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Abstract

We presentLEEWAVE − a bandwidth-efficient approach
to searching range-specified k-nearest neighbors among
distributed streams by level-wise distribution of waveletco-
efficients. To find the top-k similar streams to a range-
specified reference one, the relevant wavelet coefficients of
the reference stream can be sent to the peer sites to compute
the similarities. However, bandwidth can be unnecessarily
wasted if the entire relevant coefficients are sent simultane-
ously. Instead, we present a level-wise approach by leverag-
ing the multi-resolution property of the wavelet coefficients.
Starting from the top and moving down one level at a time,
the query initiator sends only the single-level coefficients
to a progressively shrinking set of candidates. However,
there is one difficult challenge inLEEWAVE: how does the
query initiator prune the candidates without knowing all the
relevant coefficients? To overcome this challenge, we de-
rive and maintain asimilarity rangefor each candidate and
gradually tighten the bounds of this range as we move from
one level to the next. The increasingly tightened similar-
ity ranges enable the query initiator to effectively prune the
candidates without causing any false dismissal. Extensive
experiments with real and synthetic data show that, when
compared with a naive one,LEEWAVE uses significantly
less bandwidth under a wide range of conditions.

1 Introduction

Processing data streams has become increasingly impor-
tant as more and more emerging applications are required to
handle a large amount of data in the form of rapidly arriv-
ing streams. Examples include data analysis in sensor net-
works, program trading in financial markets, video surveil-
lance and weather forecasting. In response, many organi-
zations [1, 3, 4, 8, 13, 28, 30] have started developing data
stream processing systems (DSPS).

Finding k-nearest neighbors (kNN) is one of the most
common applications in computing. ProcessingkNN
queries has been one of the most studied problems in tradi-
tional database research. It is also believed to be the case
in data stream processing [11, 16, 18, 20]. For akNN
query, the DSPS will find the top-k streams that have the
most similar patterns to a given pattern contained in a ref-
erence stream. Compared tokNN query processing in tra-
ditional databases, stream-basedkNN query processing is
much more challenging. It must handle an endlessly grow-
ing amount of data with limited resources. Nevertheless,
many researchers have started working on various aspects of
stream-basedkNN query processing [11, 16, 18, 20]. But,
these works mainly focus on the case where data streams
are collected and processed at a central site.

In many real-world applications, however, data streams
are usually collected in a decentralized manner. For ex-
ample, to forecast the weather and track global climate
changes, meteorologists collect streams of measurements,
like temperatures, from observation stations located overa
wide area. In surveillance, video cameras are set up in many
places and continuously capture images from various an-
gles. Finally, readings from a sensor network are collected
in a distributed fashion. In these cases, it is inefficient to
gather all of the distributed streams to a central site before
doing any query processing. It is even impossible to do so
when the available network bandwidth is limited. Hence,
there is a need to develop a bandwidth-efficient approach to
processingkNN queries among distributed streams.

In this paper, we study the problem of processing dis-
tributed kNN (k-similarity) queries. We assume that the
network is a mesh work; that is, all the sites can be con-
nected to one another. Nevertheless, our proposed method
can also be extended to other kinds of networks with appro-
priate modifications. The system model is shown in Fig 1,
where there areM distributed sites, each monitoring one or
more streams. For a given a reference streamSref main-
tained by an initiator site,Pinit, the goal is to find the top-k
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Figure 1. System model.

streams among allM sites with the highest similarities to
Sref in the user-defined time rangeT .

An obvious solution to distributedkNN query process-
ing is to transmit all the relevant data ofSref in the specified
time range to all other sites. After receiving the data from
Pinit, each peer site computes the similarities between lo-
cally maintained streams andSref , and then reports its local
kNN to Pinit. Finally, Pinit determines the truekNN after
it receives results from all the peer sites. Unfortunately,this
obvious solution is not a good one because it requires large
bandwidth (total relevant data multiplied byM − 1) and a
significant part of it can be unnecessarily wasted, especially
if M ≫ k or if T is large.

Searching for a better solution, we notice that summary
sketches, instead of complete details, of the streams are usu-
ally maintained in a data streaming environment. Among
various sketches, the wavelet-based one, especially the Haar
wavelet summarization, has been widely adopted in many
stream-oriented applications due to its efficiency and sim-
plicity [5, 29, 32]. More importantly, the Haar wavelet de-
composition provides multiple resolutions in time and fre-
quency domains. In a coarser resolution, there are fewer
wavelet coefficients, each representing a longer subsection
of the original data; while in a finer resolution, there are
more wavelet coefficients, but each represents a smaller
subsection of the data. More specifically, coefficients in a
lower resolution give a rough outline of the original data,
while those in a higher resolution disclose more details.
This multi-resolution property, which has also been ex-
plored for other applications [2, 19], gives us inspiration
that we can use fewer coefficients in a coarser resolution to
filter out many candidates and then use more coefficients in
a finer resolution to refine the answers.

