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Abstract

A new type of periodogram, called the Laplace periodogram, is derived by replacing least

squares with least absolute deviations in the harmonic regression procedure that produces

the ordinary periodogram of a time series. An asymptotic analysis reveals a connection

between the Laplace periodogram and the zero-crossing spectrum. This relationship provides

a theoretical justification for the Laplace periodogram to be used as a nonparametric tool for

analyzing the serial dependence of time-series data. Superiority of the Laplace periodogram

in handling heavy-tailed noise and nonlinear distortion isdemonstrated by simulations. A

real-data example shows its great effectiveness for analyzing heart rate variability in the

presence of ectopic events and artifacts.

Abbreviated Title:Laplace periodogram

Key Words and Phrases:frequency, harmonic, heart rate variability, heavy tail, least absolute

deviation, mixed spectrum, robust, spectral analysis, zero crossing



1. INTRODUCTION

Regression using least absolute deviations (LAD) is a well-known method of data anal-

ysis that can be dated back to more than two centuries ago. With the advance of computing

techniques, especially fast linear programming algorithms, LAD regression has regained the

attention of both theoretical and applied researchers in modern times. The recent book by

Koenker (2005) provides an excellent account of the historyand the latest development of

LAD regression and its generalization to quantile regression.

The LAD methodology is known for its robustness against outliers. Statistical properties

of the LAD estimators have been studied intensively in the context of linear and nonlinear

regression (Bloomfield and Steiger 1983; Breidt, Davis, and Trindate 2001; Dodge 1997,

2002; Dielman 2005; Koenker 2005; Lai and Lee 2005). In this article, we consider an

application of LAD in the field of time series analysis. Specifically, we propose an LAD-

based approach to analyzing the serial dependence of time-series data by replacing least

squares (LS) with LAD in the harmonic regression procedure that produces the ordinary

periodogram. This leads to a periodogram-like function which we refer to as the Laplace

periodogram.

We show that the asymptotic distribution of the Laplace periodogram is directly related

to what we call the zero-crossing spectrum in the same way as the ordinary periodogram is

related to the autocorrelation spectrum. Zero crossings are known to contain rich information

about the dependence characteristics of time series and arewidely used in applications such

as signal processing (Kedem 1994). The connection with the zero-crossing spectrum pro-

vides the theoretical foundation and justification for the Laplace periodogram to be used as a
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general-purpose nonparametric tool of time series analysis. In addition, we present some sim-

ulation results to demonstrate the superior robustness of the Laplace periodogram in handling

heavy-tailed noise and nonlinear distortion. We also discuss its usefulness for time series of

mixed spectrum. Finally, we provide a real-data example of heart rate variability analysis

where the effectiveness of the Laplace periodogram in dealing with the contamination from

ectopic events and artifacts is demonstrated.

2. LAPLACE PERIODOGRAM

For a given time series{y1, . . . ,yn} of lengthn and a frequency parameterω ∈ (0,π), the

ordinary periodogram is defined as

Gn(ω) := n−1
∣

∣

∣

∣

n

∑
t=1

yt exp(itω)

∣

∣

∣

∣

2

,

wherei :=
√
−1. It is easy to show that ifω is a Fourier frequency, i.e., ifω = 2πk/n for

some integerk, then the ordinary periodogram can also be written as

Gn(ω) = 1
4n‖β̃ββ n(ω)‖2, (1)

whereβ̃ββ n(ω) is the LS regression solution

β̃ββ n(ω) := arg min
βββ∈R2

n

∑
t=1

|yt −xT
t (ω)βββ |2 (2)

with the harmonic regressorxt(ω) := [cos(ωt),sin(ωt)]T . Sinceβ̃ββ n(ω) comes from LS re-

gression, the ordinary periodogram can also be called the Gauss periodogram, which explains

why we use the letterG in our notation for the ordinary periodogram rather than themore

conventionalI (Brockwell and Davis 1991).
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Naturally, we would like to replace the LS criterion with theLAD criterion in the har-

monic regression procedure (2) to obtain a new regression coefficient

β̂ββ n(ω) := arg min
βββ∈R2

n

∑
t=1

|yt −xT
t (ω)βββ |. (3)

Based on the LAD coefficient, we define, in the same way as (1), a new periodogram

Ln(ω) := 1
4n‖β̂ββ n(ω)‖2. (4)

We call this function ofω the Laplace periodogram.

As can be seen, both ordinary and Laplace periodograms are proportional to the squared

norm of harmonic regression coefficients; the difference isthat the former comes from LS

regression and the latter from LAD regression. It is expected that the Laplace periodogram

will inherit all the robustness benefits of linear LAD regression as discussed in Bloomfield

and Steiger (1983) and Koenker (2005).

3. ASYMPTOTIC THEORY

This section contains some theoretical results about the asymptotic distribution of the

Laplace periodogram for time series of continuous and mixedspectrum.

3.1 A General Theorem

First, we provide a general result concerning the asymptotic distribution of the LAD

regression coefficients. This type of results can be established under various conditions (Ar-

cones 2001; Bantli and Hallin 1999; Bloomfield and Steiger 1983; Koenker 2005; Lai and

Lee 2005; Pollard 1991; Portnoy 1991; Weiss 1990; Wu 2007). Our focus is on the situation
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where (a) the regressors, denoted by{x jt} ( j = 1, . . . ,q), are uniformly bounded sequences

of deterministic vectors inRp for somep ∈ N := {1,2, . . .}, and may depend onn ( not

explicitly denoted for simplicity); (b){εt} is a dependent random process; and (c) the regres-

sion functionsxT
jt βββ 0 may not be correctly specified foryt . Note that the boundedness of the

regressors considerably simplifies the conditions.

Theorem 1. Let yt = µt + εt (t = 1, . . . ,n) and

β̂ββ jn := arg min
βββ∈Rp

n

∑
t=1

|yt −xT
jt βββ | ( j = 1, . . . ,q), (5)

where{µt} is a deterministic sequence and{εt} is an m-dependent random process hav-

ing marginal distribution functions Ft(x), marginal densities ft(x) := Ḟt(x), and bivariate

distribution functions Fts(u,v). Let rts(u,v) := Fts(u,v)−Ft(u)Fs(v). For anyβββ 0 ∈ R
p, let

w jt := xT
jt βββ 0−µt . Assume that there are positive numbers d, c, and N0 and positive-definite

matricesW0 andQ0 such that

(i) ft(w jt ) = O(1) uniformly in t∈ N for all j,

(ii) Ft(u+w jt )−Ft(w jt ) = ft(w jt )u+O(ud+1) uniformly in t∈ N for |u| ≤ c and all j,

(iii) W jkn := n−1∑n
t=1∑n

s=1 rts(w jt ,wks)x jt xT
ks≥ W0 for all j, k, and n≥ N0,

(iv) Q jn := n−1∑n
t=1 ft(w jt )x jt xT

jt ≥ Q0 for all j and n≥ N0.

Then, as n→ ∞, we havevec{β̂ββ jn −βββ 0}q
j=1

A∼ N(θθθ n,ΣΣΣn), whereθθθ n := vec{Q−1
jn h jn}q

j=1, ΣΣΣn

:= [Q−1
jn W jknQ−1

kn ]
q
j,k=1, h jn := n−1/2∑n

t=1{1
2 −Ft(w jt )}x jt , and A∼ means “asymptotically

distributed as.”

Proof. See Appendix.
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Remark1. Under the exact regression modelyt = xT
t βββ 0 + εt and the assumption that{εt} is

an ARMA process, Davis and Dunsmuir (1997) obtained an asymptotic normality result for

the LAD estimates ofβββ 0 and the ARMA parameters. Under somewhat stronger conditions,

Portnoy (1991) obtained a similar result for a broader classof dependent processes in the

single regressor case. See also Weiss (1990) and Wu (2007).

As we can see, Theorem 1 not only establishes the asymptotic normality of the LAD

regression coefficients, but also reveals the impact of model misspecification on the asymp-

totic distribution. It shows that a model misspecification,manifested as a nonzero ‘bias’

wt = xT
t βββ 0− µt , has impact on the asymptotic mean as well as the asymptotic covariance

matrix. This is different from LS regression where the bias only affects the asymptotic mean.

From Theorem 1 and Remark 4 in Appendix, we obtain the following result.

Corollary 1 (Linear Processes). Let{εt} be a linear process of the formεt = ∑∞
j=−∞ φ j et− j ,

where{et} is an i.i.d. random sequence with E(|et |) < ∞ and{φ j} is an absolutely-summable

deterministic sequence satisfying∑| j|>m|φ j | = O(n−1) for some m= O(nδ ) and δ ∈ [0, 1
4).

