
RC24466 (W0801-045) January 14, 2008
Computer Science

IBM Research Report

SPIRIT: Service for Providing Infrastructure
Recommendations for IT

Ashwin Lall
University of Rochester

Anca Sailer, Mark Brodie
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

SPIRIT: Service for Providing Infrastructure Recommendations for IT

Ashwin Lall
University of Rochester

Anca Sailer
IBM Research

Mark Brodie
IBM Research

Abstract

We present SPIRIT, aService forProvidingInfrastructure
Recommendations forInformationTechnology. SPIRIT al-
lows maintenance support providers for Small-to-Medium
Businesses (SMBs) to recommend solutions which are stan-
dardized (SMBs usually cannot afford customized IT so-
lutions), flexible (accommodating as much as possible the
customer’s existing IT environment), and cost-effective (min-
imizing the cost of upgrading the customer’s environment).
SPIRIT works by first aligning the customer’s IT infras-
tructure with a “template” describing the best practices
recommended by the maintenance support provider. This
step is done using an efficient graph algorithm that finds
the most cost-effective transformations of the customer’s
environment that are consistent with the template. Then,
the aligned environment can be upgraded by choosing from
a standard set of well understood, highly automated (and
therefore economical) options. We show that the algorithm
performs well on both real and synthetic data.

Introduction

A Small-to-Medium Business (SMB), defined as having
less than 1000 employees, usually cannot afford the ele-
vated cost of highly customized IT applications and infras-
tructure. If an SMB customer needs to modify their IT in-
frastructure in order to correct a problem, or to maintain
or improve over-all service availability and quality, their
IT maintenance service provider needs to recommend so-
lutions that (1) minimize the risk of unavailability by mini-
mizing the number of changes needed in the customer’s en-
vironment and by increasing automation, (2) maximize the
benefit of applying the resolution, and (3) can be shown to
be cost-effective for both the customer and the maintenance
service provider.

In the past, IT maintenance service providers’ efforts
were mostly related to fixing their customers’ hardware and
software problems in isolation. Modern enterprise environ-
ments increasingly demand more sophisticated support that
considers the whole IT infrastructure and its interdepen-
dencies. For instance, in a multi-tier e-commerce system
(see Figure 1), upgrading the application server may ben-
efit the application business logic and fix its issues at the

risk of introducing end-to-end performance degradation due
to database overload or incompatibility. Existing solutions
that enable maintenance support to provide more elaborate
resolutions to the customer are primarily directed at specific
resolution niches. For instance, performance problem reso-
lutions focus mainly on run time provisioning [5], capacity
planning [10, 11], or limiting traffic access [7, 8] in order to
satisfy the service level agreements for the incoming traf-
fic. Solutions related to cost-effective resolutions focuson
optimization through server and storage consolidation [6,
13]; the goal is to move from a large number of servers to a
smaller number. There are many approaches to problem res-
olution and cost optimization, however these do not provide
a holistic maintenance service approach involving multiple
resolution types for a given problem, nor do they optimize
across different resolutions. Maintenance deals with a wide
range of problem resolutions and what is needed is a way
of comparing different possible resolutions in terms of their
cost, benefit and risk, for both the customer and the mainte-
nance support provider.

This paper seeks to address these issues. Specifically,
methods are provided which examine failure notifications
(both proactive and reactive), resolution rules, dependency
constraints between IT subsystems, IT product costs, and
best practices IT infrastructure templates to (1) optimizefor
the customer the cost-benefit ratio of the resolutions sug-
gested by the maintenance provider and (2) minimize the
service cost for the maintenance provider. At the heart of
our methodology is the need to optimally align the cus-
tomer’s infrastructure with a “best practices” template. To
do this, we formulate an optimization problem and present
an algorithm to solve it efficiently.

Providing optimal cost-benefit recommendations

SPIRIT, our methodology for providing the customer with
optimal recommendations, includes twooff-lineprocedures
and twoon-lineprocedures. The off-line procedures collect
and pre-process data that is then used in the on-line phase.
The off-lines procedures are discussed first, followed by the
on-line procedures.

