bysin(axt)} + &, whereq is a known integer an@l := [Aq, By, i, . .., Aq, Bg, ] "
is the unknown parameter vector. In fact, all propositions and theoremameunchanged except that
and CRLEg(0) are interpreted as := [Xy, ..., Xg) and CRLE;(0) := diag{ CRLBg(81),...,CRLBg(8q)},
whereX, and CRLE;(8y) are the matrices for the single sinusoid correspondir@yte= [Ay, By, w] . As
discussed in [29], the TSA remains useful in providing initial values as &mthe frequencies have an
adequate separation from each other. Alternatively, one can use thgamatt version of the algorithm
discussed in [13] and [42] to deal with closely spaced frequencies.

Our simulation studies indicate that whereas the TSA works well in providing lindilaes for the
Laplace MLE under moderately heavy-tailed noise, more robust initializaltiermatives are still needed in
situations where the noise has very heavy tails. One possibility is the ralhsgizece methods in [26] and

[27]. This topic deserves further investigation.
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Appendix |: Proof of Theorem 1

Let 1. (@) denote the Fisher information matrix under LWN. Th&yl_(0)D,, = 2Dplg(0)D,, = 2X +
O(n~1), whereZ is given by (3). We cali, (8) := 2Z the normalized asymptotic Fisher information matrix
under the LWN assumption. DefiiZg(8) := ¢ 1{/1(08 +Dnd) — £1(8)}, wherec := 0/+/2. The key to the

proof of Theorem 1 is to establish that
Zn(8) = —8"{n+ 38" IL()8 +Ra(8), 9

whereR,(8) = 0p(1) uniformly ind € Ay :={0:0+Dpnd € O} ={6:0+Dnd € Op,||d]| < kn?} and
Zn 2 N(0,iL(8)). The quadratic function @ in (9) has a unique minimum, := i, 1(8) .. The assertion
follows if we can show thab, := arg min{Z,(8) : 8 € Ay} = D 1(B,— 0) is 0p(1) away fromd,, i.e.,
&n— 8,5 0. Toward that end, we rewrite (9) s (0) = Zn(Sn) +3(6- Sn)TfL(O) (60— Sn) +Rq(0) —
Rn(Sn) and defineR, := max{|R.(8)| : 8 € A,}. For any constantt > 0, if S, € Ay, then infZ,(8) : 0 €
A, |6 — SnH > up > Zn(8n) + 1ap? — 2R,, wherea > 0 is the smallest eigenvalue f(6). Sinced,
converges in distribution ansl, — R3, we have P(rSn ¢ On) — 0. This, combined withR, = 0, implies that
Pr(||<ASn — 3n|| > 1,8, € An) — 0, which, in turn, leads to IPMc%n —SnH > u) — 0.

To prove (9), consider the Taylor expans®(® + Dpd) = (08) + v + fy with v := (Dnd) " (0), 't :=
(Dnd)"H(B1t) (Dnd), whereg: (#) andH;(3) denote the gradient vector and Hessian matrig @) and
6. is a point betweef 4 D8 and@. Sincey; = §(0) + &, we can writeZ, () =c¢ ! S{l&—w—Tt|—|&l}

Let o(u,s) :=1(u<s)—1(u<0). Then, using Knight's identity [43],

V
U=V~ lul = ~vsgrw) +2 | g(u.s)ds

with U= & andv = v +ft, we obtainZn(8) = Zm + Zn2 + Znz + Zna, WhereZy := —c 1 S visgn&),
Znp=2cts [ o(&,5)ds Zng := —c L S Fisgn&), andZps :=2c7 1y \)t"”‘ @(&,s)ds
3

First, we show thaZ,, = 387iL(0)8 + op(n™) uniformly in & € A, for any fixedr € [0,1 — 3a).

