
RC24464 (C0801-010) January 11, 2008
Computer Science

IBM Research Report

Case Study: CFI-enabled Application Development
Leveraging Community Resource

Zhou Xin, Liu Ying, Su Hui, Zhang Xin
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, 100094

P.R.China

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Case Study: CFI-enabled Application Development Leveraging

Community Resource

Zhou Xin, Liu Ying, Su Hui, Zhang Xin

周欣, 刘英, 苏辉, 张欣
IBM China Research Lab,, Beijing 100094, China, {zhouxin, aliceliu, suhui, xinzh}@cn.ibm.com

Abstract: The abundant development resource in open community is promising to be a flexible and effective approach for relieving the
enterprise’s IT resource shortage. CFI (Call-For-Implementation) development method is proposed to facilitate leveraging open community
resources in commercial application development by addressing the specific challenges: how to divide the whole implementation task into
many smaller pieces so that each community developer can conveniently work on one piece and how to prevent the community developer
from learning key knowledge embedded in the to-be implemented application. This paper reports our study on applying the CFI
development method to a SOA application. The hypothesis to be validated in the study, the experiment approach, the data collected during
the study and the result analysis are presented. Also problems to-be further explored are discussed.
Key words: Open community, Call for implementation, SOA, Knowledge protection, Work dispatch
CLC number：TP391 Document code: A Article ID :

1 Introduction

IT applications are playing increasingly critical role in
supporting an enterprise’s daily business. With the rapid
growth of business, more and more new IT applications are
required to be ready in very tight time schedule, which
demands increasingly larger IT development team. However,
the development resource in an enterprise cannot always
grow accordingly due to budget and/or management
limitation. Such status entails an approach to help
smoothing out the development resource issue.

Numerous open-source software development practices
reveal that there are abundant development resources in
open community and they are able to delivery software
varying from small utilities (like log4j[1], dom4j[2]) to
large scale products (like Apache[3], Eclipse[4]).
Leveraging open community resources, including campus
students, programming fans, software amateurs, etc., seems
to be promising for relieving current enterprises’ resource
pressure. Actually, some commercial companies have
experienced this by involving in and incubating some
open-source software projects and sharing the copyrights
[4][5]. However, little case can be found that open
community resource is leveraged to develop commercial
applications. One major reason is that companies worry that
their critical knowledge is prone to be exposed to open
community resource. Also, the lack of effective work
dispatching approach makes it very hard to use a large

number of open community resources in parallel for tight
development schedule.

CFI (Call-For-Implementation) development method is
proposed to facilitate leveraging open community resource
in commercial application development by addressing the
specific problems including work dispatch and knowledge
protection. With this method, the work of developing an
application can be partitioned into many smaller work tasks
so that open community developers can work on the tasks
independently and conveniently. Meanwhile, key
knowledge embedded in the application is identified and
analyzed to apply appropriate protection mechanisms (like
reserving, pretending and/or separation). As a result, the
developer can hardly learn the key knowledge from the
assigned work task. The benefit of CFI is supposed to be
two-fold. First, the development duration can be
dramatically reduced by leveraging a large number of
developers in parallel. Secondly, the key knowledge is at a
lower risk of exposure. To validate the hypothesis, we
conduct a case study on applying the CFI method to the
development of a SOA application – HR (Human Resource)
with community resource. The paper reports our case study
process and result analysis.

The rest of the paper is organized as follows. Section 2
introduces what major problems CFI method addressed and
how. Section 3 gives the background of the application
developed in the case study. In section 4, the experiment
process and the data collection approach are introduced. The
results are presented and analyzed in section 5. Section 6

summarizes some related works, and section 7 concludes
the paper and presents the future works.

2 CFI Method Overview

Figure 1 [6] outlines the major participants and
activities involved in a CFI-guided application development
project (we call it CFI project for brief in the remaining part
of the paper).

Figure 1: CFI Method Overview

The participants of a CFI project fall into two groups:
one is in-house team and the other is community team. The
in-house team includes project manager, requirement
analyst, application designer, application integrator and so
on. The in-house team members are usually the regular
resource of an enterprise. They own the project’s key
knowledge and control the project. Besides the traditional
development activities (requirement analysis, business
design, architecture design, quality assurance, etc.), they
should also take CFI specific activities like CFI partition,
CFI integration.

