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Abstract

A growing class of applications, including VoIP, IM and

Presence, are enabled by the Session Initiation Protocol

(SIP). Requests in SIP typically traverse through multiple

proxies. The availability of multiple proxies offers the flexi-

bility to distribute proxy functionality across several nodes.

In particular, after experimentally demonstrating that the

resource consumption of maintaining state is significant,

we define the problem of state distribution across multiple

nodes when the goal is to increase overall call throughput.

We first formulate this as an optimization problem and then

derive a distributed algorithm from it. This distributed al-

gorithm leads to the design and evaluation of SERvartuka,

a more scalable SIP server that dynamically determines the

number of SIP requests for which the server is stateful while

delegating state maintenance for the remainder of the re-

quests to a server further downstream. This design is in

contrast to existing SIP servers that are statically config-

ured to either be stateless or stateful and therefore result in

sub-optimal call throughput. We implement SERvartuka on

top of OpenSER, a commercial SIP proxy server and mea-

sure performance benefits of different server configurations.

An example of our results is a 20% percent increase in call

throughput when using our algorithm for a configuration of

two servers in series.

1. Introduction

The Session Initiation Protocol (SIP)[12] is a control

plane protocol that is used in connection setup and tear-

down for a variety of applications including VoIP, IMS[3],

∗Sanskrit, adapted to all seasons.

Presence[11] and now 3GPP[10]. In addition, there are pro-

posals for using SIP as an off path signaling mechanism for

any kind of data or media session[5]. In SIP, connection

requests traverse through an application overlay of proxy

servers each of which performs some setup function. These

functions include host discovery, routing, maintaining state

and authentication. As more applications adopt SIP for the

connection handshake, the functionality provided by SIP

servers will grow.

The traditional approach to supporting this functionality

is to assign each function to a particular server in the appli-

cation overlay. If the number of servers exceed the functions

that need to be provided, then core servers provide the nec-

essary functionality while the remaining simply route the

request. If the functions outnumber the servers then cer-

tain servers perform multiple functions. In either case this

assignment is statically decided and in this paper we show

that this leads to suboptimal throughput. Instead we pro-

pose a mechanism to dynamically distribute functionality

across the servers. Each server then provides a particular

functionality only for a fraction of the requests traversing

through the server network.

We profiled OpenSER[1], an open source SIP Server, at

low call loads to experimentally measure the processing re-

sources consumed when a VoIP call is serviced. Our mea-

surements indicate that resource consumptions vary signif-

icantly based on the functionality being provided. In par-

ticular creation, maintenance and deletion of call related

state is one of the most significant consumers of CPU re-

sources. A server that maintains state is known as a stateful

server and one that does not is known as a stateless server.

Such state is used by a server to maintain context across a

set of messages. Depending on the context the state main-

tained is used to provide a variety of functionality includ-



ing absorbing unnecessary retransmissions and providing

accounting services. We further measure CPU utilization

of the OpenSER server for state maintenance as the call

load increases. Again our measurements indicate that the

maximum call load that can be supported statefully is sig-

nificantly lower than what can be supported statelessly.

We then model state distribution as an optimization prob-

lem and this leads to two results. First that statically config-

uring a set of servers to be stateful or stateless to all calls (as

is done now) will lead to sub-optimal call throughput. Sec-

ond that we can increase call throughput significantly by

distributing state across the servers. Each server then main-

tains state only for a fraction of requests while remaining

stateless for the remaining requests. If we can ensure that

each call request has state maintained at least at one of the

servers in the system, then the system as a whole is stateful

for the set of requests passing through it. This motivates

the creation of SERvartuka, a SIP server that implements

a state distribution algorithm that tries to achieve optimal

call throughput for any configuration of servers. Each SER-

vartuka server dynamically reconfigures the fraction of re-

quests that it maintains state for such that the system as a

whole provides higher call throughput. For a simple hierar-

chy that contains two servers in series, we show an increase

in throughput of 15% when state distribution is determined

dynamically using our algorithm compared to a configura-

tion where a server statically decides if it operates in stateful

or stateless mode.

The following are the major contributions of this paper.

• Detailed CPU resource consumption profiles of a SIP

server,

• Identifying state maintenance as a major source of

CPU consumption,

• Providing an optimization formulation for the state dis-

tribution problem

• Creation of a dynamic state distribution algorithm that

allows one server to maintain state associated with a

call while other servers handle the call statelessly,

• Design, implementation and evaluation of SERvar-

tuka, a SIP server that distributes call state to enhance

overall system throughput.

Although we specifically look at state distribution, we

contend that new ways for distributing functionality for con-

nection requests must be explored to achieve close to opti-

mal throughput in SIP proxy overlays. The rest of the paper

is as follows: In Section 2, we provide a quick overview of

SIP. Our detailed evaluation of a SIP server is presented in

Section 3. We create a formulation for the dynamic state

distribution formulation in Section 4 and realize it in a de-

centralized fashion in Section 5. We evaluate SERvartuka

Figure 1. VoIP Call Setup

performance is Section 6. Related work is described in Sec-

tion 7 and we conclude the paper in Section 8

2 Background

This section starts with a basic background of VOIP be-

fore going to concepts relevant to this paper such as SIP

application state and server functionality.