Armed with this insight, we present LEEWAVE − a
bandwidth-efficient approach to processingkNN queries in
a distributed streaming environment by level-wise distribu-
tion of wavelet coefficients. In essence, instead of simulta-
neously distributing all the relevant coefficients of the ref-

erence stream to other peer sites, the query initiator,Pinit,
sends the coefficients one level at a time, starting from the
top (the coarsest) level. At each step, with returned level
distances from the peer sites,Pinit progressively prunes the
candidates. As we progress to a lower level, which usu-
ally contains more coefficients, the number of candidates
becomes much smaller. As a result, significant bandwidth
savings can be realized because the wavelet coefficients at a
lower level are sent to a much smaller set of candidate sites.
More importantly, during the process of candidate pruning,
we guarantee that there is no false dismissal.1

However, there is one difficult challenge in LEEWAVE:
At each step, how doesPinit prune the candidate streams
without knowing all the relevant wavelet coefficients? In
fact, it is impossible at an intermediate level to compute the
true similarities. Without them, it is difficult, if not impos-
sible, to prune the candidates. To address this challenge,
we derive and maintain asimilarity rangefor each candi-
date stream. The upper and lower bounds of a similarity
range can be incrementally updated atPinit with level-wise
distances returned from the peer sites. More importantly, a
similarity range gradually becomes tighter as we move from
one level to the next. These increasingly tightened similar-
ity ranges enablePinit to effectively prune the candidate
streams without causing any false dismissal.

To evaluate the effectiveness of LEEWAVE, we conduct
extensive experiments using both real and synthetic data.
For comparisons, we also implement a naive approach,
which sends the entire relevant coefficients to allM − 1
peer sites in one step. We measure the total bandwidth con-
sumed in finding the top-k most similar streams to a refer-
ence one. The results show that, under a wide range of con-
ditions, LEEWAVE consumes significantly less bandwidth,
especially whenM ≫ k or T is large.

Our contributions can be summarized as follows:

• We introduce LEEWAVE as a bandwidth-efficient ap-
proach to processingkNN queries in a distributed
streaming environment by level-wise distribution of
wavelet coefficients. The relevant coefficients of the
reference stream are sent to a progressively shrinking
set of candidate streams/sites one level at a time.

• We derive and maintain a similarity range for each can-
didate stream and gradually tighten the range by incor-
porating level-wise distances computed and returned
by a peer site. These increasingly tightened similarity
ranges enable the query initiator to prune the candidate
streams without any false dismissal.

1Note that not all the wavelet coefficients are retained in a steaming
environment. As a result, the accuracy of our scheme is based only on
the retained wavelet coefficients. Namely, if there is an error in thekNN
w.r.t. the raw data, the error is solely due to the discarded coefficients. Our
scheme does not introduce any extra error.
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• We conduct extensive experimental studies to evalu-
ate LEEWAVE. The results show that, when compared
with a naive approach, LEEWAVE uses significantly
less bandwidth under a wide range of conditions.

The remainder of this paper is organized as follows. Re-
lated work is discussed in Section 2. Preliminaries are given
in Section 3, including wavelet decomposition and coef-
ficient maintenance. The application of LEEWAVE to the
processing of distributedkNN queries is described in Sec-
tion 4. Section 5 shows the experimental results. Finally,
the paper is concluded in Section 6.

2 Related Work

Wavelet transform plays an important role in the field
of time series analysis [25]. Wavelet-based data summa-
rization has been used for many data stream applications.
Bulut et al. provided a wavelet-based index structure which
incrementally summarizes data in multiple resolutions [5].
These indexes can then be used to answer point queries,
range queries and inner product queries. Zhu et al. consid-
ered burst detection using a summary structure called SWT,
which is a shifted-wavelet tree based on the Haar wavelet
transform [32]. Teng et al. applied the Haar wavelet trans-
form concept to discover frequent temporal patterns of data
streams [29].

Searchingk-nearest neighbors is an important research
topic in a streaming environment. Many related works have
discussed solutions in either a single-stream [11, 18] or a
multiple-stream environment [20, 16]. In [11], the authors
proposed to continuously retrieve the latestL points of a
stream as a query pattern and then find its nearest neighbors
from a time series database. Base on traditional indexing
methods, the proposed scheme achieves efficient query re-
sponse via prefetching. In [18], given an error bound, ap-
proximatek-nearest neighbors are searched among stream
snapshots. In [20], the authors proposed a new indexing
technique based on scalar quantization to provide efficient
nearest-neighbor search among multiple streams. In [16],
based on the Haar wavelet synopses, the authors provided
an efficient approach to finding thek-nearest neighbors un-
der an arbitrary range constraint. All these works assume
that streams are collected and processed at a central site.

However, in practice, most streams are generated in ge-
ographically distributed places. Therefore, more and more
research works have started to focus on distributed streams.
These works include finding recently frequent itemsets [22],
tracking approximate quantiles [9], processing aggregation
and thresholding queries [21, 24, 26], indexing for inner
product queries and similarity queries [6], and so forth.
However, to the best of our knowledge, there is no prior
work on processingkNN queries in a distributed streaming
environment using wavelet coefficients.

Table 1. Haar wavelet decomposition.

averages wavelet coefficients
raw data {4, 6, 7, 4, 8, 6, 5, 7} -
high resolution {5, 5.5, 7, 6} {−1, 1.5, 1,−1}
mid resolution {5.25, 6.5} {−0.25, 0.5}
low resolution {5.875} {−0.625}
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Figure 2. (a) The error tree for Example 1; (b)
The notation of an error tree proposed in [16].

