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Abstract

Accurate estimation of the amplitude and frequency parameters of sinusoidalsignals from noisy observa-

tions is an important problem in many signal processing applications. In this paper, the problem is investi-

gated under the assumption of non-Gaussian noise in general and Laplace noise in particular. It is proven

mathematically that the maximum likelihood estimator derived under the condition of Laplace white noise

is able to attain an asymptotic Cramér-Rao lower bound which is one half of that achieved by periodogram

maximization and nonlinear least squares. It is also proven that when applied to non-Laplace situations,

the Laplace maximum likelihood estimator, which may also be referred to as the nonlinear least-absolute-

deviations estimator, can achieve an even higher statistical efficiency especially when the noise distribution

has heavy tails. A computational procedure is proposed to overcome the difficulty of local extrema in the

likelihood function. Simulation results are provided to validate the analytical findings.

Keywords:Frequency estimation, harmonic retrieval, heavy tail, impulsive noise, Laplace distribution, least

absolute deviation, robust, spectral analysis.



1 Introduction

Consider the problem of estimating the parameterθθθ := [A,B,ω ]T of a sinusoidal signal from a time series

of noisy observations

yt := Acos(ωt)+Bsin(ωt)+ εt (t = 1, . . . ,n), (1)

whereA∈R, B∈R, andω ∈ Ω := (0,π) are unknown constants and{εt} is a white noise process with zero

mean and unknown finite varianceσ2 > 0. The literature on this subject is extensive [1] [2]. Among the

most popular approaches to this problem are Fourier transform (periodogram) [3]–[6], Gauss maximum like-

lihood (also known as nonlinear least squares) [7]–[9], autoregression [10]–[13], and eigen-decomposition

(signal/noise subspace) [14]–[19].

It is well known that if{εt} is Gaussian white noise (GWN), then the asymptotic Cramér-Rao lower

bound (CRLB) for the frequency parameterω can be expressed as(12/γ)n−3, whereγ := 1
2(A2 +B2)/σ2

is the signal-to-noise ratio (SNR). We shall refer to this bound as the GaussCRLB. A number of analytical

and simulation studies suggest [5] [7] that the Gauss CRLB can be attained asymptotically by the maximum

likelihood estimator (MLE) that maximizes the Gauss likelihood function, or equivalently, that minimizes

the sum of squared errors

ℓ2(ϑϑϑ) :=
n

∑
t=1

|yt − (ϑ1cos(ϑ3t)+ϑ2sin(ϑ3t))|2, (2)

whereϑϑϑ := [ϑ1,ϑ2,ϑ3]
T ∈ Θ0 := R×R×Ω. Rigorous proofs of this assertion are provided recently in [20]

and [21]. Several numerical procedures have been proposed to compute the estimator [7]–[9].

The minimizer ofℓ2(ϑϑϑ) in (2) is known as the nonlinear least-squares (NLS) estimator when applied

to non-Gaussian situations. It can be shown [20] [21] that the NLS estimator attains the Gauss CRLB

asymptotically for any white noise process, Gaussian or non-Gaussian, with zero mean and finite variance.

Typical estimators in the literature either reach the Gauss CRLB asymptotically (e.g., NLS and periodogram
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maximization) or fall short of it (e.g., the signal/noise subspace methods). Aninteresting question is: can

we do better than the Gauss CRLB under non-Gaussian conditions?

In this paper, we provide an affirmative answer to this question. Toward that end, we first examine

the CRLB under non-Gaussian noise and show that the Gauss CRLB is the worse-case performance limit,

namely, the largest lower bound, among a large family of noise distributions. We then focus on the special

case of Laplace white noise (LWN) and prove that the Laplace MLE attains the Laplace CRLB asymptoti-

cally which is only one half of the Gauss CRLB.

The Gaussian assumption is often made in practice not because of its fitness tonoise data but because of

its mathematical tractability. In reality, departures from the Gaussian assumptioncan occur in many different

forms, one of which is in the form of heavy tails. A heavy-tailed distribution has greater tail probabilities

than suggested by the Gaussian model. It manifests itself in practice as impulsive errors and outliers in the

observations, capable of causing algorithms developed under the Gaussian assumption to malfunction. The

Laplace (or double exponential) distribution is an example of heavy-tailed distributions. This model has

been employed to describe impulsive noise as well as to serve as a surrogate in developing robust algorithms

against outliers and in solving problems that have no solution under the Gaussian assumption [22]–[24].

The alpha-stable distribution considered in [25]–[27] is another popularmodel for heavy-tailed noise.

Like the Gauss MLE, the Laplace MLE is difficult to compute without an extremelygood initial guess,

because the likelihood function has numerous local extrema in the vicinity of thedesired solution. To obtain

the initial value, we use an iterative filtering method called the three-step algorithm (TSA) [28] [29]. In

addition to its unified architecture suitable for practical implementation, the TSA has the analytically proven

property of fast and virtually global convergence to an estimate as accurate as the Gauss MLE. We present

some simulation results to confirm the validity of the TSA as an initialization procedure for the Laplace

MLE.

We also provide an asymptotic analysis of the Laplace MLE when it is applied to non-Laplace situations,
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where the estimator will be referred to as nonlinear least absolute deviations(NLAD) in analogy to the Gauss

MLE being referred to as nonlinear least squares when applied to non-Gaussian cases. It is shown that the

NLAD estimator has an asymptotic normal distribution, just like the NLS estimator, but the asymptotic

variance of the NLAD estimator can be much smaller than the Gauss CRLB as wellas the Laplace CRLB,

especially for heavy-tailed noise. This result justifies the NLAD estimator as asuperior alternative to the

NLS estimator under non-Laplace heavy-tailed conditions.

The rest of the paper is organized as follows. Section II discusses the CRLB under non-Gaussian con-

ditions; Section III contains the result regarding the asymptotic distribution ofthe Laplace MLE; Section

IV focuses on the computational issues; Section V provides an asymptotic analysis of the Laplace MLE

under non-Laplace conditions; and Section VI demonstrates an applicationof the asymptotic results in con-

structing confidence regions for the amplitude and frequency parameters. Concluding remarks are given in

Section VII.

2 CRLB Under Non-Gaussian Noise

In this paper, we always assume that{εt} is a sequence of independent and identically distributed (i.i.d.)

random variables with a common probability distribution functionF(x) such thatE(εt) =
∫

xdF(x) = 0 and

0 < σ2 := Var(εt) =
∫

x2dF(x) < ∞.

Proposition 1. If F is twice differentiable everywhere except a finite number of points andsatisfies0 <

λF := σ2∫ {F̈(x)/Ḟ(x)}2dF(x) < ∞, whereḞ and F̈ denote the first and second derivatives of F, then

the Fisher information matrix ofy := [y1, . . . ,yn]
T with respect to the parameterθθθ can be expressed as

IF(θθθ) = λF IG(θθθ), where IG(θθθ) := (1/σ2)XTX is the Fisher information matrix under the GWN assumption,

with X := [x1,x2,x3], x1 := vec[cos(ωt)], x2 := vec[sin(ωt)], andx3 := vec[−Atsin(ωt)+Btcos(ωt)].
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Proof. The log-likelihood function ofy can be written asL(θθθ |y) = ∑ logḞ(yt − st(θθθ)), wherest(θθθ) :=

Acos(ωt)+ Bsin(ωt). Therefore,∂L/∂A = −∑cos(ωt)F̈(εt)/Ḟ(εt), ∂L/∂B = −∑sin(ωt) F̈(εt)/Ḟ(εt),

and∂L/∂ω = −∑{−Atsin(ωt)+Btcos(ωt)} F̈(εt)/Ḟ(εt). This yieldsIF(θθθ) := E{∇L(θθθ |y)∇TL(θθθ |y)} =

E{(F̈(ε1)/Ḟ(ε1))
2}(XTX) = (λF/σ2)(XTX). If F is Gaussian, thenλF = 1.

