
RC24471 (W0801-084) January 22, 2008
Computer Science

IBM Research Report

Zazen: A Mediating SOA between Ajax Applications
and Enterprise Data

Avraham Leff, James T. Rayfield
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Zazen: A Mediating SOA Between Ajax Applications and Enterprise Data

Avraham Leff
IBM T.J. Watson Research Center

POB 704
Yorktown Heights, NY, USA

avraham@us.ibm.com

James T. Rayfield
IBM T.J. Watson Research Center

POB 704
Yorktown Heights, NY, USA

jtray@us.ibm.com

Abstract

One reason that enterprises are adopting service-
oriented architectures (SOA) is to develop applications
more quickly by packing – and then reusing – applica-
tions and data assets as services. Service encapsu-
lation of implementation details is an important fea-
ture, and contributes to the loosely-coupled nature of
a SOA. From this perspective, SOA data-services seem
incompatible with AJAX frameworks which presume
a great degree of client-side control of an applica-
tion’s data. For their part, AJAX frameworks promise
to increase web-application performance by reducing
the number of interactions between the browser and
server. Caching server data on the web-client is a well-
known technique for achieving this goal, but implies
that enterprise data is exposed to client-side develop-
ers.

This paper presents ZAZEN, a SOA that mediates
between the need to encapsulate enterprise data as
a service and the needs of AJAX developers who
want more control of their application’s data. We de-
scribe ZAZEN’s server-side architecture and discuss
two APIs to the data-service: a REST API, and an
implementation of the DOJO data APIs for relational
databases.

1. Introduction

Much of the benefits of service-oriented architec-
tures (SOA) can be attributed to its emphasis on using
service interfaces to encapsulate applications and data
assets [7] [18]. In the context of data-services, a web-
service interface is defined with technologies such as

WSDL, and then implemented to provide access to a
back-end data systems such as a relational or XML
database [2]. However, the emphasis on SOA encapsu-
lation – coupled with traditional enterprise resistance
to exposing data assets to web-clients – would seem
to preclude the use of enterprise data in AJAX applica-
tions.

AJAX frameworks [13] [12] promise to increase
web-application performance by reducing the num-
ber of interactions between the browser and server.
Caching server data on the web-client is a well-known
technique for achieving this goal [20], since the ap-
plication can access data locally rather than having to
access the server. Because relational data is such an
important part of enterprise applications, many frame-
works have been devised to integrate relational data
in AJAX applications [21] [22] [4]. This capability al-
lows web-applications to be dynamically composed in
a web-browser – so-called “Web 2.0” applications [23]
– rather than being composed on the server (“Web
1.0”). These AJAX frameworks, however, presume that
enterprises are willing to expose their database assets
directly to web-developers, rather than being encapsu-
lated as a SOA data-service.

We believe that, in certain contexts, a data-service
SOA can provide AJAX applications with the enter-
prise data they need, in a way that fits well with
the AJAX programming style. Our data-service SOA,
called ZAZEN, is designed for use-cases in which AJAX

applications only need access to a:

• single source of data (unlike data-services that
provide integration of multiple data-sources such
as ALDSP [1]),

1

• and where the enterprise provides a relational ac-
cess layer to the data.

In such contexts, ZAZEN enables AJAX applications to
access server-side relational data while still providing
enterprises with the SOA benefits of encapsulation and
loosely coupled systems.

In Section 2 we take a closer look at the concerns
that SOA data-services have with AJAX applications
seeking greater access to enterprise relational data.
The core of the paper is Section 3, where we show
how the ZAZEN SOA enables enterprise to project data
to web-applications in an AJAX style, while satisfying
key concerns of SOA data-services architecture. We
discuss two client APIs to the ZAZEN SOA: a REST

API and a higher-level DOJO API. Section 4 presents
an example of using the ZAZEN data-service to build
an application, and Section 5 evaluates how success-
fully ZAZEN encapsulates enterprise data as a service.
We conclude with a discussion of ZAZEN’s current sta-
tus and ways that we may extend ZAZEN in the future.

2. Enterprise Concerns

To see why enterprises resist projecting relational
data to AJAX applications, consider the well-known
ODBC approach [14]. (Although the ODBC approach
was originally written for non-web programming lan-
guages and environments, its design extends naturally
to the web and AJAX applications.) To pick a sim-
ple example, assume that a web-application is used
to display “all employees in a given department”. In
the ODBC approach, web-developers use the following
steps to access the required server-side relational data:

1. The developer specifies the required data in terms
of the corresponding SQL statement, e.g., SELECT

* FROM DEPARTMENT.