Then, the assertion in Theorem 1 remains true under Assumptions (i)–(iv).

Proof. See Appendix.

In the special case where theεt ’s are i.i.d. and the median ofyt is a linear function ofxt ,

the following result can be obtained from Theorem 1. Similarresults are given by Bantli and

Hallin (1999), Koenker (2005, Theorem 4.1), and Pollard (1991).

Corollary 2 (White Noise). Letβ̂ββ n be defined by (5) with a single regressorxt and with yt =

xT
t βββ 0+εt (t = 1, . . . ,n), where{εt} is a sequence of i.i.d. random variables with distribution
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function F(x) and density f(x) satisfying F(0) = 1
2 and f(0) > 0. Assume further that

(v) f(x) is continuously differentiable in a neighborhood of x= 0,

(vi) Dn := n−1∑n
t=1xtxT

t ≥ D0 > 0 for all n ≥ N0.

Then, as n→ ∞, n1/2(β̂ββ n−βββ 0)
A∼ N(0,η2D−1

n ), whereη2 := 1/(4 f 2(0)).

Proof. The assumptions in Theorem 1 are satisfied withwt = 0, Wn = 1
4Dn, and Qn =

f (0)Dn. Note: the subscriptsj andk are droped in the single regressor case.

A comparison of Corollary 2 with Theorem 1 reveals that the serial dependence of{εt}

manifests itself entirely throughrts(u,v) in the asymptotic covariance matrix ofβ̂ββ n. There-

fore, it is worthwhile to take a closer look at this quantity.

First, sinceFtt(u,v) = Ft(min(u,v)), we havertt(u,v) = Ft(min(u,v))−Ft(u)Ft(v), and in

particular,rtt(u,u) = Ft(u){1−Ft(u)}. If the εt ’s are independent, thenFts(u,v) = Ft(u)Fs(v)

for t 6= s, so thatrts(u,v) ≡ 0 for t 6= s. Moreover,rts(w jt ,wks) is nothing but the cross

covariance between the binary (0-1) random processes{I(εt < w jt )} and{I(εt < wkt)}. In

particular,rts(0,0) = Cov{I(εt < 0), I(εs < 0)}.

Generally, for any fixedu and v, let us defineγts(u,v) := P{εt < u,εs > v}+ P{εt >

u,εs < v} as thejoint level-crossing rateof {εt} at t ands. Under the assumption that{εt}

has continuous univariate and bivariate distributions, wecan writeγts(u,v) = Ft(u)+Fs(v)−

2Fts(u,v). This implies thatFts(u,v) = 1
2{Ft(u)+Fs(v)− γts(u,v)}, sorts(u,v) = 1

2{Ft(u)+

Fs(v)−2Ft(u)Fs(v)}− 1
2γts(u,v). In the special case ofFt(0) = 1

2 for all t, we haverts :=

rts(0,0) = 1
4 − 1

2γts, whereγts := γts(0,0) = P{εtεs < 0} = 1
2(1−4rts) is the probability that

there are odd number of zero crossings betweent ands. We callγts the lagged zero-crossing
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rate of {εt} betweent and s. If Ft(0) = 1
2 for all t, we can writeγts = 1− 2pts, where

pts := Fts(0,0) = P{εt < 0,εs < 0} is known as an orthant probability.

Based on the general results presented in Theorem 1, Corollary1, and Corollary 2, an

asymptotic theory can be developed for the Laplace periodogram with the choice ofx jt :=

xt(ω j) for someω j ∈ (0,π). In the remainder of this section, we consider two types of time

series: those of continuous spectrum and those of mixed spectrum. We begin with time series

of continuous spectrum.

3.2 Asymptotics for Time Series of Continuous Spectrum

The simplest time series of continuous spectrum is an i.i.d.white noise process. Our first

theorem focuses on this type of time series.

Theorem 2 (White Noise). Let β̂ββ n(ω) and Ln(ω) be defined by (3) and (4) with yt = εt

(t = 1, . . . ,n), where{εt} is a sequence of i.i.d. random variables with distribution function

F(x) and density f(x) such that F(0) = 1
2 and f(0) > 0. Assume that f(x) also satisfies

Assumption (v) in Corollary 2. Let{ω1, . . . ,ωq} be a set of distinct values in(0,π) which

may depend on n but which satisfy the condition

(vii) D jkn := n−1∑n
t=1xt(ω j)xT

t (ωk) = 1
2δ j−kI +O(1),

where{δ j} is the Kronecker delta sequence such thatδ0 = 1 and δ j = 0 for j 6= 0. Then,

as n→ ∞, we have n1/2vec{β̂ββ n(ω j)}q
j=1

A∼ N(0,2η2I) and {Ln(ω j)} A∼ {1
2η2Z j}, where

η2 := 1/(4 f 2(0)) and Zj ∼ i.i.d. χ2(2) ( j = 1, . . . ,q).

Proof. See Appendix.
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Remark2. Assumption (vii) is satisfied by any distinctω j ’s that do not depend onn. It is

also satisfied by the Fourier frequencies. In general, certain separation conditions must hold

for theω j ’s to satisfy Assumption (vii).

According to Theorem 2, the asymptotic mean ofLn(ω) is equal toη2 for all ω. To

compare this expression with the corresponding result of the ordinary periodogram, let us

recall that if the noise has a finite varianceσ2, then it can be shown (Brockwell and Davis

1991) thatGn(ω) A∼ 1
2σ2χ2(2), so the asymptotic mean ofGn(ω) is equal toσ2. As can

be seen,η2 plays the role ofσ2. For Gaussian distributions,η2 = 1
2πσ2, and for double

exponential (Laplace) distributions,η2 = 1
2σ2. In general, a finiteη2 does not require a finite

variance. For example, for Cauchy noise with scale parameterσ > 0, η2 = 1
4π2σ2 is finite

but the variance (and the mean) equals infinity. This is an exemplary situation where the

Laplace periodogram out-shines the ordinary periodogram:the Laplace periodogram does

not require the existence of any moments to have a well-defined asymptotic distribution. It

means in practical terms that the Laplace periodogram is more robust to high volatilities in

the data.

Now we consider the more general situation of dependent processes. To do so, we need

to introduce a new concept of stationarity.

Definition 1 (Stationarity in Zero Crossings). The lagged zero-crossing rate of a random

process{εt} betweent ands is defined asγts := P{εtεs < 0} and{εt} is said to be stationary

in zero crossings if and only ifγts depends only ont −s, i.e.,γts = γt−s, for all t ands. In this

case, we refer toγτ as the lag-τ zero-crossing rate of{εt} and refer toS(ω) := ∑∞
τ=−∞(1−

2γτ) cos(ωτ) as the zero-crossing spectrum of{εt}.
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Stationarity in zero crossings can be characterized in a number of ways. The following

lemma is just an example.

Lemma 1. Let{εt} be a random process with marginal distribution functions Ft(x) satisfying

Ft(0) = 1
2 for all t. Then, the following statements are equivalent.

(a) the process{εt} is stationary in zero crossings with zero-crossing ratesγτ ;

(b) the orthant probabilities pts := P{εt < 0,εs < 0} depend only on t−s, i.e., pts = pt−s;

(c) the process{I(εt < 0)} is stationary in second moments with autocovariances rτ .

In this case,γτ = 1−2pτ = 1
2(1−4rτ).

Remark3. A strictly stationary process, such as a linear process considered in Corollary 1,

is stationary in zero crossings. Sinceγτ is even andγ0 = 0, we can writeS(ω) = 2∑∞
τ=0(1−

2γτ) cos(ωτ)−1. For white noise,rτ = 1
4δτ , γτ = 1

2(1−δτ), pτ = 1
4(1+δτ), andS(ω) = 1.

Equipped with the concept of stationarity in zero crossings, the following result can be

obtained from Theorem 1.

Theorem 3 (Dependent Processes). Let β̂ββ n(ω) and Ln(ω) be defined by (3) and (4) with

yt = εt (t = 1, . . . ,n), where{εt} is (a) an m-dependent process stationary in zero crossings or

(b) a linear process defined in Corollary 1, in either case having zero-crossing rates{γτ} such

that ∑∞
τ=0 |1−2γτ | < ∞ and having a common marginal distribution function F(x) and den-

sity f(x) such that F(0) = 1
2 and f(0) > 0 and that Assumption (v) in Corollary 2 is satisfied.

Let{ω1, . . . ,ωq} be a set of distinct values in(0,π) satisfying Assumption (vii) in Theorem 2.