From Proposition 1, the following result can be obtained.

Proposition 2. Let the conditions in Proposition 1 be satisfied. Assume further that the support of Ḟ

is equal toR and F̈(x) is continuous for almost every x∈ R. Then, the Craḿer-Rao inequality holds

for any unbiased estimator ofθθθ on the basis ofy, and the CRLB can be expressed as CRLBF(θθθ) =

λ−1
F CRLBG(θθθ), where CRLBG(θθθ) := I−1

G (θθθ) = σ2(XTX)−1 is the CRLB under the GWN assumption, sat-

isfying D−1
n CRLBG(θθθ)D−1

n = ΣΣΣ−1 +O(n−1) for large n, with

ΣΣΣ−1 =
1
γ






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
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

A2 +4B2 −3AB −6B

4A2 +B2 6A

symmetry 12
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





and Dn := diag(n−1/2,n−1/2,n−3/2).

Proof. By the fundamental theorem of calculus for Lebesgue integration, we canwrite
√

Ḟ(x+h)−
√

Ḟ(x) =
∫ 1

0
1
2hF̈(x+uh)/

√

Ḟ(x+uh)du. It follows that
√

Ḟ(x) is differentiable in quadratic mean ([30],

pp. 95–96). Moreover, by Proposition 2.29 in [30] (p. 22),
∫ |F̈(x+h)/

√

Ḟ(x+h)− F̈(x)/
√

Ḟ(x) |2dx→ 0

ash→ 0. Finally,(1/σ2)XTX = D−1
n {ΣΣΣ+O(n−1)}D−1

n , where

ΣΣΣ :=
1

σ2


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

1
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4B2

1
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




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. (3)

Combining these results with the assumption that the support ofḞ(x) is equal toR proves that the regular-

ity conditions in [32] (p. 65) are satisfied. The assertion follows from Proposition 1 and the Craḿer-Rao

inequality ([32], Theorem 7.3, p. 73).
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The next proposition asserts that the Gauss CRLB is the worse-case performance limit among a large

family of noise distributions.

Proposition 3. Let F be the collection of probability distributions that satisfy the assumptions in Proposi-

tion 2. Then, it follows thatλF ≥ 1, hence CRLBF(θθθ) ≤ CRLBG(θθθ), for all F ∈ F, where the equality holds

if and only if F is Gaussian.

Proof. Consider the problem of estimatingθ ∈ R on the basis ofY ∼ F(y−θ). It is easy to show that

the Fisher information ofY equalsλF/σ2 andY is an unbiased estimator ofθ with Var(Y) = σ2. So, the

Craḿer-Rao inequality can be written asλF ≥ 1, with “=” iff a(y− θ) = (d/dθ) logḞ(y− θ) for y ∈ R,

wherea is nonzero and independent ofy ([32], p. 77). Withx := y− θ , this condition can be rewritten as

(d/dx) logḞ(x) = −ax, leading toḞ(x) = exp(−1
2ax2 +b). Imposing the constraint on the variance and the

fact thatḞ(x) integrates to unity completes the proof.

Remark1. A similar conclusion was drawn in [31] for estimating the parameters of non-Gaussian autore-

gressive processes. For more results under the general signal-plus-noise models, see [32] (Chapt. II).

Remark2. According to Proposition 3, th quantityλF can be regarded as a measure of deviation from the

Gaussian distributions. It is a dimensionless quantity, invariant to the scale ofthe noise.

Remark3. Because CRLBG(θθθ) = σ2(XTX)−1, Proposition 3 can be easily extended to cover a larger family

of distributions in whichσ2 is the upper bound of the variance. Proposition 3 is related to Huber’s minimax

approach in robust statistics [33], where the Gaussian distribution with meanzero and varianceσ2 is known

to be the least favorable distribution, namely, one that minimizes the Fisher information [34].

An example ofF that satisfies the assumptions is the Laplace distribution with

Ḟ(x) = (2c)−1exp
(

−|x|/c
)

, (4)

wherec := σ/
√

2. The Laplace distribution has higher concentration around zero as wellas heavier tails

than the Gaussian distribution with the same variance. For the Laplace distribution, λF = 2. This, combined

5



0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

30

SHAPE PARAMETER

LA
M

B
D

A

2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

DEGREE OF FREEDOM

LA
M

B
D

A

(a) (b)

Figure 1: (a) Plot ofλF as a function of the shape parameterq for the generalized Gaussian distributions

in (5). (b) Plot ofλF as a function of the degree of freedomν for the T distributions in (6). Dashed line

represents the lower boundλ = 1.

with Proposition 2, implies that CRLBL(θθθ) = 1
2CRLBG(θθθ), where CRLBL(θθθ) denotes the CRLB under the

Laplace assumption, or the Laplace CRLB.

The Laplace distribution in (4) belongs to the family of generalized Gaussian distributions with

Ḟ(x) =
q

2cΓ(1/q)
exp(−|x/c|q) (5)

whereq > 0 andc > 0 are the shape and scale parameters. For these distributions, it can be shown that

λF = q2 Γ(2− 1/q)Γ(3/q)/{Γ(1/q)}2. Fig. 1(a) depictsλF as a function ofq. As can be seen,λF is

minimized atq = 2 which corresponds to the Gaussian distribution.

Another example is the family of Student’sT distributions (denoted byTν ) with

Ḟ(x) =
Γ((ν +1)/2)

cΓ(ν/2)
√

πν
{1+(x/c)2/ν}−(ν+1)/2, (6)

whereν is the degree-of-freedom parameter. To ensure a finite variance, it is required thatν > 2. In this

case, one can show thatλF = ν(ν +1)/{(ν −2)(ν +3)}. Fig. 1(b) depictsλF as a function ofν . Note that
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λF > 1 for all ν > 2 andλF → 1 asν → ∞. This limiting value is a manifestation that theTν distribution, if

properly scaled, converge to the standard Gaussian distribution asν → ∞.

3 Maximum Likelihood Estimation

In this section, we focus on the estimation problem under the condition of Laplace white noise (LWN).

As mentioned in the Introduction, typical frequency estimators in the literature can only achieve the Gauss

CRLB at best regardless of the noise distribution. The Laplace CRLB discussed in Section II suggests the

possibility of reducing the estimation error by 50% when the noise actually has aLaplace distribution. The

key question is whether this reduced CRLB can be achieved at all, and if so, by what means.