The community team is a virtual team, including all the
open community developers who work for this CFI project.
They are not the owner of the project but are only hired to
conduct the implementation work for lower cost and shorter
development cycle. Keeping the community team away
form the project’s key knowledge during implementation is
one of CFI’s major concerns.

CFI partitioning technology is the first key to enable
the CFI method. It partitions the design of an application
into multiple smaller work tasks. Each work task will be
specified and then distributed to an individual community
developer for independently implementation without
learning the whole picture of the project. The granularity of
CFI work task can be very flexible according to community
resources available, application characteristics and the
knowledge protection requirement.

Knowledge protection technology is another key to
enable the CFI method. It analyzes the characteristics of the
to-be protected knowledge and how the knowledge is
embedded in application design. Based on the analysis,
individual knowledge protection mechanisms, like reserving,

pretending, and separation, are selected, combined and
applied to appropriate to-be distributed work tasks. With the
proactive protection, key knowledge is at a low risk of
exposure to open community developers.

As stated above, CFI method focuses on dealing with
the challenges special for community-based commercial
application development. It also leverages best practices
from existing software development method, like RUP, XP,
to form a holistic method. For instance, in order to reduce
the quality risk due to the implementation work partitioning
and the distribution to the community, CFI method adopts
and enhances the quality assurance process of RUP [7].

3 HR Application Overview

The application developed in our experiment is a SOA
system that realizes simplified payroll management and
recruiting function. We call it HR (Human Resource)
application for convenience in the paper. HR application
includes 11 major functions, including user management,
organization management, payroll template management,
payroll structure management, payroll process, payroll
reporting, vacancy management, application management,
interview management, notification template management,
and recruiting reporting.

The representation layer of this application consists of
109 JSP[8] pages and 181 Struts[9] actions. The business
logic layer consists of 11 SCA (Service Component
Architecture)[10] components. The data access layer
consists of 26 SCA components. The data persistence layer
consists of 26 tables. The representation, business logic and
data access layers are all implemented with CFI approach,
and the size of outcome source code is 28271 SLOC.

During the CFI development, Websphere Integration
Developer 6.0.2 is used as the development tool and the
application is finally deployed on Websphere Application
Server 6.0.

4 Experiment Approach

We take the empirical study approach to investigate
how CFI method can help community-based commercial
application development. First of all, we define a set of
metrics that link to our hypothesis about the CFI method.
The metrics will guide data collection and analysis in the
study. We define the detailed process for the study based on
CFI method, and form an in-house team that includes 7 IBM
employees and a community team with 43 college students.
The students have average Java application development
skill and have been trained to use technologies required by
the HR application implementation. Also, the data
collection approach is designed and data collection
supporting tools are built.

4.1 Hypotheses and Metrics

The CFI method is intended to guide the
community-based commercial application development.
Applying this method, we expect the implementation
duration will be greatly shortened as many community
developers can implement in parallel and the key
knowledge can be proactively protected from being learnt
by community developers. Meanwhile, we don’t expect that
the overall application development effort is increased as
extra effort is brought by CFI method (like CFI partition,
CFI specifying, etc). For above hypotheses validation, we
will observe the whole study process to record some facts
and collect necessary data, and comparing the collected data
with the reference data in industry or standard.

In order to effectively collect data from the study for
the hypotheses validation purpose, we follow a widely
adopted goal oriented measurement method - GQM
(Goal-Question-Metric) [11] to design metrics, which are
presented in table 1, 2, 3 and 4 by category.