2.1 VoIP Fundamentals

In order to make VoIP calls with SIP, analogous to

telephone numbers, a SIP URI (Uniform Resource Iden-

tifier) is used to communicate with a user. For exam-

ple a user HAL might be associated with the SIP URI

sip:HAL@us.ibm.com. Multiple devices can be registered

to the same URI. SIP then uses an application overlay con-

sisting of proxy servers and location services to locate the

right device to send the call request to. A typical VoIP call

traversal is shown in figure 1.

When user Hal, sip:HAL@us.ibm.com, calls user Bur-

dell, sip:Burdell@cc.gatech.edu, the call request message

is sent to the server responsible for the us.ibm.com domain,

proxy server P1. P1 determines how to route the call to the

server (P2) responsible for Burdells domain. The request is

then sent across to P2 over the internet backbone. P2 is re-

sponsible for the top level domain gatech.edu and it decides

where to route the call request message by determining the

sublevel domain that houses the called party. In this case

sip:burdell@cc.gatech.edu is located in the cc.gatech.edu

domain and the call request is now routed to P3 responsi-

ble for this sub level domain. P3 then contacts a database

generically called a location service to determine the cur-

rent IP address of the phone associated with Burdell. P3

then routes the call setup request to Burdell’s phone (user



Figure 2. SIP Trapezoid

agent U2) which then accepts or rejects the call. Once the

location (IP address) of the end points are determined in the

above fashion, and the call is accepted, the media is routed

directly between them and does not need to traverse through

the servers.

As the above call setup indicates, SIP servers are typ-

ically organized into a hierarchy [14], which means that

within a single domain a request will traverse through mul-

tiple servers. This is the basis for one of our design as-

sumptions: the existence of multiple servers within a single

domain over which state can be distributed.

2.2 SIP Application State

The messages that are exchanged when a call is setup

and torn down are shown in figure 2 which is a simplified

version of figure 1 obtained by abstracting away the inter-

mediate hop by hop proxy, P2, and the location server. As

shown in figure 2, the entire call is composed of a series

of transactions. A transaction comprises all messages start-

ing from a request till its final response. Two such transac-

tions are shown in figure 2, the call setup transaction and the

call tear-down transaction. The call setup transaction starts

with the INV ITE message and includes all messages ex-

changed till the 200 OK final response. The intermediate

1xx messages are provisional responses and are used to in-

dicate progress. A dialog comprises all transactions that are

part of the entire call (or dialog). In figure 2, the dialog com-

prises both the call setup and call tear-down transactions.

A server that maintains state for the duration of a trans-

action is known as a transaction stateful server. P1 and P3

are both transaction stateful servers. On the other hand, if

the server maintains state for the length of the entire dia-

log, it is dialog stateful. Only P1 is dialog stateful, which

explains why the BY E and the final 200 OK message con-

tinues to pass through it. By virtue of maintaining state,

transaction stateful servers absorb retransmissions, handle

forking requests, redirect requests and registrations. Dialog

stateful servers are used when state needs to tie down the

INV ITE transaction to subsequent transactions within the

dialog such as a subsequent REINV ITE or BY E trans-

action. This is useful for servers that maintain account-

ing information, or conference servers that need to main-

tain the conference parameters, for new users as and when

they join the conference. Unless otherwise specified we use

state to mean transaction state. Stateless servers maintain

no state. Their chief advantage is the ability to process re-

quests very quickly. Most widely used proxy servers includ-

ing OpenSER can be both stateless and stateful and can be

statically configured to behave in one of these modes.

This state is different from the state maintained by lower

level protocols such as TCP or IP as this state is purely ap-

plication related state.

3 SIP server evaluation

We extensively profiled OpenSER, a representative SIP

server at low call loads to determine the CPU consumptions

for the various functionality that it provides.

3.1 CPU Resource Consumption Profiles
for SIP Server

The experimental setup consists of a set of SIPp[2]

clients that send requests to a set of SIPp servers through

a proxy running OpenSER[1]. We profile the functionality

of the proxy using OProfile[8].

OpenSER was configured to profile five typical server

modes of operation. Each mode represents a service that the

server is providing for the call and successive modes pro-

vide additional service (and are thus resource wise costlier).

OpenSER does a lookup in order to make a translation from

the URI to the IP address of the endpoint. The various

modes are as follows:

1. Stateless with No Lookup: No call related state is main-

tained as a result of handling the call message. Also,

the message contains sufficient information such as the

IP address within the SIP URI of the endpoint, so no

lookup is necessary.

2. Stateless with Lookup: No call state is maintained as in

the previous case but a database lookup is performed
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Figure 3. Server Functionality costs

to map the URI to an IP address.

3. Transaction Stateful with Lookup: In this case, a
lookup is performed to map the URI in the message
to an IP address. In addition, state is maintained only
for individual transactions.

4. Dialog Stateful with Lookup: Here too the IP address
is looked up. In addition the state is maintained for the
entire call duration, spanning multiple transactions

5. Dialog Stateful with Authentication: In this mode, all
the functionality of the previous modes are executed.
In addition the proxy checks the credentials of the
client.

Each run has the server configured in one of the above
modes and two SIPp clients make and break calls through
the server at the rate of 1 call per second for 10 minutes.
During this time OProfile profiles the various functionality
blocks of OpenSER. The results for these runs is as shown
in figure 3.

