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Abstract— An enterprise typically operates multiple datacenter
sites, each handling workloads according to an enterprise-level
strategy. Sharing resources across multiple sites (or enterprises)
brings up several important problems. Each site may have its
own policies that govern its interactions with other remote sites.
Different policies impact the system performance in different
ways. The site administrators and system designers need to
understand the effects of a given set of policies on different
workloads. In this paper, we describe an analysis methodology
that determines the impact of policies on the workloads, and
we present results and validation for a prototypical multi-
site resource sharing system. Our analytical tool is capable of
evaluating complex policies on a large scale system and permits
independent policies for each site, so that policy makers can
quickly evaluate several alternatives and their effects on the
workloads before deploying them.

Index Terms— Modeling and Prediction, Performance of Sys-
tems, Policy Impact Analysis, Resource Sharing, Distributed
Systems

I. I NTRODUCTION

An enterprise typically operates multiple datacenter sites [2],
[35], each handling workloads according to an enterprise-level
strategy. The individual sites are federated and autonomous. Each
workload has a Service Level Agreement (SLA) [36], in terms
of its priority and performance requirements, and it catersto
a specific customer base. Workloads are managed by workload
managers, such as the IBM WebSphere Extended Deployment
(XD Edition) [7], that are responsible for distributing individual
requests of a workload among resources currently assigned to
this workload. In order to facilitate resource sharing among the
workloads at a site, a resource manager, such as IBM Tivoli
Intelligent Orchestrator (TIO) [5], arbitrates resourcesamong the
workload managers at that site. Thus, a site resource manager
is responsible for performing resource allocation across multiple
workload managers at its local site.

The next level of resource sharing can happen across different
sites of an enterprise. The resource manager at one site needs
to coordinate with its counterparts at the remote sites for remote
resource sharing. The enterprise can benefit from such multi-site
resource sharing as underutilized resources at one site canbe used
to handle a peak load at a remote site, which would otherwise
require over provisioning of resources at each site.

A variation of the multi-site enterprise scenario is the service
provider scenario, where one site provides resources for a set of
client sites. Yet another variation is where multiple sitesoperate
on a peer-to-peer basis but do not belong to a single enterprise.
Although the work described here is in the context of the multi-
site single enterprise scenario, it is equally applicable to the other
variations.

Sharing resources across multiple sites (or enterprises) brings
up several important problems. In order to preserve the autonomy
of each site, it is necessary that all decisions about the local re-
sources should be made by the site resource manager. Hence, each
site may have its own policies that govern its interactions with
other remote sites, i.e. when, what, and how to share resources
with the other sites. Different policies impact the SLA violations
experienced by local and remote workloads in different ways.
The site administrators and system designers need to understand
the effects of a given set of policies on different workloads. We
describe here an analysis methodology that determines the impact
of policies on the workloads, and we present results and validation
for a prototypical multi-site resource sharing system.

The results are useful for system designers in building effective
solution strategies, and the methodology can be incorporated into
a planning and system management tool that would permit policy-
makers to understand, fine-tune and analyze the effect of policies
on the system. Our tool is capable of evaluating complex policies
on a large scale system and permits independent policies foreach
site, so that policy makers can quickly evaluate several alternatives
and their effects on workloads before deploying them.

We have developed our methodology based on extensive work
in the field of performance analysis [28], [37], [32] and load
sharing in distributed systems [25], [13], [18]. The main solution
methodology used by our tool is a combination of closed queuing
network and finite state automaton. We model the system’s state
transitions as a non-deterministic finite state automaton.A site’s
policies are used to identify the set of valid system states and set
of valid state transitions. These transitions are annotated with rate
at which the transition occurs to construct a queuing network. The
solution to the queuing network gives the steady state probability
that the system remains in any particular state. The steady state
solution is directly used to study the effect of these policies on
workloads (e.g.: average case profit, worst case loss, etc).

However, queuing network based analysis is faced with a state
space explosion problem, that is, the number of states in the
queuing network may explode to large numbers making fast and
scalable policy analysis a challenging problem. In this paper,
we introduce the notion of near equivalent states and present
a tuneable state space compression algorithm that simultane-
ously achieves the following goals: (i) reduce the number of
states in the queuing network by several orders of magnitude,
thereby facilitating fast and scalable policy analysis, (ii) retain
the accuracy of steady state solution to the queuing network
and thus preserve the integrity of overall cost analysis, and (iii)
identify bottleneck resources in the system, and thus facilitate
the system administrator to perform more intelligent capacity
planning and policy tuning. We used our methodology to analyze
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Fig. 1. Multi-Site Resource Management

several multi-site resource usage policies. The tool was useful
not only in understanding the effects of various policies, but also
in characterizing the conditions under which a policy wouldbe
useful. The key results from our analysis are as follows:

• Multi-site resource allocation is effective when individual
sites are moderately loaded, but experience high variance
in their loads, and only a small subset of sites are heavily
loaded.

