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Abstract

As multi-core processors evolve, coherence traffic
between cores is becoming problematic, both in terms of
performance and power. The negative effects of coherence
(snoop) traffic can be significantly mitigated through snoop
filtering. Shielding each cache with a device that can
squash snoop requests for addresses known not to be
in cache improves performance significantly for caches
that cannot perform normal load and snoop lookups
simultaneously. In addition, reducing snoop lookups yields
power savings.

This paper describes the design of the Blue Gene/P
snoop filters, and presents hardware measurements to
demonstrate their effectiveness. The Blue Gene/P snoop
filters combine stream registers and snoop caches to capture
both the locality of snoop addresses and their streaming
behavior. Simulations of SPLASH-2 benchmarks illustrate
tradeoffs and strengths of these two techniques. Their
combination is shown to be most effective, eliminating 94-
99% of all snoop requests using very few stream registers
and snoop cache lines. This translates into an average
performance improvement of almost 20% for the NAS
benchmarks running on an actual Blue Gene/P system.

1. Introduction

Over the past 20 years, ever higher operating frequencies
have been the main factor driving the performance growth
of single-core processors. However, further increases in
operating frequencies are increasingly hard to obtain with
newer generations of technology [26]. One of the main
reasons is the impact of wire delays as feature sizes continue
to shrink [11]. To compensate, processors have adapted
increasingly sophisticated microarchitectures [13], often at
the cost of inefficiencies in power/performance.

While faster transistors and faster wires are increasingly
hard to obtain, the application of Dennard’s CMOS
scaling theory [8] is continuing to deliver improvements

in density. In response, several multi-core processors
have been introduced over the past few years, such
as the IBM POWER4 [1] and POWER5 [25] servers,
the Intel Core Duo processors [10], the AMD Opteron
quad-core processors [3], and the Cell Broadband Ar-
chitecture [12]. On such multi-core processors, suitably
scalable, multithreaded, parallel workloads show significant
increases in performance with little or no degradation in the
power/performance ratio [22].

IBM recently announced the Blue Gene/P supercom-
puter [14], successor to the highly successful Blue Gene/L
machine [2, 6]. The Blue Gene family of supercomputers
is based on multi-core nodes organized within a classic
distributed-memory system architecture. The Blue Gene/P
node builds upon its predecessor by doubling the number
of cores to four, providing a completely coherent shared
memory system, and more than doubling the network
performance.

Like many embedded cores, the PowerPC 450 used
in Blue Gene/P has an integrated first-level cache, and
is designed to be used in conjunction with a multi-
level cache, generally. Therefore, it does not provide a
sophisticated hardware coherence protocol (such as MESI),
but provides support for inclusion, consisting of a write-
through mode and an input port for specifying addresses
to be invalidated. In the case of the PowerPC 450, the
first-level cache is single-ported, so lookups and externally-
generated invalidations compete for access.

The Blue Gene/P node architecture implements small,
dedicated second-level caches (one per core) and a shared
third-level cache, so the hardware must maintain memory
consistency between all of the first- and second-level
caches. This is done by writing all stores through to
the third-level cache, and invalidating all remote copies of
every store in the first- and second-level caches. Thanks to
the high bandwidth available on chip, the store addresses
from any core can be broadcast in a point-to-point manner
to the other three cores at full speed. However, the
large number of invalidations received by each core could
degrade performance for two reasons. First, there is



a physical bottleneck at the first-level cache invalidation
port because it must be shared by all of the invalidations
coming from three other cores and a network DMA engine.
Second, the invalidations disrupt the normal cache behavior
because the first-level cache is single-ported. The scientific
applications that Blue Gene/P favors are generally written
to avoid sharing between the cores. As a result, most of the
invalidations applied to the caches are useless and could be
eliminated.

Our solution was to introduce snoop filters to eliminate
the vast majority of useless invalidations. There are
two common classes of snoop filters: source-based and
destination-based. Source based filters eliminate snoops
(invalidations, in our case) before they are even sent to
remote caches, while destination-based filters eliminate
snoops at the remote destinations. Source-based filters
are more appropriate to implement together with directory-
based coherence because the directory tracks remote copies
of cache lines. Conversely, destination-based filters are
more appropriate to implement together with snooping
coherence, where cache state is only kept local to each
core, as is the case for Blue Gene/P. Therefore, we chose to
implement a destination-based snoop filter for every core.

