
RC24461 (W0801-032) January 8, 2008
Computer Science

IBM Research Report

Improved Bounds for Speed Scaling in Devices Obeying
the Cube-Root Rule

Nikhil Bansal
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Ho-Leung Chan, Kirk Pruhs
Computer Science Department

University of Pittsburgh

Dmitriy Rogozhnikov-Katz
Operations Research Center

MIT

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Improved Bounds for Speed Scaling in
Devices Obeying the Cube-Root Rule

Nikhil Bansal�, Ho-Leung Chan��, Kirk Pruhs� � �, and Dmitriy
Rogozhnikov-Katz†

Abstract. Speed scaling is a power management technique that involves
dynamically changing the speed of a processor. This gives rise to dual-
objective scheduling problems, where the operating system both wants to
conserve energy and optimize some Quality of Service (QoS) measure of
the resulting schedule. In the most investigated speed scaling problem in
the literature, the QoS constraint is deadline feasibility, and the objective
is to minimize the energy used. The standard assumption is that the
power consumption is the speed to some constant power α. We give the
first non-trivial lower bound, namely eα−1/α, on the competitive ratio
for this problem.

For CMOS based processors, and many other types of devices, α = 3,
that is, they satisfy the cube-root rule. Thus the most interesting case is
when α = 3. When α = 3, the algorithm with the best known competitive
ratio is Optimal Available (OA), which is 27-competitive. We introduce a
new algorithm qOA, and show that qOA is 6.7-competitive when α = 3.
So when the cube-root rule holds, our results reduce the range for the
optimal competitive ratio from [1.8, 27] to [2.4, 6.7]. We also analyze qOA
for general α and give almost matching upper and lower bounds.

1 Introduction

1.1 The Setting

Current processors produced by Intel and AMD allow the speed of the processor
to be changed dynamically. Intel’s SpeedStep and AMD’s PowerNOW technolo-
gies allow the Windows XP operating system to dynamically change the speed
of such a processor to conserve energy. In this setting, the operating system must
not only have a job selection policy to determine which job to run, but also a
speed scaling policy to determine the speed at which the job will be run. All
the literature assumes a speed to power function P (s) = sα, where α > 1 is
some constant. Energy consumption is power integrated over time. The operat-
ing system is faced with a dual objective optimization problem as it both wants

� IBM T. J. Watson Research Center, nikhil@us.ibm.com
�� Computer Science Department, University of Pittsburgh, hlchan@cs.pitt.edu

� � � Computer Science Department, University of Pittsburgh, kirk@cs.pitt.edu. Sup-
ported in part by NSF grants CNS-0325353, CCF-0514058 and IIS-0534531.

† Operations Research Center, MIT, dimdim@mit.edu

to conserve energy, and optimize some Quality of Service (QoS) measure of the
resulting schedule.

The first theoretical worst-case study of speed scaling algorithms was in the
seminal paper [18] by Yao, Demers, and Shenker. In the problem introduced in
[18] the QoS objective was deadline feasibility, and the objective was to minimize
the energy used. To date, this is the most investigated speed scaling problem
in the literature [18, 5, 11, 8, 7, 15, 19, 13, 4, 12]. In this problem, each job i has
a release time ri when it arrives in the system, a work requirement wi, and a
deadline di by which the job must be finished. The deadlines might come from
the application, or might arise from the system imposing a worst-case quality-
of-service metric, such as maximum response time or maximum slow-down. It is
clear that an optimal job selection policy is Earliest Deadline First (EDF). Thus
the remaining issue is to find an online speed scaling policy to minimize energy.

1.2 The Story to Date

[18] show that the optimal schedule can be efficiently computed offline by a
greedy algorithm YDS. [18] proposed two natural online speed scaling algo-
rithms, Average Rate (AVR) and Optimal Available (OA). Conceptually, AVR
is oblivious in that it runs each job in the way that would be optimal if there were
no other jobs in the system. That is, AVR runs each job i (in parallel with other
jobs) at the constant speed wi/(di−ri) throughout interval [ri, di]. The algorithm
OA maintains the invariant that the speed at each time is optimal given the cur-
rent state, and under the assumption that no more jobs will arrive in the future.
In particular, if w(x) denotes the amount of work that has arrive thus far, and has
deadline within x time units from the current time, then the current speed of OA
is maxx w(x)/x. Another online algorithm, called BKP, is proposed in [7]. BKP
runs at speed e v(t) at time t, where v(t) = maxt′>t w(t, et−(e−1)t′, t′)/(e(t′−t))
and w(t, t1, t2) is the amount of work that has release time at least t1, deadline
at most t2, and that has already arrived by time t. As α approaches infinity,
the limiting problem is that of minimizing the maximum, over all times t, of the
speed at time t. BKP is e-competitive with respect to min-max speed, and no
better competitive ratio is achievable [7]. So intuitively BKP should be close to
being optimally competitive with respect to energy for large α.