Off-line procedures and golden templates

The two off-line procedures arecollect andpre-process
(see Figure 2). The data gathered during thecollect phase

Figure 1. Complex e-commerce IT environment.

Figure 2. SPIRIT includes two off-line procedures and two on -line procedures. Our focus is on the
on-line alignment procedure.

include (i) remedies recommended to solve known prob-
lems — these can be obtained from manuals [3, 4], web
sites [1], or forums [12], (ii) costs of the products supported
by the maintenance service provider (these costs, which in-
clude direct costs like product cost, operations cost, admin-
istration cost and change cost, and indirect costs like down-
time cost, are typically available for TCO calculation [17]),
and (iii) IT constraints and dependencies known to exist be-
tween products supported by the maintenance service provider.

Thecollect phase is also used to build an IT configura-
tion template describing a specific aggregation of best prac-
tices IT configurations recommended by the maintenance
service provider, which we refer to as a “Golden Template”
(GT). A maintenance provider may use different GTs, in-
dividualized per industry or per customer type. Figure 3
illustrates the GT used in our experiments.

A GT includes IT dependencies and constraints that re-
flect the best practices configuration templates supported by
the maintenance provider. The bold nodes in Figure 3 iden-
tify the products supported by the maintenance provider
considered in our experiments. Examples of GT products
and their dependencies are: “Web application server M ver-
sion a.b.c works with database server N version x.y.z”; “Web
application server M version a.b.c works on Linux Suze ver-
sion n.m.” The solid arrows in Figure 3 indicate such con-
figuration dependencies. Lack of an arrow indicates either
an unfeasible configuration or a constraint on a potential de-
pendency that is unsupported.

A special type of configuration constraints are the classes
of equivalence rules that indicate which products provide
similar functionality. Examples of classes of equivalence
rules are: “Web application servers are: WebLogic, JBoss,

WAS v5, v6 DB2 v7, v8

Access

Cloudscape

Oracle
Windows IIS

Apache Http Sv

JBoss

Tomcat

WebLogic

DB2 v8, v9WAS v6, v7

System ISystem PSystem X

VM

OS400

AIX

Linux

Windows

System Z

Solaris

HP-UX

Dell Intel

SunWeb

SUN AMD

Figure 3. Example of Golden Template as a specific instantiat ion of best practice IT infrastructure.

JRun, Tomcat,” “Database servers are: DB2, Access, dBase,
MySQL, Oracle, SyBase.” In Figure 3, the nodes clustered
together belong to the same class of equivalence.

Configuration conflicts are another potential type of con-
straint. Examples of software conflict constraints are: “Win-
dows Defender has issues on Windows Vista,” “Websphere
AS v5 on AIX conflicts with Oracle Web Services Man-
ager.” Finally, dependencies like amount of RAM, hard
drive or CPU required by particular products, which need to
be summed up on each machine, are indicated by the dashed
arrows in Figure 3. Note that not all valid dependencies and
constraints are shown in Figure 3 for visibility reasons.

The second off-line procedure ispre-process. Here the
operations for performing common tasks such as software
products installation, configuration, upgrade, migrationand
troubleshooting, particularly for simple problem resolutions,
are standardized and automated — this is the advantage of
having a GT instead of customized IT solutions, since the
automated operations can be made cost-effective and their
benefit evaluated. It is only because the GT reduces the
number of possibilities so drastically that it is even feasi-
ble for us to consider automation of all these tasks. Doing
this in thepre-processoff-line procedure, prior to run time,
reduces the run time labor cost of the maintenance service
and the time to repair the problem.