• When the individual sites experience moderate loads and
high load variance greedy strategies work well.

• Allowing low priority workloads to borrow remote servers is
useful, especially when the resource manager uses priority
based preemption to allocate local resources.

• In using lease based resource sharing, long lease times hurt
high priority workloads.

We validated our analysis methodology with a real-
implementation of multi-site resource management system.Our
prototype comprises of a simple two site scenario. It uses a bench-
mark J2EE application trade2 [8] as the workload, Cayuga [35]
as the workload manager and TIO [5] as the resource manager.
We observed that our analysis results match the measurements
obtained from our implementation to within 5% error.

The following sections of this paper are organized as follows.
We describe related work in Section II followed by an overview of
multi-site resource allocation problem in Section III. We present
a concrete model that captures the notion of site, workload,event,
policy and cost in Section IV. We present algorithms for policy
evaluation and combating state space explosion in Section V.
Section VI describes experiments that quantify the scalability of
our approach followed by a detailed collection of case studies.
Section VII validates our policy evaluation tool against asreal
implementation. Finally, we conclude in Section VIII.

II. RELATED WORK

Although load sharing in clusters and processor sharing [34],
[29] are widely studied, a methodology for analyzing multi-
site resource sharing under policy constraints is relatively new.
The most closely related work is in the field of grid computing
[1], [23], [22]. Open grid services architecture (OGSA [24],
[21]) develops a framework (for both commercial and scientific
grid) to support distributed system integration, virtualization and

management services. Grid resource allocation manager (GRAM)
[27] supports locating, submitting, monitoring and canceling jobs
on a Grid.

Our work falls under the category of a commercial grid that
is built on top of IBM Tivoli Intelligent Orchestrator (TIO)
[5]. Platform Load Sharing Facility (LSF [10]) offers several
infrastructural features similar to IBM TIO [5]. Platform LSF sup-
ports multi-cluster capabilities allowing a cluster to span across
multiple sites across various geographical locations. Similar to
TIO, LSF attempts to provide a single computing machinery
image across multiple connected hardware clusters. LSF also
supports rich multi-site resource allocation policies including job
priorities and preserves local ownership and control. In this paper,
we assume that the infrastructure required to support multi-site
clusters is available (say, using IBM TIO or Platform LSF). Our
goal is to develop fast and scalable algorithms for performance
based policy impact analysis:What if we use policyP instead of
policyQ?, What if we change the threshold parameter in policyP

from thr1 to thr2?, What if siteA prefers sharing its resources
with site B over siteC?, What if the sites have different (and
possibly conflicting policies)?, etc. While Platform LSF supports
a rich set of resource sharing policies and tools for monitoring
resource utilization, it is not evident that it supports policy impact
analysis. The algorithms described in this paper for fast and
scalable policy evaluation (e.g.: cost analysis, what if analysis,
etc) have been implemented using IBM TIO; but they may
be applicable to several other multi-site resource management
systems.

Several authors have addressed policy related issues in virtual
organization (VOs) [18], [30], [31], [19] that may span multiple
autonomous organizations. In [18], [19] the authors introduce
usage-policies for resources in a grid and evaluate these policies
using simulations and measured validation. The authors model
virtual organizations that generate batch jobs to be executed at
various resource provider sites. The resource providers accept
jobs based on usage-policies. The study finds that a policy called
commitment-limit is most effective in minimizing the response
times. The commitment-limit policy specifies that a site should
accept a job if a virtual organization’s resource usage is below
a threshold or if there are idle nodes and the virtual organiza-
tion’s use of resources is below another threshold. In [31],[19]
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the authors extend policy based resource allocation techniques
for hierarchical VOs. Our work is motivated by the need to
study policy-based work offloading from one site to another,in
a federated environment, using different system and workload
models and considers a broad range of policies. Therefore, we
studied a different aspect of policy-based resource sharing and
thus providing a complimentary but different set of results. We
believe our methodology is general enough that various usage-
policies can be modeled and analyzed using our tool.

Significant amount of work has been done in the field of
economic models for resource allocation in peer-to-peer networks.
In [16], authors have proposed trading as a mechanism wherein a
site acquires remote resources by trading away its own localre-
sources. Several authors have also researched on optimal resource
allocation in peer-to-peer networks [40], [17]. Our architecture
for multi-site resource management is peer-to-peer. However,
unlike peer-to-peer systems wherein the peers may be greedyand
competing with each other, our focus is on cooperative multi-site
resource management. Our work falls along with line of several
studies that indicate that commercial sharing of IT resources yield
significant advantages [14], [15].