We summarize previous results, which can also be viewed in Table 1. The
competitive ratio of OA is exactly αα [7], where the upper bound is proved
using an amortized local competitiveness argument. The competitive ratio of
AVR is at most 2α−1αα. This was first shown in [18], and a simpler amortized
local competitiveness analysis can be found in [5]. The competitive ratio of AVR
is least (2 − δ)α−1αα, where δ is a function of α that approaches zero as α
approaches infinity [5]. Thus the competitive ratio of AVR is strictly inferior to
the competitive ratio of OA. The competitive ratio of BKP is at most 2(α/(α−
1))αeα [7], which is about 2eα+1 for large α . The competitive ratio of BKP
is provably better than that of OA only for α ≥ 5. On the other hand, the
lower bounds for any general algorithm are rather weak. Somewhat surprisingly,
the best known lower bound instance is essentially the worst-possible instance

consisting of two jobs. [6] shows that one can obtain a lower bound of
(

4
3

)α
/2

on the competitive ratio for a two job instance. If one tries to find the worst 3,
4, . . . job instances, the calculations get messy quickly.

1.3 Our Contributions

The most interesting value of α seems to be three. Most importantly, in cur-
rent CMOS based processors, the speed satisfies the well-known cube-root-rule,
that the speed is approximately the cube root of the power [10]. The power
is also roughly proportional to the cube of the speed in many common de-
vices/machines, such as vehicles/automobiles [1], and some types of motors [2].
It seems likely that α would be in the range [2, 3] for most conceivable devices.
The best known guarantee for α in this range is αα achieved by OA, which
evaluates to 4 for α = 2 and 27 for α = 3.

So the goal in this paper is to focus in on the cases that α = 3, and to a lesser
extent on the case that α = 2, and to close the range on the optimal competitive
ratio in these cases.

Previous Results
Algorithm General α α = 2 α = 3

Upper Lower Upper Lower Upper Lower

General
(

4
3

)α
/2 1.8

AVR 2α−1αα (2 − δ)α−1αα 8 4 108 48.2

OA αα αα 4 4 27 27

BKP 2(α/(α − 1))αeα 59.1 135.6

Our Contributions
Algorithm General α α = 2 α = 3

Upper Lower Upper Lower Upper Lower

General eα−1/α 1.3 2.4

qOA 4α/(2
√

eα) 1
2qα

4α(1 − 2
α
)α/2 2.3 6.7

Table 1. Results on the competitive ratio for energy minimization with deadline fea-
sibility.

In section 4, we give the first non-trivial lower bound on the competitive ratio.
We show that every deterministic algorithm must have a competitive ratio of
at least eα−1/α. For α = 3, this raises the best known lower bound a modest
amount, from 1.8 to 2.4. The instance is identical to one used in [7] to lower
bound the competitive ratio with respect to the objective of minimizing the
maximum speed. The innovation required to get a lower bound for energy is to
categorize the variety of possible speed scaling policies in such a way that one
can effectively reason about them.

We introduce some informal concepts to facilitate our discussion of improv-
ing the upper bound on the competitive ratio. Let A be a generic speed scaling

algorithm. We say that A is conservative if A is presuming that no more jobs will
arrive in the future, and is running at a minimal speed. So OA may be viewed
as the most natural conservative algorithm. Alternatively A is aggressive if A is
speculating that more jobs will arrive in the future and is running more quickly
than the current state might suggest. BKP is an aggressive algorithm. We say
that A is a local-state algorithm if the speed at any time t depends only upon
information about jobs that have been released, but not finished by A, before
time t. OA and AVR are local-state algorithms. BKP is not a local-state algo-
rithm since it speed may depend upon work already completed by BKP in the
past. Local state algorithms are more amenable to locally amortized competitive
analysis using a potential function. Generally speaking, the tightest upper bound
analyses of competitive ratios in the literature use amortized local competitive-
ness arguments [7, 5, 9]. Analyses that resort to more global arguments, such as
the analysis of BKP in [7] and the analysis in [3], generally obtain competitive
ratios that are presumably much larger than the actual competitive ratios.

AVR is provably inferior to OA, which is the optimal conservative algorithm.
In order to be more competitive than OA, one needs an aggressive algorithm. In
order to be able to reasonably tightly bound the competitive ratio using current
techniques, one needs a local-state algorithm (this requirement rules out the
lone remaining previous candidate algorithm BKP). In section 5 we introduce
an aggressive local-state algorithm, that we call qOA. qOA runs at speed equal
to some constant q times the speed that OA would run in the current state.
We show, using an amortized local competitiveness analysis, that if q is set to
2 − 1

α , then the competitive ratio of qOA is at most 4α/(2
√

eα). The potential
function that we used is quite different than the one used in the analysis of OA
in [7] (and the potential function used to analyze AVR in [5]). The potential
function we use is more similar to the one used in [9] to analyze a speed scaling
algorithm for the objective of flow time plus energy. One fundamental step in the
analysis of the potential function used in [9] applied Young’s inequality. However,
Young’s inequality gives a bound that is too weak to be useful when analyzing
qOA. Thus the analysis for qOA is necessarily different than the analysis of
the similar potential function in [9]. A key feature of our analysis is the use of
convexity, which allows us to reduce the analysis of the general case down to
just two extreme cases.

The upper bound of 4α/(2
√

eα) on the competitive ratio of qOA is approx-
imately 3.4 when α = 2, and 11.2 when α = 3. Using an analysis specialized
to the specific cases that α = 2 and α = 3, we show that qOA is at worst
2.3-competitive when α = 2, and at worst 6.7-competitive when α = 3.

Given the general lower bound of eα−1/α, a natural question is whether there
is some choice of q for which the competitive ratio of qOA varies with exponential
with e as the base of the exponent. Somewhat surprisingly, we show that this
is not the case. In particular, in section 6 we show that the competitive ratio
of qOA is at least 1

2qα4α(1 − 2
α)α/2-competitive1 which is about 4α/(2eqα) for

1 Note that q ≤ 4, otherwise ratio of qOA is trivially Ω(4α).

large α. Thus our upper bound on the competitive ratio of qOA has the right
asymptotic growth rate as a function of α.