On-line procedures and cost-benefit opti-
mization

The core of SPIRIT consists of the two on-line steps,
align andselect— see Figure 2. The on-line procedures
take place after a problem reported by a customer (or, proac-
tively, a potential failure) has been identified and the root
cause determined. In the first step SPIRITaligns the cus-
tomer’s current IT infrastructure with the maintenance ser-
vice’s supported products by making the customer’s infras-
tructure consistent with the provider’s GT, using the mini-
mum number of changes and taking into account any spe-
cial customer restrictions. Aligning the customer’s IT in-

frastructure with the GT is a key facet of our solution. It
helps to match the SMB customer’s cost expectations and
minimize the maintenance provider service cost. This opti-
mized migration is the major challenge for the maintenance
service provider because of the multiple potential customer
restrictions, e.g., minimum costs of changes, minimum or
no changes of the products directly related to their applica-
tions, software restrictions, etc. Moreover, this optimization
is the key enabler of the optimized remedy recommenda-
tions service since it makes possible the use of the auto-
mated remediation operations built off-line for the GT.

We discuss how this step is performed in greater detail
in the following sections.

Note that most IT infrastructures rely on redundancy at
any of the stack layers, e.g., application, middleware, hard-
ware. In such cases, we consider for the migration opti-
mization only the base pattern of the IT infrastructure, with
unique products, rather than the whole IT environment with
duplicates. The results of the alignment are applied seam-
lessly to all the infrastructure products, duplicates or not.
Our focus in the rest of the paper is on the solution for this
alignment of the base pattern of the IT infrastructure to the
maintenance provider GT and the generation of the opti-
mized target customer infrastructure(s).

The second on-line step consists ofselectingfrom the
multiple identified resolutions for all target infrastructures
the optimal ones, from a cost-benefit tradeoff perspective.
The advantages of our solution for the customer are that for
each resolution option the recommended resolution is opti-
mized with respect to the cost and benefit of the resolution;
also the customer can compare and choose between a range
of resolution options based on their cost and benefit. The
advantage of our solution for the maintenance support ser-
vice lies in reducing the maintenance cost by first aligning
the customer’s IT infrastructure to one of a limited num-
ber of best practices templates and then applying the cho-
sen resolution using a standardized, highly-automated, and

inexpensive process.

Formulation

In this section we formally introduce the notation and
formulate the problem of aligning the customer’s IT envi-
ronment with a GT.

Notation

We represent our universe of objects as

V =
⋃

i

Ci,

where theCi are pair-wise disjoint classes. Each class rep-
resents a set of objects that can be substituted for one an-
other and designates a class of equivalence as described in
the previous section.

We are given the GT graphG = (V, E), which expresses
the relationships between objects inV . An example of such
a graph is given in Figure 3.

We are also given the customer environment as a graph
S = (V ′, E′), whereV ′ is the setV with some objects ap-
pearing zero or more times. That is, for any nodev ∈ V , V ′

may havek copies of this node represented asv1, . . . , vk,
for somek. We will refer to these as separateinstancesof
the same object. Since a particular product may appear sev-
eral times in the customer environment (e.g., there may be
multiple copies of WAS v6 running on different machines),
we use this concept of instances to distinguish them. The
dependencies in the customer environment can be obtained
using an automatic dependency discovery tool [2].

Objects within a class can be substituted for one another,
and for this we define asubstitution cost functioncalled

c : V × V → R,

wherec(v1, v2) = ∞ for v1 andv2 in separate classes. In
practice, this function will have the property that, for allx,
c(x, x) = 0 (since there is no migration cost when there
is no product change). The substitution cost is computed
by taking into account all relevant costs, such as product
costs, administration costs, downtime costs, and weighting
them appropriately to reflect the customer’s preferences or
criteria of optimization; e.g., if the customer requires that
particular products not be changed, their substitution cost
can be made very large. We extend the cost function to the
domainV ′

× V ′, treating each instance identically to the
original.

Lastly, we have anedge cost function

e : V ′
× V ′

× V × V → R

which represents the cost of replacing a link between two
objects in the customer’s current environment by a link be-
tween two objects in the GT. It has the property that ifx′ is

an instance ofx andy′ is an instance ofy, thene(x′, y′, x, y) =
0. That is, if the pair remains unchanged, there is no edge
cost.