The bar graph in figure 3 shows that as the server exe-
cutes more functionality, it results in higher CPU consump-
tion. This is expected but the size of increase is noteworthy.
In the most basic configuration where the server is stateless
and performs no lookup, the CPU cycles consumed are ap-
proximately one third compared to a server that performs
lookups, maintains transaction state and performs authenti-
cation. This clearly shows that control plane costs for sim-
ple call establishment vary widely with the complexity of
the service being provided by the SIP server. In our experi-
ence, we find most SIP vendors providing blanket through-
put specifications of the number of calls per second. From
our graphs, we however see that the throughput could differ
by a factor of three depending on the functionality executed
by the server.

Compared to the no lookup bar, all other cases (State-
less to Authentication) have lookup processing which in-

volves either querying a DB or an internal cache. This is
reflected as a thin lookup band in figure 3. Similarly we see
increase in CPU cycles for state maintenance and authenti-
cation. Most of the granular functionality performed by the
server also monotonically increases with scenario/service.
In particular we see costs associated with parsing, mem-
ory and state increasing significantly with service provided.
Parsing in most SIP servers is lazy which means they parse
only as much of the message that is required to be able to ei-
ther dispatch the request to the next hop or create an appro-
priate response or both. Richer services require more of the
message to be parsed. Lookups do not change the parsing
costs significantly as the Request-URI always needs to be
parsed to decide whether a route lookup needs to be done.
Hence parsing costs in the first two scenarios consume al-
most the same resources. To create/maintain state, however,
more headers need to be parsed. This is because state main-
tenance requires the request to be uniquely identified. This
is done by hashing together a set of fields includingFrom,
To and all these headers thus need to be parsed.

State maintenance requires allocation and deallocation
of memory and this results in an increase in the memory
processing across the last three scenarios. This extra state
causes increased parsing and increased memory processing
at the server. From the graph we can see that, at a low re-
quest rate of 1 call per second, being dialog stateful or trans-
action stateful is 2 times or 1.75 times, respectively, costlier
that being stateless. State maintenance thus is a good candi-
date function to distribute and we further explore how state-
ful and stateless servers behave when the call rate increases.

3.2 Impact of Maintaining State with In-
creasing Call Rates

The goal of the experiment was to determine how state-
ful servers behave with increasing call load as opposed to
stateless servers. However at high loads, a single SIPp UAC
(client) and UAS (server) reaches 100% CPU utilization at
about the same call rate as OpenSER and therefore skews
the measurements. We therefore split this load among four
machines, two running the SIPp server scenario and two
running the SIPp client scenario. Associated with the SIPp
servers are two URIs which the two SIPp clients make calls
to respectively. The OpenSER database is populated with
these two URIs and is configured to run in 2 modes (i) state-
less with lookup and (ii) transaction stateful with lookup.In
order to determine the complete behavior of these servers,
the call load was increased till the servers reached 100%
CPU utilization. To ensure that servers were saturated only
due to CPU utilization we configured OpenSER with ade-
quate amount of memory (1024 Mb) and used Gigabit eth-
ernet interfaces on a private network.

The SIPp clients generated a load starting with 20 calls
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per second and increased this load steps of 20 calls per sec-
ond. Saturation of the OpenSER server was determined by
observing that CPU utilization of the server was at 100%
(using top logs) and that the call throughput at the SIPp
servers did not increase with increasing call load generated
at the SIPp clients. At the onset of the saturation point there
is also a large increase in SIP 500 Server Busy messages
and increased retransmission of call requests from the SIPp
client. Top logs were kept throughout the run to ensure that
when OpenSER saturated, the SIPp clients were operating
far below 100% CPU utilization. The results are shown in
figure 4.

As seen in figure 4, as the call rate increases, the state-
fully configured server’s CPU utilization increases at a
faster rate when compared to the statelessly configured
server. The stateful server saturates at≈ 10360 calls per
second while a stateless server saturates at≈ 12300 calls
per second. This difference between stateful and stateless
servers forms the basis for obtaining higher throughput by
distributing state maintenance functions. In the next sec-
tion we create a state distribution algorithm starting with
providing an intuition towards why state distribution will
potentially increase call throughput.

4 Distribution of State

Consider a simple case where a request traverses through
two servers in series (S1 andS2), within a domain. This
is similar to the scenario depicted in figure 1 where the
call traverses through proxy servers responsible for the
cc.gatech.edudomain and thegatech.edudomain. The pos-
sible configurations that these servers can be arranged in
are (i) both stateful, (ii) one stateful and the other stateless,
and (iii) both stateless. In case (i), each server by virtue
of being stateful will maintain state for each request that

passes through it. As a result, the maximum number of
such requests that it will be able to service will be equal
to the saturation limit of a stateful server, sayT SF (from
our experiments this is≈ 10360cps). Since both servers
see the same request load the maximum system throughput
will be around10360cps. Both servers will also be oper-
ating at 100% CPU utilization. Case (ii) is when one of
these servers is configured to be stateless. Such a system
will continue to have maximum throughput of10360cps

because the stateful server is the bottleneck and hence will
dictate the overall throughput. The stateful server will op-
erate at 100% utilization while the stateless server will be
underutilized. Case(iii) is when both servers are stateless,
in which case the maximum system throughput will be the
saturation limit of a stateless server,T SL (from our exper-
iments≈ 12300cps). This throughput will be significantly
higher than the first two cases but here state is not main-
tained in the system at all. Such a system is unusable for
call requests that need to maintain application state.