2. The sql statement is passed to a client-side API,
typically written in JavaScript, to be executed by
the database server.

3. A client-side JavaScript library converts the API
call into an XML or JSON message that is trans-
mitted to the server in an XmlHttpRequest invo-
cation.

4. This message is interpreted on the server and a
server-side API is invoked to execute the SELECT

* FROM DEPARTMENT against the server-side
database (after authenticating the client’s creden-
tials).

5. The server-side API packages the result of the
SQL statement in XML or JSON format and sent
to the client.

6. The client-side library passes the result to the ap-
plication that initiated the request.

7. Either the client-side library or the application
can cache the employee data so that subsequent
requests – e.g., to sort the data in different ways –
can be accommodated without another round-trip
to the server.

The advantages of the ODBC approach (e.g.,
[21] [22] [4]) are two-fold: (1) it is powerful, allowing
any SQL statement to be executed and (2) it is a well-
known approach that has been incorporated in many
language specific implementations (e.g., JDBC for Java
and PDO for PHP). However, important concerns are
typically expressed with using this approach.

First – and most important from a SOA perspec-
tive – the ODBC approach forces an enterprise to ex-
pose much detail about the employee data. For ex-
ample, the web-developer has to know the name of
the database, the name of the employee table, and
the schema used in the employee table (e.g., column
names and types). This requirement runs counter to
the SOA requirement of service encapsulation. In ad-
dition to this “generic” SOA concern, database admin-
istrators are specifically concerned about the security
of ODBC-based data-services.

At first glance, it is hard to understand why the
authentication scheme used by ODBC (often just a
userid and password) for desktop application access
to a database server, should not also suffice – at least
in an intranet environment – for web-client access to
the same database server. Even in an internet envi-
ronment, where insecure communication is definitely
an issue, technologies such as SSL can be used to en-
crypt client-server communication as necessary. Sim-
ilarly, concerns that the ODBC approach requires that
developers be provided with important details about
database table schema, are hard to understand given
that desktop developers are provided with precisely
this information.

A closer look shows that the key difference between
desktop and web applications is the security issue of
“trusted code”. Authentication schemes prove only
that a trusted person is executing the code. They do
not prove that a trusted person wrote the code. Com-
pared to a server-based application, it is much easier
to inject malicious code into a Web 2.0 client applica-
tion, and enterprises are therefore very wary about let-
ting client-side business logic execute directly against
their databases. In addition, database servers do not
usually have fine-grained access-control mechanisms.
Typically the database does not have a userid defined
for each end-user of the system, but only a userid for
each role that might access the database. Also, access
to tables is typically granted on a per-table basis, and
not on a per-row or per-column basis. Thus the appli-
cation code is typically heavily involved in verifying
that only authorized users have access to only the data
they are authorized to see (in addition to the access
control provided by the database manager).

3 Zazen

3.1. Architecture

To address these valid enterprise concerns, we de-
signed ZAZEN (Figure 1) as a data-service SOA that
mediates between AJAX applications and enterprise
data.

In contrast to the ODBC approach, ZAZEN uses a
labeled SQL approach. The idea is to label an SQL

statement such that:

• Web-developers supply the SQL statement’s label.
The data returned by ZAZEN is the result-set gen-
erated by executing the corresponding SQL state-
ment.

• Database administrators optimize the SQL for
their particular environment, and validate it using
their enterprise’s security policies.

• As shown in Figure 1, the ZAZEN server medi-
ates between web-client requests – which spec-
ify a given label – and the database server – that
executes the SQL associated by the web-client’s
label.

ZAZEN addresses an enterprise’s encapsulation con-
cerns since the labeled SQL is a higher level abstrac-
tion than SQL itself. The label – e.g., “all employ-
ees in my department” – in effect names the service,
with the associated SQL providing the service imple-
mentation. (We examine this claim in more detail in
Section 5.) The SQL statements are not limited to
providing rows from a single database table; they can
provide JOIN results from multiple tables or from op-
erations of arbitrary complexity. The result-set sent
by ZAZEN to the web-client can be cached locally in
the browser, so web-developers exploit the benefits of
the AJAX approach. ZAZEN addresses an enterprise’s
security concerns because web-developers don’t even
see the SQL that they’re executing; database adminis-
trators continue to solely responsible for constructing
and validating all SQL that executes in their system.
Clients can be prevented from knowing even the col-
umn names through SQL that maps real names to vir-
tual names.