Note that the substitution and edge costs are among the
data collected in the off-line phase of SPIRIT described
above.

Problem Statement

Our goal is to transform the current customer environ-
ment graphS to a target graphT by replacing some vertices
in S by objects in the corresponding class. The constraint
that we place uponT is that every edge in it must also be
an edge in the GT graphG. Our goal will be to find the
minimum cost transformation (assuming that one exists).

More formally, we want to find a functionf : V ′
→ V

that re-labels the vertices ofS in such a way that, for every
edge(v1, v2) ∈ E′, we have that(f(v1), f(v2)) ∈ E, and
such that the total cost

∑

v∈V ′

c(v, f(v)) +
∑

(u,v)∈E′

e(u, v, f(u), f(v))

is minimized.

Algorithm

This problem can be shown to be NP-complete (we omit
the proof here due to lack of space). Since it is unlikely that
a polynomial-time solution will be possible for it, we shift
our focus to methods that efficiently prune the search space.
We propose a heuristic algorithm for the problem that in
practice gives the optimal solution quickly (assuming that
one exists), but for which we cannot guarantee a running
time any shorter than the brute-force algorithm.

First, let us introduce terminology from graph theory. A
cut vertex(or articulation vertex) is one whose removal,
along with all its incident edges, results in a disconnected
graph (see Figure 4). This type of vertex has been stud-
ied extensively in the theory of building robust networks.
Of course, an arbitrary graph need not have a cut vertex —
any graph that does not contain a cut vertex is calledbi-
connected.

Our algorithm exploits the fact that the customer graphs
we look at are very far from bi-connected, meaning that they
tend to have many cut vertices. Note that any graph that has
a vertex of degree one must have a cut vertex. In our setting
such vertices often occur since the individual machines are
linked with their operating system only. More generally, it
is usually possible to partition the functionality of different
clusters of machines along one (or a few) vertices. The em-
pirical results section confirms the common presence of cut
vertices in our target customer environments.

Figure 4. The cut vertex (in light gray) discon-
nects the dark nodes from the white ones

Although cut vertices are undesirable in networking (since
they represent a single point of failure, disconnecting the
network), they are useful to us because they are a simple
means by which to split the problem for large graphs into
smaller, more manageable sub-problems. Our algorithm
iterates through the vertices of the customer environment
graphS, identifying each cut vertex and the relative size of
the sub-graphs it cuts the original graph into. We want to
find a cut vertex that splits the original graph into two sub-
graphs as close in size as possible. By doing this, we can re-
duce the larger problem to two smaller problems of roughly
even size and solve them recursively. A naive way to iden-
tify cut vertices in a graph is to iterate over the vertices and
test, for each vertex, whether removing it disconnects the
graph, which can be done inO(n(n + m)) time, wheren
is the number of vertices andm the number of edges in the
graph. However, there are more efficient algorithms known
that can identify cut vertices inO(n + m) time [9].

Once the best cut vertex is found (with ties broken ran-
domly), we split the graph into two sub-graphs, each includ-
ing a copy of the cut vertex and its edges to that sub-graph.
Then, we map the vertex to each object in its equivalence
class. We recursively solve the problem on the two induced
sub-graphs. If there is a feasible solution for both the sub-
graphs, then we stitch the graphs back together, compute
the cost of the solution using thec ande cost functions as
shown in the Formulation section, and compare the cost of
this solution to the best so far.

The search problem is further simplified by the fact that
every edge in the target graphT must also be an edge in the
GT G, constraining the possibilities for each vertex. As we
try different possibilities for a cut vertex, we appropriately
prune the list of possible objects at each of its neighbors. If
the set of possible objects for a neighbor of the cut vertex
gets pruned down to a single element, we recursively prune
its neighbors. This, too, reduces the search space consider-
ably.