Therefore, for the two servers in series, where each
server is pre-configured statically as stateful or stateless, the
maximal throughput will beT SF for call requests that need
to maintain application state. However as observed in case
(ii), S2 is under utilized, withS1 being the bottleneck. If
serverS1 offloaded half of its requests to be handled state-
fully at S2, while being stateless for these requests then we
could potentially ensure that both servers are equally uti-
lized at each stage thereby being able to support a larger
call load. A state distribution algorithm then has to satisfy
the following requirements. First, the call related state must
be maintained by some node on the call request path. Other
nodes forward the call statelessly and thus do not incur the
computational overhead associated with state maintenance.
Second, we must dynamically determine which node in a
path should maintain the call state such that the system is
able to handle an incoming call as long as the there are re-
sources available to handle that call in a stateful manner.
In order to characterize the nature of such an algorithm we
start by modeling the problem as an optimization problem.

4.1 Formulation of State Distribution as
an Optimization Problem

The SIP proxy servers (nodes) can be arranged in any
network topology and we can represent the set of nodes as a
graph. Call setup requests enter the system at some node in
this graph, traverses a set of nodes along links in the graph
and exits at a proxy node that forwards the request either to
the internet backbone or to the call recipient’s user agent.
A topology can have many entry nodes. This is equivalent
to having an imaginary source node0 which generates calls
to all the entry nodes. Similarly there might be multiple
exit nodes in the system and this is equivalent to a single



sink nodez to which all exit nodes route calls through. The
advantage of this is that the network can be represented as
a single source, single sink topology and provides a cleaner
formulation without any loss in generality.

Consider a server in the system,i, and a particular call
request that path through nodei. There is an upstream node
from which the call was routed toi, represented asl. This
call is representative of all calls routed froml to i, tli. For
the rest of the discussion all call traffic terms represent call
rate (load). Thereforetli is the call load from nodel to i. tli

has two components, calls for which state has already been
maintained,tASF

li and calls for which state has yet to be

maintained,tASF
li . Thereforetli = tASF

li + tASF
li . Now the

total aggregate flow incoming at nodei, ti is the sum of the
individual flowstli, ti =

∑

l∈USi
tli. Similarly we have ex-

pressions for the total call load that has state already main-
tained,tASF

i =
∑

l∈USi
tASF
li and the total call load for

which state is yet to be maintained,tASF
i =

∑

l∈USi
tASF
li .

USi is the set of all possible upstream servers fori.
At node i the incoming loadti will be redistributed to

all possible downstream paths. For a downstream server
d if the call load is tid and DSi represents all down-
stream servers fori, then by conservation of flow,ti =
∑

d∈DSi
tid. tid consists of three components,tFASF

id - the
call flow from i to d that has state already maintained at
some node previous toi, tSF

id - the call flow fromi to d for
which i maintains state, andtASF

id - the call flow fromi to d

for which state is yet to be maintained. The flow constraints
mandate the following equations:

t
ASF
i =

∑

d∈DSi

t
FASF
id

t
ASF
i =

∑

d∈DSi

t
SF
id +

∑

d∈DSi

t
ASF
id

For downstream noded’s, the amount of flow that is al-
ready stateful fromi, tASF

id = tFASF
id + tSF

id . A similar split
would have occurred for traffic from upstream nodel to i.
ThereforetASF

li = tFASF
li + tSF

li . This ensures that at each

node the decision variables aretFASF
id , tSF

i andtASF
i . The

constraints discussed so far ensure that state is handled ina
mutually exclusive fashion. However, we also need to en-
sure that by the time the requests exit the system, state is
maintained in at least one of the nodes. Therefore the num-
ber of calls for which state is yet to be maintained for any
flow from an exit node,k to the imaginary sink node should
be0, tASF

kz = 0.
From section 3.2, we know that the CPU utilization

for handling requests statefully is different from handling
requests statelessly. The number of calls being handled
statefully at nodei is

∑

d∈DSi
t
SF
id and the number be-

ing handled statelessly is
∑

d∈DSi
(tASF

id + tFASF
id ). Thus,

if we assume that the CPU utilization due to stateful re-
quest forwarding at nodei, represented byUSF

i , is de-
pendent on the number of requests handled statefully, then
USF

i = fSF
(
∑

d∈DSi
tSF
id ). Similarly the stateless utiliza-

tion is USL
i = fSL

(
∑

d∈DSi
(tASF

id + tFASF
id ). The total

CPU utilization at nodei is the sum of these two utiliza-
tions and this should not exceed 100%. If the utilizations
are normalized then this translates toUSF

i + USL
i ≤ 1

The above equations form the constraints of the system.
The goal is to determine a distribution of state such that the
throughput is maximized. The throughput is basically the
call flow from the imaginary source node0 to all the entry
nodes. At thispoint state has to be maintained for all calls,
tFASF
0a = 0, tSF

0a = 0, ∀ a ∈ entry node. We are then trying
to maximize the sum of all flows from the imaginary node
to the entry nodes,

∑

a∈entry nodet
ASF
0a . The complete linear

problem is as follows:

Maximize
∑

a∈entry node

t
ASF
0a (1)