Table 1: Product Size Metrics
Object Metric Definition

Requirement Number of use case

Number of UI page

Number of Struts Action

Number of SCA component

Number of SCA interface

Design

Number of DB table

Line of JSP code

Line of Struts Code

Implementation

Line of SCA code

Table 2: Process Metrics
Object Metric Definition

Requirement Analyst Number

Requirement Analysis Duration

Requirement Analysis

Requirement Analysis Effort

Designer Number

Design Duration

Design

Design Effort

CFI Preparation Person Number
CFI Preparation Duration

CFI Preparation (knowledge

protection, partition,

specification) CFI Preparation Effort

CFI Implementer Number

CFI Implementation Duration

CFI Implementation

CFI Implementation Effort

CFI Integrator Number

CFI Integration Duration

CFI Integration

CFI Integration Effort

Project Manager Number

Project Management Duration

Project Management

Project Management Effort

Table 3: Knowledge Protection Metrics
Object Metric Definition

Exposed Knowledge Percentage Without

Protection
Exposed Knowledge Percentage With Protection

Community

Developer

Actually Learned Knowledge Percentage

4.2 Experiment Process
* The CFI method Application Design
In the experiment, only in-house team members involve

in the application design activity. Firstly, the
implementation technologies are determined: JSP and struts
are selected to implement the application’s representation
layer, SCA is selected to implement the business logic layer
and data access layer, DB2 is selected to implement the data
persistence layer. Based on the technology decision, the
design is performed in following sequence: UI page design
first, then database table design first, then data access
component/interface design, then business logic
component/interface design, and finally action design. The
application design is actually the same as that in traditional
non-community-based development.

* Knowledge Protection
In the HR application, we regard the position

application process (as shown in Figure 2) in recruiting
function as the key knowledge to-be protected.

Submitted

Resume Review Passed

N-round
Interview

Hired

N-round
Interview Passed

N(N+1) round Interview Preparation

[Manager]
Review
Resume

[Recruiting Admin]
Arrange Interview

[Interviewer]
Input

Interview
Result

[Recruiting
Admin]
Arrange
Interview

[Manager]
Review
Resume

[Interviewer]
Input
Interview
Result

[Applicator] Submit Application

Resume
Review
Failed

N-round
Interview
Failed

[Interviewer]
Input Interview Result

Legend: status Transition [] Actor

Figure 2: Position Application Process

To quantitate the knowledge of this process for
convenient knowledge protection and evaluation, we set the
weight of each status as 1 and set the weight of each
transition as 2. As there are 7 statuses and 8 transitions in
the position application process totally, the quantitative
knowledge of the process is 23 (i.e. 7*1 + 8*2 = 23).

Then we analyze each design element for the key
knowledge implied by it. For instance, JSP page
“NewInterviewArrangement” implies two position
application statuses: “N-round Interview Passed”, “Resume

Review Passed”, and two transitions: “N-round Interview
Passed -> N(N+1)-round Interview Preparation” and
“Resume Review Passed -> N(N+1)-round Interview
Preparation”. So the quantitative knowledge for this design
element is 6 (i.e. 2*1 + 2*2 = 6). Then the knowledge
percentage implied by the this JSP page is 6/23 = 26%

After all design elements are assigned a quantitative
knowledge, we set the knowledge value as a property of
each design element and it will be used in later CFI partition
phase. In that phase, we will make the design elements
embedding key knowledge distributed to as many work task
as much so that each work task will not reveal too much key
knowledge.

* CFI partition and specification
In CFI partition phase, in-house team divides the task

for implementing all the pages, actions, business logic
components and data access components into multiple
smaller work tasks, so that each community member can
take one work task and complete it. Our partition criteria
include balanced key knowledge exposure of each task,
balanced work load of each task and loose coupling between
any work tasks. We have developed a tool to facilitate the
CFI partition, which is implemented a RSA plugin. To
perform the partition, in-house team firstly describes all the
design elements and their inter-relationship with a UML
class diagram. In the diagram, each design element is
denoted as a class with according stereotype from CFI
profile. For instance, a jsp page is denoted as a class with
stereotype <<JSP Page>>, and a business component
“InterviewManagement” is denoted as a class with
stereotype <<SCA Component>>. Then, in-house team set
the partition granularity and the partition tool automatically
partitions the whole work into 43 work tasks. The CFI work
tasks are distributed to the community group for
implementation. In average, each task includes 2.3 JSP
pages, 4 actions and 1.7 SCA interfaces. The average task
effort is 36.6 person hours.