3.2. REST API

By “black-boxing” a chunk of server-side relational
database logic as a function that can be called by appli-
cations, a labeled SQL statement is, in effect, a stored
procedure. Stored procedures have advantages com-
pared to ODBC APIs, and database administrators of-
ten prefer that they be used even in a desktop appli-
cation environment. Stored procedures integrate data
validation and access control into the database, and al-
low multiple SQL statements, together with business
logic, to be combined in a single package. ZAZEN

must therefore provide an API for web-clients to pa-
rameterize a labeled SQL statement. For example,
if the invoked SQL is SELECT * FROM EMPLOYEES

WHERE SALARY < :MIN SALARY, the API must al-
low clients to specify a value for the labeled param-
eter MIN SALARY. We do this with a synchronous
REST [9] [16] protocol. As with other REST protocols,
ZAZEN clients construct a URI which is passed to the
server in an HTTP GET method. Thus, as shown in
Figure 1, whenever a web-application needs relational
data it constructs the appropriate REST message based
on the API requirements and send the message to the
ZAZEN server.

Every ZAZEN URI has the form: https:

RDBStore
(Dojo.data.read
implementation)

updateMap()

Zazen
Servlet

Build
Results

Database
ServeronComplete

REST API

JDBC

Web Browser

Zazen ServerBrowser application

Dojo.data

Figure 1. Zazen Architecture

//.../statement_label?parameter1=
value1[&...&]parameterN=valueN. Some
parameters are mandatory: e.g., the name of the
database against which the labeled SQL statement
is applied, and the user name and password used
to authenticate the web-client. Depending on the
requirements of a given labeled SQL statement, the
URI will also include a parameter name/value pair
for every labeled parameter in the corresponding SQL

statement.
Other optional URI parameters allow the client to

specify filter parameters that sub-set the contents of
the result-set in various ways. This ability addresses a
major weakness of the labeled SQL approach, namely
that it’s too inflexible for environments with rapidly
changing application requirements. For example, as-
sume that an enterprise has determined that clients

with suitable credentials may see the set of employ-
ees in a given department via a labeled SQL statement
that invokes SELECT * FROM DEPARTMENT. What if
an application needs only manager Smith’s employees
rather than the entire department’s employees? Re-
quiring the enterprise to create a new labeled SQL

statement to match such application-specific needs is
unrealistic. The alternative forces web-developers to
invoke the more general statement, and then filter “by
hand” to get the desired subset of data. Doing this cor-
rectly and efficiently is hard. The ZAZEN solution ex-
ploits the fact that – assuming that a more general SQL

statement is secure – security is not compromised by
allowing clients to issue a query that returns a subset
of the more general query. We do this with filter oper-
ations that reduce the number of rows returned by the
query, and/or subset the number of columns returned

in each row.
In the ZAZEN API, therefore, a web-client speci-

fies a “base” query (via the labeled SQL), and can also
specify a set of filters that ZAZEN applies to the result
set of the base query. Continuing the previous exam-
ple, the client can specify these filters:

• WHERE MANAGER = ’SMITH’, to reduce the
number of rows returned by the base query for
the entire department

• COLUMNS DEPTNO and DEPTNAME, to eliminate
the MANAGER column which is already known to
be Smith

We use a similar approach to enable clients to spec-
ify that certain columns be used to perform an as-
cending or descending sort of the result-set. Thus,
to specify that values of the department number be
used to sort the results in ascending order, the client
inserts SORTATTRIBUTE0=DEPTNO and ORDERAT-
TRIBUTE0=ASC into the URI. ZAZEN implements
other filters (such as COUNT – instructing ZAZEN to re-
turn only “count” rows from the result set – and START

– instructing ZAZEN to discard a preliminary set of
rows) itself.