Assume that S(ω j) > 0 for all j. Then, as n→ ∞, n1/2vec{β̂ββ n(ω j)}q
j=1

A∼ N(0,2η2S) and
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{Ln(ω j)} A∼ {1
2η2S(ω j)Z j}, whereη2 := 1/(4 f 2(0)), S := diag{S(ω1), S(ω1), . . . , S(ωq),

S(ωq)}, and Zj ∼ i.i.d. χ2(2) ( j = 1, . . . ,q).

Proof. See Appendix.

According to Theorem 3, the asymptotic mean ofLn(ω) is equal toL(ω) := η2S(ω). We

call this function theLaplace spectrumof {εt}. Recall that if{εt} is stationary in second

moments with autocorrelation functionρτ := Corr(εt+τ ,εt), then the asymptotic mean of

Gn(ω), known as the power spectrum (which may also be called the Gauss spectrum), is

equal toG(ω) := σ2R(ω), whereR(ω) := ∑∞
τ=−∞ ρτ cos(ωτ) = 2∑∞

τ=0ρτ cos(ωτ)−1 is the

autocorrelation spectrum (or normalized power spectrum) of {εt}. Therefore, the Laplace

spectrumL(ω) is the counterpart of the power spectrumG(ω); the former is proportional to

the zero-crossing spectrumS(ω) as the latter is proportional to the autocorrelation spectrum

R(ω). The zero-crossing spectrum is a Fourier transform of the zero-crossing rates, whereas

the autocorrelation spectrum is a Fourier transform of the autocorrelation coefficients. As in

the white noise case,η2 is the counterpart ofσ2 as a multiplier.

The relationship between the autocorrelation coefficientsand zero-crossing rates is com-

plicated in general. But for some special distributions, it can be expressed in explicit forms.

For example, if{εt} is a stationary Gaussian process with autocorrelation function ρτ , then

(Kedem 1994)

pts = 1
4(1−δt−s)+ 1

2π−1arcsin(ρt−s) := pt−s.

According to Lemma 1,{εt} is also stationary in zero crossings with

γτ = 1−2pτ = 1
2(1+δτ)−π−1arcsin(ρτ).
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Therefore, for stationary Gaussian processes, we have

S(ω) = 1+4π−1
∞

∑
τ=1

arcsin(ρτ)cos(ωτ), (6)

which is a Fourier transform of arcsine-transformed autocorrelation coefficients.

The same expression can obtained for elliptical distribution. In fact, letεεε := [ε1, . . . ,εn]
T

have an elliptical distribution with densityf (x) = |ΣΣΣ|−1/2g(xTΣΣΣ−1x) (x ∈ R
n), whereΣΣΣ :=

[σts]
n
t,s=1 is a positive-definite matrix withσtt ≡ σ2 for all t and g(u) is a nonnegative

function satisfying
∫

x∈Rn g(‖x‖2)dx = 1. It can be shown thatE(εεε) = 0 and Cov(εεε) =

κ ΣΣΣ, whereκ := n−1∫

x∈Rn ‖x‖2g(‖x‖2)dx. For anyu ≥ 0 and 1≤ k < n, let gk(u) :=

∫

v∈Rn−k g(u+ ‖v‖2)dv. Then, the marginal distribution ofεt , for all t, can be expressed as

f (x) = σ−1/2g1(x2/σ2) and the joint distribution ofεt andεs, for anyt 6= s, takes the form

fts(x) = |ΣΣΣts|−1/2g2(xTΣΣΣ−1
ts x) for x ∈ R

2, where

ΣΣΣts :=









σ2 σts

σts σ2









.

Since(εt ,εs) remains elliptically distributed, it can be shown (Kedem 1994) that

pts = 1
4(1−δt−s)+ 1

2π−1 arcsin(ρts),

whereρts := Corr(εt ,εs) = σts/σ2. Assume that{εt} is stationary in second moments so that

ρts = ρt−s. Then, by Lemma 1,{εt} is also stationary in zero crossings withγτ = 1−2pτ .

Consequently, we obtain the same expression (6) for the zero-crossing spectrum. Moreover,

since f (0) = σ−1/2g1(0), we haveη2 = σ2/(4g2
1(0)), whereσ2 = V(εt)/κ.
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3.3 Time Series of Mixed Spectrum

Now consider the case where{yt} contains a sinusoidal signalµt = xT
t (ω0)βββ 0. A time

series of this form is called a time series of mixed spectrum because its power spectrum is

a mixture of discrete and continuous components. The following theorem establishes the

asymptotic distribution of the Laplace periodogram at the signal frequencyω0.

Theorem 4. Let β̂ββ n(ω) be defined by (3) with yt = xT
t (ω0)βββ 0 + εt (t = 1, . . . ,n) for some

constantω0 ∈ (0,π), where{εt} satisfies the assumptions in Theorem 3. Then, as n→

∞, n1/2(β̂ββ n(ω0)−βββ 0)
A∼ N(0,2η2S(ω0)I) and Ln(ω0)

A∼ 1
2η2S(ω0)χ2(2,nλ ), whereη2 :=

1/(4 f 2(0)) andλ := 1
2‖βββ 0‖2/(η2S(ω0)).

Proof. See Appendix.

Recall that if{εt} is stationary in second moments with autocorrelation spectrum R(ω),

then the ordinary periodogram has the property thatGn(ω0)
A∼ 1

2σ2R(ω0)χ2(2,nγ), where

γ := 1
2‖βββ 0‖2/(σ2R(ω0)). Theorem 4 is the counterpart of this result for the Laplace peri-

odogram. Sinceγ is known as the ordinary signal-to-noise ratio (SNR), we may refer to its

counterpartλ = 1
2‖βββ 0‖2/(η2S(ω0)) as theLaplace SNR. By Theorem 4, the Laplace SNR is

a natural measure of the strength of the sinusoidal signal inthe Laplace spectrum.

Next, let us consider the asymptotic distribution at non-signal frequencies. For simplicity,

we focus on the case of white noise (a similar analysis can be carried out for colored noise).

Theorem 5. Let β̂ββ n(ω) be defined by (3) with yt = xT
t (ω0)βββ 0 + εt (t = 1, . . . ,n), where{εt}

is a sequence of i.i.d. random variables with distribution function F(x) and density f(x). Let

12



Wn, Qn, and hn be defined in Theorem 1 for q= 1 (with subscripts j and k omitted) with

wt := −xT
t (ω0)βββ 0 andxt := xt(ω) . Assume that there is a constantδ > 0 such that

(viii) f (x) is continuously differentiable for|x| ≤ ‖βββ 0‖+δ and f(x) > 0 for |x| ≤ ‖βββ 0‖.

Then, forω 6= ω0, n1/2{β̂ββ n(ω)−βββ n(ω)} A∼ N(0,2η2
1Vn(ω)), whereβββ n(ω) := n−1/2Q−1

n hn,

Vn(ω) := (2η2
1)−1Q−1

n WnQ−1
n , andη2

1 := c0/b2
0, with b0 := n−1∑n

t=1 f (wt) and c0 := n−1

∑n
t=1F(wt){1−F(wt)}. Moreover, letVn(ω) = UnΣΣΣnUT

n be the singular-value decompo-

sition, whereUn is an unitary matrix andΣΣΣn := diag{S1(ω),S2(ω)}. Then, forω 6= ω0,

Ln(ω) A∼ 1
2η2

1{S1(ω)Z2
1 + S2(ω)Z2}, where Z1 ∼ χ2(1,λ1(ω)) and Z2 ∼ χ2(1,λ2(ω)) are

independent,λi(ω) := µ2
i (ω)/(2η2

1Si(ω)) (i = 1,2), and[µ1(ω),µ2(ω)]T := UT
nβββ n(ω).

Proof. See Appendix

To appreciate the implications of Theorem 5, let us evaluatethe quantities involved under

the additional assumption thatω0 = 2πk0/n andω = 2πk/n for some integersk0 andk such

that 0< k0 6= k < 1
2n andn/k0 = 2m+1 for some integerm> 0. In this case, it can be shown

(see Appendix) that

βββ n(ω) = b−1
0 B−1a, Vn(ω) = B−1CB−1, (7)

wherea := ∑m
ℓ=1δℓk0−kaℓ, B := I +∑m

ℓ=1(δℓk0−2k+δn−ℓk0−2k)Bℓ, andC := I +∑m
ℓ=1(δℓk0−2k+

δn−ℓk0−2k)Cℓ for someaℓ, Bℓ, andCℓ. This result reveals a possibility of leak from line

spectrum in the Laplace periodogram. The spectral leak manifests itself inβββ n(ω) at the

harmonic frequencies of the sinusoidal signal and inVn(ω) at the semi-harmonic frequencies.