The partition tool also generates a preliminary
specification for each task based on the design information.
For instance, the implementation environment required for
performing the task, the name and parameters of the
operations to be implemented, are generated by the tool by
default. Besides, in-house team supplements more contents
to the specification, including UI style, code convention,
unit test demand, etc.

* CFI Implementation
After the CFI partition is complete and the specification

for each work task is ready. Community group members
prepare the required implementation environment, import
required common libraries, and start their work strictly
following the given specification. During the
implementation, community members can communicate

with in-house team for further task clarification and
necessary technical support. However, we prohibit the
communication among community members for knowledge
protection purpose.

Unlike traditional distributed implementation, none of
the community group members can access the whole design
and implementation. They are only given the necessary
interfaces implemented by other instead of the code details,
which for sure brings challenges to the individual’s
debugging and unit testing. Fortunately, we leverage a
technology called “surrogate” [12] to smooth the issue.

* CFI Integration
The integration work is performed by in-house team

based on the HR application design. Then, the integration
testing is performed. Once a defect is found during the
testing, the in-house team will investigate the reason and fix
it with necessary help from according community
implementer.

4.3 Data Collection Approach
In order to collect all kinds of data during the case

study for later analysis, the activities we perform include:
- Establishing rules for in-house team and community

team to make sure that size of the non-code work products
(requirement, design…) is recorded and reported by the
generator.

- Establishing rules for in-house team and community
team to make sure that everyone reports the actual efforts
spent on each CFI activity.

- Developing a daily log tool to collect effort. With the
tool, in-house team members and community team members
can report their effort by disciplines (e.g. requirement,
analysis and design, test, implementation, etc) and
sub-categories (e.g. CFI partition, CFI specification, CFI
implementation, etc).

- Designing a questionnaire to test community team
member’s understanding of protected key knowledge.

- Designing a questionnaire to get experienced project
managers’ estimation about HR application’s development
effort.

- Using Eclipse Metric plug-in to calculate the size of
HR application source code.

5 Experiment Analysis

The measurement collected during the experiment
according to our predefined metrics and the further analysis
are presented as below:

5.1 Product Size
Product related size measurement is summarized in

Table 4, which include requirement size, design size and
implementation size.

 Table 4: Product Size Measurement
Object Metric Definition Measurement

Requirement Number of use case 62 (Unit)
Number of UI page 109 (Unit)
Number of Struts Action 181 (Unit)

Number of SCA
component

37 (Unit)

Number of SCA
interface

75 (Unit)

Design

Number of DB table 26 (Unit)
Line of JSP code 8989
Line of Struts code 6977

Implementatio
n

Line of SCA code 12305
All the implementation codes are new written codes

without reuse. We calculate the total size of implementation
as sum of JSP code line plus, Struts code line and SCA code
line, i.e. 28271 lines. To be mentioned here is that about
50% SCA code is automatically generated by Websphere
Integration Developer 6.0.2, so only 6152 lines of SCA
code is actually written manually by implementers.

5.2 Process Effort
Process related measurement collected in this

experiment is summarized in Table 5, which includes the
number of persons involved in each application
development phase, the duration of each phase and effort
spent on each phase.

Table 5: Process Measurement
Object Metric Definition Measurement

Requirement Analyst
Number

2 (Persons)

Requirement Analysis
Duration

2.5 (Weeks)

Requirement
Analysis

Requirement Analysis
Effort

244 (PHs *)

Designer Number 5 (Persons)
Design Duration 3 (Weeks)

Design

Design Effort 490 (PHs)
CFI Preparation Person
Number

5 (Persons)

CFI Preparation
Duration

2 (Weeks)

CFI
Preparation

CFI Preparation Effort 390 (PHs)
CFI Implementer
N b

43 (Persons)
CFI Implementation
Duration

1 (Week)
CFI
Implementatio
n

CFI Implementation
Effort

1575 (PHs)

CFI Integrator Number 5 (Persons)
CFI Integration Duration 3 (Weeks)

CFI
Integration

CFI Integration Effort 417 (PHs)

Project Manager
N b

1 (Person)
Project Management
Duration

12 (Weeks)
Project
Management

Project Management
Effort

542 (PHs)

(* PH is PersonHour)
To analyze the experiment result, we perform a survey

on 12 experienced project managers by sending them the
HR application design documents and a questionnaire. The
purpose is to get their estimation about the total
development effort, to get their experience on the
appropriate number of persons assigned to each
development phase and the duration of each phase given the
number of persons are involved.