Subject to

t
FASF
0a = 0, t

SF
0a = 0, ∀a ∈ entry node

∑

l∈USi

(t
FASF
li + t

SF
li ) =

∑

d∈DSi

t
FASF
id (2)

∑

l∈USi

t
ASF
li =

∑

d∈DSi

t
SF
id +

∑

d∈DSi

t
ASF
id (3)

t
ASF
kz = 0, ∀k ∈ exit node

f
SF

(

∑

d∈DSi

t
SF
id ) + f

SL
(

∑

d∈DSi

(t
ASF
id + t

FASF
id )) ≤ 1

(4)

Solving this optimization formulation would help in
identifying how much state needs to be maintained at each
server in order to maximize throughput. We have not con-
sidered including routing constraints in the formulation.
The formulation assumes that a server can decide which di-
rection to send a request among the many downstream paths
possible and that all the call destinations are reachable by
any of these paths. However, in real world scenarios, the
call request will traverse a path determined by underlying
network routing mechanisms. Adding routing constraints is
easy. In addition to the constraints specified in equation (1)
we need to add constraints that relate the incoming flow, at
any node to each of the outgoing flows at that node. That
is at a nodei we need to introduce constraints of the form
tid = φid ∗ ti, 0 ≤ φid ≤ 1, whereφid is the fractional split
of the incoming load into the downstream pathd. In addi-
tion we need to ensure flow conservation by requiring that
all the fractions sum up to 1,

∑

d∈DSi
φid = 1. The outgo-

ing flow tid is then some predetermined fraction of the total



incoming flowti. In the design of SERvartuka we also take
into account the routing constraints.

From figure 4 we see that both the stateful utilization
and the stateless utilization are linear and pass through the
origin. We can therefore approximate these functions to
be of the formfSF

(x) =
x

T SF and fSF
(x) =

x
T SL ,

whereT SF andT SL are the stateful and stateless thresh-
old, respectively. From our experimentsT SF ≈ 10360 and
T SF ≈ 12300. In such a case the optimization formulation
is a linear programming (LP) problem which can be solved
efficiently. For the rest of the paper we assume that the
system can be represented as an LP. For the two server in
series scenario we can now use the formulation to calculate
the optimal throughput with the threshold values specified.
The optimal solution is one where each server maintains
5620cps statefully and the remaining5620cps statefully,
giving a total throughput of11240cps which is higher than
the throughput of the static configuration (≈ 10360cps).
This increase in throughput is because both servers are now
being equally utilized, thus leading to higher throughput.
Reducing it to an optimization problem implies that an al-
gorithm that solves the optimization problem will yield an
optimal throughput solution. An algorithm thus needs to try
and emulate the behavior specified in the formulation and
we outline how we determine such an algorithm in the next
section.

4.2 Towards a State Distribution Algo-
rithm

The solution to the LP will provide the values oftFASF
id ,

tSF
id andtASF

id for each nodei. However, these are the val-
ues when the incoming call flow is maximum. We need
to determine an operating point at any incoming load such
that it provides a feasible distribution of state at that load.
In addition this operating point should be feasible for all
incoming loads till the maximum possible incoming load.
Consider the equations of the LP from Section 4.1. The uti-
lization constraint (4) primarily governs the amount of state
maintained at each server. Equations (2) and (3) provide
basic flow constraints and can be taken care of fairly easily
in practice. The routing constraints can also be taken care
of by assuming that we do not have the liberty of deciding
routing paths in the final algorithm. Assuming that the uti-
lization functions are linear, the utilization constraintcan be
rewritten as:

∑

dǫDSi
tSF
id

T SF
+

∑

dǫDSi
(tASF

id + tFASF
id )

T SL
≤ 1 (5)

At nodei the incoming load is
∑

l∈USi
tli which by flow

conservation is equal to the outgoing load
∑

d∈DSi
tid. We

can therefore think of the incoming flow as composed of
many individual flowstid. tid as mentioned earlier consists

of three componentstFASF
id , tSF

id andtASF
id , wheretid =

tFASF
id + tSF

id + tASF
id . Substituting fortidFASF

+ tASF
id in

(5) and rearranging the terms we get:

∑

d∈DSi

t
SF
id ≤

1 −
∑

d∈DSi
tid

T SL

1
T SF − 1

T SL

(6)

(6) shows that the total state that should be maintained is
some function of the incoming load. In addition the amount
of requests that each server maintains statefully cannot be
more than the total incoming request flow at that node.

∑

d∈DSi

t
SF
id ≤

∑

d∈DSi

tid (7)

The above flows are in terms of summation of indi-
vidual flows. For clarity we can useti =

∑

d∈DSi
tid,

where ti represents the total incoming flow, andtSF
i =

∑

d∈DSi
tSF
id , wheretSF

i represents the flow for which node
i maintains state. Ifα =

1
T SF andβ =

1
T SL , then the above

two equations can be rewritten astSF
i = min{ti,

1−βti

α−β
}.

The first term is lesser than the second whenti ≤ T SF .
This yields:

t
SF
i =

{

ti if ti ≤ T SF ,
1−βti

α−β
if ti > T SF .