Many papers describe the system architecture required to
support cluster-based resource sharing and load balancingfor web
servers and application servers. Fox et al [25] describe theidea
of using a separate overflow pool of servers (that are not usually
a part of the cluster) for handling temporal bursts in the web
traffic for one application. A report on giant-scale services [13]
presents an extensive discussion on Internet-based systems that
are primarily single-owner and comprise of well-connectedclus-
ters. The basic model of the giant-scale services implementation
is similar to our site resource manager that attempts to hidenode
failures and balances traffic. However, the emphasis of the paper
is on lessons learned from the infrastructural facilities available
for effective load balancing and on enhancing the performance of
application services such as round-robin DNS, layer-4 and layer-7
web switches. The emphasis here is on the evaluation of multi-
site resource sharing policies in a system model of a few small
enterprise data centers to the giant-scale services.

III. M ULTI -SITE RESOURCEALLOCATION

In this section we present the outline of our framework that
could be employed by a resource manager to share resources
with its counterparts. As we have already mentioned, it is very
important to preserve the autonomy of each site. Hence, all
decisions on the local resources available at that site should
be made by the site’s resource manager. Having a centralized
resource manager that coordinates the resource managers ateach
local site might solve this problem in a very similar way that
a site’s resource manager coordinates various local application
managers. However, the resource managers at each site would
loose their autonomy over local resources. Hence, the resource
managers at each site coordinate with their counterparts ina
peer-to-peer manner. The fundamental primitives that are used
by resource managers to interact with their counter-parts are:
resource borrowing and resource donating.

A. Resource Borrowing and Donation

In our framework, each site is capable of borrowing and
donating resources. When a resource is donated from site A to

site B, site B can use that resource for time duration specified
by lease time. At the end of the lease time, site B may request
site A to renew the lease. Site A may renew the lease depending
on its current state. Our resource borrowing and sharing differs
radically from traditional resource models along two dimensions:
resource granularity and time granularity. We assume that the
resource granularity is one computing node in a server. There
are two primary reasons for choosing this granularity levelin
a commercial grid. (i) Configuring one node to host multiple
applications is challenging. (ii) More importantly, for security
reasons (accidental information leakage), it may be unsafeto host
two applications (especially if they are from different clients) on
the same node. Having said that, as isolation and virtualization
techniques [9], [11] improve it would be possible to use finer
grained resources. Nonetheless, our policy evaluation tool can be
easily extended to accommodate such fine grained resources.

The time granularity at which a resource is leased could vary
from a couple of minutes to hours, as against a few millisec-
onds of CPU time slice. This large resource granularity can be
attributed to the fact that datacenters (sites) typically own 10’s or
even 100’s of nodes. The coarseness in time granularity is because
it takes long to switch nodes among different applications;this
includes setting up the required software stack and application,
provisioning the application and finally enabling it [6].

For the sake of simplicity, we serialize all updates to the logical
state of a resource manager due to resource borrow and donate
operations. The logical state update changes the in-memorystate
model and adds log entries; these operations are typically fast
and thus this keep the information lag small. Following the
synchronized logical state update, a workflow is kicked off that
executes the actual borrow or donate operation. If necessary this
workflow also installs the required software stack, installs the
application and sets appropriate environment variables. The actual
state change (trigged by workflows) may take several secondsto
a couple of minutes.

B. Policies

In view of the resource borrowing and donating model dis-
cussed above, a resource manager needs to make the following
decisions:

• When to borrow a node?
• Where to borrow a node from?
• When to donate a node?
• How to handle lease renewal requests?

These decisions could be performance related (for example,Never
borrow a node from a remote site when there are free nodes
available at the local site) or administrative (for example, Site
A should never donate/borrow a resource to/from site B). Our
framework permits a wide variety of such policies to be deployed
by the system. In order to preserve site autonomy we permit sites
to specify their own policies. Our analytical tool is capable of
studying the effect of these (possibly) heterogeneous policies on
different workloads.

IV. M ODEL

In this section we present a concrete model that describes vari-
ous entities (physical and logical) in multi-site resourceallocation
including: a machine, a site, a workload, a policy, an event,and
a cost model. We also describe a model to capture the state of
physical entities including: site state and workload state.
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A. Machine Model

A machine or a server is presented as a five-tuple〈nnodes, cpu,
mem, disk, nw〉 wherennodes denotes the number of homoge-
neous nodes (blades) in a server. For each node we have:cpu

denote the amount of computing power,mem denote the amount
of main memory,disk denote the disk access bandwidth and
nw denote the networking bandwidth available. For scalability
reasons, all resources are discretized using a least count.For
example, thecpu resource is discretized using a least count of 100
MIPs (million instructions per second) and the network resource
(nw) using a least count of 1Mbps.

B. Site Model

A site is represented by an array of〈ns, mm, pt〉 wherens

denotes the number of nodes with machine modelmm and pool
type pt. Each pool represents the software stack deployed on
the node including operating system, network stack, application
stack and etc. Each site has a policy setP that describes site
specific policies. Policies conform to the policy model described
later in this section. A site is associated with a list of workloads
(or applications) that are hosted by the site that conforms to the
workload model described below.