3 Preliminaries

3.1 Wavelet decomposition

Among different wavelet transformations, the Haar
wavelet decomposition is the first and also the most pop-
ular one. It is achieved by averaging two adjacent data
values of a sequence of data at different time resolutions.
Then, only the overall average and differences are kept.
We show a simple example here in Table 1 to illustrate
the idea of the Haar wavelet decomposition. The original
data are{4, 6, 7, 4, 8, 6, 5, 7} and the final coefficients are
{5.875,−0.625,−0.25, 0.5,−1, 1.5, 1,−1}. More details
can be found in [15].

To better illustrate the Haar wavelet decomposition, a
widely used data structure callederror tree is proposed
in [23]. The error tree for Example 1 is shown in Fig. 2(a).
This tree is composed of wavelet coefficients as nodes and
signs as edges. The root of this tree is the overall average
and all the other non-leaf nodes are differences at various
resolutions. The leaf nodes represent the raw data, but these
raw data are not maintained. Instead, one can always recon-
struct the raw data by tracing the error tree. Along each path
from the root, each data value in a leaf node is equal to the
sum of the value of a node multiplied by the sign below it.
For example, the fifth data value, 8, can be reconstructed by
+5.875 − (−0.625) + 0.5 + 1 = 8.

We also use an error tree to illustrate our idea, the same
as the one used in [16], which is shown in Fig. 2(b). Here,
each non-leaf node is labeled with an identifier with two at-
tributes as subscripts:level andplacement. A node with a
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label ofn(u)
(l,p) means that it is in thep-th placement of level

l in the error tree corresponding to streamSu. This notation
can be efficiently maintained when data keep steaming in.
Moreover, when not all wavelet coefficients are retained, we
can easily find the relative positions of the retained coeffi-
cients in the error tree via the node labels.

3.2 Coefficient maintenance

Generally, not all the wavelet coefficients in an error tree
are retained because the data volume tends to be huge and
the memory space is limited in a streaming environment. To
meet different error requirements between the raw data and
the retained coefficients, many on-line approaches to select-
ing wavelet synopses have been proposed. These require-
ments include minimizing theL-norm average error [12],
minimizing the maximum absolute/relative error [17], min-
imizing the weightedLp-norm error [14], and providing a
guaranteed accuracy [10], to name a few. In this paper, we
assume that the wavelet synopses are dynamically main-
tained based on the one proposed in [12].

Given the retained coefficients of a stream, we can ex-
tract the relevant coefficients within any time range [ts, te].
In this paper, we adopt an extraction procedure proposed
in [16], which hasO(log2 N) complexity, whereN is the
total number of data values in a stream. Here we present
a high-level outline of the procedure. More details can be
found in [16]. When a time range[ts, te] is given, it first
decomposes the range into several subranges where each of
them corresponds to a complete error subtree. Using Fig. 3
as an example, suppose the given range is[t0, t11], which
contains the shaded triangular area in Fig. 3. We can de-
compose it into two complete error subtrees where one cov-
ers [t0, t7] and the other[t8, t11]. For each complete error
subtree, the new average node will be computed by travers-
ing from the original root noden(u)

(4,−1) to the root of the
subtree (see Fig. 3). The black nodes represent retained co-
efficients, while the white ones are those being discarded.
When traversing the path to get the new average, the miss-
ing nodes are just treated as zero.

4 The LEEWAVE approach to processing dis-
tributed kNN queries

The central idea of LEEWAVE is as follows. The query
initiator sends the coefficients ofSref one level at a time.
At each step, each peer site reports the level-l distance and
other necessary information to the initiator site. The ini-
tiator then gradually prunes the candidates with the return
level distances. However, the key challenge is how the ini-
tiator prunes the candidates.
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Figure 3. Extracting complete error subtrees
and relevant coefficients from the whole error
tree based on a desired time range.

4.1 Computing similarities using wavelet
coefficients

Based on the maintained wavelet synopses, the goal of
ourkNN query is to find thek most similar streams toSref .
We denote akNN query asQ(Sref , k, ts, te), wherek is
the desired number of top most similar streams, and[ts, te]
defines the time range of interest. For the similarity mea-
sure between two streams, we adopt the commonly used
Euclidean distance in this paper.

Given wavelet coefficients of two streams, we can com-
pute the Euclidean distance directly from the coefficients
themselves without doing inverse wavelet transform back
to the original data [7]. By reformulating the distance com-
putation proposed in [16], for a given time rangeT=[ts, te],
the distance between two streamsSu andSv can be com-
puted as follows:
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= [
X
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X
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/∈ CTi
,

[n
(v)
(l,p)

]2 if n
(u)
(l,p)

/∈ CTi
& n

(v)
(l,p)

∈ CTi
,

Ti is one of the subrange inT with a complete error subtree,
andCTi

is the set of retained coefficients which are in the
subrangeTi.

Eq. (1) computes the distance between two streams
based on the complete error subtrees. Unfortunately, this
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error-subtree-based distance computation is not useful in
LEEWAVE because peer sites only receive the retained co-
efficients ofSref one level at a time. We need a level-wise
approach to computing the distance for LEEWAVE.

To better illustrate our idea, we introduce three defini-
tions.

Definition 1 We define the square sum of Euclidean dis-
tance between streamSu andSv asDst(Su, Sv). Namely,

Dst(Su, Sv) = dst(Su, Sv)2.