(8)

Equation (8) suggests that as long as the incoming flow
is lesser than the stateful saturation limitT SF a server can
maintain all the requests that are not yet stateful as stateful.
Once the incoming flow crossesT SF the server begins to
relinquish state as specified by the second case. The formu-
lation provides an operating point if we were considering
state maintained as a whole without the individual flows.
The behavior of the individual flows should be such that the
overall state maintained satisfies the equation (8). Once the
incoming flow crossesT SF then each of these individual
flows need to relinquish state to servers downstream such
that the total amount of state maintained at the server does
not exceed the second case specified in equation (8). Thus
upstream servers can relinquish state further downstream,
until the exit nodes. Since these nodes have no downstream
path to relinquish state, they keep maintaining state for in-
creasing number of calls until they are close to maximum
utilization at which point they communicate back an over-
load message to the upstream servers. When all down-
stream paths are saturated and the server is itself saturated
it will communicate the overload message to servers further
upstream and finally the system as a whole gets saturated.
The next section details the actual implementation of SER-
vartuka on an opensource proxy OpenSER.



5 SERvartuka

The SERvartuka algorithm realizes the state distribution
algorithm outlined in the previous section by calculating the
number of call setup requests for which a given server main-
tains state for each downstream path. Equation (6) shows
there exists a relation between the overall state maintained
by a server and its input load. Measurements in any sys-
tem cannot be instantaneous. Hence the incoming load and
the state maintained by the server needs to be monitored
periodically. Let the monitored incoming load at a server
i be obsv(ti) and the load that is stateful beobsv(t

SF
i ).

From equation (6), based on the monitored incoming load
we can calculate the amount of state that can be main-
tained by the system in order to satisfy the feasibility con-
straint. Let this becalc(tSF

i ). If calc(tSF
i ) ≥ obsv(tSF

i )

then the system is maintaining lesser state than it feasibly
can and therefore does not need to change anything. If
calc(tSF

i ) ≤ obsv(tSF
i ) then the system needs to relinquish

state. In SERvartuka we relinquish state by choosing down-
stream paths on which state can be delegated to a server
further downstream. This allows the possibility of accom-
modating extra flow on a particular path for which state has
to be maintained, at this node, by reducing the state main-
tained for some other flow (as long as downstream servers
on that flow can continue to take up the delegated state).

There could be multiple reasons that state has to be main-
tained at a particular node for a particular path flow of call
requests: It could be the exit node for those call requests
or all the servers downstream in that path are fully utilized.
The second case is required because we assume routing con-
straints are also in place. In the real world, call request paths
are typically determined by some underlying protocol and
therefore we assume we cannot reroute the calls. In this
case the relationship between the call load that is maintained
statefully and the incoming call load (higher thanT

SF ) can
be specified in terms of its individual call flows as:

∑

d∈DSi

t
SF
id ≤

1 − β
∑

d∈DSi
tid

α − β
, if ti > T

SF (9)

On a per flow basis this can be written astSF
id =

1
n∗(α−β) −

β∗tid

α−β
, ∀ dǫDSi, if there aren downstream paths.

Summing both sides over alld we get back equation (6).
This implies that each flow can reduce a certain amount of
state so that in the aggregate the effect is the same as Equa-
tion (6). However as discussed before it may not be possi-
ble to relinquish state along all paths. Assume thati is an
exit node and it also hasn downstream paths. In addition
let k downstream paths be unsaturated while the remaining
n − k paths have been saturated (they have sent overload
messages toi). Without any loss in generality we can or-
der the paths such that(i, 1) to (i, k) are unsaturated and

(i, k + 1) to (i, n) are saturated. For all saturated nodes
k + 1 ≤ p ≤ n, cASF

ip is the load that was maintained state-
fully by the downstream path at the time of overload. As
the path is overloaded it will not be able to maintain state
for a higher call load thancASF

ip . Therefore the amount of
state that this server will need to accommodate for this path
will be tip − cASF

ip − tFASF
ip . For the flow path for which

i is the exit node, all state that is yet to be maintained must
be maintained ati and this value istiz − t

FASF
iz . Expanding

equation (9):

t
SF
i1 + . . . + t

SF
ik + t

SF
ik+1 + . . . + tin

SF
+ t

SF
iz ≤

1

α − β
−

β ∗ (ti1 + . . . + tik + tik+1 + . . . + tin + tiz)

α − β

Substituting fortSF
ik+1 to tSF

in andtSF
iz we get

t
SF
i1 + . . . + t

SF
ik ≤

1

α − β
+ (c

ASF
ik+1 + . . . + c

ASF
in )

+(t
FASF
ik+1 + . . . + t

FASF
in + t

FASF
iz )

−
α ∗ (tik+1 + . . . + tin + tiz)

α − β

−
β ∗ (ti1 + . . . + tik)

α − β

Except for the last term all the others are fixed and there-
fore can be equated to a constant valuec. Thus each flow
that can relinquish state will now relinquish:

t
SF
iq =

c

k
−

β ∗ tiq

α − β
, 1 ≤ q ≤ k

This forms the basis of the SERvartuka algorithm. The
dynamic SERvartuka server algorithm has two parts to it.
The first part which is executed on receipt of each message
is specified in algorithm 1 and the second part which is car-
ried out periodically is specified in the algorithm 2. The
algorithms are created from what has been discussed so far
and are detailed and self explanatory.