To answer this question, we turn to the maximum likelihood method, which typically produces asymp-

totically efficient estimates. Under the LWN assumption, maximizing the Laplace likelihood function is

equivalent to minimizing the sum of absolute deviations

ℓ1(ϑϑϑ) :=
n

∑
t=1

|yt − (ϑ1cos(ϑ3t)+ϑ2sin(ϑ3t))|. (7)

Therefore, instead of minimizing theℓ2 error in (2), we propose to minimize theℓ1 error in (7).

To prove the efficiency of this estimator mathematically is not a simple exercise. Wecannot adopt the

standard argument used to prove the asymptotic normality of the maximum likelihoodestimators from i.i.d.

observations [30], not only because theyt do not have the same distribution for eacht, but also because the

Laplace likelihood function is not everywhere differentiable and the rate of convergence is not the same for

all parameters. Fortunately, by employing more sophisticated mathematical tools,we are able to prove the

following result (see Appendix I for proof).

Theorem 1. Let {yt} be given by (1), where{εt} is an LWN process with zero mean and finite variance

σ2 > 0. Let Θn := {ϑϑϑ ∈ Θ0 : ‖D−1
n (ϑϑϑ −θθθ)‖ ≤ κnα} be a neighborhood ofθθθ , whereκ > 0 and α ∈

(0, 1
6) are some constants. Then, as n→ ∞, θ̂θθ n := argmin{ℓ1(ϑϑϑ) : ϑϑϑ ∈ Θn} is asymptotically distributed as
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Figure 2:Plot of profileℓ1 error as a function off for a noisy sinusoid of lengthn = 100. True frequency isf = 0.15

(dashed line). Dotted vertical lines represent the Fourierfrequenciesk/n (k = 1,2, . . .).

N(θθθ ,CRLBL(θθθ)), where CRLBL(θθθ) = 1
2CRLBG(θθθ).

Theorem 1 shows that by minimizing theℓ1 error, the Laplace MLE is able to attain the Laplace CRLB,

thus reducing the asymptotic variance of the NLS estimator by 50%. Note that Theorem 1 not only asserts

the asymptotic normality of the Laplace MLE but also explicitly specifies the neighborhood in which the

Laplace MLE should be obtained as a minimizer ofℓ1(ϑϑϑ). The neighborhood shrinks as the sample size

increases, an indication of stringent requirements on initial values.

4 A Computational Procedure

Finding the minimizer ofℓ1(ϑϑϑ) numerically is a challenging problem, not only because the objective func-

tion is not everywhere differentiable, but most importantly because it contains many local minima in the

vicinity of the desired solution. The seriousness of this problem can be appreciated by examining the profile

ℓ1 error plot shown in Fig. 2, whereℓ1(ϑϑϑ) is plotted against the normalized frequencyf := ϑ3/(2π) with

ϑ1 andϑ2 replaced by their minimizing values (obtained numerically) for each givenf .
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The methods of NLS and periodogram maximization face a similar problem of local extrema. It has

been demonstrated that an initial value of accuracyO(n−1) in standard error for the frequency parameter is

required to guarantee the convergence of standard iterative algorithms [20] [35]. A typical remedy to the

problem consists of a coarse search of then-point DFT periodogram followed by a fine search based on local

interpolation. This procedure usually generates sufficiently accurate initial values for standard optimization

routines such as the Newton-Raphson algorithm [3]–[9].

Theorem 1 suggests that the Laplace MLE should be obtained in a neighborhood of radiusO(n−4/3) of

the true frequency. To produce an initial value in this neighborhood, we propose to use a unified procedure

derived from the inverse filtering method discussed in [13] [28] [29], rather than to stitch together various

techniques of different flavors.

The gist of the method is as follows. For any givena∈ (−2η/(1+ η2),2η/(1+ η2)) with fixed η ∈

(0,1), let yt(a) := Ha(z−1)yt , whereHa(z−1) := {1− (1+η2)az−1 +η2z−2}−1 is a second-order IIR filter.

Let ρn(a) := (1+ η2)−1 ∑yt−1(a){yt(a)+ η2yt−2(a)}/ ∑y2
t−1(a), which is the minimizer of the weighted

sum of forward and backward prediction error sums of squares∑{yt(a)− ρyt−1(a)}2 + η2 ∑{yt−2(a)−

ρyt−1(a)}2. Using this function ofa, a sequence{â(m)
n } is produced by the fixed-point iteration

â(m)
n := 2ρn

(

â(m−1)
n

)

− â(m−1)
n (m= 1,2, . . .). (8)

It can be shown that with a suitable initial value the sequence converges to afixed point ân of ρn(a), i.e.,

â(m)
n → ân = ρn(ân) asm→ ∞, and the fixed point leads to a frequency estimatorω̂n := arccos(ân). The

consistency and asymptotic normality ofω̂n as an estimator ofω can be established.

The bandwidth parameterη plays an important role in determining the required accuracy of the initial

values and the final accuracy of the frequency estimator. By taking advantage of this relationship, we

proposed a three-step algorithm (TSA) in [28] to bring an initial value of accuracyO(1) to a final estimate

of accuracy arbitrarily close toO(n3/2) at the cost of computational complexityO(nlogn):
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1. Take 1−η1 = O(1) and iterateO(nlogn) times with an initial value of accuracyO(1). This step

produces an estimate of accuracyO(n−1/2).

2. Take 1−η2 = O(n−1/3) and iterateO(1) times using the result from Step 1 as initial value. This step

produces an estimate of accuracyO(n−1).

3. Take 1−η3 = O(n−ν) with ν = 1− and iterateO(1) times using the result from Step 2 as initial value.

This yields an estimate of accuracy arbitrarily close toO(n−3/2).

While the TSA produces a frequency estimate for initializing a general-purpose optimization routine to

minimize ℓ1(ϑϑϑ), the required initial value ofA andB can be obtained by linear regression with the TSA

estimates in place of the true frequency values.

Note that a fourth step withη4 = 1 is able to yield an estimator which is mathematically proven to

attain the Gauss CRLB [36]. In practice, this step can be omitted because it does not offer any appreciable

improvement in the estimation accuracy. Note also that Prony’s estimator can beused as the initial value

in Step 1. Prony’s estimator equals arccos(ρn(0)) with η = 0 (no filtering) and has accuracyO(1) (due to

bias). With this estimator as the initial value instead of other alternatives such asSVD-based estimates, the

entire procedure becomes unified in architecture, thus simplifying the hardware/software implementation.

Becauseℓ1(ϑϑϑ) is not everywhere differentiable, gradient-based algorithms, such as the Newton-Raphson

algorithm suitable for NLS, cannot be used to compute the Laplace MLE. Fortunately, there are many

general-purpose algorithms that do not require the differentiability. The simplex algorithm of Nelder and

Mead [37], available in software packages such as Mathematica andR, is such an example. This algorithm

is the default choice in theR functionoptim; it is employed with all other default options in our simulation.

The interior point algorithm discussed in [38] can also be used, but itsR implementation with the default

options does not seem to be as reliable as the simplex algorithm inoptim.

Fig. 3 shows the result of a simulation where the MSE of frequency estimates for a sinusoid in LWN is

10
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Figure 3: Reciprocal MSE of the estimates ofω/(2π) for a sinusoid plus LWN. Solid line, Laplace CRLB;

dashed line, Gauss CRLB;×, Laplace MLE initialized by TSA;+, NLS initialized by TSA;◦, TSA initial-

ized by Prony’s estimator;�, Prony’s estimator. Results are based on 1,000 Monte Carlo runs.

calculated by the Monte Carlo method for various sample sizes. The signal and noise parameters are:A= 1,

B = 0, ω = 0.15×2π, andγ = 0 dB. The three values ofη in the TSA are 0.85, 1−n−0.6, and 1−n−0.9.