Also, for ease of exposition, when we use the word ”dis-
tance” from now on, we mean this square sum of Euclidean
distance,Dst(u, v).

Definition 2 We define the level-l distance between
streamsSu andSv as the distance of retained coefficients
at levell.

Dstl(Su, Sv)|te

ts
=

∑

p

D
(u,v)
(l,p) × 2l,

whereD
(u,v)
(l,p) satisfies the same condition as in Eq.(1).

Definition 3 We define the accumulated distance between
streamsSu andSv from the highest levelL down to levelρ
(the top-down accumulated distance) as:

accDstρ(Su, Sv)|te

ts
=

L∑

l=ρ

Dstl(u, v)|te

ts
.

If we combine Definitions 2 and 3, and assume that the
height of the whole retained error tree isL, then Eq.(1) can
be reformulated as:

Dst(Su, Sv)|te
ts

= dst(Su, Sv)|te
ts

2

=
X

p

D
(u,v)
(1,p)

× 21 + ... +
X

p

D
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× 2L

=

L
X

l=1

X
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D
(u,v)
(1,p)

× 2l

=
L

X

l=1

Dstl(u, v)|te
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= accDst1(u, v)|te
ts

(2)

Eq. (2) is important to LEEWAVE as it suggests a level-
wise approach to computing the distance between two
streams. LEEWAVE will use Eq. (2) to derive a similarity
range for each candidate stream and gradually tighten this
range in order to prune the candidates. Before we delve into
the details, let us look at an example to understand the sub-
tle, yet crucial, difference between Eq. (1) and (2). Note
that, for ease of exposition, we will omit the notation of

Sx =  [1,4,2,5,7,8,4,2,5,8,6,6]
Sref =  [4,5,2,6,7,8,3,5,3,7,5,5]

Error subtrees of Sx

Sx = [1.5, 4.5, 3, 3, 7.5, 7.5, 3, 3, 4.75, 7.75, 6.25, 6.25]
Sref = [4.25, 4.25, 2.25, 6.25, 7, 8, 3, 5, 3, 7, 5, 5]
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Figure 4. Example of level-wise vs. error-
subtree-based distance computation.

[ts, te] from now on in our description of the distance be-
tween two streams.

Fig. 4 shows two different approaches to computing the
distance between two streams,Sref andSx. Assume that
during the time range [ts,te], Sx has 12 raw data values
[1, 4, 2, 5, 7, 8, 4, 2, 5, 8, 6, 6] andSref also has 12 raw data
values [4, 5, 2, 6, 7, 8, 3, 5, 3, 7, 5, 5]. These raw data are
transformed into separate error trees. Then a series of com-
plete error subtrees and retained coefficients are extracted.
To verify the correctness, we also show the reconstructed
data and use them to compute the distance. However, in
practice, we never need to do such reconstruction. The dis-
tance computation between two streams is done completely
with retained wavelet coefficients.

Example 1 Error-subtree-based computation:Based on
Eq.(1), the distance between two streams is the summation
of the distance between each pair of their corresponding
complete error subtrees. For the first pair of error subtrees
in rangeT1, the distance is:((4.125 − 5)2 + (−1.125 +
0.75)2) × 23 + ((2.25 − 1.75)2+) × 22 + ((−1.5)2 +
(−2)2 + (0.5)2 + (−1)2) × 21 = 23.25. For the sec-
ond pair of error subtrees in rangeT2, the distance is:
(6.25 − 5)2 × 22 + (−1.5 + 2)2 × 21 = 6.75. The final
distanceDst(Sref , Sx) is 23.25 + 6.75 = 30. If we check
the distance from the reconstruction data by inverse DWT,
we get exactly the same distance value. �

Example 2 Level-wise computation:From Fig. 4, we can
also compute the total distance in a level-wise manner. The
total distance computed this way is also 30, which is the
same as the computed distance in Example 1. �
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4.2 LEEWAVE for a kNN query

Note that, even with Eq. (2), the query initiator still can-
not prune the candidate streams without risking some false
dismissal. This is because, at a given level, it does not know
how much those not-yet-seen coefficients of the candidate
streams at lower levels will contribute to the final distances.

To overcome this problem, we maintain a similarity
range into which the exact distance may fall for each can-
didate stream. To estimate the similarity range, we first
decompose Eq.(2) into two parts: one is the accumulated
distance so far and the other is the distance from those not-
yet-seen coefficients.

Dst(Sref , Sx)

=
L

X

l=1

Dstl(Sref , Sx)

= accDstρ(Sref , Sx) +

ρ−1
X

l=1

Dstl(Sref , Sx). (3)

At level ρ, the accDstρ(Sref , Sx) can be easily main-
tained byPinit. However, the second term of Eq. (3) is still
unknown. Let us further decompose the second terms:

ρ−1
X

l=1

Dstl(Sref , Sx)

=

ρ−1
X

l=1

X

p

[n
(ref)
(l,p)

− n
(x)
(l,p)

]2 × 2l

=

ρ−1
X

l=1

X

p

([n
(ref)
(l,p)

]2 + [n
(x)
(l,p)

]2 − 2n
(ref)
(l,p)

n
(x)
(l,p)

) × 2l. (4)

In Eq. (4), Pinit can easily compute the first term us-
ing its own coefficients. It can also compute the sec-
ond term,

∑ρ−1
l=1

∑
p([n

(x)
(l,p)]

2 × 2l), by first receiving
∑L−1

l=1

∑
p([n

(x)
(l,p)]

2 × 2l) at the initial step and then gradu-

ally subtracting
∑

p[n
(x)
(ρ,p)]

2×2ρ from it at each subsequent
level ρ. The only problem left is the last term in Eq. (4),
which involves the product of coefficients at levels belowρ.
NeitherPinit nor any candidate site can compute this term
at the current levelρ. To guarantee no false dismissal, we
would like to find a substitute for this term which is an over-
estimate but can be computed with level-wise coefficients.