6 Results and Analysis

We evaluated SERvartuka on a number of server con-
figurations. These configurations were chosen for several
reasons. First, they provide building blocks for more com-
plex topologies and their evaluation can provide insights for
larger network topologies. Second they represent some of
the real world server topologies that we have seen.

6.1 Two Server Configuration

The most basic configuration where we can observe ben-
efits from the SERvartuka algorithm is the two server con-
figuration where the servers are arranged in series. This



// myshare and msg count obtained
from algorithm 2

Determine index i of DS path for msg1

// rcv msg count[i] used in updating
msg count[i]

Increment rcvmsg count[i], tot msgcount2

if state is not already maintained for msg3

AND ( sf count[i] ≤ myshare[i]4

OR msg is part of existing transaction )then5

Increment sfcount[i], tot sf count6

Forward msg statefully7

else8

Forward msg statelessly9

end10

Algorithm 1 : Handle Message

// α =
1

T SF and β =
1

T SL are known
Determine time elapsed, t1

c = 0, notovld count = 02

foreach DS path jdo3

Update msgcount[j], nasfcount[j], fasf count[j]4

if path j is overloadedthen5

Calculate myshare[j]6

Update c appropriately7

else8

Increment notovld count9

end10

end11

if msgper sec> T SF then12

if not ovld countthen13

foreach path q that is not overloadeddo14

lt = t∗c
not ovld count

− β∗msg count[j]
α−β15

if sf count[q] > lt then16

myshare[q] = lt17

end18

end19

else20

if tot sf count> 1−β∗tot msg count
α−β

then21

send overload message22

end23

end24

end25

foreach DS path jdo26

reset sfcount[j], rcv msgcount[i]27

end28

Algorithm 2 : Calculating myshare
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is similar to our example where requests from users in
the cc.gatech.edu domain traverse proxies responsible for
cc.gatech.edu andgatech.edu. The experimental setup is
similar to the SIP Server Evaluation Section (Section 3). In
this experiment, a set of SIPp clients send requests to the
first proxy which then forwards these to the second proxy.
The second proxy delivers the call requests to the SIPp
servers, and the rest of the call path follows this pattern.
Two runs are conducted, in the first the proxies are config-
ured statically, and in the second the proxies are running the
SERvartuka algorithm. Throughput is measured at the SIPp
server. We ensure that SERvartuka is maintaining state for
all requests by checking if the number of calls sent by the
SIPp client is equal to the number of 100 Trying messages
that it receives (see Section 2.2). The results are shown in
figure 5. The static configuration saturates at8540cps and
SERvartuka saturates at9790cps a performance improve-
ment of 15%. Though we initially predicted that for a static
two server in series configuration the maximum throughput
will be equal to the maximum throughput of a single state-
ful server, we find that in practice it does worse. We find
a similar trend for three servers arranged in series, where
the static configuration throughput is8780cps and SERvar-
tuka’s throughput is10180cps,a performance improvement
is 16%. In essence, we observe that for most of these basic
configurations we can expect a performance improvement
of 15% - 20% when running SERvartuka in comparison
with a static configuration.

6.1.1 Response Time

In addition to the SIPp server measuring throughput, it also
maintains statistics of the response times for the messages
it sends. For the two server in series test the results of mea-
suring response time are shown in figure 6. The round trip
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time from SIPp server to SIPp client is roughly1.5ms. The
static stateful configuration by virtue of maintaining state
is able to handle retransmission in a better fashion and thus
bound the response time for server requests to under200ms

as seen in figure 6. However, it saturates at a low call
rate of 8500cps. In fact, the effects of saturation in in-
creasing response times can be observed at8000cps. The
static stateless configuration however is able to keep low
response times till its saturation limit. Once it crosses this
limit the response times becomes significantly higher. This
is because any request that is lost must be reissued all the
way from the SIPp server or client, thus increasing the aver-
age response time. As seen in figure 6, SERvartuka tries to
bridge the gap by increasing the throughput as well as keep-
ing the response times low. We see that the response times
of SERvartuka are comparable to a stateful static configu-
ration (under200ms). This is possible because one of the
proxy servers in the path maintains state through the state
distribution algorithm, thus allowing the system to absorb
extraneous retransmissions.

6.1.2 Changing loads

For this experiment we considered a new flow path in the
basic two server in series setup. In addition to the flows that
can go through both servers we consider flows that termi-
nate at the first server. Relating this to our real world anal-
ogy, users belonging to thecc.gatech.edu domain can make
calls to external users such as those in theus.ibm.com

domain, in which case call requests will traverse through
both thecc.gatech.edu proxy and thegatech.edu proxy.
In addition they can make calls to other users within the
cc.gatech.edu domain. In this case the call request will
only traverse throughcc.gatech.edu proxy and will not
touch thegatech.edu proxy. Thus, there are two distinct
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call flows, the first set which we call the external call flow,
and the second set which we call the internal call flow. We
varied the fraction of external call load from 0 to 1 in steps
of .1. When the external call load is 0, the two server in
series configuration degenerates to a single serve configura-
tion. When the external call load is 1, then it is the same as
the above test cases. The results are shown in figure 7. We
see that SERvartuka performs better than the static config-
uration for all possible loads. What this implies is that with
SERvartuka, network operators do not need to worry about
the flow distributions in the network. The algorithm based
on the flow distribution will be able to determine the best
state distribution to maximize throughput.