Importantly, ZAZEN’s approach of packaging a
data-service as a labeled SQL statement works for data-
services other than query. The semantics of the ser-
vice are determined by the SQL itself. As part of the
process of validating the SQL, database administrators
determine which REST “verb” (or HTTP method [16])
will be associated with a given labeled SQL statement.
Our SELECT * FROM DEPARTMENT example is as-
sociated with a GET method; SQL such as UPDATE

EMPLOYEES SET DEPT = ’R56’ WHERE LAST NAME

=’SMITH’ would be associated with a POST method.
Similarly, DELETE FROM EMPLOYEES WHERE SSN =
’012-34-5679’ is invoked with a DELETE method,
and INSERT INTO EMPLOYEES (NAME, SSN) VAL-
UES (’JOHN DOE’, ’012-34-5678’ is associated with
a PUT method.

3.3. DOJO API

The REST API described in the previous section
has the benefit of being a well-understood approach
for client access to web-services. It’s disadvantage

lies in that, from the perspective of a web-developer,
it requires some effort to translate the high-level re-
quest for data into the correct REST call. We there-
fore provide a second, higher-level API to the ZAZEN

SOA. This is a relational-datastore implementation of
the datastore-agnostic DOJO.READ API, and is struc-
tured as a mapping between DOJO’s higher-level API
and ZAZEN’s lower-level REST API.

We chose to implement the DOJO.READ API (rather
than designing our own) for two reasons. First, the
DOJO API is well-integrated into the framework’s
widget [5] libraries. Second, “Dojo.data is a uni-
form data access layer that removes the concepts of
database drivers and unique data formats. All data is
represented as an item or as an attribute of an item.
With such a representation, data can be accessed
in a standard fashion.” [6]. This representation is
consistent with ZAZEN’s representation of a result-set
as a JSON [19] object containing metaData (an array
of column names) and resultSet objects. The resultSet
is an array (of DOJO.READ “items”), in which each
item’s property names are the metaData column
names (DOJO.READ “attributes”). An item’s attribute
values are thus a result set row’s column values. The
bulk of our DOJO.READ implementation is a thin
wrapper that manipulates the “eval-ed” JavaScript
object returned by the ZAZEN API. For exam-
ple, store.getAttributes(someItem)
returns the column names for a given row;
store.getValue(someAttribute,
someItem) returns the row’s value for the specified
column.

DOJO already provides implementations for XML,
JSON, and other data-stores; ZAZEN’s RDBStore is an
implementation for relational data-stores. An RDB-
Store instance is a client-side handle to a relational
database, and is initialized with the server-side ZAZEN

URL. The fetch() method is an event-driven, asyn-
chronous, method which may specify – in addition to
the query itself – the following optional parameters:

• an onBegin function, invoked immediately be-
fore processing the query’s items,

• an onItem function, invoked individually on
each item,

• an onComplete function, invoked after all the
items have been processed,

• onError function, invoked if an error is in-
voked.

In addition, optional start, count, and sort parameters
can also be specified.

The DOJO.READ “does not specify the syntax or se-
mantics of the query itself”: these are supplied with
the query parameter. RDBStore requires that the query
parameter include the database name, user name, pass-
word, and a label that specifies a ZAZEN labeled SQL

statement. If the labeled SQL includes named param-
eters, the query parameter includes two arrays that
specify the ith parameter name and value. The RDB-
Store instance uses the query parameter to construct
the corresponding server-side ZAZEN URI, and asks
the server to return the specified result-set. The end-
to-end flow between web-application and the database
server is shown in Figure 1).

4. Mashup Example

To get a sense of how the ZAZEN SOA is used,
we’ll describe how we built a sample application
that integrates data from the Environmental Protection
Agency’s Facility Registry System into a map web-
application. We’ll describe the steps used to build the
application from the perspective of an AJAX developer.

“The Facility Registry System (FRS) is a centrally
managed database that identifies facilities, sites or
places subject to environmental regulations or of envi-
ronmental interest.”[11] The FRS database stores data
such as a facility’s name, phone number, and geo-
graphic coordinates. The AJAX developer wants to
build a web-application in which facilities are layed
out in a “zoomable” map, and through which users can
click on a given facility to get more information about
that facility – i.e., a classic “map mashup”.

1. The AJAX developer constructs an HTML form
into which users specify an address or geographic
coordinates.

2. The form is linked to JavaScript code which uses
a map API (e.g., Google Maps [15], or ESRI [8])
to build a zoomable map that’s centered on the
user-specified coordinates.