More specifically, we need to distinguish three different cases. Case 1,ω = 2πk/n is not

a harmonic or semi-harmonic frequency, i.e.,k 6∈ H := {1
2ℓk0: ℓ = 1, . . . ,2m;ℓ 6= 2}; we call

13



it a type I frequency. In this case,a = 0, B = C = I , soβββ n(ω) = 0 andVn(ω) = I . Therefore,

we haven1/2β̂ββ n(ω) A∼ N(0,2η2
1 I) and

Ln(ω) A∼ 1
2η2

1 χ2(2). (8)

This means that at type I frequencies the Laplace periodogram has the same asymptotic

distribution as in the signal-free case except that the scaling factor is 1
2η2

1 instead of12η2.

The spectral leak manifests itself inη2
1 as a signal-dependent quantity.

Case 2,ω is a semi-harmonic frequency, i.e.,k= 1
2ℓk0 for some odd integerℓ∈ [1,2m]; we

call it a type II frequency. This is possible only ifk0 is an even integer. In this case,a = 0, B =

I +Bℓ, andC = I +Cℓ, so thatn1/2β̂ββ n(ω) A∼N(0,2η2
1Vn(ω)), whereVn(ω) = (I +Bℓ)

−1(I +

Cℓ)(I +Bℓ)
−1. BecauseVn(ω) is not necessarily proportional toI , the Laplace periodogram

at type II frequencies does not generally have a scaled central χ2(2) distribution. Instead, it

is distributed as a weighted sum of two independent centralχ2(1) random variables. Even

in the special case whereb2ℓ = c2ℓ = 0, we only haveVn(ω) = diag(v11,v22), wherev11 :=

(1+ 1
2c1ℓ/c0)/(1+ 1

2b1ℓ/b0)
2 andv22 := (1− 1

2c1ℓ/c0)/(1− 1
2b1ℓ/b0)

2 are not necessarily

equal. Nonetheless, we can assumeVn(ω) = vI to obtain a first-order approximation

Ln(ω) A∼ 1
2η2

1vχ2(2). (9)

The extra factorv distinguishes (9) from (8). By settingv := 1
2(v11+v22), the distribution in

(9) matches the exact asymptotic mean of the Laplace periodogram, which equalsη2
1v. The

signal dependence of the scaling factor is a manifestation of spectral leak from the signal.

Case 3,ω is a harmonic frequency, i.e.,k= ℓk0 for some integerℓ∈ [2,m]; we call it a type

III frequency. At such a frequency,βββ n(ω) is nonzero and (7) cannot be further simplified,

14



so the Laplace periodogram is distributed as a weighted sum of two independent noncentral

χ2(1) random variables. As a first-order approximation, we can write

Ln(ω) A∼ 1
2η2

1vχ2(2,nλ1), (10)

whereλ1 := 1
2‖βββ n(ω)‖2/(η2

1v). Recall that the Laplace periodogram at the signal frequency

ω0 has the following distribution:

Ln(ω0)
A∼ 1

2η2χ2(2,nλ ), (11)

whereη2 = 1/(4 f 2(0)) and λ = 1
2‖βββ 0‖2/η2. The distribution in (10) is similar to (11)

except that the scaling factor and the noncentrality parameter are1
2η2

1v andλ1 instead of12η2

andλ . The mean of this distribution coincides with the exact asymptotic mean ofLn(ω),

which equals14n‖βββ (ω)‖2+η2
1v. Note that the presence of a nonzero noncentrality parameter

implies that a peak may appear at type III frequencies, so interpretation of spectral peaks must

be done with caution.

4. SIMULATION STUDIES

In this section, we provide some simulation examples of practical importance to demon-

strate the benefit of the Laplace periodogram over the ordinary periodogram and to validate

the theoretical findings discussed in the previous section.

4.1 Robust Spectral Estimation

The first example is a validation of the Laplace periodogram as a viable alternative to the

ordinary periodogram for analyzing time series of continuous spectrum.
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Example 1. Let yt = εt (t = 1, . . . ,n), where{εt} is a Gaussian AR(2) process satisfying

εt = a1εt−1+a2εt−2+ξt , a1 := 2r cos(ωc), a2 := −r2, {ξt} ∼ i.i.d. N(0,1). It can be shown

thatσ2 := V(εt) = (1−a2){(1+a2)((1−a2)
2−a2

1)}−1 and

ρτ =
sin((τ +1)ωc)− r2sin((τ −1)ωc)

(1+ r2)sin(ωc)
rτ (τ ≥ 0).

Figure 1 shows a simulation result on the basis of 500 Monte Carlo runs with r = 0.9,

ωc = 0.22× 2π, andn = 100. In this example, the Laplace spectrum, calculated accord-

ing to (6), has the same bandpass characteristics as the power spectrum, and the simulated

mean of the Laplace periodogram follows the Laplace spectrum closely. Figure 1 also shows

that smoothing does help reduce the statistical variability of the Laplace periodogram as an

estimator of the Laplace spectrum.

According to Theorem 3, one of the advantages of the Laplace spectrum over the ordinary

power spectrum is that the Laplace spectrum is invariant (upto a constant multiplier) to

any memoryless nonlinearity that preserves the signs of thetime series data. A practical

example of such nonlinearities is the nonlinear and clipping distortions in data acquisition and

transmission systems (Bahai et al. 2002; Chorti and Brookes 2006). This type of nonlinearity

is known to cause distortions in the power spectrum (Wise, Traganitis, and Thomas 1977)

and cannot be modeled as additive noise. The Laplace periodogram is an effective tool for

handling such nonlinearity, as demonstrated in the next example.

Example 2. Let yt = ϕ(εt) (t = 1, . . . ,n), where{εt} is the process discussed in Exam-

ple 1 andϕ(x) is a sign-preserving function satisfyingϕ(0) = 0 andϕ̇(0) 6= 0. Because

the transform does not alter the zero-crossing spectrum, nor does it violate the assump-
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Figure 1: Laplace periodogram as function ofω/(2π) for the AR(2) process in Example

1. Solid line, true Laplace spectrum; dashed line, sample mean of 500 independent Laplace

periodograms; dotted line, 10th and 90th pointwise percentiles of Laplace periodograms;

dash-dotted line in (a), true power spectrum. (a) Raw periodograms (RMSE=0.945). (b)

Smoothed periodograms by smoothing splines (RMSE=0.676).

tions in Theorem 3, the Laplace periodogram of{ϕ(εt)} has the same asymptotic distri-

bution as{εt}, except thatf (0) should be replaced byf (0)/ϕ̇(0) in calculatingη2 so

that η2 = ϕ̇2(0)/(4 f 2(0)). Figure 2 shows a simulation result withϕ(x) := 2xI(|x| ≤

σ)+ 2(x3/σ2) I(|x| > σ), whereσ2 := V(εt). In this case, the Laplace spectrum is simply

a constant multiple of the Laplace spectrum shown in Figure 1, with multiplier ϕ̇2(0) = 4.

This spectrum, depicted in Figure 2(a) by the solid line, is again followed closely by the

simulated mean of the Laplace periodogram across all frequencies. In contract, the ordinary

periodogram is considerably distorted by the nonlinearity, as shown in Figure 2(b), resulting

in a lowered spectral peak. Note that the power spectrum in Figure 2(b) (solid line) is scaled

by the variance of{yt} instead ofσ2.
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Figure 2: (a) Laplace periodogram (RMSE=0.677), similar to Figure 1(b) except that the

data are transformed by the memoryless nonlinearity discussed in Example 2. (b) Ordinary

periodogram for the same data (RMSE=2.01), with solid line representing the (scaled) power

spectrum of the untransformed process.

Because of its origin in the LAD regression, the Laplace periodogram is expected to be

more robust against impulsive contaminations (outliers) in the data than the ordinary peri-

odogram. The next example confirms this advantage of the Laplace periodogram.

Example 3. Consider again the AR(2) process in Example 1 and suppose that the observa-

tions of the process are contaminated by impulsive noise. Inparticular, assume that a ran-

domly selected 100p% of the data points are contaminated by additive i.i.d.N(0,σ2
c ) noise

with someσ2
c ≫ σ2. Figure 3 shows a simulation result withp = 0.2 andσc = 5σ . As can

be seen, the impulsive noise has a mild impact on the Laplace periodogram but a dramatic

impact on the ordinary periodogram: the spectral peak remains prominent in the Laplace

periodogram, but almost disappears in the ordinary periodogram.
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Figure 3: (a) Laplace periodogram (RMSE=1.01), similar to Figure 1(b) except that the data

are contaminated by the impulsive noise discussed in Example 3 and the solid line represents

the Laplace spectrum of the uncontaminated process. (b) Ordinary periodogram for the same

data (RMSE=6.28), similar to Figure 2(b) except that the solid line represents the (scaled)

power spectrum of the uncontaminated process.