With Prony’s estimates as initial values, (8) is iterated 6, 3, and 11 times respectively to produce the final

TSA estimates which in turn serve as initial values for the Laplace MLE and the NLS.

As can be seen, for all sample sizes considered in the simulation, the TSA is able to take theO(1)-

accurate Prony’s estimator as input and produce a frequency estimator whose MSE follows the Gauss CRLB

closely. The NLS estimates, obtained by minimizingℓ2(ϑϑϑ) using the Nelder-Mead algorithm with the TSA

estimates as initial values, do not offer any improvement in the MSE. By minimizingℓ1(ϑϑϑ) instead ofℓ2(ϑϑϑ),

the accuracy is improved considerably: except for the smallest sample sizen = 50, the MSE of the resulting

Laplace MLE is well approximated by the Laplace CRLB (3 dB improvement).
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5 Performance Under Non-Laplace Noise

The Laplace MLE, which minimizesℓ1(ϑϑϑ), can also be used to estimate the signal parameters when the

noise is non-Laplace or when the noise distribution is unknown. In these cases, we refer to the resulting

estimator as NLAD in analogy to NLS. The following theorem establishes the asymptotic normality of the

NLAD estimator under a mild assumption of the noise distribution (see Appendix IIfor proof).

Theorem 2. Let {yt} be given by (1), where{εt} is a white noise process with zero mean, finite variance

σ2 > 0, and marginal distribution function F(x). Assume that F(0) = 1
2, Ḟ(0) > 0, and F(x)−F(0) =

Ḟ(0)x+ O(xd+1) for some constant d> 0 and all |x| ≪ 1. Let Θn := {ϑϑϑ ∈ Θ0 : ‖D−1
n (ϑϑϑ −θθθ)‖ ≤ κnα},

whereκ > 0 and α ∈ (0,α0) are constants, withα0 := min{1
6,(d− 1

2)/(2d + 1)} if d > 1
2 and α0 :=

d/(2d + 4) otherwise. Then, as n→ ∞, θ̂θθ n := argmin{ℓ1(ϑϑϑ) : ϑϑϑ ∈ Θn} is asymptotically distributed as

N(θθθ ,β−2
F CRLBL(θθθ)), where CRLBL(θθθ) = 1

2CRLBG(θθθ), βF := 2cḞ(0), and c:= σ/
√

2.

Remark4. If F(x) has a continuous second derivative in a neighborhood ofx= 0, thend = 1 (andα0 = 1
6) by

Taylor’s expansion. In general, the smoothness ofF(x) nearx = 0 determines the size of the neighborhood

in which the objective function can be approximated by a quadratic form andthus the neighborhood in which

the NLAD estimator should be obtained in order to have the guaranteed asymptotic properties.

Remark5. The quantityβF is the ratio of probability densities at zero: that of the true noise distribution

divided by that of the Laplace distribution which equals 1/(2c). This ratio is dimensionless and invariant to

the scale of the noise.

As a pleasant surprise, Theorem 2 reveals that the NLAD estimator can dobetter than the Laplace CRLB

if the noise distribution satisfiesβF > 1. This is in complete contrast with the NLS estimator which in no cir-

cumstances can outperform the Gauss CRLB. Consider theTν distribution for example. It is easy to see that

βF > 1 if and only if ν ∈ (2,ν0), whereν0 ≈ 2.724 is the solution toΓ((ν +1)/2) = Γ(ν/2)
√

π(ν −2)/2.

Note that forν ∈ (2,ν0) the noise has a finite variance but an infinite third moment, an indication of heavy
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Figure 4: Same as Fig. 3 except the noise has a Student’sT distribution with 3.3 degrees of freedom. Dash-

dotted line, asymptotic variance in Theorem 2; dotted line, CRLB under theT distribution. Results are

based on 1,000 Monte Carlo runs.

tails. In general,βF > 1 if and if Ḟ(0) > 1/(
√

2σ). This is a condition that generally favors heavy-tailed dis-

tributions, because more outliers are needed to balance an increased concentration of probability mass near

the origin in order to maintain a constant variance. It can be shown [39] [40] that the Laplace distribution in

(4) is the least favorable distribution among symmetric unimodal distributions withβF ≥ 1.

Of course, it is also possible thatβF < 1 for someF , in which case the accuracy of NLAD cannot

reach the Laplace CRLB. For Gaussian noise in particular,βF = 1/
√

π. This means that the asymptotic

variance of the NLAD estimator under GWN is equal to1
2π ≈ 1.57 times the Gauss CRLB. Therefore, the

efficiency gain of NLAD under heavy-tailed noise is achieved at the expense of slight loss of efficiency

under the Gaussian and other light-tailed noise. The NLAD estimator exceedsthe Gauss CRLB if and

only if βF > 1/
√

2, or equivalently,Ḟ(0) > 1/(2σ). BecauseḞ(x) = (1/σ)p(x/σ) for some unit-variance

probability densityp(x), the condition that favors NLAD over NLS can be rewritten asp(0) > 1/2.

Figs. 4–6 present some simulation results of the NLAD estimator for frequency estimation under non-

13
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Figure 5: Same as Fig. 4 except the noise has a Student’sT distribution with 2.1 degrees of freedom and

all algorithms are initialized by the true parameter value. The MSE of Prony’s estimator is not presented.

Results are based 10,000 Monte Carlo runs.

Laplace conditions. In Figs. 4 and 5, the noise has aT distribution withν = 3.3 andν = 2.1, respectively.

The first case represents a situation of moderately heavy tailed noise for which the third moment is finite but

the fourth moment is infinite; the second case represents a situation where thenoise has very heavy tails with

an infinite third moment. In both cases, the simulated MSE of the NLAD estimator is closely approximated

by the asymptotic variance in Theorem 2 for all sample sizes considered. The same is true for the Gaussian

case shown in Fig. 6. It is important to observe that the MSE of the NLAD estimator exceeds the Gauss

CRLB in both Figs. 4 and 5, and it does so by a large margin in Fig. 5 where theLaplace CRLB is also

exceeded. Of course, the MSE falls short of the Gauss CRLB in Fig. 6 when the noise is Gaussian.

The case shown in Fig. 5 deserves some special comments. In this case, theTSA may fail to reach

the Gauss CRLB, even with the true parameter value as the initial guess. A lackof robustness to very

heavy tailed noise is largely responsible for the failure, giving rise to a handful of outliers in the estimates

that inflate the resulting MSE considerably. This is not too surprising because the TSA is made of linear
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Figure 6: Same as Fig. 4 except the noise is Gaussian.

filtering and linear least-squares estimation, none of which is robust to heavy-tailed noise. The results of

NLS shown in Fig. 5 are much worse. This may be explained by the compounded problem of robustness

and convergence for the optimization routine in calculating the NLS estimates.