C. Workload Model

Workloads denote applications hosted by a site. Each workload
is associated with a Service Level Agreement (SLA [36]) that
explicitly specifies the guarantees provided by the serviceprovider
(site) and the cost of violating those guarantees. Hence the
service provider is faced with the challenge of simultaneously
meeting multiple SLAs. We assume that each workload draws its
resources (nodes) from one exactly one server pool type. We use a
capacity planner [4] to determine the number of nodes required to
satisfy the workload’s SLA for different values of mean workload
request arrival rates. The capacity planner essentially permits
us to discretize the resource requirement for a workload at any
instance of time intonlevel levels. Each level is in turn mapped to
resource required to handle the workload satisfactorily (according
to its SLA). Resource requirement is represented as an arrayof
〈nnodes, mm, pt〉 wherennodes denotes the number of nodes
of machine modelmm and pool typept. We use empirical mea-
surements to determine the distribution of the amount of time a
workload stays at leveli. These measurements are primarily used
to build a workload generator that best simulates the dynamics on
a commercial grid. Popular choices for such distributions include
the exponential distribution and Pareto distribution. Theworkload
transits between levels as specified by a transition probability
matrix tpm: nlevels × nlevels; the entrytpm(i, j) specifies the
probability that a workload transits from leveli to level j (1 ≤

i, j ≤ nlevels).

D. Workload State Model

A workload’s state is characterized by〈lv, nl, nb〉, where lv

denotes the current workload level (as described in the workload
model above),nl denotes the amount of local resources that are
currently serving this workload andnb is an array (one element
per remote site) that denotes the amount of resources borrowed
on behalf of this workload. Note that these resources (localand
remote) belong to the pool type required by the workload. A

collection of resources (local and remote) is quantified by the
three tuple〈nnodes, mm, pt〉, wherennodes denotes the number
of nodes of machine modelmm and pool typept.

E. Site State Model

A site’s state model captures the current state of a site. In
contrast to the site model which describes static parameters
associated with a site, the sites state model captures the time
varying parameters associated with the site. A site’s stateis
represented as〈ws, as, nd〉, where ws is an array of local
workload states,as is an array of active resources that not in
maintenance mode, andnd denotes an array (one element per
remote workload) that denotes the amount of resources donated
to some remote workload.

F. Policy Model

In our framework policies aid a resource manager in responding
to events. LetS denote the current state of the system. LetP be
a collection of policies. Our policy engine is event-driven, that is,
it is invoked only when some external evente occurs. The policy
setP is used to guide the system to a collection of plausible new
states that conforms to the policy set. More concretely, when the
policy setP is invoked when current system state isS on some
evente, it returns a collection{(S1, p1), (S2, p2), · · · , (Sn, pn)},
whereSi is a valid next state andpi is the probability with which
the system is recommended to transit to stateSi such that

∑n
i=1 pi

= 1. Note that ifn equals one then, there is only one next state
that conforms to the policy setP ; and if n > 1 the system would
choose its next state probabilistically from the set{Si: 1 ≤ i ≤

n}.
More concretely, a policyP1 can be a〈predicate〉 or a three

tuple 〈predicate, e, action〉, wherepredicate is a predicate on
the system stateS. If P1 = 〈predicate〉 then all statesS such
that predicate(S) is false is precluded. IfP1 = 〈predicate, e,
action〉 then for all statesS such thatpredicate(S) is true and
when an evente occurs, the policy requires the system to perform
an actionaction. In general, our policy specification requires a
methodnextState(S, action) (could be any arbitrary function
(Java method)) that returns the next stateS′ when the system
performs an actionaction from stateS. An action could involve
borrowing/donating resources, reallocating local resources among
workloads, etc.

G. Event Model

Events represent those external changes that would require
the system to reallocate or redistribute its resources amongst
workloads in order to meet its business objectives. We focus
on two major types of events in our framework: (i) a workload
event occurs when a workload requirement moves from one level
to another, and (ii) a node event occurs when a node fails (or
is moved into maintenance mode) or when a node reinstated
into the system on recovering from failure (or on maintenance
completion). A node event also occurs when a node is borrowed
or donated and when the lease on a borrowed node expires.

Given a stateS, there are a set of eventsE that could potentially
occur when the system is in stateS. For each evente ∈ E, the
probability distribution of the time for evente to fire is assumed
to be known. For workload events the probability distribution
of the time to next event is obtained from the workload model.
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We assume that nodes fail (and recover) independently and the
time of failure (and recover) is assumed to follow an exponential
distribution or Weibull (bath tub) distribution.