Our results presented in this paper are summarized in the last two rows of
table 1. In particular we have reduced the range for the optimal competitive
ratio in the case that the cube-root rule holds from [1.8, 27] to [2.4, 6.7] and in
the case that α = 2 from [1, 4] to [1.3, 2.3].

2 Other Related Results

There are now enough speed scaling papers in the literature that it is not prac-
tical to survey all such papers here. We limit ourselves to those papers most
related to the results presented here.

A naive implementation of YDS runs in time O(n3). This can be improved
to O(n2) if the intervals have a tree structure [13]. Li, Yao and Yao [14] gave
an implementation that runs in O(n2 log n) time for the general case. For hard
real-time jobs with fixed priorities, Yun and Kim [19] showed that it is NP-hard
to compute a minimum-energy schedule. They also gave a fully polynomial time
approximation scheme for the problem. Kwon and Kim [12] gave a polynomial
time algorithm for the case of a processor with discrete speeds. Li and Yao [15]
gave an algorithm with running time O(d · n log n) where d is the number of
speeds.

Albers, Müller, and Schmelzer [4] consider the problem of finding energy-
efficient deadline-feasible schedules on multiprocessors. [4] showed that the of-
fline problem is NP-hard, and gave O(1)-approximation algorithms. [4] also gave
online algorithms that are O(1)-competitive when job deadlines occur in the
same order as their release times. Chan et al. [11] considered the more general
and realistic speed scaling setting where there is an upper bound on the maxi-
mum processor speed. They gave an O(1)-competitive algorithm based on OA.
Recently, Bansal, Chan and Pruhs [16] investigated speed scaling for deadline
feasibility in devices with a regenerative energy source such as a solar cell.

Results on finding low-temperature deadline-feasible schedules can be found
in [7]. In general, temperature is more closely related to instantaneous power
than cumulative power, which is energy.

3 Formal Problem Statement

A problem instance consists of n jobs. Job i has a release time ri, a deadline
di > ri, and work wi > 0. In the online version of the problem, the scheduler
learns about a job only at its release time; at this time, the scheduler also learns
the exact work requirement and the deadline of the job. We assume that time
is continuous. A schedule specifies for each time a job to be run and a speed at
which to run the job. The speed is the amount of work performed on the job
per unit time. A job with work w run at a constant speed s thus takes w

s time
to complete. More generally, the work done on a job during a time period is the
integral over that time period of the speed at which the job is run. A schedule

is feasible if for each job i, work at least wi is done on job i during [ri, di]. Note
that the times at which work is performed on job i do not have to be contiguous.
If a job is run at speed s, then the power is P (s) = sα for some constant α > 1.

The energy used during a time period is the integral of the power over that
time period. Our objective is to minimize the total energy used by the schedule.

If A is a scheduling algorithm, then A(I) denotes the schedule output by A
on input I. A schedule is c-competitive for a particular objective function if the
value of that objective function on the schedule is at most c times the value of
the objective function on an optimal schedule. An online scheduling algorithm
A is c-competitive, or has competitive ratio c, if A(I) is c-competitive for all
instances.

4 Lower Bound for General Algorithms

In this section, we show that any algorithm is at least 1
αeα−1-competitive. Note

that we assume α is fixed and is known to the algorithm. We give an adversarial
strategy for constructing a job instance such that any algorithm uses at least
1
αeα−1 times more energy than the optimal algorithm.

Adversarial Strategy: Let ε > 0 be some small fixed constant. Work is arriving
during [0, �], where 0 < � ≤ 1 − ε. The rate of work arriving at time t ∈ [0, �] is

a(t) =
1

1 − t

So the work that arrives during any time interval [u, v] is
∫ v

u
a(t)dt. All work

has deadline 1. Let A be any online algorithm. The value of � will be set by the
adversary according to the action of A. Intuitively, if A spends too much energy
initially, then � will be set to be small. If A doesn’t spend enough energy early
on, then � will be set to 1− ε. In this case, A will have a lot of work left toward
the end and will have to spend too much energy finishing this work off. To make
this more formal, consider the function

E(t) =
∫ t

0

(
(1 +

b

ln ε
)

1
1 − x

)α

dx ,

where b is a constant (set to 1
(α−1)1/α later). This is the total energy usage up

to time t if A runs at speed s(t) = (1 + b
ln ε)

1
1−t . Of course, A may run at speed

other than s(t). If there is a first time 0 < h ≤ 1− ε such that total energy usage
of A up to h is at least E(h), then the value of � is set to h. If no such event
occurs, then � = 1 − ε. ��

In Lemma 1 we show that if the adversary ends the arrival of work at some
time 0 < h ≤ 1 − ε because the total energy usage of A is at least E(h), then
A must have used at least 1

αeα−1 times as much energy as optimal. Similarly, in
Lemma 5, we show that if the adversary doesn’t end the arrival of work until the
time 1−ε, then the online algorithm uses at least 1

αeα−1 times as much energy as

optimal. Then our main result, that any algorithm is at least 1
αeα−1-competitive,

follows immediately from Lemma 1 and Lemma 5.

Lemma 1. If there is a time 0 < h ≤ 1 − ε such that the total energy usage of
A is at least E(h), then A is at least 1

αeα−1-competitive.