Toward that end, le€; := [3' @(&,s)ds so thatZy, = 2c715 &. SinceF(x) = Jexp(x/c) for x < 0 and
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F(x) = 1— exp(—x/c) for x > 0, we obtain 21E(&) = 2c™! [y*{F(s) — F(0)}ds = exp(—|v|/c) —
1+ m|/c = 3(w/c)?+ O(W). This, combined withy (v/c)? = 8"i(8)8 + O(n~1+29) and 3 |v |3 =
O(n~Y/2+3%) leads toE(Zyp) = 2c 1 E(&) = 287 1L(8)d + O(n~Y2+3@). Moreover, since & & < |v],
we have Vaf&) < E(&2) < |w|E(&). Combining this with majk| = O(n~Y2%) yields VarZ,) =
4c 25 Var(&) < 2c  (max|w|) E(Zn) = O(n~1/2+3¢) Now, substituted with n®n in n=2°Z,, and de-
note the resulting function af asZ(n). Then, the previous results can be restated g&,(n)} =
inTiL(@)n +O(n~Y2+%) and Va{Zp(n)} = O(n~2-%) for any fixedn. Citing Chebyshev’s inequality
provesZnp(n) = nTiL(8)N + Op(n~Y/4-9/2) for any fixedn. Because; is a convex function of; andv;
is a linear function ofy, it follows thatZ.»(n) is a convex function ofy, so the Convexity Lemma in [44]
guarantees thatp(n) = 3nTiL(8)N + op(n™) uniformly in ||| < k for any fixedr € [0, + 1a). The
assertion is proved upon noting that 94| < k for anyd € Ay.

Next, we ShowZqz = O p(n~Y/2+3¢) uniformly in & € An. This can be done by using the Taylor expansion
ft = rt 4+, wherer; := (Dnd)"H;(8)(Dnd). In this expansiony is a linear combination of the third partial
derivatives ofs () evaluated at an intermediate point which may depentl ohhese partial derivatives
are either zero (for those involving differentiation with respect to the amggudore than once) or can
be expressed ag(tP) for somef = 2,3. Moreover, owing to the presencedfé and to the fact that the
components i@, — 0 that correspond to the amplitudes can be expresséi{ms/?+9) and those that
correspond to the frequency @n—3/2t%), the coefficients of the third partial derivatives of the fapri?)
take the form9(n~(B+1—1/2+30) This leads tg |u| = O(n~Y/23%) and hencg u sgr(&) = O(n~1/2+30),
Furthermore, becausgr; sgn&) = 8" =8, where=p, := Dn(3 H:(8) sgn(&))Dy, is a random matrix whose
elements have mean zero and variafi¢e™?), it follows from Chebyshev’s inequality tha, = Op(n~%/2)
and hence rysgn(&) = Op(n~Y22%), Combing these results proves the assertion.

Write Zny = Z), + Zp},, WhereZ), :=2c 1y, Zj :=2c sy por, Uk = [ @(&,5)ds andp; =

Gt (g, s)ds Since|pr| < 2Ju| and Y || = O(n~Y239), we haveZ), = O(n~Y/237) uniformly
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in & € An. We also havé(Z,) = O(n~Y/237), because @ *E(yx) = [, " {F(s) — F(0)} ds=wri/c®+
112/ + O((% + 1)) + O(), max|w|) = O(n~2+), max(Jre|) = O(n~+29), 3 wr = O(n-Y/23a),
andy r2 = O(n~1+4@). Furthermore, by the same technique employed to boun(Zyar we can show
that the variance a@/,, = 2c715 (5t — [3!) @(&, S) dstakes the forn©(n~1+4%). Let & be substituted by
n“n in n=297Z, and denote the resulting function gfby Zna(n). Then, the previous evaluations imply
N Zna(N) = Op(n~Y/2+2+1) 2, 0 for any fixedn andr € [0, % —a). Itremains to show that the convergence
is also uniform in||n|| < k. According to Lemma 2.2 in [45] (see also Theorem 1 in [46]), it suffices to

show that for anyr > 0,

lim limsupPr{ max n'|Z —Zun)>1b=0 10
fim, limsup {(n,n’)eﬁ(h) 1Zna(N) — Zna(n')| = } ; (10)

whereB(h) :={(n,n’) : Inll <k, |In’|| <k, ||n —n'|| < h}. This so-called stochastic equicontinuity con-
dition is proved in Appendix Ill. ThusZ/,, = op(n~") uniformly in 8 € A, for anyr € [0, % —3a).

Finally, let {, := ¢ 'Dn 5 0:(8)sgr&). It suffices to show thaZy = —6"¢, % N(0,8"1.(0)3)
for any fixedd # 0. Toward that end, we note th&(Z,) = 0 and VafZ,) = (Dnd)"1.(0)(Dnd) =
6TiL(8)8 4+ O(n~Y). Furthermore, sinc€, = ¢ 3y E{|wsgn&)®} = ¢ 35 |w[® = O(n"¥/?), we have

{Var(Z,)}~%/?r, = O(n~%2) — 0. Citing Liapounov’s central limit theorem [47] proves the assertion.