H. Cost Model

We have developed a cost model to evaluate the effect of
various policies on the system. In general our cost model permits
cost functions that are arbitrary functions of the system’sstate
and system’s state transitions. In this section, we presenta sample
cost model that considers three important costs: (i) VC: violation
cost that represents the cost of violating a workloads SLA (ii)
RSC: remote node cost that represents the cost of using a remote
resource (iii) RC: reallocation cost that represents the initial
setup and provisioning cost for a workload. Additionally, one
could include the cost of operating a node measured in terms
of power (dominated by cooling costs), space, and man hours for
maintenance.

First, we useα(S, w) to denote the violation cost for workload
w when the system is in stateS. A popular choice for estimating
violation cost would be to make the violation cost proportional
to nds(S, w), where nds(S, w) denotes the difference between
the number of nodes required for workloadw and the number
of nodes actually allocated to workloadw (local and remote
nodes inclusive) in stateS. In this case the violation cost would
be expressed as penalty per deficit node per unit time in the
workload’s SLA.

Second, we useγ(S, w) to denote the cost of using a remote
node for workloadw when the system is in stateS. A common
choice for estimating remote node cost would be to make it pro-
portional to thenbs(S, w), wherenbs(S, w) denotes the number
of remote nodes borrowed for workloadw in state S. In this
case, the remote node cost would be expressed as penalty per
remote node per unit time in the site’s policy set. Additionally,
one might choose to distinguish between nodes borrowed from
different sites. In that case the remote node cost for different
nodes would depend on the site from which those nodes were
borrowed from.

Third, we useβ(S, S′, w) to denote the reallocation cost for
workload w, when the system makes a transition from stateS

to stateS′. Reallocation cost would typically depend on at least
the following two factors: (i) whether the reallocated nodewas
idle or running some workload? (ii) Whether the reallocatednode
was local or remote with respect to the workload? (iii) What
is cost of provisioning and setting up the workload? First, the
reallocation cost would be higher if the node was previously
running some workload (say, due to the time expended in simply
shutting down that workload on the node); also such a cost might
depend on the workload (if any) that was previously running on
the node. Second, the reallocation cost for a local node is likely
to be much smaller than that for a remote node. This is primarily
because a local reallocation does not have go through agreements
between different sites [4]. Support for automated negotiations
across sites is provided by PANDA [26] and WS agreements
[12]. Third and the most important component of reallocation
is cost of provisioning and setting up the environment required
for the workload on the reallocated node. This might involve
additions to the node’s software stack, starting the workload’s
runtime environment, setting up database connections, andetc.

I. Sample Policies

In this section, we discuss some samples policies that are
permissible in our model. We present some policies that aid the
system in responding to the following questions: (i) When to
borrow a node? (ii) Where to borrow nodes from? (iii) When to
donate a node? For the sake of simplicity in the discussion below,
we assume that workloads are prioritized in decreasing order of
their violation costs (violation costs are typically specified in
dollars).

1) When to borrow a node?:Let an evente denote the fact
that a workloadw requirement has increased. Then borrow policy
could be defined as a collection of policies shown below. LetA

denote the site to which workloadw belongs.P1: Always allocate
idle nodes in preference to other nodes.P2: Always use local
nodes in preference to remote nodes.P3: If Site A has currently
donated nodes for some remote workloadrw, then preempt
remote workloadrw if its priority is smaller than workloadw.
P4: If Site A had allocated nodes to some local workloadlw, then
preempt local workloadlw if its priority is smaller than workload
w. P5: A workload w is eligible for using a remote node only if
its priority is greater than a minimum threshold.

2) Whom to borrow a node from?:Let us suppose that a
workload w has qualified to borrow a remote node. Then, the
site from which it borrows a node could be determined by the
following policy. Let nfX denote the number of free nodes
currently at siteX. P6: Borrow a node from that site that has
the maximum number of free nodes.

3) When to donate a node?:Let us suppose that siteX has
received a request for donating a node. Then the site grants the
request based on the following policies. LetnfX denote the
number of free nodes currently at siteX. Let the number of
requested nodes ber. P7: Donate forr′ nodes for workloadw,
where r′ = min(nfX − F , r), where F denotes the minimum
number of free nodes required after granting a donation request.
P8: Workloadw is eligible for borrowing a node only if its priority
is greater than a minimum threshold.

V. A NALYSIS

In this section we present techniques to analyze a complex
policy-driven system. We incorporate policies into the system
by modeling the system dynamics as a finite state automaton.
Then we superimpose a queuing network model on the automaton
that labels state transitions in the automaton with probability
distribution functions. We then solve the model using numeri-
cal techniques or simulations and use this solution to estimate
workload costs (violation cost, remote node cost and reallocation
cost).