For graphs that do not have a cut vertex (i.e., bi-connected
graphs) and graphs that are smaller than a certain size (e.g.,
4 vertices), we resort to the naive depth-first search to ex-
haustively find the solution. In the worst case, our algorithm

Algorithm 1 The Cut Vertex Algorithm

CutSearch(G, c, e)
1: if G is small or has no cut vertexthen
2: Run the brute-force algorithm and return its result.
3: else
4: Search for the cut vertexv that minimizes the differ-

ence in size of the two induced sub-graphs.
5: Let Cv be the class of vertexv.
6: for eachv′ ∈ Cv do
7: Split G into two sub-graphsG1 andG2 alongv

and re-label vertexv with v′.
8: Make recursive calls CutSearch(G1, c, e) and

CutSearch(G2, c, e).
9: If both graphs have solutions, put both solutions

together to get a solution forG, and compare the
cost to that of the best solution so far.

10: end for
11: Return the best solution found.
12: end if

does not find a cut vertex for the original graph and is iden-
tical to brute-force depth-first search. The exact algorithm
is given in Algorithm 1.

Our recursive solution always returns the optimal solu-
tion since it is guaranteed to give the optimal solution for
the sub-problems. (A formal proof can be given by induc-
tion — we omit it here.)

To give an idea of the improvement of our algorithm over
the simple brute-force alternative, we analyze it assuming
that we are always able to find a cut vertex in each graph
that splits the graph into equal-sized sub-graphs. Of course,
we can give no guarantee that such a cut vertex exists, but
empirically we find cut vertices to be common.

Let n be the number of vertices inS, let k be the maxi-
mum size of the equivalence classesCi, andd the maximum
degree of any vertex inS. Then the upper bound on the run-
ning time of a naive depth-first search isO(kn).

Let T denote the running time of our algorithm. Then
we get the recursive relationship

T (n) = 2kT (n/2) + O(dn),

since we split the graph into two equal-size sub-graphs (tak-
ing time O(dn)) and try k possibilities for the cut vertex
in both the sub-graphs. Solving this recursion, we get that
the running time of our algorithm isO(kdn1+log

2
k), which

is polynomial inn, assuming that the maximum number of
possibilities for any vertex is constant. This is a huge poten-
tial improvement over the naive exponential-time solution.

Finally, note that our algorithm can be generalized from
a single cut vertex to sets of vertices (e.g., identifyingpairs
of vertices the removal of which disconnects the graph).
However, we decided not to pursue this direction because of

the additional overhead in the resulting algorithm together
with the efficiency of the simpler single cut vertex algo-
rithm.

Empirical Results

We implemented our optimization algorithm, along with
the naive depth-first search solution, and tested the perfor-
mance of both algorithms. All the experiments were run
on a 1.59 GHz Intel Pentium processor with 1 GB of RAM
running Windows XP.

The environments that we considered were those of a
typical SMB eCommerce infrastructure: several machines
running HTTP Servers connected to Application Servers,
which in turn were connected to multiple databases. Both
real as well as synthetically-generated IT infrastructures were
used to test SPIRIT.

Test Data

To run our experiments we need two types of data. First,
we need the constraint and cost data for the specific envi-
ronment, describing which software products are compat-
ible with one another, what the cost of moving from one
software/OS/machine to another is, and the cost of config-
uring softwares with one another (e.g., installing WAS v6
on Windows, or configuring WAS v5 with DB2 v7). We
manually collected this data from various websites and IBM
Redbooks, using plausible estimates for missing values.

We also need examples of IT infrastructures that are not
compatible with the GT, so that we can apply SPIRIT to
compute how to optimally migrate them to fit the GT. To
this end, we obtained two real environments from labs in
IBM (one of which is shown in Figure 5).