The remainder of this paper describes the design
and implementation of the Blue Gene/P snoop filter,
which utilizes our novel stream register technique [21].
Section 2 gives a brief overview of the Blue Gene/P
system architecture, while Section 3 goes into the details
of the snoop filter. Section 4 describes the simulations
we performed in order to arrive at our design point,
and Section 5 presents some preliminary performance
measurements from an actual Blue Gene/P system. We
comment on related work in Section 6 and conclude with
Section 7. The contributions of this paper are to present
our design methodology and to demonstrate a working
implementation of a destination-based snoop filter.

2. Blue Gene/P System Overview
The Blue Gene/P supercomputer is a scalable,

distributed-memory system consisting of up to 262,144
nodes. Each node is built around a single compute ASIC
with 2 GB or 4 GB of external DDR2 DRAM. The compute
ASIC is a highly integrated System-on-a-Chip (SoC)
chip multiprocessor (CMP). It contains four PowerPC
450 embedded processor cores [15], each with private,
highly-associative, 32 KB first-level instruction and data
caches. Each core is coupled to a dual-pipeline SIMD
floating-point unit and to a small, private, second-level
cache whose principal responsibility is to prefetch streams
of data. In addition, the chip integrates an 8 MB, shared
third-level cache, two memory controllers, five network
controllers, and a performance monitor, as illustrated in
Figure 1.

The PowerPC 450 microprocessor is a high-
performance, out-of-order industry-standard PowerPC
processor originally targeted at high-end embedded
systems. The processor supports 2-way superscalar
instruction execution with a seven stage pipelined
microarchitecture. The processor cores include 32KB
first-level instruction and data caches organized as 16
associative sets with 64 ways per set.

A dual-pipeline, SIMD floating point unit is attached to
each processor core. The floating point unit can execute
two fused multiply-add instructions per cycle for a peak
floating point performance of 13.6 GFLOPS/node. The
floating point unit pairs two floating-point register files and
two execution pipes. The primary and secondary register
files are independently addressable, but they can be jointly
accessed by SIMD instructions. SIMD execution exploits
the data-level parallelism often present in high-performance
computing workloads to reduce the number of instructions
that must be executed, while increasing the number of
operations completed.

Like its predecessor, Blue Gene/P provides five ded-
icated communication networks: the torus network, the
collective network, the barrier network, 10Gb/s Ethernet,
and IEEE1149.1 (JTAG). The network interfaces are
integrated on the same chip as the processing units. The
main network is the torus, which provides high performance
data communication to nearest neighbor nodes in a 3D
configuration with low latency and high throughput. The
collective network supports efficient collective operations,
such as broadcast and reduction, and serves as the I/O
interconnect. A more detailed description of Blue Gene/P
can be found in [14].

3. Snoop Filter Architecture

In symmetric multiprocessor (SMP) architectures, snoop
requests represent a significant fraction of all cache
accesses, but only a small fraction of snoop requests
are actually found in any of the remote caches [23][19].
This is particularly true of supercomputing applications
where data partitioning and data blocking is performed to
increase locality of reference and optimize overall compute
performance. This motivated us to design a hardware
device that filters out incoming snoop requests, reducing
the number of actual snoop requests presented to the cache.
In theory, a completely accurate filter can be created by
duplicating the cache tag array and filtering out all snoops
that miss. However, there are very significant technical
realities that make this solution infeasible. For example, the
SOC design flow makes it virtually impossible to modify
a macro, such as the PowerPC core, or extract a piece
of it, such as the cache tags. Furthermore, designing our
own duplicate tag array with memory macros and gates
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Figure 1. Blue Gene/P node architecture.

would never achieve the performance of the hand-placed
L1 cache tags, so it would fall behind. Fortunately, it has
been shown that very accurate filtering can be achieved with
small designs that conservatively approximate the cache
contents and operate at a reasonable frequency.