Since the Laplace spectrum is proportional to the zero-crossing spectrum and the latter,

according to Lemma 1, can be estimated directly by 4 times theordinary periodogram of the

binary time seriesI(yt < 0) (t = 1, . . . ,n), we can form a simple estimator of the Laplace

spectrum by multiplying the ordinary periodogram of{I(yt < 0)} with an estimator of 4η2.

This simple method has the computational advantage over theLaplace periodogram, because

the ordinary periodogram can be easily computed by a fast Fourier transform. However, the

simple method may suffer from a loss of statistical efficiency.

To compare these methods in terms of statistical efficiency,we resort to a simulation
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Table 1: Laplace Periodogram and Simple Estimator

Laplace Periodogram Simple Estimator

Case RMSE-1 RMSE-2 RMSE-1 RMSE-2

r = 0 1.56 0.99 1.57 1.00

r = 0.50 1.86 1.18 1.91 1.22

r = 0.90 11.50 4.45 12.40 4.92

r = 0.95 31.17 8.15 34.36 9.26

Results are based on 5,000 Monte Carlo runs.

study in which two types of mean-squared error,

MSE-1 := m−1
m

∑
k=1

E{|L̂n(ωk)−L(ωk)|2} and

MSE-2 := m−1
m

∑
k=1

E{|L̂n(ωk)/L(ωk)−1|2}

with ωk := 2πk/n andm := ⌊1
2n⌋, are computed from Monte Carlo samples. Table 1 contains

the root mean-squared error (RMSE) from the simulation studyfor the AR(2) process defined

in Example 1 withωc = 0.22×2π andn = 100. In the simple estimator,η2 is estimated by

0.5π times the sample variance (becauseη2 = 1
2πσ2 for Gaussian processes). As can be

seen, the Laplace periodogram outperforms the simple estimator significantly in all cases

except for the case of white noise (r = 0) where the two estimators perform similarly. The

margin in favor of the Laplace periodogram becomes more pronounced as the spectral peak

sharpens (whenr approaches unity).

Based on the simulation studies in this section, we conclude that the Laplace periodogram

offers a robust but effective alternative to the ordinary periodogram for analyzing time series

of continuous spectrum. The robustness comes in two forms: robustness against impulsive
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noise (outliers) and robustness against memoryless nonlinearity. Both have important practi-

cal benefits in applications.

4.2 Signal Detection

Consider the problem of detecting a sinusoidal signalµt = xT
t (ω0)βββ 0 from noisy observa-

tionsyt = µt +εt (t = 1, . . . ,n). We assume that the frequencyω0 is known but the amplitude

βββ 0 is not. This problem can be formulated as that of testing the hypothesesH0 : βββ 0 = 0 versus

H1 : βββ 0 6= 0. We do not assume any knowledge of the noise{εt} except forη2 andS(ω0).

These parameters can be estimated in practical situations where observations can be made in

the absence of the signal.

Under these conditions, a natural detector, which we call the Laplace detector, is

Ln(ω0)
> θ H1: signal present,

≤ θ H0: signal absent.

This detector is similar to anF test in spirit, except that the regression coefficients are not

standardized by an estimate of the noise variance. UnderH0, we haveLn(ω0)
A∼ 1

2η2S(ω0).

Therefore, the false-alarm probability of the Laplace detector can be made approximately

equal toα ∈ (0,1) by setting the thresholdθ := 1
2η2S(ω0)χ2

1−α(2), whereχ2
1−α(2) denotes

the (1−α) quantile of the centralχ2(2) distribution. According to Theorem 4, the detec-

tion probability of the Laplace detector underH1 is approximatelyPL(α) := P{χ2(2,nλ ) >

χ2
1−α(2)}. A similar detector, which we call the Gauss detector, can bederived from the

ordinary periodogram. The detection probability of the Gauss detector is approximately

PG(α) := P{χ2(2,nγ) > χ2
1−α(2)}.

To compare the power of these detectors, we observe thatP{χ2(2,u) > χ2
1−α(2)} is an
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increasing function ofu≥ 0. This implies thatPL(α) > PG(α) ⇔ λ > γ. In other words, the

Laplace detector is more powerful than the Gauss detector ifand only if the Laplace SNR

is greater than the ordinary SNR. By definition,λ > γ is equivalent toη2S(ω0) < σ2R(ω0),

and the latter depends solely on the noise spectrum at the signal frequency. In the special

case of white noise, this condition reduces toη2 < σ2. For Gaussian white noise,η2 =

1
2πσ2 > σ2, so the Gauss detector is more powerful in this case. If the noise has a double

exponential distribution, thenη2 = 1
2σ2 < σ2, in which case the Laplace detector becomes

more powerful. Generally, becauseη2 < σ2 is equivalent toσ f (0) > 1
2, this condition favors

heavy-tailed distributions with extremely largeσ relative to the density at zero.

As a numerical example, we present a simulation result in Figure 4, where the receiver

operating characteristic (ROC) curves of the Laplace and Gauss detectors are obtained from

1,000 Monte Carlo runs withn = 100 under different noise conditions (both false alarm and

detection probabilities are simulated). In (a)(b),βββ 0 = [0.5,0]T , ω0 = 0.15×2π, and{εt} is

an i.i.d. sequence (white noise). In (c)(d),βββ 0 = [1,0]T , ω0 = 0.15×2π, and{εt} is an AR(2)

process (colored noise) defined in Example 1 withr = 0.8, ωc = 0.18×2π, and driven by

different white noise. The variance of the white noise equals unity in all but the Cauchy case.

For the Cauchy white noise, the scale parameter equals 0.25.

As can be seen from Figure 4, the Gauss detector outperforms the Laplace detector in

the Gaussian case. This is expected because of the maximum likelihood interpretation of the

Gauss detector. But in all other cases, where the noise has heavier tails, the Laplace detector

is superior. Particularly in the Cauchy case, the noise does not have a finite variance, but the

Laplace detector performs remarkably well against the Gauss detector. This result confirms
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Figure 4: ROC curves for detecting a sinusoidal signal underdifferent noise conditions. (a)

Gaussian white noise; (b) double exponential white noise; (c) AR(2) driven by Student’sT

white noise with 3 degrees of freedom; (d) AR(2) driven by Cauchy white noise. Solid line,

Laplace detector; dashed line, Gauss detector.
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Table 2:βββ n(ω) andVn(ω) at Type II and III Frequencies

k = 5 k = 15 k = 20 k = 25 k = 30

β1 0.00000 0.00000 0.04555 0.00000−0.37487

v11 1.00331 0.94119 0.94119 1.57140 1.00331

v22 0.99643 1.06166 1.06166 0.72580 0.99643

the superiority of the Laplace periodogram for signal detection in heavy-tailed noise.

4.3 Mixed Spectrum

Consider the time series of mixed spectrumyt = xT
t (ω0)βββ 0+εt (t = 1, . . . ,n), where{εt}

is white noise. To study the spectral leak discussed in Section 3.3, Figure 5 depictsβββ n(ω)

and Vn(ω) as functions ofk (with ω = 2πk/n) under the assumption of Gaussian white

noise with unit variance and forω0 = 2πk0/n, βββ 0 = [2,0]T , k0 = 10, andn = 70. In this

example, type II frequencies correspond tok = 5,15,25 and type III frequencies correspond

to k = 20,30; all remaining non-signal frequencies are type I frequencies. Table 2 contains

the numerical values of the first element ofβββ n(ω) and the diagonal elements ofVn(ω) at

type II and III frequencies. We can see from Figure 5 thatβββ n(ω) = 0 andVn(ω) = I at all

type I frequencies. We can see from Table 2 thatVn(ω) is not proportional toI at all type II

and III frequencies and thatβββ n(ω) 6= 0 at all type III frequencies.

To validate the asymptotic (analytical) distributions in (8)–(11), we resort to a simulation

in which simulated distributions of the Laplace periodogram at different types of frequencies

and under various noise models. Figure 6 shows some of the results for Gaussian white noise

with unit variance based on 1,000 Monte Carlo runs. As can be seen, the exact asymptotic
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Figure 5: Plot ofβββ n(ω) andVn(ω) in (7) atω = 2πk/n (k = 1, . . . , 1
2n−1;k 6= k0) for a time

series of mixed spectrum (n = 70 andk0 = 10).

distributions in (8) and (11) are reasonably accurate even for moderate samples sizes such

as n = 70; the approximate distributions in (9) and (10) do not workas well sometimes,

especially when the magnitude ofβββ n(ω) is large (e.g.,k = 25) and/or the disparity between

v11 andv22 is large (e.g.,k = 30).