3. Because FRS allows its data to be exported in
CSV format [10], large amounts of data are

easily imported into a relational database. A
database administrator loads the FRS data into
three database tables: hospitals, frs, and schools.

4. The ZAZEN data-services SOA is now used to
bridge the gap between the client portion of the
sample (the left-most portion of Figure 1) and
the database server (the right-most portion of Fig-
ure 1).

A database administrator first validates SQL such
as SELECT * FROM HOSPITAL WHERE ((LATI-
TUDE > :MINLAT AND LATITUDE < :MAXLAT)
AND (LONGITUDE > :MINLONG AND LONGI-
TUDE < :MAXLONG)). This SQL provides a ser-
vice API through which users request all hospital
facilities located in a geographical area defined
by max/min latitude and max/min longitude pa-
rameters. Next, the administrator associates this
SQL with a label such as “epa hospitals query”.

5. The AJAX developer adds an RDBStore instance
to her application, configuring it to access the
ZAZEN server. The map selected by the user is
accessed to determine the bounds of an area that
will plausibly be large enough to hold the current
map plus another zoom factor (so the application
can cache data to satisfy future requests without
another request to the server). Code-sample 1
shows how the DOJO.READ fetch() method is
invoked on the RDBStore, which in turn, invokes
the ZAZEN data-service.

This is done by passing the SQL statement la-
bel (e.g., “epa hospitals query”), together with
the database name, user name, and password to
the RDBStore. The RDBStore invokes the ZAZEN

data-service asynchronously to populate the map
with markers corresponding to the set of facil-
ity items returned by the service. The markers
are positioned on the latitude and longitude spec-
ified by the facility data, with the bulk of the in-
formation (e.g., telephone number) cached in the
RDBStore. When users click on a given facility
marker, the web-application accesses the RDB-
Store to display a popup containing this cached
information.

Code Sample 1 Using the DOJO.READ API to Access the ZAZEN Data-Service
/** Invokes the zazen data-service with a query against the EPA database.

*
* @param epaSample instance of this class.

* @param epaType one of ’hospitals’, ’schools’, ’frs’

* @param sw south-west GLatLng of the rectangle for which we want data

* @param ne north-east GLatLng of the rectangle for which we want data

*/
this.fetchEPAData = function(epaSample, epaType, sw, ne)
{
var keywordArgs = initKeywordArgs(epaType);
keywordArgs.bindParams(sw.lat(), ne.lat(), sw.lng(), ne.lng());
keywordArgs.startFetchTime = new Date().getTime();
keywordArgs.epaType = epaType;

keywordArgs.onBegin = function (size, request) {
request.stopFetchTime = new Date().getTime();
request.startProcessingTime = new Date().getTime();

};

keywordArgs.onComplete = function(items, request) {
var epaType = request.epaType;
epaSample._numberOfItems[epaType] = items.length;
epaSample._fetchMillis[epaType] = request.stopFetchTime - request.startFetchTime;

for (var i=0; i<items.length; i++) {
var item = items[i];
var position = buildLatLng(epaSample.getRDBStore(), item);
var marker = epaSample.createMarker(position, epaSample, item, epaType);
epaSample._markers.push(marker);

}

markerManager.addMarkers(epaSample._markers, minZoom);
markerManager.refresh();

};

keywordArgs.onError = function(errData, request) {
setErrorPage(’Problem fetching data from EPA Database table ’+epaType+

’: ’+errData);
};

epaSample.getRDBStore().fetch(keywordArgs);
};

5. Evaluation

ZAZEN differs from other data-service SOAs
in that its services are not formally defined (e.g.,
using WSDL), and because it’s missing features
such as integration of multiple back-end data-
stores(e.g., [1]). ZAZEN is designed for rapid-
development of departmental-sized applications
whose data is typically stored in a single relational
database. Importantly, such environments often lack

the resources for IT architects to formally define,
and implement, a service. We contend that, in such
environments, the productivity benefits offered by
ZAZEN’s light-weight service definition outweigh its
disadvantages.