As mentioned in Section 1, data integrity between the
Blue Gene/P cores is maintained with a cache coherence
protocol based on write-invalidates, with all L1-caches
operating in write-through mode. Every store not only
updates the L1-cache of the issuing core, but also sends
the write data via the L2 write buffer to the shared L3
cache. The L2s broadcast an invalidate request for the write
address to ensure that no “stale” copy of the same datum
will remain in the other L1s and L2s. We introduce our
snoop filter at each of the four processors, located outside
the L1 caches, as shown in Figure 2.

Each snoop filter receives invalidation requests from
three remote cores and the network DMA by way of a point-
to-point interconnect, so it must process requests from four
memory writers concurrently (Figure 2). To handle these

simultaneous requests, we implement a separate snoop filter
block, or “port filter”, for each interconnect port. Thus,
coherency requests on all ports are processed concurrently,
and a small fraction of all requests are forwarded to the
processor. For example, each snoop filter in Figure 2 has
four separate port filters (as shown in Figure 3), each of
which handles requests from one remote processor or the
network DMA unit.

Early on, we decided to include multiple filter units
which implement various filtering algorithms in each
port filter in order to capture various characteristics
of the memory references. Some filtering units best
capture time locality of memory references, whereas others
capture reference streams. Through extensive simulation,
we confirmed that the combination of various filtering
algorithms achieves the highest filtering rate (reducing
the number of snoop requests up to 99%, as shown in
Section 4). We explored a number of snoop filter variants,
and selected the combination of a snoop cache, a stream
register filter, and a range filter.
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interconnect. All stores are sent by each L2
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The snoop cache is essentially a Vector-Exclusive-
JETTY [19], which exploits the temporal locality property
of some snoop requests. It records blocks that have been
snooped recently (thus invalidated in the cache). It consists
of a small, direct-mapped array, where an entry is created
for each snoop request. A subsequent snoop request for the
same block will match in the snoop cache and be filtered.
If the block is loaded in the processor’s L1 cache, the
corresponding entry is removed from the snoop cache, and
any new snoop request to the same block will miss in the
snoop cache and be forwarded to the L1 cache. There is one
dedicated snoop cache filter unit for each memory writer
(three processors and the DMA) to allow for concurrent
filtering of multiple coherency requests, thus increasing
system performance.

Because the snoop cache is intended to capture
spatial (as well as temporal) locality, storage efficiency
is dramatically increased by using each entry to cache
consecutive addresses in an aligned block. That is, each
entry stores a base address together with a bit vector that
indicates the presence of individual addresses offset from
the base. The base address is essentially the address tag
of the L1 data cache reduced by five bits that are used for
encoding the presence vector. The presence vector encodes
a group of 32 consecutive, aligned cache lines of the L1 data
cache. Further details can be found in [21].

Unlike the snoop cache that keeps track of what is not
in the cache, the stream register filter keeps track of what
is in the cache. More precisely, the stream registers keep
track of the lines that are in the cache, but may assume
that some lines are cached which are not actually there.
The stream registers capture address streams, so they are
advantageous for applications where too many spatially-
distributed references overflow the snoop caches.
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Figure 3. Architecture of a snoop unit
including stream registers, four port filters,
and queuing logic. Each port filter contains
three separate filters, any of which can assert
its output to filter the snoop. Otherwise,
the snoop address bypasses the filter and is
enqueued for invalidation.

The stream register filter has been described in detail
in [21], and we provide a summary here. The heart of the
filter is the stream registers themselves, of which there are a
small number. One of these registers is updated with the line
address every time the cache loads a new line. A particular
register is chosen for update based upon the current stream
register state and the address of the new line being loaded
into the cache.

Every remote snoop is checked against the stream
registers to see if it might be in the cache or not. This
check can be performed in parallel because stream register
lookups never change the state of the registers. Therefore,
each port filter includes logic to compare the shared stream
register state to its unique incoming snoop addresses.