Under the same model, a comparison is made between the Laplace periodogram and the

ordinary periodogram. Figure 7(a) depicts the simulated mean and 10th-90th percentiles of

the Laplace periodogram based on 1,000 Monte Carlo runs. Figure 7(b) shows the corre-
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Figure 6: Q-Q plot of simulated versus analytical distributions of the Laplace periodogram

at selected frequencies for a time series of mixed spectrum.(a) distribution (11) at signal

frequency (k = 10); (b) distribution (8) at type I frequency (k = 9); (c) distribution (9) at type

II frequency (k = 5); (b) distribution (10) at type III frequency (k = 30).
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sponding results for the ordinary periodogram. As can be seen, both periodograms consist of

a strong peak at the signal frequency (k = 10) and a constant noise floor. Due to the spectral

leak, the Laplace periodogram also has a small but visible peak atk = 30.

Although the spectral leak puts the Laplace periodogram at adisadvantage, a real bene-

fit of the Laplace periodogram shines through when comparingFigure 7(c) and (d), where

the noise has a Cauchy distribution with unit scale parameter. In this case, the Laplace

periodogram retains its characteristics of the Gaussian case, but the ordinary periodogram

collapses miserably: the simulated mean and 90th percentile are extremely large at all fre-

quencies with no visible clue about the location of the sinusoidal signal.

From this experiment, we conclude that the robustness benefit of the Laplace periodogram

can justify its usefulness for time series of mixed spectrumprovided that the possibility of

spectral leak is well understood.

4.4 Frequency Estimation

Finally, we consider the classical problem of estimating the frequency of a sinusoidal sig-

nal from noisy observationsyt = Acos(ω0t)+Bsin(ω0t)+ εt (t = 1, . . . ,n), whereA, B, and

ω0 are unknown constants and{εt} is a zero-mean random process of unknow strength. Tra-

ditionally, the frequency is estimated by maximization of the ordinary periodogram (Quinn

and Hannan 2001). But in situations where the noise has a heavy-tailed distribution, the

Laplace periodogram provides an effective alternative to the traditional approach.

Table 3 contains the result of a simulation study where the RMSE for estimating the

unknown frequencyω0/(2π) is calculated on the basis of 1,000 Monte Carlo runs for the
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Figure 7: (a)(c) Laplace periodogram for a time series of mixed spectrum. (b)(d) Ordinary

periodogram for the same data. Solid line, mean; dashed line, 10th and 90th percentile;

dash-dotted line in (d), median. The noise is Gaussian in (a)(b) and Cauchy in (c)(d).
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Table 3: RMSE of Frequency Estimation

n = 50 n = 100 n = 20 n = 300 n = 500 n = 900

Laplace Periodogram 8.76e-03 2.22e-03 3.57e-04 1.45e-04 8.53e-055.69e-05

Ordinary Periodogram 9.83e-03 3.66e-03 6.52e-04 3.13e-04 1.85e-04 1.25e-04

maximizer of the Laplace periodogram and that of the ordinary periodogram. In this simula-

tion, A = 1, B = 0, andω0 = 0.152×2π. The noise is a normalized Cauchy i.i.d. sequence,

normalized for each realization so that the sample varianceof the noise equals 0.5 and hence

the signal-to-noise ratio equals 1 (0 dB). Clearly, the maximizer of the Laplace periodogram

is a more accurate estimator in this case for all the sample sizes.

5. ANALYSIS OF HEART RATE VARIABILITY

Heart rate variability (HRV) is a measure of variations in heart rate over time from the

QRS complexes in a continuous electrocardiographic (ECG) record. It is typically repre-

sented as a time series of beat-to-beat (RR) intervals where “time” refers to the cardiac cycle

or heartbeat number. Spectral analysis techniques have been used to study the relationship

between HRV and various physiological conditions because HRV reflects the activity of the

autonomic nervous system (ANS) in regulating the sinus rhythm (Malik and Camm 1995).

Here, we are not concerned with physiological explanationsof HRV. Our focus is on the

signal processing aspect of HRV analysis. In particular, weare interested in dealing with the

inevitable problem of contamination by ectopic heartbeats(also known as premature ventric-

ular contractions, or PVCs) and some artifacts capable of bankrupting conventional methods
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(Albrecht and Cohen 1988; Malik et al. 1996).

Because of premature or skipped heartbeats, ectopic events are often manifested as sharp

spikes in the RR tachogram (a plot of RR intervals against the beat number). Failure in beat

detection during data aquisition also introduces spiky artifacts (missing beats). The ordinary

power spectrum is ill-suited for handling such contaminations because of their significant

power contribution. In practice, if these abnormal events are very rare, as in short-term

studies, one simply removes them and interpolates the vacancies by adding phantom beats

where sinus beats would have been expected to occur (Lippman, Stein, and Lerman 1994).

If the occurrence of abnormal events is high, the entire segments that contain the events have

to be eliminated from the analysis. This means that in many cases a great deal of data have

to be discarded, resulting in severe restrictions on long-term study.

Although attempt has been made to design algorithms that automatically reject artifacts

and interpolate ectopic beats (Acar et al. 2000; Storck et al. 2001), these algorithms are

not error-free or harmless (Clifford and Tarassenko 2005). So it is highly desirable to have

robust analysis methods that are insensitive to the spikes so that HRV can be analyzed effec-

tively in the presence of ectopic beats and artifacts (Mateoand Laguna 2003). The Laplace

periodogram is a promising candidate for this task, especially in light of its great robust-

ness properties demonstrated in the previous section. In this section, we apply the Laplace

periodogram to a long-term HRV series that contains many ectopic beats and artifacts.

The data are obtained from the CAST RR Interval Sub-Study Database (file m003b)

hosted in PhysioNet (www.physionet.org/physiobank/database/crisdb), a web site that offers

free access to large collections of recorded physiologicalsignals. Of course, our purpose is
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not to study the effectiveness of antiarrhythmic drugs, which is originally the intended use of

the database. Our purpose is to demonstrate the effectiveness of the Laplace periodogram in

analyzing HRV signals in the presence of ectopic events and artifacts.

Figure 8 shows the RR tachogram and its two spectrograms: the Laplace spectrogram and

the ordinary spectrogram. The spectrograms depict the spectral evolution of the RR intervals

over time. They are created from the corresponding periodograms calculated locally using

the data points (multiplied by Hamming window after median removal) that fall into a moving

window of lengthn = 256 beats (roughly 4 minutes) with an overlap of 32 beats (about half

a minute). Large values in the spectrograms are coded by bright colors.

As can be seen, the ordinary spectrogram is completely masked whenever a spike falls

into the moving window. Due to the frequent occurrence of such contaminative events, the

ordinary spectrogram becomes useless most of the time. In contrast, the Laplace spectrogram

remains largely intact during these events. As a result, thenarrowband low-frequency (LF)

component around 0.06 remains visible almost all the time. This component coincides with

a similar component in the ordinary spectrogram of the spike-free segments. Moreover, the

Laplace spectrogram also reveals some broadband high-frequency (HF) activities in the fre-

quency range of 0.2–0.4. The bright vertically lines that run across the frequency span with

a strong presence in the very-low-frequency (VLF) range arewell correlated with persistent

increasing or decreasing transitions in the heart rate (i.e., local trends in the RR tachogram).

The destructive impact of spiky contamination on the ordinary periodogram and the ro-

bustness of the Laplace periodogram to such contamination can be further appreciated by

comparing the results in Figure 9. This figure depicts the Laplace and ordinary periodograms
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Figure 8: Top, RR tachogram (in log10 of a second); middle, Laplace spectrogram; bottom,

ordinary spectrogram. Frequency is measured in cycles per beat.
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Figure 9: (a)(d) RR tachogram (in seconds). (b)(e) Laplace periodogram (solid line,

smoothed; dashed line, raw). (c)(f) Ordinary periodogram.

just before a spike (a–c) and at the onset of the spike (d–f). In the first case, both pe-

riodograms exhibit similar spectral patterns (notice the large spectral peak near frequency

0.065). But once a spike occurs, the ordinary periodogram collapses completely, while the

Laplace periodogram mostly retains its normal characteristics.

6. CONCLUDING REMARKS

Based on LAD harmonic regression, we have proposed the Laplace periodogram as a

counterpart to the ordinary periodogram and investigated its potential as a nonparametric

tool for time series analysis. In particular, we have established the fact that the Laplace
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periodogram is related to the zero-crossing spectrum in thesame way as the ordinary pe-

riodogram is related to the autocorrelation spectrum. Thisrelationship justifies the Laplace

periodogram for analyzing the serial dependence of time-series data. The theoretical analysis,

coupled with the simulation studies, has uncovered the advantage of the Laplace periodogram

over the ordinary periodogram in its superior handling of heavy-tailed noise and nonlinear

distortion. The real-data example of heart rate variability further confirms the robustness

superiority of the Laplace periodogram.