Proof. Let EA be the total energy usage of A. Then,

EA ≥ E(h) =
∫ h

0

(
(1 +

b

ln ε
)

1
1 − x

)α

dx = (1+
b

ln ε
)α(

1
(α − 1)(1 − h)α−1

− 1
α − 1

)

Let Eopt be the energy usage of the optimal algorithm. There are two cases for
the value of Eopt: (i) 1 − 1

e < h ≤ 1 − ε and (ii) 0 < h ≤ 1 − 1
e .

(i) If 1 − 1
e < h ≤ 1 − ε, the optimal algorithm runs at speed a(t) for

t ∈ [0, 1− e(1− h)] and run at speed 1
e(1−h) for t ∈ [1− e(1− h), 1]. It is easy to

check that this schedule completes all work. Then,

Eopt =
∫ 1−e(1−h)

0

(
1

1 − x
)αdx+(

1
e(1 − h)

)α·e(1−h) =
α

eα−1

1
(α − 1)(1 − h)α−1

− 1
α − 1

The competitive ratio is EA

Eopt
≥ (1 + b

ln ε)
α 1

αeα−1, which is at least 1
αeα−1 when

ε tends to 0.
(ii) If 0 < h ≤ 1 − 1

e , the total amount of work released is
∫ h

0
1

1−xdx =
− ln(1 − h) ≤ 1. Thus, the optimal algorithm can run at speed − ln(1 − h)
throughout [0, 1] to completes all work. Then

Eopt =
(− ln(1 − h)

)α ≤ α

eα−1
(

1
(α − 1)(1 − h)α−1

− 1
α − 1

)

where the inequality comes from Lemma 2. The competitive ratio is EA

Eopt
≥

(1 + b
ln ε)

α 1
αeα−1, which is again at least 1

αeα−1 when ε tends to 0.

Lemma 2 is a technical result used in the proof of Lemma 1.

Lemma 2. For any 0 < h ≤ 1− 1
e , (− ln(1−h))α ≤ α

eα−1 (1
(α−1)(1−h)α−1 − 1

α−1)
.

Proof. Let f(h) = (− ln(1 − h))α − α
eα−1 (1

(α−1)(1−h)α−1 − 1
α−1). Differentiating

f(h), we have

f ′(h) = α(− ln(1 − h))α−1 1
1 − h

− α

eα−1

1
α − 1

(α − 1)
1

(1 − h)α

=
α

1 − h

(
(− ln(1 − h))α−1 − (

1
e(1 − h)

)α−1

)

We can check easily by differentiation that − ln(1 − h) = ln 1
1−h ≤ 1

e(1−h)

for all h > 0, and the equality holds only at h = 1 − 1
e . Therefore, f ′(h) is

non-positive, and f(h) ≤ f(0) = 0. The lemma then follows.

We now turn attention to the case that the energy usage of A is less than
E(t) for all 0 < t ≤ 1 − ε. We first show in Lemma 3 that A cannot complete
too much work by time 1 − ε.

Lemma 3. Assume at any time 0 < t ≤ 1− ε, the energy usage of A up to time
t is less than E(t). Then, the amount of work done by A up to time 1− ε is less
than

∫ 1−ε

0
(1 + b

ln ε)
1

1−xdx.

Proof. Let s1(y) be the speed of the algorithm A and consider the algorithm B
that works at speed s2(t) = (1 + b

ln ε)
1

1−t . The energy consumed by B by time
t is exactly

∫ t

0
s2(y)αdy = E(t). The result now follows by applying Lemma 4

with x = 1 + ε and observing that s2(t) is monotonically increasing.

Lemma 4 is a technical result used in the proof of Lemma 3.

Lemma 4. Let s1(t) and s2(t) be non-negative functions, and let α > 1 and
x > 0 be some real numbers. If s2(t) is continuous and monotonically increasing
and if

∫ y

0
(s1(t)α − s2(t)α)dt < 0 for all 0 < y ≤ x, then

∫ x

0
(s1(t)− s2(t))dt < 0.

Proof. Define F (y) =
∫ y

0
(s1(t)α − s2(t)α)dt and G(y) = α

∫ y

0
s2(t)α−1(s1(t) −

s2(t))dt. By Bernoulli Inequality, (1+z)α ≥ 1+αz for all α > 1 and z ∈ [−1,∞).
Hence

F (y) =
∫ y

0

(
s2(t)α((1 +

s1(t) − s2(t)
s2(t)

)α − 1)
)

dt

≥ α

∫ y

0

s2(t)α−1(s1(t) − s1(t))dt = G(y)

Since F (y) < 0 for all y ∈ (0, x], it follows that G(y) < 0 for all y ∈ (0, x]. As s2 is
monotonically increasing and non-negative, it follows that G(y)s′2(y)/s2(y)α < 0
for all y ∈ (0, x] and hence that∫ x

0

G(y)
s′2(y)
s2(y)α

dy < 0.

Applying integration by parts and noting that G′(y) = αs2(y)α−1(s1(y)−s2(y))
, we obtain that

0 >

∫ x

0

G(y)
s′2(y)
s2(y)α

dy

=
[
G(y)

s2(y)1−α

1 − α

]x

0

−
∫ x

0

α
s1(y) − s2(y)

1 − α
dy

= −G(x)
s2(x)1−α

α − 1
+

α

α − 1

∫ x

0

(s1(y) − s2(y))dy

The last equality follows from G(0) = 0. Since G(x) < 0, we obtain the desired
result.