A stream register actually consists of a pair of registers
(the base and the mask) and a valid bit. The base register
keeps track of address bits that are common to all of the
cache lines represented by the stream register, while the
corresponding mask register keeps track of which bits these
are. More precisely, the mask register indicates which bits
are “don’t-care” and which are not. An address matches
a stream register if all of the bits which are not don’t-
care match. For example, a stream register with base
0x12345678 and mask 0xFFFFFF7F (where 0 means don’t-
care) matches addresses 0x12345678 and 0x123456F8.

Every load address (resulting from an L1 miss) is merged
with one of the stream registers. Bits that differ between
the register base address and the load address cause the
corresponding mask bits to be changed to don’t-care (if they
are not already in that state). Therefore, two primary design
issues emerge: how to choose which register to merge with,



Benchmark Input parameters Accesses to memory Local cache hit rate Remote cache hit rate Total coherency accesses
Barnes 16K particles 1,602,120,476 99.73% 0.00047% 1,968,916,971

FFT 256K points 58,481,113 97.12% 0.0000057% 52,627,671
LU 512 matrix 202,643,933 99.24% 0.0000088% 204,434,958

Ocean 258 x 258 ocean 310,234,016 93.36% 0.03% 143,647,839
Cholesky tk15.O 678,266,460 99.43% 0.00043% 614,572,560

FMM 16K particles 2,084,764,684 99.76% 0.00016% 2,976,937,884
Radix 10M keys 2,716,061,135 99.48% 0.00068% 3,491,931,132

Raytrace car 404,977,091 98.43% 0.018% 358,731,051

Table 1. SPLASH-2 benchmark characteristics. The low remote cache hit rate shows that almost all
invalidation snoops are useless and can be eliminated.

and how to deal with the loss in accuracy (which becomes
worse over time).

Our first impulse for deciding which register to merge
with was to calculate the Hamming distance between the
load address and each of the base registers (taking the
mask into account), and then choose the minimum, thereby
causing the smallest number of mask bits to be changed to
don’t-care. After careful consideration, we decided that the
upper address bits should be favored in order to capture
streams, where lower address bits would be expected to
vary frequently. Therefore, we devised the “Most Matching
Upper Bits” scheme which favors registers where the upper
mask bits do not change. The basic idea is to choose the
register with the longest matching string of consecutive bits,
starting with the high-order bit. As shown in Section 4,
this scheme was found to be superior and it is what we
implemented. A related issue is when to choose a new
register instead of one that already contains a stream. We
do this by assigning a default distance (which we called the
“empty affinity”) to unused registers and then including that
in the update selection process.

As cache line load addresses are added to the stream
registers, they become less and less accurate in terms of
their knowledge of what is actually in the cache. In the
limit, some mask register becomes all don’t-care and every
possible address is considered to be in the cache and cannot
be filtered. To overcome this, the stream register snoop
filter includes a mechanism for resetting the registers back
to their initial condition. As there is no efficient way to
remove an address from the stream registers and guarantee
correctness, the registers are cleared whenever the L1 cache
has been completely replaced and they begin accumulating
addresses anew. We call this complete replacement (relative
to some initial state) a “cache wrap”.

The snoop filter contains logic that tracks cache
wrapping based on notifications from the L1 cache every
time a line is replaced. Because the PowerPC 450
cache uses round-robin replacement within sets, this logic
basically consists of sixteen counters, one per set. The
stream registers cannot simply be reset when the cache

wraps because they contain all the addresses that caused the
wrap. Therefore, they are copied into a duplicate “history”
set that is never updated, but participates in lookups. Once
the cache wraps a second time, it is safe to discard the
history set, so it is overwritten on every wrap in a pipelined
manner.

We added a third filter, called the range filter, which
unconditionally filters all snoops within a specified address
range (or optionally, outside the range). This filter is useful
when the four processors are utilizing completely distinct
and contiguous sections of physical memory because it
insures complete filtering.

Results of all three filter units are considered in a
combined filtering decision. If any one of the filtering
units decides that a snoop request should be filtered, then
it is discarded. Otherwise, the snoop request is queued and
forwarded to the L1 cache, as shown in Figure 3.