In our experiments, the Laplace periodogram was calculatedin R using therq function in

thequantreg package (Koenker, 2005). It is a general-purpose program designed for linear

quantile regression. Although the computational complexity is higher than the Fast Fourier

transform, the benefit of improved robustness can still justify the use of the Laplace peri-

odogram in applications where the slower speed of computation is not a primary constraint.

APPENDIX

Proof of Theorem 1

We begin with the single regressor case. We drop the subscripts j andk for simplicity

and prove the assertion along the lines of Koenker (2005, pp.102–122).

First, consider the case where{εt} is a sequence of independent random variables, for

which rts(wt ,ws) = Ft(wt){1−Ft(wt)}δt−s. For any constant vectorδδδ ∈ R
p, let

Zn(δδδ ) := 1
2

n

∑
t=1

{|ut −vt(δδδ )|− |ut |}, (12)
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whereut := yt −xT
t βββ 0 = εt −wt andvt(δδδ ) := n−1/2xT

t δδδ . The first step is to establish

Zn(δδδ ) = Z̃n(δδδ )+OP(1) (13)

for each fixedδδδ ∈ R
p, whereZ̃n(δδδ ) := −δδδ Tζζζ n+ 1

2 δδδ TQnδδδ andζζζ n
A∼ N(hn,Wn). Toward that

end, we use Knight’s identity (Knight 1998),

1
2(|u−v|− |u|) = −vψ(u)+

∫ v

0
φ(u,s)ds,

whereψ(u) := 1
2 − I(u < 0) andφ(u,s) := I(u≤ s)− I(u≤ 0). With u andv substituted by

ut andvt := vt(δδδ ), we can writeZn(δδδ ) = Z1n + Z2n, whereZ1n := −δδδ Tζζζ n andZ2n := ∑ξt ,

with ζζζ n := n−1/2∑ψ(ut)xt andξt :=
∫ vt

0 φ(ut ,s)ds.

ConsiderSn := ∑zt , wherezt := ψ(ut)xT
t δδδ (t = 1, . . . ,n). Owing to the boundedness

of {xt} and the independence of{εt}, thezt ’s are independent and uniformly bounded ran-

dom variables. It is easy to see thatmt := E{ψ(ut)} = 1
2 −Ft(wt) andσ2

t := V{ψ(ut)} =

Ft(wt){1−Ft(wt)}. Therefore,E(Sn) = ∑mtxT
t δδδ = n1/2hT

nδδδ andV(Sn) = ∑σ2
t (xT

t δδδ )2 =

nδδδ TWnδδδ . Under Assumption (iii), we haveV(Sn)→ ∞. This result, together with the bound-

edness of{zt}, implies that the Lindeberg condition is satisfied. By the central limit theorem

(Chung 2001, Theorem 7.2.1), we obtainSn
A∼ N(n1/2hT

nδδδ ,nδδδ TWnδδδ ), which, in turn, gives

δδδ Tζζζ n = n−1/2Sn
A∼ N(hT

nδδδ ,δδδ TWnδδδ ). Because this expression is true for anyδδδ ∈ R
p, the

Craḿer-Wold device (Brockwell and Davis 1992) ensuresζζζ n
A∼ N(hn,Wn).

Now considerZ2n. Owing to the boundedness of{xt}, we have max|vt | = O(n−1/2) and
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∑O(vd+2
t ) = O(n−d/2). Therefore, under Assumption (ii),

E(Z2n)=
n

∑
t=1

E(ξt) =
n

∑
t=1

∫ vt

0
{Ft(u+wt)−Ft(wt)}du

=
n

∑
t=1

∫ vt

0
{ ft(wt)u+O(ud+1)}du=

n

∑
t=1

{1
2 ft(wt)v

2
t +O(vd+2

t )}

= 1
2 δδδ TQnδδδ +O(n−d/2). (14)

Furthermore, forvt < 0, ξt =
∫ |vt |

0 −φ(ut ,−s)ds, and forvt ≥ 0, ξt =
∫ vt

0 φ(ut ,s)ds. In both

cases, the integrand is bounded by 0 and 1. This implies 0≤ ξt ≤ |vt |, which, in turn, leads

to V(ξt) ≤ E(ξ 2
t ) ≤ |vt |E(ξt). Therefore,

V(Z2n)=
n

∑
t=1

V(ξt) ≤ max
1≤t≤n

|vt |E(Z2n) = O(n−1/2), (15)

where the last equality is due toE(Z2n) = O(1), which is implied by (14) together with

Assumption (i) and the boundedness of{xt}. From (14) and (15), and by Chebyshev’s in-

equality, we obtainZ2n = 1
2 δδδ TQnδδδ +OP(1).

Combining the above results proves (13) for each fixedδδδ ∈ R
p. SinceZn(δδδ ) andZ̃n(δδδ )

are convex functions ofδδδ , the Convexity Lemma (Pollard 1991) ensures that (13) also holds

uniformly in δδδ ∈ ∆ for any given compact set∆ ∈ R
p. Moreover, under Assumption (iv),

Z̃n(δδδ ) has a unique minimizer̃δδδ n := Q−1
n ζζζ n with Qn ≥ Q0 for n≥N0. By using the convexity

of Zn(δδδ ) and following the last part of the proof of Theorem 1 in Pollard (1991), we can show

that the minimizer ofZn(δδδ ), denoted bŷδδδ n, is Op(1) away fromδ̃δδ n, i.e., δ̂δδ n− δ̃δδ n
P→ 0, and

therefore has the same asymptotic distribution asδ̃δδ n. This result can also be justified by citing

the Basic Corollary of Hjort and Pollard (1993). Note thatZn(δδδ ) can be reparameterized as a

function ofβββ :=βββ 0+δδδn−1/2 such thatZn(δδδ ) = 1
2 ∑{|yt −xT

t βββ |−|ut |}. Since this function of

βββ is minimized atβββ = β̂ββ n, it follows thatδ̂δδ n = n1/2(β̂ββ n−βββ 0). The proof for the independent
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case is complete upon noting thatδ̃δδ n
A∼ N(Q−1

n hn,Q−1
n WnQ−1

n ).

Next, consider the case where{εt} is anm-dependent process. The proof is similar to

that of the independent case, but with several important exceptions. First,{zt} is now an

m-dependent and uniformly bounded random process and

σts := Cov{ψ(ut),ψ(us)} = Fts(wt ,ws)−Ft(wt)Fs(ws) = rts(wt ,ws).

Under Assumption (iii),V(Sn) = nδδδ TWnδδδ , son−2/3V(Sn) = n1/3δδδ TWnδδδ → ∞. By the cen-

tral limit theorem for uniformly boundedm-dependent processes (Chung 2001, Theorem

7.3.1), we obtainζζζ n
A∼ N(hn,Wn). Second, sinceV(ξt) ≤ |vt |E(ξt), we have

|Cov(ξt ,ξs)| ≤
√

V(ξt)V(ξs) ≤
√

|vtvs|E(ξt)E(ξs).

In addition, them-dependence of{ut} gives Cov(ξt ,ξs) = 0 for |t−s|> m. Combining these

results with the Cauchy-Schwartz inequality leads to

V(Z2n)= ∑
|t−s|≤m

Cov(ξt ,ξs) ≤ ∑
|t−s|≤m

√

|vtvs|E(ξt)E(ξs)

≤ ∑
|t−s|≤m

|vt |E(ξt) ≤
n

∑
t=1

(2m+1)|vt |E(ξt)

≤ (2m+1) max
1≤t≤n

|vt |E(Z2n) = O(mn−1/2) = O(1).

The remaining argument is the same as in the proof of the independent case.

Finally, consider the case of multiple regressors. With loss of generality, letq = 2. To

prove the joint asymptotic normality of̂βββ 1n andβ̂ββ 2n, it suffices to considerZn(δδδ 1,δδδ 2) :=

Z(1)
n (δδδ 1)+ Z(2)

n (δδδ 2), whereZ( j)
n (δδδ j) is defined in the same asZn(δδδ ) in (12) except thatx jt

is in place ofxt . It has been shown thatZ( j)
n (δδδ j) = −δδδ T

j ζζζ jn +δδδ T
j Q jnδδδ j + OP(1) uniformly

in δδδ j ∈ ∆, whereζζζ jn
A∼ N(h jn,W j jn). Therefore, we only need to compute Cov(ζζζ 1n,ζζζ 2n).
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By definition,ζζζ jn = n−1/2∑ψ(u jt )x jt , whereu jt := εt −w jt . Since Cov{ψ(u jt ),ψ(uks)} =

rts(w jt ,wks), we obtain Cov(ζζζ 1n,ζζζ 2n) = n−1∑∑ rts(w1t ,w2s)x1t xT
2s = W12n.