We are now ready to show, in Lemma 5, that if the adversary doesn’t end
the arrival of work until time 1− ε then the online algorithm uses at least 1

αeα−1

times as much energy as optimal.

Lemma 5. If at any time 0 < t ≤ 1− ε, the total energy usage of A is less than
E(t), then A is at least 1

αeα−1-competitive.

Proof. Note that the adversary ends the arrival of work at time 1 − ε and the
total amount of work arrived is

∫ 1−ε

0
1

1−xdx = − ln ε. By Lemma 3, the maximum
amount of work completed by A up to time 1 − ε is∫ 1−ε

0

(1 +
b

ln ε
)

1
1 − x

dx = (1 +
b

ln ε
)[− ln(1 − x)]1−ε

0 = − ln ε − b

Hence, A has at least b units of work remaining at time 1−ε. To finish it, the total
energy usage of A is at least bα

εα−1 , which equals 1
(α−1)εα−1 by setting b = 1

(α−1)1/α .
Simple calculation shows that the energy usage of the optimal algorithm is at
most α

eα−1
1

(α−1)εα−1 . Thus, the competitive ratio is at least 1
αeα−1.

Theorem 1. Any algorithm is at least 1
αeα−1-competitive.

5 Upper Bound Analysis of qOA

Our goal in this section is to show that qOA is about 4α/(2
√

eα)-competitive
when q = 2 − (1/α). We wish to point out that q = 2 − 1/α is not necessarily
the optimum value of q. For general α it is not clear how to obtain the optimum
choice of q since it involves solving a system of high degree algebraic inequalities.
However, as we shall later in section 6 the lower bound for qOA will imply that
the choice q = 2 − 1/α is close to optimum. For the case of α = 3 and that of
α = 2, we can explicitly determine the optimum choice of q which gives better
competitive ratios for these cases.

We use an amortized local competitiveness analysis. Such an analysis needs
a potential function Φ(t) that is a function of time. In this setting, the value of
Φ(t) will be energy, and thus, the derivative of Φ(t) with respect to time will be
power. We need that Φ is initially and finally zero. Let sa and so be the current
speed of the online algorithm (qOA in our case) and the optimal algorithm OPT
respectively. Then in order to establish that the online algorithm is c-competitive,
it is sufficient to show that the following key equation holds at all times:

sα
a +

dΦ

dt
≤ c · sα

o (1)

The fact that equation (1) establishes c-competitiveness follows by integrating
this equation over time, and from the fact that Φ is initially and finally 0. For
more information on amortized local competitiveness arguments see [17].

Before defining the potential function Φ that we use, we need to introduce
a fair amount of notation. We always denote the current time as t0. For any

t0 ≤ t′ ≤ t′′, let wa(t′, t′′) denote the total amount of work remaining in qOA
at t0 with deadline in (t′, t′′]. Define wo(t′, t′′) similarly for OPT. Recall that
qOA runs at speed q · maxt wa(t0, t)/(t − t0), which is q times the speed that
OA would run. Let d(t′, t′′) = max{0, wa(t′, t′′) − wo(t′, t′′)}. Note that d(t′, t′′)
denote the amount of additional work left under the online algorithm that has
deadline in (t′, t′′]. We define a sequence of time points t1 < t2 < . . . iteratively
as follows: Let t1 be the time such that d(t0, t1)/(t1 − t0) is maximized. If there
are several such points, we choose the furthest one. Given ti, let ti+1 > ti be
the furthest point that maximizes d(ti, ti+1)/(ti+1 − ti). We use gi to denote
d(ti, ti+1)/(ti+1 − ti). Note that gi is a non-negative monotonically decreasing
sequence.

The following observations will be useful in our analysis:

Observation 2 (i) so ≥ maxt wo(t0, t)/(t−t0). (ii) sa ≥ qg0 and sa ≤ qg0+qso.

Proof. (i) is true because OPT needs to complete at least wo(t0, t) units of
work by the corresponding time t. For the first inequality of (ii), sa = q ·
maxt wa(t0, t)/(t − t0) ≥ qwa(t0, t1)/(t1 − t0) = qg0. For the second inequal-
ity,

sa = q · max
t

wa(t0, t)/(t − t0) ≤ q · max
t

(wo(t0, t) + d(t0, t))/(t − t0)

≤ q · max
t

wo(t0, t)/(t − t0) + q · max
t

d(t0, t)/(t − t0) ≤ qso + qg0

We are now ready to define the potential function Φ that we use in our analysis
of qOA:

Φ = β

∞∑
i=0

((ti+1 − ti) · gα
i) ,

where β is some constant (which will be set to qα(1 + α−1/(α−1))α−1).
We now make some observations about the potential function Φ. Φ is obvi-

ously zero before any jobs are released, and after the last deadline. Job arrivals,
and job completions by either qOA or optimal, do not change the value Φ since
they do not change the value of d(t′, t′′) for any t′, t′′. Structural changes in the
ti and gi do not change the value of Φ. For example, suppose g0 decreases (for
instance if online is working faster than offline on jobs with deadline in [t0, t1]),
then at some point g0 becomes equal to g1, and these two merge together. Upon
this merge, the potential does not change as can be easily verified. Similarly, if
offline works too fast, the interval [tk, tk+1] might split into two critical intervals,
but again this change is continuous.