Fig. 7 gives an example that illustrates the lack of robustness of NLS and TSA in contrast with the

robustness benefit of NLAD. Shown in Fig. 7(a) is a time series of 100 observations with the noise generated

from theT distribution withν = 2.1. This particular time series contains a large outlier, so large that the

periodogram reverses its typical behavior by producing a valley ratherthan a peak at the signal frequency,

making the method of periodogram maximization completely invalid. The outlier has a similar impact on

the mappingρn(a) shown in Fig. 7(b), where the fixed point closest to the signal frequency becomes a

repeller instead of an attractor, causing the TSA to diverge from the signal frequency. Theℓ2 error that

the NLS estimator minimizes also exhibits reversed characteristics in this case: Fig. 7(d) shows that the

signal frequency is closer to a maximizer rather than a minimizer of theℓ2 error. In complete contrast to the

TSA and NLS, the NLAD estimator remains intact: Fig. 7(c) shows that theℓ1 error continues to provide a

well-defined minimizer at the signal frequency in spite of the outlier contamination.
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Figure 7: (a) Time series (top) of a sinusoid plusT-distributed noise with 2.1 degrees of freedom and its

periodogram (bottom). (b) TSA mappingf 7→ arccos{ρn(cos(2π f ))}/(2π) (η = 0.984). (c) Profileℓ1 error,

similar to Fig. 2. (d) Profileℓ2 error. Dotted lines indicate the true frequencyf = 0.15.
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Note that an alternative method to deal with impulsive noise is to clip large observations whose mag-

nitude exceeds a certain threshold [41]. This is a simple and effective technique if the range of “normal”

observations is known a priori so that the right threshold can be set in advance. Selection of the threshold

ultimately depends on the magnitude of the signal as well as the tail behavior of the noise. Such a priori

knowledge is not assumed in our problem.

To end this section, we should point out that whereas the simulation is focused on the frequency esti-

mation, similar remarks concerning the efficiency and robustness benefit of NLAD can be made about the

amplitude estimation as well.

6 Confidence Regions

Although useful in practice and common in the literature, directly comparing the MSE with the asymptotic

variance is not entirely appropriate in general, because convergencein distribution does not necessarily

imply convergence in the first and second moments. A more proper way of using the results in Theorems 1

and 2 is to construct confidence regions for the parameters. In this application, a smaller asymptotic variance

will yield a tighter confidence region for the same coverage probability.

For example, letvf be the(3,3) entry of 2β−2
F CRLBG(θθθ) andω̂n be the 3rd element in̂θθθ n. By The-

orem 2,(ω − ω̂n)
2/vf

D→ χ2
1 asn → ∞, meaning that Pr{(ω − ω̂n)

2/vf ≤ χ2
1(p)} → p for any p ∈ (0,1),

whereχ2
1(p) is thepth quantile ofχ2

1 . If v̂f is a consistent estimator ofvf , then, by substituting ˆvf for vf , we

obtain a confidence interval for the frequency parameter:Ωn(p) := {ω ∈ (0,π) : (ω − ω̂n)
2/v̂f ≤ χ2

1(p)}.

By Theorem 2, the coverage ofΩn(p), defined as Pr{ω ∈ Ωn(p)}, is approximately equal top for largen.

Similarly, a confidence elliptic region for the amplitude parameters is given byAn(p) := {a ∈ R
2 :

(a− ân)
TV̂−1

a (a− ân) ≤ χ2
2(p)}, whereân := [Ân, B̂n]

T consists of the amplitude estimates inθ̂θθ n andV̂a is

a consistent estimator of the corresponding 2×2 submatrix of 2β−2
F CRLBG(θθθ). A confidence ellipsoidal

region for all three parameters is given byCn(p) := {ϑϑϑ ∈ Θ0 : (ϑϑϑ − θ̂θθ n)
TV̂−1(ϑϑϑ − θ̂θθ n) ≤ χ2

3(p)}, with V̂
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being a consistent estimator of 2β−2
F CRLBG(θθθ).

To obtainv̂f , V̂a, andV̂, one can plug in the NLAD estimator̂θθθ n := [Ân, B̂n, ω̂n]
T for θθθ in CRLBG(θθθ)

and replacėF(0) in βF by a density estimator such as(2nhn)
−1 ∑ I(|ε̂t | ≤ hn), wherehn > 0 is a bandwidth

parameter satisfyinghn → 0 asn → ∞ and ε̂t := yt −{Âncos(ω̂nt) + B̂nsin(ω̂nt)} (t = 1, . . . ,n) are the

residuals from the NLAD fit (the unknownσ2 in β−2
F cancels out with that in CRLBG(θθθ)). If the noise

distribution is knowna priori except for the variance, which is the scenario of our simulation study in this

section, thenβF is known and the unknownσ2 in CRLBG(θθθ) can be substituted by the MLE ofσ2 on the

basis ofε̂t acting likeεt (t = 1, . . . ,n), which, in the Laplace case for example, equals 2(n−1 ∑ |ε̂t |)2.

Tables I–III contain the results of a simulation study where the coverage probabilities ofΩn(p), An(p),

andCn(p) are computed on the basis of 10,000 Monte Carlo runs for the nominal valuep = 0.95 and for

various sample sizes and noise distributions. The signal and noise parameters are: A = 1, B = 0, ω =

0.15×2π, andγ = 0 dB. In addition to the finite-sample CRLB in Proposition 1 that requires the inversion

of XTX, the asymptotic CRLB, defined asDnΣΣΣ−1Dn with ΣΣΣ−1 given by Proposition 2, is also used as a

computationally simpler alternative in the construction of the confidence regions.

As can be seen, the simulated coverage does approach the nominal value inall cases as the sample

size grows; but the speed of convergence depends on the noise distribution: for example, it requires a

larger sample size to reach the nominal value under the Laplace distribution than under theT2.1 distribution.

Moreover, for small sample sizes (e.g.,n = 50,100), the finite-sample CRLB is superior to the asymptotic

CRLB, but the superiority diminishes as the sample size grows. The plug-in estimates of CRLB are effective

as a substitute for the exact CRLB, especially for larger sample sizes.

7 Concluding Remarks

In this paper we have demonstrated analytically and numerically that under non-Gaussian noise conditions

the amplitude and frequency parameters of sinusoidal signals can be estimated more accurately than the
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TABLE I

COVERAGE OF95% CONFIDENCEREGION FORFREQUENCY

Noise CRLB n = 50 n = 100 n = 300 n = 500 n = 700 n = 900

Laplace Estim (A) 0.83 0.87 0.91 0.92 0.93 0.93

Estim (F) 0.88 0.90 0.92 0.93 0.93 0.94

Exact (F) 0.89 0.91 0.92 0.93 0.93 0.94

T2.1 Estim (A) 0.92 0.93 0.94 0.95 0.95 0.95

Estim (F) 0.93 0.93 0.94 0.95 0.95 0.95

Exact (F) 0.94 0.94 0.94 0.95 0.95 0.95

T3.3 Estim (A) 0.87 0.90 0.93 0.94 0.94 0.94

Estim (F) 0.92 0.94 0.94 0.95 0.95 0.95

Exact (F) 0.94 0.94 0.95 0.95 0.95 0.95

Gauss Estim (A) 0.86 0.89 0.92 0.93 0.94 0.94

Estim (F) 0.94 0.94 0.95 0.95 0.95 0.95

Exact (F) 0.94 0.95 0.95 0.95 0.95 0.95

Results are based on 10,000 Monte Carlo runs. (A) = Asymptotic CRLB, (F) = Finite-sample CRLB,