Fortunately, we do find such a substitute. According
to Cauchy-Schwarz inequality [27], we can find an upper
bound of the inner product of two vector in real space,
where this upper bound is the product of the linear square
sum of each vector:

(
h

X

i=1

αiβi)
2 ≤

h
X

i=1

α2
i ×

h
X

i=1

β2
i , whereαi, βi ∈ R.

Now we if letαi = −[n
(ref)
(l,p) ]× 2l, andβi = [n

(x)
(l,p)], then

the last term of Eq. (4) has an upper bound as follows:

2 ×

v

u

u

t

ρ−1
X

l=1

X

p

(−[n
(ref)
(l,p)

] × 2l)2 ×

ρ−1
X

l=1

X

p

[n
(x)
(l,p)

]2

= 2 ×

v

u

u

t

ρ−1
X

l=1

X

p

([n
(ref)
(l,p)

] × 2l)2 ×

ρ−1
X

l=1

X

p

[n
(x)
(l,p)

]2.

Therefore, at levelρ, the true distance betweenSref and
Sx, which is described in Eq.(3), is bounded in the follow-
ing range:

accDstρ(Sref , Sx) ≤ Dst(Sref , Sx) ≤

accDstρ(Sref , Sx) +

ρ−1
X

l=1

X

p

([n
(ref)
(l,p)

]2 + [n
(x)
(l,p)

]2) × 2l

+2 ×

v

u

u

t

ρ−1
X

l=1

X

p

([n
(ref)
(l,p)

] × 2l)2 ×

ρ−1
X

l=1

X

p

[n
(x)
(l,p)

]2. (5)

With Eq. (5), it is now possible to maintain both the
lower bound and the upper bound of this similarity range in
a level-wise manner withDstρ(Sref , Sx) and

∑
p[n

(x)
(ρ,p)]

2

returned by a peer site at each levelρ. This is be-
cause the term

∑ρ−1
l=1

∑
p[n

(x)
(l,p)]

2 can now be incremen-

tally computed atPinit by subtracting
∑

p[n
(x)
(l,p)]

2 from
∑ρ

l=1

∑
p[n

(x)
(l,p)]

2, which was computed at the previous
level ρ + 1. More importantly, as we move from one level
to the next, the similarity range becomes tighter.

Theorem 1 The upper bound of a similarity range is non-
increasing when we move from levelρ to levelρ − 1.

Proof: See the Appendix. �

We are now ready to describe the details of how LEE-
WAVE processes a distributedkNN query in a level-wise
manner and howPinit gradually prunes the candidates.
Fig. 5 shows the algorithm of distributedkNN query pro-
cessing using LEEWAVE. At the first step,Pinit extracts the
relevant wavelet coefficients ofSref in the range of[ts, te].
Then, it sendsts, te and the level-L coefficients ofSref to
all otherM − 1 peer sites. Each peer site then extracts rele-
vant coefficients for each stream it monitors. And it returns
3 numbers for each local candidate stream,Sx. They are
the level-L distance,DstL(Sref , Sx), and two other num-
bers that will be used byPinit to progressively tighten the
similarity range:

L−1∑

l=1

∑

p

[n
(x)
(l,p)]

2 and
L−1∑

l=1

∑

p

([n
(x)
(l,p)]

2 × 2l).
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Procedure: LEEWAVE for akNN query
Input: Pinit, Sref , k, T = [ts, te]
Output: Thek most similar streams toSref

Pinit: A candidate peer sitePx:
1. Extract relevant coefficients ofSref in [ts,te].
2. Sendts, te, and coefficients ofSref at levelL to all otherM − 1

sites.
3. For each local candidate stream,Sx, compute and return a 3-tuple

(DstL(Sref , Sx),
PL−1

l=1

P

p[n
(x)
(l,p)

]2,
PL−1

l=1

P

p([n
(x)
(l,p)

]2×

2l)) to Pinit.
4. Compute the upper and lower bound of the similarity range based

on Eq. (5) for each candidate stream. Do the first pruning. Then,
sort out a list of candidate sites and streams.

5. for (ρ = L − 1; (ρ! = 0 && ! done); ρ = ρ − 1) {

6. Send level-ρ coefficients ofSref and the list of candidate
streams to each candidate peer site.

7. Compute and return a 2-tuple (Dstρ(Sref , Sx),
P

p[n
(x)
(ρ,p)

]2) for
each local candidate stream,Sx.

8. Update the upper and lower bound of the similarity range
based on Eq. (5) for each candidate stream. Do pruning. Setdone
to true if there are no more thank candidate streams left.