* Total effort analysis
Total effort spent on the whole HR application

development equals to the sum of requirement analysis
effort, design effort, CFI preparation effort, CFI
implementation effort, CFI integration effort and Project
Management effort, i.e. 3658 PHs.

Table 6: Experienced PM’s Estimation about the Effort
Estimated Effort Number of PMs

giving the estimation

1680 (PHs) 1
2160 (PHs) 1
2400 (PHs) 4
3600 (PHs) 5
6000 (PHs) 1

The survey result on total HR application development
effort estimation is shown in Table 6. It shows that the
actual total effort 3658 PHs spent in the experiment is very
close to 3600 PHs estimated by 5 of the 12 experienced
PMs.

* Project management effort analysis
The percentage of project management effort on total

development effort is 542/3658 = 14.8%. Compared to the
reference percentage 11% from RUP [7], this value is
higher.

The survey result on the saturated implementers for HR
application implementation is shown in Table 7.

Table 7: PM Estimated Saturated HR Application
Implementers

Saturated
Implementers

Number of PMs
giving the suggestion

0-4 3
5 3
10 5
20 1

We presume coordinating and communicating with the
community group much larger than a typical
implementation group causes the higher project
management effort.

* Productivity analysis
ISBSG (International Software Benchmarking

Standards Group) investigates 196 java projects developed
from 2000 to 2005 and gets an average productivity data:
12.87 Function Points/100Hours. [13]

To compare with the benchmark, we calculate the
productivity in this study as:

- The manually written source code size is 8989 + 6977
+ 6152 = 22118 lines.

- According to the empirical data “1 FP (Function Point)
equals to 46 lines of java code” [14], the function points of
HR application is 22118 / 46 = 481 FPs.

- So the productivity of the HR application case is 481 /
3658 *100 = 13.1 Function Points/100Hours.

The result indicates that productivity of the HR
application case is very close to the benchmark.

5.3 Knowledge Protection Measurement
Knowledge protection measurement collected in the

experiment is presented in a column diagram as shown in
Figure 3. The x axis represents 43 community developers
and y axis represents the knowledge percentage. Black
column represents the knowledge exposure percentage to
each community developer after using proactive knowledge
protection mechanism. Grey column represents the actual
learned knowledge percentage by each community
developer after the CFI implementation. White column
represents the knowledge exposure percentage to each
community developer supposing we don’t use any proactive
knowledge protection mechanism, which we assume should
be 100%.

Figure 3: Knowledge Protection Measurement

In figure 3, we can find that 12 of 43 community
developers are assigned work tasks containing the to-be
protected key knowledge, and other 31 developers are not.
Among the 12 developers, 4 of them finally learn exactly
the same knowledge as we let them know, and 8 of them
actually learn more than our expectation. But none of the
developers learn the whole protected process, which is
supposed to be 100% exposed to every community

developers without protection. We also interview the 8
developers and find the major reason for their extra
understanding of the protected knowledge - association of
ideas. As the recruiting process to-be protected in our
experiment is not very complex and complies with a
person’s common understanding about a general recruiting
process, it’s possible to make successful guess about more
statuses and transitions based on the given ones.

5.4 Discussion
Based on the experience gained during the case study

and the analysis on the experiment result, we come to
following understandings:

- The HR application is developed in our experiment
with a new development mode that a large number of
community developers are leveraged for implementation.

- CFI development method and the supporting tool are
successfully applied from end to end in this experiment to
guide the very challenging activities: work dispatch,
knowledge protection.

- In this case, CFI can reduce the implementation
duration without sacrificing the overall development effort.

- In this case, CFI can guide protecting the key
knowledge although it’s still not as good as expected.