Estim = Plug-in estimate of CRLB, Exact = True CRLB.
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TABLE II

COVERAGE OF95% CONFIDENCEREGION FORAMPLITUDE

Noise CRLB n = 50 n = 100 n = 300 n = 500 n = 700 n = 900

Laplace Estim (A) 0.81 0.86 0.90 0.92 0.93 0.93

Estim (F) 0.84 0.88 0.92 0.92 0.93 0.93

Exact (F) 0.87 0.90 0.92 0.93 0.93 0.93

T2.1 Estim (A) 0.91 0.92 0.94 0.95 0.95 0.95

Estim (F) 0.92 0.93 0.94 0.95 0.95 0.95

Exact (F) 0.93 0.94 0.95 0.95 0.95 0.95

T3.3 Estim (A) 0.87 0.90 0.93 0.94 0.94 0.94

Estim (F) 0.91 0.93 0.94 0.95 0.95 0.95

Exact (F) 0.93 0.94 0.95 0.95 0.95 0.95

Gauss Estim (A) 0.86 0.89 0.92 0.93 0.94 0.94

Estim (F) 0.91 0.93 0.94 0.95 0.95 0.95

Exact (F) 0.93 0.94 0.95 0.95 0.95 0.95
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TABLE III

COVERAGE OF95% JOINT CONFIDENCEREGION FORALL PARAMETERS

Noise CRLB n = 50 n = 100 n = 300 n = 500 n = 700 n = 900

Laplace Estim (A) 0.77 0.84 0.90 0.91 0.92 0.93

Estim (F) 0.80 0.86 0.91 0.92 0.92 0.93

Exact (F) 0.84 0.88 0.91 0.92 0.93 0.93

T2.1 Estim (A) 0.89 0.92 0.94 0.95 0.95 0.95

Estim (F) 0.91 0.92 0.94 0.95 0.95 0.95

Exact (F) 0.93 0.93 0.94 0.95 0.95 0.95

T3.3 Estim (A) 0.85 0.90 0.93 0.94 0.94 0.94

Estim (F) 0.89 0.93 0.94 0.95 0.95 0.95

Exact (F) 0.92 0.94 0.95 0.95 0.95 0.95

Gauss Estim (A) 0.85 0.89 0.92 0.93 0.94 0.94

Estim (F) 0.90 0.93 0.94 0.94 0.95 0.95

Exact (F) 0.92 0.94 0.94 0.95 0.95 0.95
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Gauss CRLB suggests. We have shown in particular that the maximum likelihoodestimator derived under

the Laplace white noise assumption, which minimizes the sum of absolute deviations, is able to attain the

Laplace CRLB asymptotically, which is 50% lower than the Gauss CRLB attained by the most efficient

methods available such as nonlinear least squares and periodogram maximization. We have also provided

an asymptotic analysis of the Laplace MLE for non-Laplace noise and shown that it produces highly efficient

estimates that outperform the nonlinear least squares considerably for heavy-tailed noise.

Furthermore, we have proposed a computational procedure for the maximum likelihood estimation. The

procedure employs a simple iterative algorithm called TSA to obtain sufficiently accurate initial values

for standard optimization routines. Owing to the global convergence property of the TSA, the proposed

procedure is able to accommodate poor initial values of accuracyO(1) for the frequency parameter and

produce a final frequency estimator of accuracyO(n−3/2) that attains the Laplace CRLB asymptotically.

It is straightforward to generalize the analytical results in this paper to the case of multiple sinusoids with

yt = ∑q
k=1{Ak cos(ωkt)+Bk sin(ωkt)}+εt , whereq is a known integer andθθθ := [A1,B1,ω1, . . . ,Aq,Bq,ωq]

T

is the unknown parameter vector. In fact, all propositions and theorems remain unchanged except thatX

and CRLBG(θθθ) are interpreted asX := [X1, . . . ,Xq] and CRLBG(θθθ) := diag{CRLBG(θθθ 1), . . . ,CRLBG(θθθ q)},

whereXk and CRLBG(θθθ k) are the matrices for the single sinusoid corresponding toθθθ k := [Ak,Bk,ωk]
T . As

discussed in [29], the TSA remains useful in providing initial values as longas the frequencies have an

adequate separation from each other. Alternatively, one can use the multivariate version of the algorithm

discussed in [13] and [42] to deal with closely spaced frequencies.

Our simulation studies indicate that whereas the TSA works well in providing initial values for the

Laplace MLE under moderately heavy-tailed noise, more robust initialization alternatives are still needed in

situations where the noise has very heavy tails. One possibility is the robust subspace methods in [26] and

[27]. This topic deserves further investigation.
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Appendix I: Proof of Theorem 1

Let IL(θθθ) denote the Fisher information matrix under LWN. Then,DnIL(θθθ)Dn = 2DnIG(θθθ)Dn = 2ΣΣΣ +

O(n−1), whereΣΣΣ is given by (3). We call̃IL(θθθ) := 2ΣΣΣ the normalized asymptotic Fisher information matrix

under the LWN assumption. DefineZn(δδδ ) := c−1{ℓ1(θθθ +Dnδδδ )− ℓ1(θθθ)}, wherec := σ/
√

2. The key to the

proof of Theorem 1 is to establish that

Zn(δδδ ) = −δδδ Tζζζ n + 1
2δδδ T ĨL(θθθ)δδδ +Rn(δδδ ), (9)

whereRn(δδδ ) = Op(1) uniformly in δδδ ∈ ∆n := {δδδ : θθθ +Dnδδδ ∈ Θn} = {δδδ : θθθ +Dnδδδ ∈ Θ0,‖δδδ‖ ≤ κnα} and

ζζζ n
D→ N(0, ĨL(θθθ)). The quadratic function ofδδδ in (9) has a unique minimum̃δδδ n := Ĩ−1

L (θθθ)ζζζ n. The assertion

follows if we can show that̂δδδ n := argmin{Zn(δδδ ) : δδδ ∈ ∆n} = D−1
n (θ̂θθ n −θθθ) is Op(1) away fromδ̃δδ n, i.e.,

δ̂δδ n− δ̃δδ n
P→ 0. Toward that end, we rewrite (9) asZn(δδδ ) = Zn(δ̃δδ n)+ 1

2(δδδ − δ̃δδ n)
T ĨL(θθθ)(δδδ − δ̃δδ n)+ Rn(δδδ )−

Rn(δ̃δδ n) and defineRn := max{|Rn(δδδ )| : δδδ ∈ ∆n}. For any constantµ > 0, if δ̃δδ n ∈ ∆n, then inf{Zn(δδδ ) : δδδ ∈

∆n,‖δδδ − δ̃δδ n‖ > µ} ≥ Zn(δ̃δδ n) + 1
2aµ2 − 2Rn, wherea > 0 is the smallest eigenvalue ofĨL(θθθ). Sinceδ̃δδ n

converges in distribution and∆n →R
3, we have Pr(δ̃δδ n /∈ ∆n)→ 0. This, combined withRn

P→ 0, implies that

Pr(‖δ̂δδ n− δ̃δδ n‖ > µ,δ̃δδ n ∈ ∆n) → 0, which, in turn, leads to Pr(‖δ̂δδ n− δ̃δδ n‖ > µ) → 0.