A. Finite State Automaton

We model the dynamics of a complex policy-driven system
as a non-deterministic finite state automaton. The automaton is
constructed automatically from the individual site’s policy set that
is defined according to the policy model. States in the automaton
correspond to the system states. State transitions are triggered by
events. We useP to denote the collection of policy sets from all
sites in the system. The collective policy setP determines how the
system responds to events. More specifically, policies serve three
critical purposes: (i) Determines whether a given stateS is legally
permissible or not. We call a stateS illegal if it does not conform
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to the policy set P. (ii) Determines whether a transitionT between
two statesS and S′ is permissible or not. We term a transition
(response to an event) illegal if the event is not handled in away
that conforms to policy setP . (iii) Determines the probability
that the system makes a transitionT from stateS to stateS′ in
response to a given evente. We illustrate the role of policies in
generating the finite state automaton description for the system
using the following three examples.

• Policyp1: ”Site A never borrows a remote node for workload
w”. Given a stateS, its legality can be tested (with respect to
policy p1) by ensuring that the workload state forw should
indicate thatnb (the number of nodes borrowed by workload
w) is equal to zero.

• Policy p2: ”Site A borrows a remote node for workloadw
from a remote site that currently has the maximum number
of idle nodes (of the same server pool type as that required
for workloadw)”. Given a transitionT from stateS to state
S′, its legality can be tested (with respect to policyp2)
as follows. If workloadw were to have borrowed a node
in transition T , then the stateS′ should indicate that the
borrowed node belongs to the site that has the maximum
number of idle nodes in stateS.

• Policy p3: ”Suppose siteA has to borrow a remote node
for workload w. Let nfX denote the current number of
idle nodes at siteX. Then, siteA borrows a node from
site X with probability proportional tonfX ”. Policies like
p3 permit policy makers to add randomization techniques
that are popularly used as a heuristics for performance
enhancement.

POLICY GUIDED STATE SPACE EXPLORATION(system
modemSM , workload modelWM , policy setP )
(1) Let E be the set of all events
(2) Start with some valid stateS0

(3) SS = {S0}
(4) For every unexplored stateS ∈ SS
(5) For every evente ∈ E
(6) For every stateS′ ∈ P (S, e)
(7) Add transitionT : S →e S′

(8) SS = SS ∪ P (S, e)
(9) Mark stateS as explored
(10) Repeat steps 4-10 until there are no unexplored
states

Fig. 2. Policy Guided State Space Exploration

We encode policies into the functionP (S, e) as discussed in the
policy model. Recall thatP (S, e) determines how the system
responds to evente when it is in stateS. We now present a simple
technique to construct the finite state automaton from the sites
model and their policies. We use algorithm in Figure 2 that uses a
policy-driven technique to construct the automaton. The algorithm
above starts with some valid (or legal) stateS0 and explores the
state space in a policy driven manner. This technique allowsus
to automatically generate the automaton from the site modeland
their policies. By construction, every stateS in the automaton is
legal and every transitionT in the automaton is permissible. The
probability of transition is handled in the queuing networkmodel
that is juxtaposed on this finite state automaton. We observed
that this policy-guided state space exploration techniqueallows
us to speed up automaton construction drastically. This is because,

among all the combinatorial choices that could potentiallyrepre-
sent a state, very few (< 0.1%) of them actually conformed to
our policy set. For instance, simple policies like ”Do not starve
a workload whenever an idle node (of the required pool-type)
is locally available”, ”Use local node in preference to remote
nodes”, ”Use priority based preemptive scheduling to manage
local nodes” tend to drastically limit the number of states.Hence,
pruning the state space using a policy-guided technique turned out
highly beneficial.

B. Queuing Network Model

We superimpose a queuing network model on the finite state
model to annotate state transitions with their probabilitydistribu-
tion functions. A transitionT : S →e S′ is labeled with a tuple
〈fe, pr〉. The functionfe describes the probability distribution
of the evente that causes the system to transit from stateS

to stateS′. The probabilitypr denotes the probability that the
system transits from stateS to S′ in response to evente. For node
events, the functionfe is an exponential distribution; for workload
events the function could either be an exponential distribution
or a Pareto distribution. Exponential distribution is amenable to
numerical analysis and thus provides fast (though crude) results;
while Pareto distribution captures a more realistic burstyworkload
characteristics [37].

A solution to the above model gives uspr(S) for all states
S and rate(T ) for all transitionsT , where pr(S) denotes the
probability (over an extended period of time) that the system is
in stateS andrate(T ) denotes the rate (over an extended period
of time) at which the system makes a transitionT . We use values
to estimate workload costs as shown below (in terms of mean
cost units per unit time):

V C =
∑

S

∑

w

α(S, w) ∗ pr(S)

RSC =
∑

S

∑

w

γ(S, w) ∗ pr(S)

RC =
∑

T :S→S′

∑

w

β(S, S, w) ∗ rate(T )

We computepr(S) andrate(T ) from the model as follows. If the
workload events are exponentially distributed then we compute
the stationary probability distribution using standard techniques
to solve a Markov chain. The stationary probability distribution
directly gives uspr(S) for all statesS. For every transitionT : S

→e S′, rate(T ) = pr(S) ∗ rate(fe), whererate(fe) denotes the
rate of the exponential distributionfe. We use a discrete event
simulation [20] to solve the model when workload events follow
a heavy-tailed Pareto distribution. We run the simulation for a
substantially long period of timetsim. In the course of this run we
measure the amount of time expended by the system in any state
S by t(S), and use this information to computepr(S) = t(S)

tsim
.