ZAZEN is unusual in that the service implementa-
tion is wholly specified in SQL, unlike other services
that access relational databases only for data, and pro-
vide business logic in a programming language such as

Java or PHP. Although relational algebra can be very
powerful [3], from this perspective, ZAZEN may be
viewed as providing a lower-level service than the typ-
ical SOA. However, although this paper has focused
on ZAZEN’s encapsulation of single SQL statements,
ZAZEN can be used – using exactly the same configu-
ration – to invoke a stored procedure [17] – via stan-
dard APIs such as JDBC. This means that server-side
developers can use ZAZEN to provide AJAX develop-
ers with access to encapsulations of arbitrary amounts
of business logic, written in a high-level programming
language, and interleaved with any number of SQL

statements.

6. Status & Future Work

ZAZEN is currently implemented using a Java
Servlet as the front-end of the ZAZEN server, and uses
JDBC to access the database-server tier. We provide a
JavaScript implementation of the DOJO.READ API that
AJAX developers can load into their web-application.
As shown in Figure 1, the JavaScript library translates
dojo.data.api.read.fetch() calls into invo-
cations of the corresponding ZAZEN REST API.

Although the REST API (Section 3.2) enables de-
velopers to both read and write data, our DOJO imple-
mentation only provides a read-data capability (Sec-
tion 3.3). The next step is to implement DOJO.WRITE

as well, taking care to ensure that security concerns
continue to be addressed in this more sensitive con-
text.

References

[1] M. Carey. Data delivery in a service-oriented world:
the bea aqualogic data services platform. In Proceed-
ings of the 2006 ACM SIGMOD international confer-
ence on Management of data, pages 695–705. ACM,
2006.

[2] E. Cerami. Web Services Essentials Distributed Ap-
plications with XML-RPC, SOAP, UDDI & WSDL.
O’Reilly, 2002.

[3] C. Date and H. Darwen. Databases, Types and the
Relational Model (3rd Edition). Addison-Wesley,
Boston, MA, 2006.

[4] Database connectivity for javascript. http:
//w3.alphaworks.ibm.com/techs/
overview.jsp?tech=dbcjs, 2007.

[5] Dojo, the javascript toolkit. http:
//dojotoolkit.org/, 2007.

[6] Using dojo.data. http://dojotoolkit.
org/book/dojo-book-0-9/
part-3-programmatic-dijit-and-dojo/
data-retrieval-dojo-data-0, 2007.

[7] T. Erl. Service-Oriented Architecture (SOA): Con-
cepts, Technology, and Design. Prentice Hall, 2005.

[8] Arcweb explorer javascript. http://www2.
arcwebservices.com/v2006/develop/
awx.jsp, 2007.

[9] R. Fielding. Representational state transfer (rest).
http://www.ics.uci.edu/˜fielding/
pubs/dissertation/rest_arch_style.
htm, 2007.

[10] Facility registry system: Ez query. http://www.
epa.gov/enviro/html/fii/ez.html, 2007.

[11] Facility registry system (frs). http://www.epa.
gov/enviro/html/fii/index.html, 2007.

[12] J. J. Garrett. Ajax: A new approach to web ap-
plications. http://www.adaptivepath.
com/publications/essays/archives/
000385.php, 2005.

[13] J. Gehtland, D. Almaer, and B. Galbraith. Pragmatic
Ajax: A Web 2.0 Primer. Pragmatic Bookshelf, 2006.

[14] K. Geiger. Inside ODBC. Microsoft Press, 1995.
[15] Google maps api documentation. http://www.

google.com/apis/maps/documentation/,
2007.

[16] J. Gregorio. How to create a rest proto-
col. http://www.xml.com/pub/a/2004/
12/01/restful-web.html, 2004.

[17] G. Harrison and S. Feuerstein. MySQL Stored Proce-
dure Programming. O’Reilly, Sebastopol, CA, USA,
2006.

[18] M. N. Huhns and M. P. Singh. Service-oriented com-
puting: Key concepts and principles. IEEE Internet
Computing, 9(1):75–81, 2005.

[19] Json in javascript. http://json.org/js.html,
2007.

[20] A. Leff and J. T. Rayfield. Programming model alter-
natives for disconnected business applications. IEEE
Internet Computing, 10(3):50–57, May/June 2006.

[21] Oat: Openajax alliance compliant toolkit.
http://ajaxian.com/archives/
oat-openajax-alliance-compliant-toolkit,
2007.

[22] Opentoro: Database publishing for the web. http:
//opentoro.sourceforge.net/, 2007.

[23] T. O’Reilly. What is web 2.0. http://www.
oreilly.com/go/web2, September 2005.