9. }

Figure 5. Algorithm for distributed kNN query processing using LEEWAVE.

After receiving the 3 numbers from a peer site,Pinit

updates the lower and upper bounds of a similarity range
based on Eq. (5) for each candidate stream. It will then do
some initial pruning, if possible, and sort out a list of can-
didate streams that might be the final topk similar streams.
Then, it moves to the next level. For a given levelρ, Pinit

sends the level-ρ coefficients ofSref and the list of candi-
date streams to a candidate site. A candidate site will com-
pute and return two level-specific numbers:Dstρ(Sref , Sx)

and
∑

p[n
(x)
(ρ,p)]

2. Pinit will update the two bounds of a sim-
ilarity range, making it tighter, with these two level-specific
numbers. With increasingly tighter ranges,Pinit can better
prune the candidate list. The algorithm ends when there are
no more thank candidate streams left.

To prune,Pinit first sorts the candidate streams in an as-
cending order based on the upper bounds of their similarity
ranges. Any candidate stream whose similarity lower bound
is higher than the upper bound of thek-th streams in the
sorted list cannot be the final answer, and thus is pruned.
From Theorem 1, we can guarantee that there is no false
dismissal under this pruning strategy.

Example 3 In this example, we use a concrete example to
demonstrate the increasingly tightened similarity range for
a candidate stream. Consider the case in Fig. 4. Table 2
shows the flow of data exchanges betweenPinit and Px,
the values of various terms in Eq. (5) maintained byPinit,
and the similarity range ofSx. Each column shows the level
currently in progress.

When ρ = 3, Dst3(Sref , Sx) = 7.25 is obtained as

shown in Fig. 4,
∑2

l=1

∑
p[n

(x)
(l,p)]

2 = ((−1.5)2+(−1.5)2+

2.252 + 6.252) = 48.625, and
∑2

l=1

∑
p[n

(x)
(l,p)]

2 ×

2l = (((−1.5)2 + (−1.5)2) × 21 + (2.252 + 6.252) ×

22) = 185.5. The terms
∑ρ−1

l=1

∑
p[n

(ref)
(l,p) × 2l]2 and

∑ρ−1
l=1

∑
p[n

(ref)
(l,p) ]2×2l can be computed byPinit similarly.

With above values, the first similarity range for streamSx

is [7.25, 7.25 + 130.75 + 185.5 + 2 ∗ (486× 48.625)1/2 =
630.95]. This completes the values in the first column.

Whenρ=2, Px sends backDst2(Sref , Sx) = 7.25, and∑
p[n

(x)
(2,p)]

2 = (2.252 + 6.252) = 44.125. After receiving
this 2-tuple,Pinit then subtracts these two numbers from
the maintained terms in the middle rows. Takeρ=2 as an
example,

∑2−1
l=1

∑
p[n

(x)
(l,p)]

2 = 48.625 − 44.125 = 4.5,

and
∑2−1

l=1

∑
p[n

(x)
(l,p)]

2 × 2l = 185.5 − 44.125 × 22 = 9.
For the sum related to coefficients ofSref , Pinit updates
them similarly. Then, the second similarity range forSx is
[7.25 + 7.25 = 14.5, 14.5 + 18.5 + 9 + 2 ∗ (37× 4.5)1/2 =
67.81].

The last row in Table 2 shows the similarity range of
Sx at each level. It clearly shows that the similarity range
does indeed become tighter,[7.25, 630.95] to [14.5, 67.81]
to [30, 30], as we move from one level to the next. �

5 Performance study

We conducted a series of experiments with both real and
synthetic data to evaluate LEEWAVE. We compared LEE-
WAVE with a naive approach, which sends the entire coeffi-
cients toM − 1 peer sites in a single step. Both approaches
were implemented in Visual C++ and the experiments were
run on a PC with 2.8GHz CPU and 2GB RAM.

We compared the total bandwidth requirements for LEE-
WAVE and the naive approach. We focused on the impacts
of query rangeT , k and the total number of sitesM on the
bandwidth consumption. The total bandwidth consumption
was calculated by adding up the data transmitted fromPinit

to all other candidate peer sites and those transmitted back
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Table 2. Example of an increasingly tightened similarity ra nge for a candidate stream.

ρ = 3 ρ = 2 ρ = 1
Pinit to Px ((5,−0.75), ts, te) (1.75, 5) (−2,−0.5,−1,−2)
Px to Pinit (7.25, 48.625, 185.5) (7.25, 44.125) (15.5, 4.5)
Pρ−1

l=1

P

p[n
(ref)
(l,p)

× 2l]2 486.0 37.0 0
Pρ−1

l=1

P

p[n
(ref)
(l,p)

]2 × 2l 130.75 18.5 0
Pρ−1

l=1

P

p[n
(x)
(l,p)

]2 48.625 4.5 0
Pρ−1

l=1

P

p[n
(x)
(l,p)

]2 × 2l 185.5 9 0

similarity range forSx [7.25, 630.95] [14.5, 67.81] [30, 30]

from each peer candidate site. Each data value sent was
counted as one unit of bandwidth. For coefficients in the
same level, the total bandwidth was 2 (value and placement
index) multiplied by the total number of coefficients at that
level plus 1 (level number).