4. Design Space Exploration

The experiments in this paper represent our top-down
approach for finding the best snoop filter design point. For
our experiments, we used several codes from the publicly-
available SPLASH-2 benchmark suite [24, 27]. We chose
to use these codes because they are good representatives for
a wide range of scientific applications, which is where we
expect to see the most significant impact of Blue Gene/P.
We have run the kernels (LU, FFT, Cholesky, and Radix),
and some of the applications (Barnes, Ocean, Raytrace,
and FMM). Table 1 shows the benchmarks used, the total
number of memory accesses for all four processors, and the
average percentage of misses in the L1 cache.

The analysis of the cache miss traces collected showed
that the hit rate in the local cache of a processor is high,
but the percentage of hits in the L1 data caches of all
other processors (a.k.a. “remote” processors) is very low.
Virtually all snoop requests will miss in the remote caches,
representing the total snoop filter opportunity. Such small
hit rates are due to the relatively small (32KB) first-level
caches, and highlight the importance of snoop filtering for
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Figure 4. Percentage of snoops filtered as the
number of stream registers is increased.

our architecture.
To collect the memory access traces, we used a custom

simulator written with Augmint [20], a public-domain,
execution-driven multiprocessor simulation environment.
Augmint does not include a memory backend, thus
requiring us to develop one from scratch. We modeled the
L1 data caches of our four PowerPC 450 processors and
an ideal memory system below that (since we were only
concerned with the order of accesses and their effect on
snoop filtering rates).

We developed a custom back-end simulator to process
the traces and produce the results in this section. Because
we wanted to measure the relative effectiveness of snoop
filters over very long traces, we were not concerned with
cycle accuracy, but only with the order of accesses and
their effect upon the snoop filters and caches. Therefore,
the trace entries are processed in order, and they have
an instant, atomic effect upon the simulated caches and
snoop filters. This simplification allowed us to compare
many different alternative architectures, while exposing the
significant trends. As a result, however, we could not
measure actual execution times.

4.1 Stream Register Analysis

In order to determine the optimal number of stream
registers, we have varied their number exponentially from
4 to 32, as shown in Figure 4. Not surprisingly, more
stream registers filter a higher percentage of coherence
snoop requests. But even when using only eight stream
registers, we filter more than 90% of all snoop requests for
three benchmark applications.

We observed that the effect of increasing the number
of stream registers is not linear with respect to the snoop
filtering rate. For the SPLASH-2 benchmarks, choosing

only four stream registers is clearly a bad design point.
Selecting 8 or 16 stream registers seems to be the best
compromise, whereas 32 stream registers (which doubles
the area compared to 16 stream registers) only increases the
snoop filtering rate significantly for one benchmark.

We have evaluated two different selection policies to
choose the stream register for update, as described in
Section 3: minimal Hamming distance, and most matching
upper bits (MMUB). Figure 5(a) shows the effect of varying
the empty affinity for various stream register sizes using
the MMUB update policy for the Ocean application. We
illustrate only one application here due to space constraints,
but the results for other benchmarks are similar.

If the empty affinity is set too low, empty stream registers
are used to establish new streams even for memory accesses
belonging to the same stream, resulting in a low filtering
rate because few streams are captured. Similarly, setting the
affinity value too high causes streams to share registers and
obliterate each other’s mask bits, resulting in a low filtering
rate. When the empty affinity is increased to more than
13, it starts to play a role in the filtering rate, depending
on the number of stream registers. For filters having a
higher number of stream registers, a higher affinity value
is advantageous because it allows for more sensitive stream
determination. For configurations with a smaller number
of stream registers, a lower affinity allows for the most
effective stream discrimination. For example, the optimal
empty affinity value is 19 for eight stream registers, and 23
for 32 stream registers.

Figure 5(b) shows the effect of varying the empty
affinity for various stream register sizes using the minimum
Hamming distance update policy for the Ocean application.
The results for the other benchmarks have similar trends,
although the maximal filtering rate achieved by Raytrace
and FMM was substantially lower than the others (33% for
Raytrace; 43% for FMM). Similar to the MMUB update
policy, setting the empty affinity too low or too high causes
the filtering rate of the stream registers to be low. Although
the optimal minimum Hamming distance empty affinity
value is fixed at 25 for the Ocean application, the general
trend is the same as for the MMUB policy over all the codes
we studied.