Appendix II: Proof of Theorem 2

Similar to the proof of Theorem 1, the goal is to show t#atd) = —6"{n + 3B6"iL(0)8 + Rq(5),
whereRy(8) = 0p(1) uniformly in & € A, and{, 2 N(0,iL(8)). By following the steps in the proof
of Theorem 1, it suffices to show thZt, — %BFETII(G)G andZ;, can be expressed ag(n™") for any
fixed & and 0< r < min{} — 3a,3d — (d+2)a}. Toward that end, we note th&(&) = [5{F(0)s+
O} ds= 1F (0 + O(WT2). This, combined withy [w|%2 = O(n~9/2+(d+2)) yields E(Zy) =

IBr3TIL(0)5 + O(n~9/2+(8+2a) - Similarly, E(yx) = [yt {F(0)s+ O(s™*1)}ds= F(0)(wir; + 3r2) +
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O(( +11)42) + 0(+2), soE(Z),) = O(n~9/2+(d+2)a) Eyrthermore, both V&Z,,) and VarZ.,,) take the
form O(n=Y/2+3%), Combining these results proves the assertion. Finally, bedausfy < 2d — (d+2)a
ifand only if a < (d—3)/(2d + 1), taking 0< o < min{g,(d—3)/(2d+ 1)} in the first case and @ a <

d/(2d+4) in the second case ensuRgd) = 0p(1) uniformly in d € A.

Appendix III: Proof of (10)

Lemmal. Letg(u,s) :=1(u<s)—I(u<0). Then,\ffcp(u,s)dq <|b—a|l(Ju < max|al,|b|)).
Proof. Let ¢(u;a,b) := f;’ @(u,s)dsand consider the case bf> a. It is easy to show that

0 if b<u,

foru>0: Y(uab)=¢ b_uy ifa<u<b,

\ b—a ifu<a,

—(b—a) ifu>Dh,
foru<0: g(uab)=4¢ a_y if a<u<hb,
0 if u<a.

Combining these results yields the following expressions:

0 if u> b,

b—u ifa<u<hb,
forb>a>0: y(u;ab)=
b—a ifO<u<a,

0 ifu<o.

0 if u> Db,

b—u ifO<u<hb,
forb>0>a ¢(uab)=
a—u ifa<u<o,

0 ifu<a
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0 if u>0,

a—b ifb<u<o,
for0>b>a (uab)=

a—u ifa<u<hb,

{ 0 fu<a
In all three cases we hayg(u;a,b)| < |b—a|l(Jul < max|al,|b|)). This inequality remains true in the case
of a> b becausey(u;a,b) = —y(u;b,a). O
By definition, yx = f\x"f ¢(&,s)ds wherew; := v +ri. With & replaced byn“n, we regardyx, w,
r., andw; as functions ofp and denote their values g by ¢, v, r{, andw{. Then, we can write
G- = () —f\zw)‘l’(ft’s)ds: (f\x/‘t" —f\‘/t’t)(p(st,s)ds:: Ayr1 — Dygko. By Lemma 1, we havéAgs| <
Wt — Wi (&) < max(|w|, |wi]) and |Agrz| < [vi — Vi|I(|&] < max(Jw],|v]). It is shown in Appendix
| that maxv| = O(n~Y2+%) and maxry| = O(n~*+2%) uniformly in ||n|| < k. Therefore, we obtain
|Agh| < [we —W| 1 (|&] < cn) and|Agrz| < v —Vi|1(|&| < €n), Wherec, := cin~Y/2+9 for some constant
c1 > 0. Moreover, for anyn,n’) € B(h), there exists a constari > 0, which may depend or, such
that [ve — i| = n?|(n —N)"Dng:(8)| < Knh, |rt —r{| = n??|NTDnH(8)Dnn — N'TDnH(8)Dnn’| < Knh,
and|w; —W,| < v — V| + |ry — r{| < knh, Wherek, := kin~1/2+9, Becaus&Zn(n) = 2c N2 5 ¢, we
have|Zna(n) — Zna(n')| < 2¢ 120 {5 (|w —WE| + [ — V|) } (max|&| < ¢y) < dhhl(max|&| < c,), where

O ;= 4cIn~20+1k, = 4c~1k,n'/2-9 Therefore, for larg@ such than'd,h > 1, we have

Pr max nrz _Z N>1l<
{(n,n’)eﬁ(h) 1Z0a(N) — Zna(n')| = }_em

wheree, := {F(cy) — F(—cp)}" — 0 asn — o because & F(cp) — F(—cp) < % for largen.
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