Similarly, we measure the number of times the system transits
from stateS to stateS′ using a transitionT by n(T ) and estimate
rate(T ) = n(T )

tsim
. Givenpr(S) for all statesS andrate(T ) for all

transitionsT , the workload costs can be estimated as discussed
above.

C. State Space Explosion Problem

Theoretically, solving the queuing network for the steady state
model permits us to evaluate a set of policies. However, evenfor
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a reasonably small system the number of possible system states
tends to be exponentially large. This greatly limits the scalability
of the policy evaluation tool. However, we recognize that most
of these system states may not be important. In this section,we
propose techniques to coalesce near equivalent states. There are
two primary advantages in resorting to state coalition: (i)the
number of states in the system significantly reduces, and (ii) at
the end of state coalition, we are left with important states.

We say that two statesS1 and S2 are nearly equivalent if
distance(S1, S2) < disthr and |

cost(S1)
cost(S2)

− 1| < costthr. The
distancedistance(S1, S2) is defined as the Cartesian distance
between the two state vectorsS1 and S2. When we compute
the distance we ensure that different elements of the state vectors
are normalized. For example, let us suppose that all processing
speeds are between 100 MIPs and 1000 MIPs. Then, we normalize
all processing speeds to a range (0, 1) by mappingX MIPs to
X−100

900 . Finally, when we compute the Cartesian distance between
two normalized state vectors, we permit different weights to
be associated with different resources. For example, when the
application is highly computing and memory intensive, we could
weight the computing resource and the memory resource with
weightswcpu andwmem � wnw andwdisk.

However, the fact thatdistance(S1, S2) is very small does not
necessarily imply that the states can be coalesced. For instance,
consider a stateS1 wherein the system utilization is 100% and
a stateS2 which is very close toS1 wherein the system is
overloaded (and thus violating the SLA for some workloads).
Although distance(S1, S2) is very small the two states are not
equivalent. So we add the second cost constraint that requires
that the cost function at both the statesS1 and S2 evaluate
to nearly the same value. Cost of a stateS for our sample
cost model is determined ascost(S) =

∑
w α(S, w) ∗ pr(S) +∑

w γ(S, w) ∗ pr(S) +
∑

S′

∑
w β(S, S, w) ∗ rate(S → S′).

Note that in general a policy may specify arbitrary actions
to events. Hence, strictly speaking the policy may require the
system to react in entirely different ways on the same evente

from statesS1 andS2. Hence, one would have to compare all the
transitions in and out of statesS1 andS2 before we conclude that
the states are equivalent. However, we believe that a consistent
set of policies would not make radically different decisions on the
same evente from two statesS1 andS2 with a very small distance
and comparable costs. Hence, our policy evaluation tool does not
consider the transitions in and out of a state when determining
the equivalence between two states. However, one can optionally
turn checks on transition; then the evaluation tool would report
possible inconsistencies in the policy setP . When two statesS1

COALESCE AND SOLVE(State SpaceSS)
(1) Initialize pr(Sj) using simulation
(2) Coalesce states based on distance and cost threshold
to obtain a state setSS
(3) For i = 1 to |SS|
(4) Pick a randomj such thataij 6= 0
(5) Computepr(Sj) = −

∑
k 6=j

aik∗pr(Sk)
aij

Fig. 3. Coalesce and Solve

and S2 are coalesced, we replace them with a stateS12 with
pr(S12) = pr(S1) + pr(S2). For every transitionT1: S1 →e S

andT2: S2 →e S (for some stateS), we replace with a transition
T : S12 →e S with pr(T ) = pr(T1) + pr(T2). The same holds for

transitionsT1: S →e S1 andT2: S →e S2 to be replaced with a
transitionT : S →e S12 with pr(T ) = pr(T1) + pr(T2).