Thus to complete our analysis, we are left to show the following lemma:

Lemma 6. For general α > 1, set q = 2 − (1/α), β = c = (2 − (1/α))α(1 +
α−1/(α−1))α−1. Consider a time t where no jobs are released, no jobs are com-
pleted by qOA or optimal, and there are no structural changes to the ti’s nor
gi’s. Then equation (1), sα

a + dΦ/dt − c · sα
o ≤ 0, holds at time t.

Proof. Suppose first that wa(t0, t1) < wo(t0, t1). In this case, d(t0, t1) = 0, g0 = 0
and t1 is basically infinity. Note that dΦ/dt = 0 since Φ remains zero until
wa(t0, t1) ≥ wo(t0, t1). Therefore, sα

a + dΦ/dt − c · sα
o ≤ 0 because sa ≤ qso and

c = qα(1 + α−1/(α−1))α−1 > qα.
Hence we assume wa(t0, t1) ≥ wo(t0, t1) in the following. Without loss of

generality, both OPT and qOA schedule jobs according to Earliest Deadline
First, and hence qOA is working on a job with deadline at most t1. Let t′ be
deadline of the job that OPT is working on, and let k be such that tk < t′ ≤ tk+1.

First consider the case that k > 0. When both qOA and OPT work, g0

decreases, the quantities g1, . . . , gk−1, and gk+1, . . . stay unchanged, and gk in-
creases. Note that (t1 − t0) is decreasing, and the rate of decrease is the same as
the rate that time passes. Therefore, the rate of change of (t1 − t0) · gα

0 is

d

dt
((t1 − t0) · gα

0) = (t1 − t0) · αgα−1
0

(
(t1 − t0)(−sa) + d(t1, t0)

(t1 − t0)2

)
− gα

o

= αgα−1
0 (−sa) + (α − 1)gα

0

For the rate of change of (tk+1− tk) ·gα
k , we note that tk+1− tk stays unchanged.

We also notice that the rate of change of d(tk+1, tk) may be so or 0, depending
on whether wa(tk+1, tk) is greater than wo(kk+1, tk). Therefore,

d

dt
((tk+1 − tk) · gα

k) ≤ (tk+1 − tk) · αgα−1
k

(
(tk+1 − tk)(so)
(tk+1 − tk)2

)
= αgα−1

k (so)
≤ αgα−1

0 (so)

Thus to show sα
a + dΦ/dt − c · sα

o ≤ 0, it suffices to show that

sα
a + β(αgα−1

0 (−sa + so) + (α − 1)gα
0) − c · sα

o ≤ 0. (2)

Now consider the case that k = 0. Note that for i ≥ 1, neither gi nor ti+1− ti
changes, so we need not consider these terms in the potential function. The rate
of change of (t1 − t0) · gα

o is

d

dt
((t1 − t0) · gα

0) = (t1 − t0) · αgα−1
0 ·

(
(t1 − t0)(−sa + so) + d(t1, t0)

(t1 − t0)2

)
− gα

0

= αgα−1
0 (−sa + so) + (α − 1)gα

0

which leads to the same inequality as equation (2).
Hence, we will focus on equation (2), and show that it is true for the stated

values of q, c and β. We consider the left hand side of equation (2) as a function
of sa while g and so are fixed. Note that it is a convex function of sa. Since
sa ∈ [qg0, qg0 + qso], it suffices to show that equation (2) holds at the endpoints
sa = qg0 and sa = qg0 + qso.

If sa = qg0, the left hand side of equation (2) becomes

qαgα
0 − βqαgα

0 + βαgα−1
0 so + β(α − 1)gα

0 − csα
o

= (qα − βαq + β(α − 1))gα
0 + βαgα−1

0 so − csα
o

Taking derivative with respect to so, we get that this is maximized at so satisfying

csα−1
o = βgα−1

0 , and hence so =
(

β
c

)1/(α−1)

g0. Substituting this for so and
canceling gα

0 , it follows that we need to satisfy the following equation:

(qα − βαq + β(α − 1)) + β(α − 1)
(

β

c

)1/(α−1)

≤ 0. (3)

If sa = qg0 + qso, the left hand side of equation (2) becomes

qα(g0 + so)α − βqα(g0 + so)gα−1
0 + βαgα−1

0 so + β(α − 1)gα
0 − csα

o

= qα(g0 + so)α − β(qα − (α − 1))gα
0 − βα(q − 1)gα−1

0 so − csα
o

Setting so = x · g0 and canceling gα
0 , it follows that we need to satisfy

qα(1 + x)α − β(qα − (α − 1)) − βα(q − 1)x − cxα ≤ 0. (4)

We set q = 2 − (1/α) and β = c = qαηα−1 where η = 1 + α−1/(α−1).
With this choices of q, β and c, αq = 2α − 1 and equation (3) is equivalent
to qα − β ≤ 0, which is trivially true since η > 1. Similarly, equation (4) is
equivalent to (1+x)α −αηα−1 − ηα−1(α− 1)x− ηα−1xα ≤ 0 for all x ≥ 0. Since
α ≥ 1, it suffices to show that

(1 + x)α − αηα−1 − ηα−1xα ≤ 0. (5)

To see this, note that if we take the derivative of the left side of equation (5), we
obtain that the maximum is attained at x such that (1 + x)α−1 − ηα−1xα−1 = 0
and hence x = 1/(η−1). For this value of x, the left side of equation (5) evaluates
to 0 and hence the result follows.