To prove (9), consider the Taylor expansionst(θθθ +Dnδδδ ) = st(θθθ)+vt + r̃t with vt := (Dnδδδ )Tgt(θθθ), r̃t :=

(Dnδδδ )THt(θθθ nt)(Dnδδδ ), wheregt(ϑϑϑ) andHt(ϑϑϑ) denote the gradient vector and Hessian matrix ofst(ϑϑϑ) and

θθθ nt is a point betweenθθθ +Dnδδδ andθθθ . Sinceyt = st(θθθ)+εt , we can writeZn(δδδ ) = c−1 ∑{|εt −vt − r̃t |−|εt |}.

Let φ(u,s) := I(u≤ s)− I(u≤ 0). Then, using Knight’s identity [43],

|u−v|− |u| = −vsgn(u)+2
∫ v

0
φ(u,s)ds,

with u = εt and v = vt + r̃t , we obtainZn(δδδ ) = Zn1 + Zn2 + Zn3 + Zn4, whereZn1 := −c−1 ∑vt sgn(εt),

Zn2 := 2c−1 ∑
∫ vt

0 φ(εt ,s)ds, Zn3 := −c−1 ∑ r̃t sgn(εt), andZn4 := 2c−1 ∑
∫ vt+r̃t

vt
φ(εt ,s)ds.

First, we show thatZn2 = 1
2δδδ T ĨL(θθθ)δδδ + Op(n−r) uniformly in δδδ ∈ ∆n for any fixedr ∈ [0, 1

4 − 3
2α).

Toward that end, letξt :=
∫ vt

0 φ(εt ,s)ds so thatZn2 = 2c−1 ∑ξt . SinceF(x) = 1
2 exp(x/c) for x < 0 and
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F(x) = 1− 1
2 exp(−x/c) for x ≥ 0, we obtain 2c−1E(ξt) = 2c−1∫ vt

0 {F(s)− F(0)}ds= exp(−|vt |/c)−

1+ |vt |/c = 1
2(vt/c)2 + O(v3

t ). This, combined with∑(vt/c)2 = δδδ T ĨL(θθθ)δδδ + O(n−1+2α) and ∑ |vt |3 =

O(n−1/2+3α), leads toE(Zn2) = 2c−1 ∑E(ξt) = 1
2δδδ T ĨL(θθθ)δδδ +O(n−1/2+3α). Moreover, since 0≤ ξt ≤ |vt |,

we have Var(ξt) ≤ E(ξ 2
t ) ≤ |vt |E(ξt). Combining this with max|vt | = O(n−1/2+α) yields Var(Zn2) =

4c−2 ∑Var(ξt) ≤ 2c−1(max|vt |)E(Zn2) = O(n−1/2+3α). Now, substituteδδδ with nαηηη in n−2αZn2 and de-

note the resulting function ofηηη as Z̃n2(ηηη). Then, the previous results can be restated asE{Z̃n2(ηηη)} =

1
2ηηηT ĨL(θθθ)ηηη +O(n−1/2+α) and Var{Z̃n2(ηηη)} = O(n−1/2−α) for any fixedηηη . Citing Chebyshev’s inequality

provesZ̃n2(ηηη) = 1
2ηηηT ĨL(θθθ)ηηη +Op(n−1/4−α/2) for any fixedηηη . Becauseξt is a convex function ofvt andvt

is a linear function ofηηη , it follows thatZ̃n2(ηηη) is a convex function ofηηη , so the Convexity Lemma in [44]

guarantees that̃Zn2(ηηη) = 1
2ηηηT ĨL(θθθ)ηηη + Op(n−r) uniformly in ‖ηηη‖ ≤ κ for any fixedr ∈ [0, 1

4 + 1
2α). The

assertion is proved upon noting that‖n−αδδδ‖ ≤ κ for anyδδδ ∈ ∆n.

Next, we showZn3 = Op(n−1/2+3α) uniformly inδδδ ∈∆n. This can be done by using the Taylor expansion

r̃t = rt +ut , wherert := (Dnδδδ )THt(θθθ)(Dnδδδ ). In this expansion,ut is a linear combination of the third partial

derivatives ofst(ϑϑϑ) evaluated at an intermediate point which may depend ont. These partial derivatives

are either zero (for those involving differentiation with respect to the amplitudes more than once) or can

be expressed asO(tβ ) for someβ = 2,3. Moreover, owing to the presence ofDnδδδ and to the fact that the

components inθθθ nt −θθθ that correspond to the amplitudes can be expressed asO(n−1/2+α) and those that

correspond to the frequency asO(n−3/2+α), the coefficients of the third partial derivatives of the formO(tβ )

take the formO(n−(β+1)−1/2+3α). This leads to∑ |ut |= O(n−1/2+3α) and hence∑ut sgn(εt) = O(n−1/2+3α).

Furthermore, because∑ rt sgn(εt) = δδδ TΞnδδδ , whereΞn := Dn(∑Ht(θθθ) sgn(εt))Dn is a random matrix whose

elements have mean zero and varianceO(n−1), it follows from Chebyshev’s inequality thatΞn = Op(n−1/2)

and hence∑ rt sgn(εt) = Op(n−1/2+2α). Combing these results proves the assertion.

Write Zn4 = Z′
n4 + Z′′

n4, whereZ′
n4 := 2c−1 ∑ψt , Z′′

n4 := 2c−1 ∑ρt , ψt :=
∫ vt+rt

vt
φ(εt ,s)ds, and ρt :=

∫ vt+rt+ut
vt+rt

φ(εt ,s)ds. Since|ρt | ≤ 2|ut | and ∑ |ut | = O(n−1/2+3α), we haveZ′′
n4 = O(n−1/2+3α) uniformly
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in δδδ ∈ ∆n. We also haveE(Z′
n4) = O(n−1/2+3α), because 2c−1E(ψt) =

∫ vt+rt
vt

{F(s)−F(0)}ds= vtrt/c2 +

1
2r2

t /c2 + O((vt + rt)
3) + O(v3

t ), max(|vt |) = O(n−1/2+α), max(|rt |) = O(n−1+2α), ∑vtrt = O(n−1/2+3α),

and∑ r2
t = O(n−1+4α). Furthermore, by the same technique employed to bound Var(Zn2), we can show

that the variance ofZ′
n4 = 2c−1 ∑(

∫ vt+rt
0 −∫ vt

0 )φ(εt ,s)ds takes the formO(n−1+4α). Letδδδ be substituted by

nαηηη in n−2αZ′
n4 and denote the resulting function ofηηη by Z̃n4(ηηη). Then, the previous evaluations imply

nr Z̃n4(ηηη) = Op(n−1/2+α+r) P→ 0 for any fixedηηη andr ∈ [0, 1
2 −α). It remains to show that the convergence

is also uniform in‖ηηη‖ ≤ κ. According to Lemma 2.2 in [45] (see also Theorem 1 in [46]), it suffices to

show that for anyτ > 0,

lim
h→0

limsup
n→∞

Pr

{

max
(ηηη ,ηηη ′)∈B(h)

nr |Z̃n4(ηηη)− Z̃n4(ηηη ′)| ≥ τ
}

= 0, (10)

whereB(h) := {(ηηη ,ηηη ′) : ‖ηηη‖ ≤ κ, ‖ηηη ′‖ ≤ κ, ‖ηηη −ηηη ′‖ ≤ h}. This so-called stochastic equicontinuity con-

dition is proved in Appendix III. Thus,Z′
n4 = Op(n−r) uniformly in δδδ ∈ ∆n for anyr ∈ [0, 1

2 −3α).