Across all benchmarks, the sensitivity of the filtering
rate to the empty affinity value was less for the MMUB
update policy. In addition, for Raytrace and FMM, the
MMUB update policy achieves almost 100% filtering, while
the Hamming distance update policy reaches less than
50%, even for the largest configurations. The MMUB
policy has the advantage of ignoring low-order address
bits when establishing streams in the stream registers.
The minimum Hamming distance policy results in well-
correlated addresses that differ in their low-order address
bits being mapped to different stream registers, thereby
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Figure 5. Stream register filter behavior. Percentage of snoops filtered as the empty affinity and
number of stream registers is varied for the Ocean application.

causing a kind of pollution. In this case, the effectiveness
of stream registers is limited.

4.2 Snoop Cache Analysis

In order to determine the optimal sizing for a snoop
cache-based filter, we have varied two parameters: the
number of entries, ranging from 4 to 32, and the number of
consecutive lines tracked by each entry, ranging from 1 to
64 (as determined by the length of the presence vector). The
results for FFT, Ocean and Raytrace are shown in Figure 6.
Results for the other benchmarks were similar.

Our experiments show that filters with a greater number
of snoop cache entries and/or a longer presence vector are
more effective at filtering snoop requests, primarily because
of their larger capacity. The filter limit varies for various
applications from 83% for Ocean to 99% for Raytrace. For
each application, the shape of the cache size vs. presence
vector size surface differs, depending on its memory access
pattern.

FFT reaches its maximum filtering rate only for bigger
configurations, while Ocean never exceeds a filtering rate
of 83%. Raytrace is characteristic of several of the
benchmarks that do very well with most snoop cache
configurations.

4.3 Combining Both Filters

We have discussed and analyzed two snoop filters
separately. As both filters cover different memory access
patterns, the most effective filtering is achieved when

putting the two filters together. We will show that using
the combination of two filters, we can achieve high filtering
rates even though each filter unit is quite small.

In order to determine the optimal sizing for our snoop
filter, we have varied three parameters: the number of
stream registers (4, 8, or 16), the number of snoop cache
lines (4 or 8), and the empty affinity (in the most effective
range from 19 to 25). We keep the snoop cache presence
vector at 32 bits in length. Figure 7 shows results for the
same benchmarks shown in the previous figures. Results
for the other benchmarks are similar, showing a very high
filtering rate for all configurations. Obviously, the two
filtering techniques complement each other to obtain near-
perfect filtering, even for filter configurations with a modest
latch count.

5. Hardware Measurements

Based on our design space exploration, the Blue Gene/P
system architecture implements the snoop filters in a point-
to-point connection with four port filters, each having
stream register lookup logic, a snoop cache, and a range
filter. Based on our analysis, each port filter implements
eight stream registers and eight snoop cache lines, each with
a 32-bit valid line vector.

We recently brought up the first systems built with the
Blue Gene/P compute ASICs, and we were able to make
some preliminary hardware measurements. We measured
runtimes for the NAS benchmarks both with and without the



1 2 4 8 16 32 64
4

8

16

32
0

10

20

30

40

50

60

70

80

90

100

%
 f

ilt
er

ed

Lines per entry Entries

(a) FFT

1 2 4 8 16 32 64
4

8

16

32
0

10

20

30

40

50

60

70

80

90

100

%
 f

ilt
er

ed

Lines per entry Entries

(b) Ocean

1 2 4 8 16 32 64
4

8

16

32
0

10

20

30

40

50

60

70

80

90

100

%
 f

ilt
er

ed

Lines per entry Entries

(c) Raytrace

Figure 6. Snoop cache filter behavior. Percentage of snoops filtered as the number of snoop cache
sets and the number of lines per set is varied.
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Figure 7. Combined filter behavior. Percentage of snoops filtered for several stream register and
snoop cache configurations as the empty affinity is varied.
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Figure 8. Normalized execution times of the
NAS benchmarks on a Blue Gene/P node for
various snoop filter configurations.

snoop filters enabled to see the performance effect. Figure 8
shows the normalized execution times for four snoop filter
configurations: all snoop filters disabled, stream registers
only, snoop caches only, and both snoop filters enabled.