Hence equation (2) is satisfied and the lemma follows.

Now our main theorem follows as a direct consequence.

Theorem 3. qOA is (2 − (1/α))α(1 + α−1/(α−1))α−1-competitive for general
α > 1.

For α = 3 this bound on the competitive ratio of qOA evaluates to (5/3)3(1+
1/
√

3)2 ≈ 11.52. This is substantially better than the previous best known bound
of 27 on the competitive ratio (which was for the algorithm OA). Note that for
large values of α, this bound on the competitive ratio of qOA is approximately
4α/(2

√
eα).

We now show that even better bounds on the competitive ratio of qOA can
be achieved in the cases that α = 2 and α = 3 by a careful choice of q and β.

Theorem 4. If q = 1.54, then qOA is 6.73-competitive for α = 3.

Proof. We follow the same proof structure as that for Lemma 6 to obtain the
inequalities (3) and (4). By putting α = 3, it follows that we need to satisfy:

(q3 − 3βq + 2β) + 2β
(

β

c

)1/2

≤ 0

q3(1 + x)3 − β(3q − 2) − 3β(q − 1)x − cx3 ≤ 0

We wrote a program to determine the values of q and β that minimize c. The
best values we obtained are q = 1.54, β = 7.78 and c = 6.73. It is easy to check
that the first inequality is satisfied. The left hand side of the second inequality
becomes −3.08x3 +10.96x2−1.65x−16.73. If we differentiate with respect to x,
and solve −9.2x2 +21.9x−1.7 = 0, we obtain that x = 0.1 or x = 2.3. Therefore,
the left hand side of the second inequality is maximized at x = 0.1 or x = 2.3,
which are negative in both cases. Hence (3) and (4) are both satisfied and the
lemma follows.

Theorem 5. If q = 1.5, then, qOA is 2.252-competitive for α = 2.

Proof. Set β = 2.2 and follow the same lines as the proof of Theorem 4.

6 Lower Bound for qOA

In this section, we show that qOA is at least 1
2qα4α(1 − 2

α)α/2 competitive. We
assume α is known and fixed, and qOA can optimize the choice of q based on α.
When α is large, this lower bound is about 1

2qαe4α. Hence, our analysis of the
competitive ratio of qOA in the previous section at least has the right growth
rate as a function of α. We consider the following job instance:

Job Instance: Let 1 > ε > 0 be some small fixed constant. Consider the input
job sequence where work is arriving during [0, 1 − ε] and the rate of arrival at
time t is

a(t) =
1

(1 − t)x
,

where x > 1
α is a constant (which will be set to 2

α later). All work has deadline
1. Furthermore, there is a job released at time 1− ε with work ε1−x and deadline
1. ��

We first bound the energy used in the optimal schedule.

Lemma 7. For the above instance, the optimal algorithm uses total energy at
most xα

xα−1
1

εxα−1 .

Proof. It suffices to give a schedule that completes all work with energy at most
xα

xα−1
1

εxα−1 . Consider the schedule that runs at speed a(t) during [0, 1 − ε] and
then runs at speed 1

εx during [1 − ε, 1]. We can easily see that this schedule
completes all work by deadline 1 and the energy usage of the schedule is∫ 1−ε

0

(a(t))αdt +
(

1
εx

)α

· ε =
∫ 1−ε

0

1
(1 − t)xα

dt +
1

εxα−1

=
[

1
xα − 1

1
(1 − t)xα−1

]1−ε

0

+
1

εxα−1

=
1

xα − 1
1

εxα−1
− 1

xα − 1
+

1
εxα−1

≤ xα

xα − 1
1

εxα−1

We now analyze the energy usage of qOA. We will lower bound the energy
used by qOA by the energy used by qOA during the time interval [1 − ε, 1]. In
Lemma 8 we bound the amount of work w remaining for qOA at time 1 − ε.
During the time interval [1− ε, 1], qOA behaves exactly how it would have if the
instance consisted only of one job with work w, release time 1− ε, and deadline
1. Lemma 9 bounds the energy used by qOA on such a one job instance. Lemma
10 then gives our lower bound on the energy used by qOA.

Lemma 8. For the above instance, qOA has x+q
x+q−1

1
εx−1 − 1

x+q−1εq units of work
remaining at time 1 − ε after the last job is released.

Proof. Let s(t) be the speed of qOA at time t ∈ [0, 1 − ε]. We note that s(t)
satisfies

s(t) = q ·
∫ t

0
a(y)dy − ∫ t

0
s(y)dy

1 − t
(6)

Solving the equation, we obtain

s(t) =
q

x + q − 1
1

(1 − t)x
− q

x + q − 1
(1 − t)q−1

We can verify it easily by showing that it satisfies (6). We also remark that this
is the unique solution for s(t). Then, the amount of work remaining at time 1−ε
after the last job is released is

∫ 1−ε

0

a(t)dt −
∫ 1−ε

0

s(t)dy + ε1−x

=
∫ 1−ε

0

(1 − q

x + q − 1
)

1
(1 − y)x

+
q

x + q − 1
(1 − y)q−1dy + ε1−x

=
[

1
x + q − 1

(1 − y)−x+1 − 1
x + q − 1

(1 − y)q

]1−ε

0

+ ε1−x

=
x + q

x + q − 1
1

εx−1
− 1

x + q − 1
εq

Lemma 9. Consider a job instance consisting of a single job with work w, and
deadline minus release time of �. The energy usage of qOA is qα

qα+α−1

(
w
�

)α
�.