For the naive approach, the total retained coefficients
plus 3 additional values were sent toM − 1 peer sites. The
number of data values transmitted from theM−1 peer sites
to Pinit equals to the summation of the number of candidate
streams (at mostk) multiplied by 2, where 2 includes the
stream index and the corresponding distances.

For LEEWAVE, we summed up the data transmitted at
each level. For the highest level, only the level-L coeffi-
cients plus (ts, te) were counted fromPinit to theM − 1
peer sites. The number of data values sent back from each
of theM − 1 peer sites for each locally maintained stream
was 4, including the stream index, the level-L distance and
two other values for pruning. For a subsequent levelρ, Pinit

sends the level-ρ coefficients and the candidate stream list
for a candidate site. Then, for each local candidate stream,
a candidate site only sends back the level-ρ distance and
another data value needed forPinit to do the pruning.

The wavelet coefficients were retained using the method
proposed in [12], which retains theB largest coefficients in
terms of absolute normalized values. We randomly picked
one stream from our dataset as the reference stream and per-
formedkNN queries using both approaches. Since the total
bandwidth used for processingkNN queries depends on the
reference stream, we averaged the bandwidth consumption
over a few different reference streams for each bandwidth
value we reported.

5.1 Experiments with real data

The real data we used here were the daily average tem-
perature data of 300 cities around the world, which were
obtained from the Temperature Data Archive of the Univer-
sity of Dayton2. The data from each city was regarded as
a stream. Each stream has3, 416 data points. Unless oth-
erwise specified, the default number of sitesM was 150

2http://www.engr.udayton.edu/weather/

andk was 10 for the experiments with real data. Streams
were evenly distributed among theM sites for all the ex-
periments.

The first experiment examined the impacts of query
range T and k on bandwidth consumption for a given
M = 150. The results are shown in Fig. 6. In this ex-
periment,k varied from 5 to 25 and the query range was
varied from the following set of values:365, 730, 1, 024,
1, 200, 1, 600 and 2, 048. From Fig. 6(a), the bandwidth
consumption of the naive approach increases significantly
as the query range increases, because more coefficients need
to be sent to the peer sites. In contrast, LEEWAVE continues
to maintain a substantially smaller bandwidth requirement,
even as the query range increases. Specifically, fork = 5
andT = 2, 048, the bandwidth requirement of LEEWAVE

is only about 16.67% that of the naive approach. Consider-
ing the impact ofk, from 6(a), the bandwidth consumption
of the naive approach is not sensitive tok, because it al-
ways sends the entire coefficients. On the other hand, the
bandwidth requirement of LEEWAVE increases slightly as
k increases, as shown in Fig. 6(b). This is because it uses
thekth lowest upper bound to do pruning. Whenk is larger,
the upper bound is higher, which means the pruning ability
becomes less effective.

In addition, from Fig. 6(b) we observe that the 3D sur-
face is not smooth for LEEWAVE, especially along the
query-range axis. The reason is as follows. For a different
query range, we extracted different series of complete error
subtrees, with different heights and subranges. Hence, the
relevant retained coefficients might be rather different for
different query ranges. Since LEEWAVE computes the dis-
tance in a top-down, level-wise fashion, the retained coeffi-
cients at different levels under different query ranges have
different influences on the pruning effectiveness. To see the
details of such impacts, we collected the average number of
candidate sites at each step during the query processing in
LEEWAVE. In Fig. 7, we plotted the number of candidate
sites at each step (level) whenk=5 in Fig. 7(a) andk=25 in
Fig. 7(b).

First we look at the case whenk = 5. From Fig. 6(b),
the bandwidth consumption is higher forT = 1, 024 (the
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Figure 6. Impacts of T and k on bandwidth
consumption with real data.
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Figure 7. Size of candidate sites at each step
of LEEWAVE in Fig. 6.

3rd line along thek-axis) than forT = 1, 200 (the 4th line
along thek-axis.) Then we examine the charts shown in
Fig. 7(a). Although the size of candidate sites drops faster
for T = 1, 024 than forT = 1, 200 at the initial few steps,
the reduction is faster at the final few steps (step 8 to 10) for
T = 1, 200 than forT = 1, 024. Note that there are usually
more coefficients retained at the lower levels. Hence, the
sizes of candidate sites at the final few steps dominate the
total bandwidth consumption. As a result, the total band-
width is smaller whenT = 1, 200 than whenT = 1, 024.
For the case ofk = 25, the final sizes of candidate sites
are closer for bothT = 1, 024 and1, 200. As a result, the
bandwidth drop between these two ranges is less obvious
(see Fig. 6(b)). ForT = 2, 048, for both k=5 andk=25
cases, although it generally has a smaller size of candidate
sites than others, however, a lot more retained coefficients
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Figure 8. Impacts of T and M on bandwidth
consumption with real data.
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Figure 9. Size of candidate sites at each step
of LEEWAVE in Fig. 8.

are involved for a larger range, consuming more bandwidth.
The second experiment, as shown in Fig. 8, examined

the impacts of query rangeT and total number of sitesM
on bandwidth consumption. The time range settings were
the same as those used in the previous experiment. The
number of sites increased from 60 to 300. From Fig.8(a),
the bandwidth consumption of the naive approach increases
significantly not only as query rangeT increases, but also
as the number of sites increases. In contrast to the naive
approach, Fig.8(b) shows that LEEWAVE is not sensitive to
the number of sites. This is because unnecessary coeffi-
cients are not distributed by the query initiator. The results
under different query ranges behave similarly to those from
the previous set of experiments. We also show the average
number of candidate sites at each step forM = 60 and
M = 300 cases in Fig. 9.