Next, we generated input customer environments syn-
thetically. This allows us to test the algorithm on many dif-
ferent examples, and to study its performance with varia-
tion in problem size. For a fixed graph size, some of the
nodes were designated machines, and an operating system
and one or more middleware or applications were placed
on them randomly. Then, valid dependencies between the
middleware and applications were added randomly, ensur-
ing that the dependencies were realistically plausible. The
resulting graph in each case was an environment in an ar-
bitrary state (perhaps with incompatible software) that we
could now transform to fit the GT.

Evaluation Metrics

To compare our optimization algorithm against the sim-
ple brute-force approach, we make use of two metrics:pro-
gram execution timeandnumber of configurationssearched.

Theprogram execution timeis simply the wall-clock time
that the algorithm took to find the optimal solution. The

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 12 14 16 18 20 22 24

T
im

e
(s

ec
on

ds
)

Number of nodes

CutSearch
DFSSearch

Figure 6. Running times (y-axis in log scale)

number of configurationsis the total number of sub-graphs
solved in each case. These two metrics give different per-
spectives on the comparison of the algorithms. The first
gives the actual time that the algorithms take to run, taking
into account all the processing done to set up the recursions.
The second counts only the actual feasible configurations
encountered, and hence is more independent of the imple-
mentation of the algorithms.

Experimental Results

We first examine the performance of our optimization al-
gorithm on a real environment. In Figure 5 we show how
our algorithm transforms the existing environment into one
that is consistent with the GT. Although the costs of mak-
ing individual changes are not shown here, this transforma-
tion is the optimal migration possible. Next, we use syn-
thetically generated environments to study what happens as
the number of nodes in the customer environment varies.
We generate synthetic environments with different numbers
of nodes, i.e., varying numbers of machines, operating sys-
tems, and middleware. For each problem size that we stud-
ied, we generated one hundred environments and computed
the metrics’ average across them.

In Figure 6 we see the variation in the amount of time
both algorithms take. Note that the y-axis is in log scale.
When the synthetic environments reach about two dozen
nodes, the brute-force approach takes close to an hour to
complete. Our algorithm, on the other hand, consistently
finishes in under a second.

Similarly, if we compare the number of configurations
considered, our algorithm performs several orders of mag-
nitudes better, as illustrated in Figure 7.

Recall that we had earlier claimed that the environments
that we are interested in have many cut vertices. The aver-
age number of cut vertices is shown in Figure 8. The graph
looks like a step function because the number of cut ver-
tices is proportional to the number of machines in the envi-

(a) Original environment (b) After alignment

Figure 5. Optimal alignment of a real environment (base patt ern only, duplicates not shown)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 12 14 16 18 20 22 24

N
um

be
r

of
 c

on
fig

ur
at

io
ns

Number of nodes

CutSearch
DFSSearch

Figure 7. Configurations tried (y-axis in log
scale)

ronment, which was made to increase at regular intervals in
the number of nodes. Additionally, we found that less than
one percent of the graphs that we generated did not have
a cut vertex. Hence, for the type of graphs that are likely
to arise in customer environments, there are typically many
cut vertices.

Related Work

As discussed earlier, most existing solutions have nar-
row applicability, such as run time provisioning [5], capac-
ity planning [10, 11], restricting traffic access to maintain
service level agreements [7, 8], and server and storage con-
solidation [6, 13]. SPIRIT, on the other hand, has broad
applicability to the entire customer environment. Addition-
ally, SPIRIT provides multiple resolution options, each with
cost/benefit tradeoffs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10 15 20 25 30 35 40

N
um

be
r

of
 c

ut
 v

er
tic

es

Number of nodes

Figure 8. Number of cut vertices

In [15], a similar problem is addressed in the context of
migration in Service Hosting Environments. The solution
proposed is to use a model, called the System Service Con-
figuration Model, to describe the dependencies and config-
uration parameters. SPIRIT avoids dependence on a model
(which may need to be updated frequently) by making use
of automatic tools such as the Tivoli Application Depen-
dency Discovery Manager (TADDM) [2] to obtain its data.