Remark4. A strengthened version of Theorem 7.3.1 (Chung 2001) states that if {Xt} (t =

1, . . . ,n) is a sequence ofm-dependent and uniformly bounded random variables withm=

O(nδ ) andn−εV(Sn) → ∞ for someδ ∈ [0,1) andε := 2
3(1+ 2δ ), whereSn := ∑Xt , then

V(Sn)
−1/2(Sn−E(Sn))

D→ N(0,1). This assertion can be proved in the same way as in Chung

(2001, pp. 224–226) by taking the blocking factork := [nε−2δ ] so thatkm2 = O(nε), k =

O(nε−2δ ) → ∞, n/(km) = O(n1−ε+δ ) → ∞, andn/k = O(n1−ε+2δ ) = O(nε/2). Citing this

result, we can show that the assertion in Theorem 1 remains valid for m-dependent processes

with m= O(nδ ) for someδ ∈ [0, 1
4). Indeed, sinceε := 2

3(1+2δ ) < 1, by following the proof

of Theorem 1, we obtainn−εV(Sn) = n1−εδδδ TWnδδδ →∞. We also haveV(Z2n) = O(1) because

mn−1/2 = O(nδ−1/2) → 0. Combining these modifications with the rest of the argumentin

the proof of Theorem 1 proves the assertion.

Proof of Corollary 1

According to the proof of Theorem 1, it suffices to establish the quadratic approximation

(13). Towards that end, we note thatεt can be decomposed asεt = ε ′t + ε ′′t , where

ε ′t := ∑
| j|≤m

φ j et− j , ε ′′t := ∑
| j|>m

φ j et− j .

With this notation, we can writeut := εt −wt = u′t +ε ′′t , whereu′t := ε ′t −wt . We can also write

Zn(δδδ ) = Z′
n(δδδ )+ Z′′

n(δδδ ), whereZn(δδδ ) is defined by (12) andZ′
n(δδδ ) := 1

2 ∑(|u′t − vt | − |u′t |).

Note that{ε ′t} is a 2m-dependent process. Therefore, according to Remark 4, a quadratic

approximation of the form (13) can be obtained forZ′
n(δδδ ) with m= O(nδ ) for anyδ ∈ [0, 1

4),
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where the parameters of the quadratic function are defined bythe marginal and bivariate

distribution functions of{εt} as the limiting values of the corresponding functions of{ε ′t}.

Given this result, it suffices to show thatZ′′
n(δδδ ) = OP(1).

Towards that end, we note thatZ′′
n(δδδ ) = Z′′

1n +Z′′
2n, where

Z′′
1n := 1

2

n

∑
t=1

(|u′′t + ε ′′t |− |u′′t |), Z′′
2n := −1

2

n

∑
t=1

(|u′t + ε ′′t |− |u′t |),

and u′′t := u′t − vt . Using the Knight’s identity, we can show that|Z′′
1n| ≤ 2∑ |ε ′′t |. This,

combined with|ε ′′t | ≤ ∑| j|>m|φ j | |et− j |, leads to

E(|Z′′
1n|) ≤ 2

n

∑
t=1

∑
| j|>m

|φ j |E(|et− j |) = 2nE(|e0|) ∑
| j|>m

|φ j | = O(1).

Similarly, E(|Z′′
2n|) = O(1). Citing Markov’s inequality completes the proof.

Proof of Theorem 2

In Theorem 1, letx jt := xt(ω j), µt = 0, andβββ 0 = 0. Then, the white noise assumption

implies thatW jkn = 1
4D jkn and Q jn = f (0)D j jn . This, combined with Assumption (vii),

proves the assertion.

Proof of Theorem 3

First, consider the single frequency case. For simplicity,we drop the subscriptsj andk in

the notation. In Theorem 1, letxt := xt(ω) andβββ 0 = 0 so thatwt =−µt = 0. SinceF(0) = 1
2,

we haverts = 1
4 − 1

2γts = 1
4 − 1

2γt−s := rt−s. This implies that

Wn = n−1
n

∑
t=1

n

∑
s=1

rt−sxtxT
s = n−1 ∑

|τ|<n

rτ ∑
t∈Tn(τ)

xtxT
t−τ , (16)
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whereTn(τ) := {t : max(1,1+ τ) ≤ t ≤ min(n,n+ τ)}. Sincext = xt(ω), we have

xtxT
t−τ =









cτc2
t +sτctst cτctst −sτc2

t

cτctst +sτs2
t cτs2

t −sτctst









,

wherect := cos(ωt) andst := sin(ωt). It is easy to show that∑c2
t = 1

2n+ O(1), ∑s2
t =

1
2n+O(1), and∑ctst = O(1). Therefore, for any fixedτ,

n−1 ∑
t∈Tn(τ)

xtxT
t−τ → Mτ := 1

2









cτ −sτ

sτ cτ









.

Moreover, since{rτ} is absolutely summable, we obtainWn → ∑ rτ Mτ . Becauserτ is

an even function ofτ, we have∑ rτsτ = 0; becauserτ = 1
4(1− 2γτ), we have∑ rτcτ =

1
4S(ω). Combining these results yieldsWn → 1

8 S(ω) I . Moreover, we also havehn = 0 and

Qn → 1
2 f (0)I . Therefore, by Theorem 1 and Corollary 1,n1/2β̂ββ n(ω) A∼ N(0,Q−1

n WnQ−1
n ) →

N(0,(1/2 f 2(0))S(ω) I).

Now, consider the case of multiple frequencies. It suffices to showW jkn = O(1) for

j 6= k. Toward that end, we note thatW jkn has the same expression asWn in (16) ex-

cept thatxt(ω j)xT
t−τ(ωk) is in place ofxtxT

t−τ . For j 6= k, Assumption (vii) implies that

n−1∑t∈Tn(τ) xt(ω j)xT
t−τ(ωk) = O(1) for each fixedτ, which, combined with the absolute

summability of{rτ}, leads toW jkn = O(1).

Proof of Theorem 4

In Theorem 1 (withq= 1 and with subscriptsj andk omitted), letxt := xt(ω0) andwt = 0.

Then, we havêβββ n(ω0)
A∼N(βββ 0,n−1Q−1

n WnQ−1
n ). The proof of Theorem 3 establishes the fact

thatQn → 1
2 f (0)I andWn → 1

8S(ω0)I . Combining these results proves the assertion.
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Proof of Theorem 5

The asymptotic normality of̂βββ n(ω) is a direct result of Theorem 1 and the fact that

b0 > 0. The asymptotic distribution ofLn(ω) is derived from the theory of quadratic forms

of multivariate normal random variables.

Proof of Equation (7)

First, since1
2 −F(wt) is a periodic sequence of periodp := 2π/ω0 = n/k0 = 2m+1> 2,

we have the discrete Fourier transform (DFT) representation 1
2−F(wt) = a0+∑m

ℓ=1aT
ℓ xt(ω ′

ℓ),

whereω ′
ℓ := 2πℓ/p = 2πℓk0/n. Let ct := cos(ωt), st := sin(ωt), c′t := cos(ω ′

ℓt), ands′t :=

sin(ω ′
ℓt). Since∑ctc′t = ∑sts′t = 1

2nδℓk0−k and∑cts′t = ∑stc′t = 0, we have

n−1
n

∑
t=1

{1
2 −F(wt)}xt = 1

2a. (17)

Since f (wt) is also periodic with periodp, we have the DFT representationf (wt) = b0 +

∑m
ℓ=1bT

ℓ xt(ω ′
ℓ). Using the fact that∑c′tc

2
t = −∑c′ts

2
t = ∑s′tctst = 1

4 (δℓk0−2k + δn−ℓk0−2k)

and∑c′tctst = ∑s′tc
2
t = ∑s′ts

2
t = 0 and with the notation

Bℓ :=
1

2b0









b1ℓ b2ℓ

b2ℓ −b1ℓ









, bℓ := [b1ℓ,b2ℓ]
T ,

we obtain

Qn = 1
2b0B. (18)

Similarly, using the DFT representationF(wt){1−F(wt)} = c0 +∑m
ℓ=1cT

ℓ xt(ω ′
ℓ) with

Cℓ :=
1

2c0









c1ℓ c2ℓ

c2ℓ −c1ℓ









, cℓ := [c1ℓ,c2ℓ]
T ,

we obtainWn = 1
2c0C. Combining this result with (17) and (18) proves (7).
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