9



5.2 Evaluation with synthetic data

The synthetic data were generated by a random walk data
model proposed in [31]. For a streamSi, it was generated
as follows:

Si = 100 +

i∑

j=1

(uj − 0.5),

whereuj was randomly picked from [0,1].
We generated 1,000 streams in total, where each stream

has 20,000 data points. The default parameter settings, un-
less otherwise specified, were 500 for the number of sites
and 10 fork. For a given number of sites, the 1,000 streams
were evenly distributed among them.

The third experiment, shown in Fig. 10, studied the im-
pacts of query rangeT andk on bandwidth consumption for
a givenM = 500. The query range was varied from the fol-
lowing: 3, 000, 6, 000, 8, 192, 10, 000, 14, 000 and16, 384.
k varied from 5 to 25. From Fig. 10, LEEWAVE consumes
dramatically less bandwidth, when compared with the naive
approach. The difference here is almost one order of mag-
nitude and it is more significant than the difference in the
real-data case. This is due to the nature of the data sets.
The synthetic data were generated randomly. Hence, the
deviations between streams were much larger than those be-
tween temperature streams of different cities. It is easierto
separate apart those dissimilar streams in synthetic data set
by using only the first few levels of coefficients in distance
computation. This can be clearly seen in Fig. 11, where
the size of candidate sites shrinks quickly after the first few
steps. Sometimes the final answers can be obtained at an
intermediate level. This is why the size of candidate sites
approaches to zero in Fig. 11. Whenk is larger, the size
of candidate sites is higher. This also shows that a higher
upper bound has less pruning ability.

Finally, the fourth experiment, shown in Fig. 12, stud-
ied the impacts ofT and M on bandwidth consumption.
The query range settings were the same as those used in
the third experiment. The number of sites increases from
200 to 1, 000. From Fig. 12(a), we observe the same phe-
nomena as in real data. The bandwidth consumption of the
naive approach increases significantly as both query range
and the number of sites increase. In contrast to the naive
approach, LEEWAVE saves a huge amount of bandwidth.
From Fig. 13, the speed at which the size of candidate sites
reduces is faster whenM = 1, 000 than whenM = 200.
This shows that LEEWAVE outperforms the naive approach,
especially when the number of sites is large.

6 Conclusion

In this paper, we presented LEEWAVE - a bandwidth-
efficient approach to processing range-specifiedkNN
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Figure 10. Impacts of T and k on bandwidth
consumption with synthetic data.
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Figure 11. Size of candidate sites at each step
of LEEWAVE in Fig. 10.

queries in a distributed streaming environment. Leveraging
the multi-resolution property of wavelet coefficients, LEE-
WAVE distributes the relevant wavelet coefficients to the
peer sites in a level-wise fashion. Starting from the top
level and moving down one level at a time, the query ini-
tiator only sends single-level coefficients to a gradually re-
duced set of candidate sites. In order to overcome the chal-
lenge of pruning the candidates without knowing all the rel-
evant coefficients, we devised and maintained a similarity
range for each candidate stream. This similarity range is
tightened with each returned level distance. This increas-
ingly tightened similarity range enables the query initiator
to effectively prune the candidates. Significant bandwidth
savings are achieved by avoiding sending unnecessary co-
efficients. We conducted extensive experiments with both
real and synthetic data. The results show that (1) When
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Figure 12. Impacts of T and M on bandwidth
consumption with synthetic data.
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Figure 13. Size of candidate sites at each step
of LEEWAVE in Fig. 12.

compared with a naive approach under a wide range of con-
ditions, LEEWAVE uses significantly less bandwidth, espe-
cially when query range or the number of sites is large. (2)
When the deviations among the streams are larger, the per-
formance advantage of LEEWAVE is more significant.
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Appendix

Proof of Theorem 1: At level ρ, the upper bound is:
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From levelρ to ρ − 1, the upper bound is reduced by the
amount of:
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To prove the upper bound is non-increasing, we need to
prove that Eq. (7) is≥ 0. For ease of exposition, we let
α(l,p) = [n

(ref)
(l,p) ]×2l, andβ(l,p) = [n

(x)
(l,p)]. By expanding the
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Now the task becomes to prove Eq. (8)≥ 0. We divide
Eq. (8) into two cases, which is whenα(ρ−1,p)β(ρ−1,p) ≥ 0
andα(ρ−1,p)β(ρ−1,p) < 0. If it is the former case, Eq. (8)≥
0 must be true. Therefore, we only need to prove the later
case. By reformulating Eq. (8) and omitting the factor 2, to
prove Eq. (8), we need to prove the following:
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Since both the left-hand side and the right-hand side of
Eq. (9) are positive, we can square the terms of both side
while the inequality still holds. The square value of left-
hand side of Eq. (9) is:
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The square value of the right-hand side of Eq. (9) is:
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Compare Eq. (10) with Eq. (11), by eliminating the same
terms, we only need to prove
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By using the inequality of arithmetic and geometric means,
Eq. (12) holds, and so does Eq. (9). Q.E.D.
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