Across all benchmarks, snoop filters reduce execution
time. Most benchmarks benefit more from snoop caches
(like BT and SP), while some get better performance with
stream registers (like FT). The only exception is CG, whose
execution time stays the same independent of the snoop
filtering. For all benchmarks, the combination of the two
snoop filters yields the best result, and reduces the execution
time over 30% for BT and SP. On average, execution time
is reduced by about 20%.

The hardware measurements confirm the effect of the
significant reduction in coherence traffic shown by the
simulations. The coherence traffic reduction translates into
significant improvement in performance due to the use of
the snoop filter. This confirms our simulation strategy to
select an effective design point.

6. Related Work

Moshovos et al [19] describes a snoop filter called
JETTY that combines two complementary filtering meth-
ods. JETTY defines a characterization of filters as “include”
or “exclude”. An include filter tracks what is contained
in a cache (or caches) while an exclude filter tracks what
is not. The exclude filter consists of a cache of recently
invalidated lines. A snoop that hits in the exclude filter is
guaranteed not to be in cache, so it can be filtered. The
include filter consists of several scoreboard arrays that track
disjoint subsets of cache lines present in cache.

Moshovos et al. argue for snoop filtering as a means for
power savings. However, our work is primarily motivated
by the need to filter useless snoops that reduce performance.

We also consider chip area and power consumption to be
significant constraints, causing us to look beyond the simple
and accurate method of duplicating the cache tags as a filter.

Several coherent network switches contain source-based
snoop filters that block unnecessary coherence requests
from ever leaving a node. One such example is the
Scalability Port Switch of the Intel E8870 chipset [5]. In
this case, the snoop filter tracks the state of all cache lines
within a 4-processor node for a system with up to 4 such
nodes. Kant [16] modeled a similar system architecture
with such a snoop filter. This architecture is also described
in the Azusa system [4], which is based on Intel Itanium
processors and may use an Intel chipset.

In [17], a HyperTransport network switch for use with
AMD Opteron processors is described. The snoop filtering
technique is basically the same as that of the E8870,
including the fact that 4-processor nodes are supported.

A similar but more tightly-coupled architecture is
evaluated in [7], where a single memory controller switch
connects multiple multi-processor nodes and contains a
snoop filter. The filter prevents unnecessary snoop requests
between the nodes, and several variants are studied.

Snoop filters in tightly-coupled multiprocessors, such
as CMPs, can be located at each processor in order to
shield each from unnecessary snoops without changing the
overall coherence scheme. Ekman et al. [9] describe a
CMP architecture with Page Sharing Tables that are exclude
filters at the granularity of memory pages, rather than cache
lines. This architecture is more complicated in that the Page
Sharing Tables coordinate to track sharing rather than just
presence.

The idea of preventing remote snoop requests from being
broadcast can also be applied at the chip level [18]. In this
work, snoop filters keep track of memory regions, which
can be quite large, and block remote snoops for memory
that is known not to be shared.

7. Conclusion

With the emergence of commodity multi-core processors
and CMPs, we have entered the era of the SMP-on-a-chip.
These high-performance systems will generate an enormous
amount of shared memory traffic, so it will be important to
eliminate as much of the useless inter-processor snooping
as possible. In addition, power dissipation has become a
major factor with increased chip density, so mechanisms to
eliminate useless coherence actions will be important.

In this paper, we have described and evaluated a snoop
filtering architecture for the Blue Gene/P supercomputer,
and presented some preliminary performance measure-
ments. Our snoop filter uses multiple, complementary
filtering techniques, and parallelizes the filters so that
they can handle snoop requests from all remote processors



simultaneously. We explored the design space using
the SPLASH-2 benchmarks together with a custom trace
generator and simulator. Our Blue Gene/P measurements
confirm the direct positive effect that the snoop filters have
on performance.
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