Cut vertices are commonly studied with the view of re-
moving them from the network [14, 16]. A distributed mech-
anism is proposed in [14] to remove cut vertices from an
overlay network. In [16], a network-design process is pre-
sented that builds networks with high connectivity by avoid-
ing cut vertices. To the best of our knowledge, the discon-
necting property of cut vertices has never been exploited to
simplify a graph search problem by facilitating recursion on
smaller sub-problems.

Conclusion and future work

We presented a maintenance service method for offer-
ing optimal resolution options for issues in the customer’s
IT environment. In order to provide the most suitable so-
lution for the customer’s business, information such as, but
not limited to, the cost, benefit and complexity of change is
evaluated by SPIRIT for each resolution option and the op-
timal cost-benefit resolutions are provided to the customer
for selection. Additionally, we limit the range of potential
resolutions by aligning the customer’s IT infrastructure to a
limited number of best practices templates, thus enhancing
the reliability of the customer’s environment and reducing
the maintenance cost.

The advantages of SPIRIT for the customer are that for
each resolution option the recommended resolution is opti-
mized with respect to the cost and benefit of the resolution.
The advantage of SPIRIT for the maintenance support ser-
vice lies in reducing the maintenance cost by first aligning
the customer’s IT infrastructure to one of a limited num-
ber of best practices templates and then applying the cho-
sen resolution using a standardized, highly-automated, and
inexpensive process.

In this paper we focus on the alignment step of SPIRIT,
presenting an algorithm that solves this hard problem effi-
ciently with a heuristic graphical algorithm. We show that
the algorithm performs well by performing experiments on
both real and synthetically generated environments.

REFERENCES
1. IBM Support. http://www.ibm.com/support/troubleshooting/us/en/.
2. TADDM. http://www.ibm.com/software/tivoli/products/taddm/.
3. DB2 Warehouse Management: High Availability and Problem

Determination Guide. SG24-6544-00, Redbook, 2002.
4. Websphere application server v6 problem determination for

distributed platforms. SG24-6798-00, Redbook, 2005.
5. C. Adam, R. Stadler, C. Tang, M. Steinder, and M. Spreitzer. A

service middleware that scales in system size and applications. In
Integrated Network Management, 2007.

6. M. Badaloo. An examination of server consolidation: trends that can
drive efficiencies and help businesses gain a competitive edge.White
paper on IBM Global Services, 2006.

7. B. Callaway and A. Rodriguez. Enable XML Awareness in
WebSphere Extended Deployment With WebSphere DataPower
SOA Appliances.White Paper on IBM developerWorks, 2006.

8. Y. Diao, J. Hellerstein, and S. Parekh. Stochastic modeling of Lotus
Notes with a queueing model. InComputer Measurement Group
International Conference, 2001.

9. S. Even.Graph Algorithms. W. H. Freeman & Co., New York, NY,
USA, 1979.

10. M. Goldszmidt, D. Palma, and B. Sabata. On the quantification of
e-electronic commerce. InEC, 2001.

11. E. Hubbert and J.-P. Garbani.Sustaining Application Performances:
The Capacity Planning Software Market. Forrester Research, 2007.

12. IBM Website. Forums and community.
http://www.ibm.com/developerworks/.

13. A. Kochut, K. Beaty, and N. Bobroff. Dynamic placement ofvirtual
machines for managing SLA violations. InIntegrated Network
Management, 2007.

14. X. Liu, L. Xiao, A. Kreling, and Y. Liu. Optimizing overlay
topology by reducing cut vertices. InACM NOSSDAV, 2006.

15. Q. Ma, Y. Li, K. Sun, and L. Liu. Model-based dependency
management for migrating service hosting environment. InIEEE
International Conference on Services Computing, 2007.

16. K. T. Newport and P. K. Varshney. Design of survivable
communications networks under performance constraints.IEEE
Transactions of Reliability, v. 40, 1991.

17. T. Pissello.The Business Value of HP-UX 11i: HP-UX 11i on
Integrity Servers vs. IBM AIX 5L on eServer. Alinean Inc., 2006.