Finally, let ζζζ n := c−1Dn ∑gt(θθθ)sgn(εt). It suffices to show thatZn1 = −δδδ Tζζζ n
D→ N(0,δδδ T ĨL(θθθ)δδδ )

for any fixedδδδ 6= 0. Toward that end, we note thatE(Zn1) = 0 and Var(Zn1) = (Dnδδδ )T IL(θθθ)(Dnδδδ ) =

δδδ T ĨL(θθθ)δδδ + O(n−1). Furthermore, sinceΓn := c−3 ∑E{|vt sgn(εt)|3} = c−3 ∑ |vt |3 = O(n−1/2), we have

{Var(Zn1)}−3/2Γn = O(n−1/2) → 0. Citing Liapounov’s central limit theorem [47] proves the assertion.

Appendix II: Proof of Theorem 2

Similar to the proof of Theorem 1, the goal is to show thatZn(δδδ ) = −δδδ Tζζζ n + 1
2βFδδδ T ĨL(θθθ)δδδ + Rn(δδδ ),

whereRn(δδδ ) = Op(1) uniformly in δδδ ∈ ∆n andζζζ n
D→ N(0, ĨL(θθθ)). By following the steps in the proof

of Theorem 1, it suffices to show thatZn2 − 1
2βFδδδ T ĨL(θθθ)δδδ andZ′

n4 can be expressed asOp(n−r) for any

fixed δδδ and 0≤ r < min{1
4 − 3

2α, 1
2d− (d + 2)α}. Toward that end, we note thatE(ξt) =

∫ vt
0 {Ḟ(0)s+

O(sd+1)}ds= 1
2Ḟ(0)v2

t + O(vd+2
t ). This, combined with∑ |vt |d+2 = O(n−d/2+(d+2)α), yields E(Zn2) =

1
2βFδδδ T ĨL(θθθ)δδδ + O(n−d/2+(d+2)α). Similarly, E(ψt) =

∫ vt+rt
vt

{Ḟ(0)s+ O(sd+1)}ds= Ḟ(0)(vtrt + 1
2r2

t ) +
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O((vt + rt)
d+2)+O(vd+2

t ), soE(Z′
n4) = O(n−d/2+(d+2)α). Furthermore, both Var(Zn2) and Var(Z′

n4) take the

form O(n−1/2+3α). Combining these results proves the assertion. Finally, because1
4 − 3

2α < 1
2d− (d+2)α

if and only if α < (d− 1
2)/(2d+1), taking 0< α < min{1

6,(d− 1
2)/(2d+1)} in the first case and 0< α <

d/(2d+4) in the second case ensuresRn(δδδ ) = Op(1) uniformly in δδδ ∈ ∆n.

Appendix III: Proof of (10)

Lemma 1. Let φ(u,s) := I(u≤ s)− I(u≤ 0). Then,|∫ b
a φ(u,s)ds| ≤ |b−a| I(|u| ≤ max(|a|, |b|)).

Proof. Let ψ(u;a,b) :=
∫ b

a φ(u,s)dsand consider the case ofb > a. It is easy to show that

for u > 0: ψ(u;a,b) =































0 if b < u,

b−u if a < u≤ b,

b−a if u≤ a,

for u≤ 0: ψ(u;a,b) =































−(b−a) if u > b,

a−u if a < u≤ b,

0 if u≤ a.

Combining these results yields the following expressions:

for b > a≥ 0: ψ(u;a,b) =















































0 if u > b,

b−u if a < u≤ b,

b−a if 0 < u≤ a,

0 if u≤ 0.

for b > 0 > a: ψ(u;a,b) =















































0 if u > b,

b−u if 0 < u≤ b,

a−u if a < u≤ 0,

0 if u≤ a.
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for 0≥ b > a: ψ(u;a,b) =















































0 if u > 0,

a−b if b < u≤ 0,

a−u if a < u≤ b,

0 if u≤ a.

In all three cases we have|ψ(u;a,b)| ≤ |b−a| I(|u|< max(|a|, |b|)). This inequality remains true in the case

of a > b becauseψ(u;a,b) = −ψ(u;b,a).

By definition, ψt =
∫ wt

vt
φ(εt ,s)ds, wherewt := vt + rt . With δδδ replaced bynαηηη , we regardψt , vt ,

rt , and wt as functions ofηηη and denote their values atηηη ′ by ψ ′
t , v′t , r ′t , and w′

t . Then, we can write

ψt −ψ ′
t = (

∫ wt
vt

−∫ w′
t

v′t
)φ(εt ,s)ds= (

∫ wt
w′

t
−∫ vt

v′t
)φ(εt ,s)ds := ∆ψt1−∆ψt2. By Lemma 1, we have|∆ψt1| ≤

|wt − w′
t | I(|εt | < max(|wt |, |w′

t |) and |∆ψt2| ≤ |vt − v′t | I(|εt | < max(|vt |, |v′t |). It is shown in Appendix

I that max|vt | = O(n−1/2+α) and max|rt | = O(n−1+2α) uniformly in ‖ηηη‖ ≤ κ. Therefore, we obtain

|∆ψt1| ≤ |wt −w′
t | I(|εt | < cn) and|∆ψt2| ≤ |vt − v′t | I(|εt | < cn), wherecn := c1n−1/2+α for some constant

c1 > 0. Moreover, for any(ηηη ,ηηη ′) ∈ B(h), there exists a constantκ1 > 0, which may depend onκ, such

that |vt − v′t | = nα |(ηηη −ηηη ′)TDn gt(θθθ)| ≤ κnh, |rt − r ′t | = n2α |ηηηTDnHt(θθθ)Dnηηη −ηηη ′TDnHt(θθθ)Dnηηη ′| ≤ κnh,

and |wt −w′
t | ≤ |vt − v′t |+ |rt − r ′t | ≤ κnh, whereκn := κ1n−1/2+α . BecauseZ̃n4(ηηη) = 2c−1n−2α ∑ψt , we

have|Z̃n4(ηηη)− Z̃n4(ηηη ′)| ≤ 2c−1n−2α{∑(|wt −w′
t |+ |vt −v′t |)}I(max|εt | ≤ cn)≤ dnhI(max|εt | ≤ cn), where

dn := 4c−1n−2α+1κn = 4c−1κ1n1/2−α . Therefore, for largen such thatnrdnh≥ τ, we have

Pr

{

max
(ηηη ,ηηη ′)∈B(h)

nr |Z̃n4(ηηη)− Z̃n4(ηηη ′)| ≥ τ
}

≤ en,

whereen := {F(cn)−F(−cn)}n → 0 asn→ ∞ because 0≤ F(cn)−F(−cn) ≤ 1
2 for largen.
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