Through the experiment, we also acquire other
interesting findings worth further investigating:

- As so many community developers contributes code
to a single application, their diversity on coding skill,
coding experience, coding custom makes the application
harder to understand and maintain by others.

- It’s not an easy task to effectively and efficiently
communicate with such a large community group for
prompt CFI development support.

- The community developers are found and trained in
advance. So it’s relatively easy to guarantee their skill and
quality. But a more real situation is that enterprises need to
find matched resource from community in a short time.
How to effectively select community resource and how to
handle the mismatch are still questions.

6 Related Works

TopCoder[15], RentACoder[16] and Guru[17] are three
mainstream platforms that support leveraging community
resource for software development. We summarize their
characteristics in table 8.

All of them provide a community resource pool, and
their task-resource matching approaches, like work history,
feedback, rank…, can be leveraged by CFI method. For
work dispatch, we don’t find any hints indicating that they
can help partitioning a large work into smaller pieces for
many developers to develop in parallel. As to the
knowledge protection, they all require community
developers to sign NDA (Non Disclosure Agreement). But
this solution cannot absolutely stop violation since it’s hard

to forcing people to keep secret once they have learnt
something. And when violation happens, enterprises need to
spend significant time and cost on the lawsuit, which
damages their normal business more or less. So the
proactive protection technology presented by CFI provides a
good supplement.

Table 8: Summary on TopCoder, RentACoder, Guru

7 Conclusion and Future Work

This paper presents an experimental study for
CFI-enabled application development leveraging
community resource. The experiment approach is expatiated
and the experiment result is analyzed. The result validates
our hypotheses:

- It’s possible to make a large volume community
developers implement a single application in parallel.

- The application implementation duration can be
greatly shortened without sacrifice the overall development
effort.

- The key knowledge can be proactively protected from
being learnt by community developers.

- Presently, it’s still imprudent to generalize the
promising findings to other cases although it might be quite
expectable.

In the future, we are going to experiment the new
development mode and CFI method in more kinds of
applications. Meanwhile, we will further refine the CFI
method and supporting tool for community developer’s
diversity management, communication facilitation and
task-resource matching.

Acknowledgements
We would like to thank Chen Hao, Niu Xuesong, Ye

Hong, Xiong Yueda, Guo Anhui, Liu Hehui for their help
on the experiment. We thank the project managers for
participating in our survey. We also thank all the in-house
team members and community team members.

References:
[1] http://logging.apache.org/log4j/1.2/index.html
[2] http://www.dom4j.org/
[3] http://www.apache.org/
[4] http://www.eclipse.org/
[5] http://www.mozilla.org/
[6] Liu Ying, Feng Chenhua, Zhao Wei, Su Hui, Liu Hehui, A Case

Study on Community-enabled SOA Application Development,
IEEE International Conference on Service-Oriented Computing
and Application.

[7] Kruchten, P., Rational Unified Process – An Introduction,
Addison-Wesley, 1999

[8] http://java.sun.com/products/jsp/
[9] http://struts.apache.org/
[10] http://www.ibm.com/developerworks/cn/webservices/ws-sca/
[11] Basili, G. Caldiera, and HD Rombach, The Goal Question

Metric Approach, Encyclopedia of Software Engineering, pp.
528-532, John Wiley & Sons, 1994

[12] Zhong Jie Li, Jun Zhu, He Yuan Huang, Thomas Li, A
simulation apparatus in service-oriented development, patent
file number: 200710091775.4

[13] http://www.isbsg.org
[14] T. Capers Jones, Estimate Software Cost, McGraw-Hill Osborne

Media, 2007
[15] http://www.topcoder.com
[16] http://www.rentacoder.com
[17] http://www.guru.com

http://logging.apache.org/log4j/1.2/index.html
http://www.dom4j.org/
http://www.apache.org/
http://www.eclipse.org/
http://www.mozilla.org/
http://www.ibm.com/developerworks/cn/webservices/ws-sca/
http://www.isbsg.org/
http://www.topcoder.com/
http://www.rentacoder.com/
http://www.guru.com/

	5.2 Process Effort
	5.3 Knowledge Protection Measurement
	5.4 Discussion
	7 Conclusion and Future Work
	Acknowledgements