We see that SERvartuka and the static configuration are
similar for the degenerated single server case and thereafter
SERvartuka starts having better throughputs as the external
load fraction increases until it hits a peak when the exter-
nal load is 80% and the internal load is 20%. It is at this
distribution that we get the maximum performance benefit
over the static configuration. From our measurements, for
the 80 − 20 distribution, we see that the static configura-
tion can only handle9540cps while SERvartuka can han-
dle 11410cps, giving a performance improvement of close
to 20% and the ability to handle1500 extra cps. This be-
havior is predicted precisely by the LP which says that the
throughput is maximal for such a distribution (the LP pre-
dicts a value of11960cps). This test case also shows that
SERvartuka can handle multiple asymmetrical flows.

6.2 Three Server Configurations

As mentioned earlier we are able to perform16% better
in the three server in series configuration. The other pos-
sible configuration for three servers is the load balancing
case where one proxy server forks requests along two par-
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allel paths. In this case the first server is typically main-
tained statelessly and the other two servers are maintained
statefully. From the LP (and also intutively) in this con-
figuration we cannot do better than servers that have been
statically preconfigured. In our algorithm the first server
should relinquish all of its state to the two servers that it
forks to. In order to test this we setup an experiment with
SIPp clients sending call requests to SIPp servers through
a load balancing arrangement of servers. The SIPp clients
are partitioned to send requests equally along the upper and
lower forks, that is the first server sends half its incoming
load to the upper fork proxy and the remaining half to its
lower fork proxy. Two runs are conducted: (i) where the
servers are configured statically and (ii) where the servers
are running SERvartuka. The results are as shown in figure
8. Though the behavior near saturation is more erratic than
previous scenarios the throughput of the static configuration
is 11990cps and that of SERvartuka is12830cps. The be-
havior of SERvartuka is again significantly higher than the
static case. However in this case we are unaware of why
SERvartuka does so much better than the static case. We
need to profile the internal workings of the system at these
loads to determine answers and this is part of future work.

When servers are arranged in such a fashion it is not al-
ways necessary that the first server being stateless would
lead to optimal throughputs. A scenario where it might be
necessary for the first server to be stateful, is if the incoming
load is unevenly split along the two paths. The other pos-
sibility is when the three servers are non homogenous. If
the first server has much larger capacity than the two down-
stream paths then it might be beneficial for it to maintain
some state or even all state. In all such cases SERvartuka
does better than the static configuration.

In essence these configurations (series and parallel
blocks) are the basic building blocks of any network topol-

ogy. We have seen that SERvartuka performs better in most
configurations, and in the worst case does as well as the
static configurations that exist today. In addition when mul-
tiple flows are involved or the load distribution varies the
algorithm will try and optimize the distribution of state to
maximize throughput. Though state has been considered
here we can potentially distribute any other functionality
and we have seen significantly larger improvements when
we tried distributing authentication.

7 Related Work

In [4], the authors have recognized the scalability bene-
fits of a transaction-stateless processing and have defined
an algorithm that determines whether a request must be
handled statefully if (a) the network link is lossy (BER
> 10

−5), and the CPU utilization is (i) either low (< 60%),
or (ii) medium (< 75%) and the transaction is an INVITE
or a BYE, or (b) the transaction requires forking. Our al-
gorithm is broader in multiple aspects: our algorithm seeks
to determine an optimal ratio of stateful to stateless trans-
action processing in theaggregatewhen the input load is
greater than what can be handled statefully at 100% CPU
utilization. It is a dynamic algorithm which recomputes the
ratio as the total input load changes. We leverage the per-
server algorithm to establish a distributed algorithm which
ensures that a request is handled statefully at some down-
stream server (”distributing state”) when upstream servers
prior to that handle calls statelessly. As mentioned before,
our assumption in this paper that a request needs a set of
functions to be executed in it call path or before exiting a do-
main, some of which may require stateful processing, and
thus these functions can be performed over a sequence of
proxies.

In general, the performance of SIP proxies has been in-
vestigated in [9],[6], [13],[16],[7]. In [7] authors studysipd,
a SIP proxy server developed in Columbia University[17],
and identify bottlenecks such as parsing, string operations
and database access, compare performance of thread-based
vs. process-based models for request processing in sipd and
compare scalability of different proxy and database access
combinations. In [18], the authors point out that ability
to handle transactions statelessly could be used to thwart
denial-of-service attacks.

Although the notion of trading off state for performance
has been studied in other contexts to some degree, e.g for
coupling link-state routing information only with long-lived
flows for load-sensitivizing routing, thereby reducing route
flapping [15], we believe our work is one of the first to de-
sign and implement a concrete detailed algorithm for SIP
server systems.



8 Conclusion and Future Work

We have experimentally evaluated the performance of
a SIP server under various call scenarios. Based on this
performance study, we defined the state management prob-
lem and developed a mathematical model for deriving an
optimal solution. This provides insights for developing
a more scalable server design by dynamically distributing
state across a set of servers. We evaluate our algorithm
against existing pre-configured static algorithms and show
a 15% - 20% increase in the maximum call throughput that
can be achieved. Our work can be extended in several ways.

• Explore implications of state distribution on security
issues such as privacy and confidentiality.

• Apply these ideas to distribute other functionality in
SIP such as authentication as well on other overlay net-
work protocols
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