Proof. Without loss of generality, we may assume that the release time is 0,
and the deadline is �. Let g(t) be the speed of qOA at time t for this single job
sequence. Then,

g(t) = q · w − ∫ t

0
g(y)dy

� − t

Solving the equation, we can obtain that

g(t) = q

(
�

� − t

)1−q (w

�

)

Then, the energy usage of qOA to complete the job is∫ �

0

(g(t))αdt = qα�(1−q)α
(w

�

)α
∫ �

0

1
(� − t)(1−q)α

dt

= qα�(1−q)α
(w

�

)α
[−1
qα − α + 1

(� − t)qα−α+1

]�

0

=
qα

qα − α + 1

(w

�

)α

�

We remark that for this single job instance, the energy usage of qOA is qα

qα−α+1
times that of the minimum possible one.

Lemma 8 and Lemma 9 we get a lower bound on the energy used by qOA
during the time interval [1 − ε, 1].

Lemma 10. The energy usage of qOA during [1 − ε, 1] is

qα

qα − α + 1

(
x + q

x + q − 1
1
εx

− 1
x + q − 1

εq−1

)α

ε.

Finally, we have the main theorem of this section.

Theorem 6. Let α be a known constant. For any choice of q, qOA is at least
1

2qα4α(1 − 2
α)α/2 competitive.

Proof. By Lemma 10, when ε tends to zero, the energy usage of qOA is at least
qα

qα−α+1

(
x+q

x+q−1

)α
1

εxα−1 . Together with Lemma 7, the competitive ratio of qOA
is at least

qα

qα − α + 1

(
x + q

x + q − 1

)α

· xα − 1
xα

≥ qα

qα

(
x + q

x + q − 1

)α

· xα − 1
xα

We put x = 2
α and the right hand side becomes 1

2qα

(
q(q+ 2

α)

q+ 2
α−1

)α

. To minimize it,
we note that

d

dq

q(q + 2
α)

q + 2
α − 1

=
(q + 2

α − 1)(2q + 2
α) − (q2 + 2q

α)
(q + 2

α − 1)2

Setting it to zero, we obtain that q2 + (4
α − 2)q + (4

α2 − 2
α) = 0 and q =

1− 2
α +

√
1 − 2

α (the other solution for q is negative and hence does not apply).
Putting it back, we obtain that the competitive ratio is at least

1
2qα

⎛
⎝ (1 − 2

α +
√

1 − 2
α)(1 +

√
1 − 2

α)√
1 − 2

α

⎞
⎠

α

=
1

2qα

⎛
⎝(1 +

√
1 − 2

α

)2
⎞
⎠

α

≥ 1
2qα

(
4

√
(1 − 2

α
)

)α

=
1

2qα
4α(1 − 2

α
)α/2

The inequality in the second step follows by using (a+b)2 ≥ 4ab. This completes
the proof.

References

1. http://auto.howstuffworks.com/question477.htm.
2. Grundfos Motor Book.
3. S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization.

In Lecture Notes in Computer Science (STACS), volume 3884, pages 621 – 633,
2006.

4. S. Albers, F. Müller, and S. Schmelzer. Speed scaling on parallel processors. In
Proc. ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages
289–298, 2007.

5. N. Bansal, D. Bunde, H.-L. Chan, and K. Pruhs. Average rate speed scaling. In
LATIN 2008, to appear.

6. N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage energy
and temperature. In Proc. IEEE Symp. on Foundations of Computer Science,
pages 520–529, 2004.

7. N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and tem-
perature. JACM, 54(1), 2007.

8. N. Bansal and K. Pruhs. Speed scaling to manage temperature. In STACS, pages
460–471, 2005.

9. N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow time. In SODA
’07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 805–813, 2007.

10. D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyukto-
sunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook. Power-aware
microarchitecture: Design and modeling challenges for next-generation micropro-
cessors. IEEE Micro, 20(6):26–44, 2000.

11. H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, and P. W. H. Wong.
Energy efficient online deadline scheduling. In SODA ’07: Proceedings of the eigh-
teenth annual ACM-SIAM symposium on Discrete algorithms, pages 795–804, 2007.

12. W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for dynamically
variable voltage processors. In Proc. ACM-IEEE Design Automation Conf., pages
125–130, 2003.

13. M. Li, B. J. Liu, and F. F. Yao. Min-energy voltage allocation for tree-structured
tasks. Journal of Combinatorial Optimization, 11(3):305–319, 2006.

14. M. Li, A. C. Yao, and F. F. Yao. Discrete and continuous min-energy schedules for
variable voltage processors. In Proc. of the National Academy of Sciences USA,
volume 103, pages 3983–3987, 2006.

15. M. Li and F. F. Yao. An efficient algorithm for computing optimal discrete voltage
schedules. SIAM J. on Computing, 35:658–671, 2005.

16. H. C. N. Bansal, K. Pruhs. Speed scaling with a solar cell, submitted.
17. K. Pruhs. Competitive online scheduling for server systems. SIGMETRICS Per-

formance Evaluation Review, 34(4):52–58, 2007.
18. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.

In Proc. IEEE Symp. Foundations of Computer Science, pages 374–382, 1995.
19. H. Yun and J. Kim. On energy-optimal voltage scheduling for fixed priority hard

real-time systems. ACM Trans. on Embedded Computing Systems, 2(3):393–430,
2003.