However, observe thatcost(S) depends onpr(S) andrate(T )

(for all T : S → S′ andT : S′ → S), which can be obtained only on
solving the queuing network model for its steady state solution.
We merge the process of coalescing states and solving the queuing
network model as follows. Let the set of linear equations obtained
from the steady state solution to the queuing network model be
represented as

∑
j aij ∗ pr(Sj) = 0 (for all i) and

∑
j pr(Sj)

= 1. We start with an initial guess forpr(Sj) using simulations
(for faster convergence). Then based on the distance threshold and
the cost threshold we iteratively coalesces states and solve for the
steady state equation as shown in algorithm 3. In general, one can
use many stopping conditions for the above algorithm. We have
used a precision based stopping condition in the algorithm shown
above. Alternatively, one can use a condition on the number of
states (|SS| < thr), the running time of the policy evaluation tool
(runT ime < thr) or the total number of iterations (numItr <

thr).
When the policy evaluation tool terminates, we are left with

important states and only relevant components in the state vector.
For example, consider a compute intensive application where
disk i/o is irrelevant. Let us suppose that normalized network
resource had initially four classes (0, 32Kbps), (32Kbps, 64Kbps),
(64Kbps, 96Kbps) and (96Kbps, 128Kbps). At the end of the
algorithm described above, we will be left with states wherein
the network resource has only one class (0, 128Kbps). When
any resource spans its full range, the resource becomes irrelevant
(irrespective of the quantity of that resource the system behaves
identical). Hence, we replace such resources with a specialclass
’*’ meaning that the resource is not important for the given
application, the policy set and the cost function. In general we
start with an arbitrarily large number (millions) of highlyfine
grained states. Our algorithm not only provides a steady state
solution to the queuing network model, but also reduces the
number of states to only a few important ones (a few tens
depending on the distance and cost thresholds).

D. Unified Policy Evaluation Algorithm

In this section, we present our complete algorithm for policy
evaluation. The algorithm takes a system modelSM , a workload
model WM , a cost modelCM and a policy setP as its input.
The output of the algorithm is a probability distribution function
of the overall system cost, namely,Pr(cost = x) for all x, where
Pr(cost = x) denotes the probability that the overall system
cost is equal tox. Note that given the overall cost distribution,
one could easily measure the average cost and its higher order
moments (like standard deviation). The unified policy evaluation
algorithm is shown in algorithm 4. We use a policy guided state
space generation technique to generate the state space (algorithm
2). We then coalesce states depending on the distance and cost
thresholds and solve the coalesced state space (CSS) for a steady
state solution. The steady state solution gives thepr(S), the
probability that the system is in some stateS for all S ∈ CSS.
Now, we obtain the cost of each stateS using a cost model
and translate the probability distribution over the state space
to a probability distribution over the overall system cost.The
cost distribution allows the administrator to perform worst case
analysis. For example, there could be two policy setsP and
Q such that the average cost ofP is lower than that ofQ.
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UNIFIED POLICY EVALUATION (system model SM ,
workload modelWM , cost modelCM , policy setP )
(1) SS = policy guidedstatespace(SM , WM , P )
(2) CSS = coalesceandsolve(SS)
(3) CD = measurecost(CSS, CM )

Fig. 4. Unified Policy Evaluation

However,P might have a stateS, wherepr(S) > 0 andcost(S)

is greater than the cost of all states in the state space of policy Q.
The administrator can make such observation by looking at the
probability distribution plots for the overall system for policy sets
P andQ. This enables the administrator to make much sounder
decisions about which policy set to choose for the system.

The unified policy evaluation algorithm also permits the ad-
ministrator to carry out sensitivity analysis effectively. We study
techniques to perform sensitivity analysis with respect tothe
system model, the workload model and the cost model. Let us
suppose that we have evaluated a system modelSM , workload
model WM , cost modelCM under the policy setP to obtain
CSS (coalesced states). Let us now suppose that we make a small
change4SM to the system model. Recall thatSM is a state
vector and4SM denotes the change to the system model and is
also represented as a huge state vector such that the new system
modelSM ′ = SM + 4SM (vector addition). We use4SM and
update every stateS in CSS to obtainS′ = S + 4SMS, where
4SMS denotes a projection of4SM on S. For example, ifS
has a∗ on the disk i/o component in its vector then the disk i/o
component in4SMS is also replaced by *; if4SM involved a
machine with 300 MIPs replaced by a machine with 600 MIPs and
the stateS had its CPU resource vector marked with the range (0,
1000) MIPs then4SMS is (0, 1000) MIPs. Clearly, a project of
4SM on S eliminates all changes that are irrelevant to S. Finally,
we compute important changes to the system model with respect
to the policy setS asimp change =

∑
SS∈CSS distance(S, S′).

If imp change is larger than a threshold we solve the system
afresh using algorithm 4; else we simply construct the new set of
coalesced statesCSS′ by replacing every stateS in CSS by S′.
We useCSS′ to obtain the cost distribution. We use the same
technique described above for sensitivity analysis towards the
workload model. However, one cannot use the same technique
for the cost model since states may be coalesced using a cost
threshold. We therefore start with the uncoalesced state space
SS and evaluate thecost(S) for every S in SS using the cost
model CM and cost modelCM ′. If the mean differenceSS

∈ CSS
|costCM (S)−costCM′ (S)|

|SS|
is lesser than a threshold then

we assume that this change in the cost model does not change
the set of coalesced states. In this case, we use the sameCSS

to revaluate the cost distribution (step 3, algorithm 4); else, we
rerun algorithm 4 from step 2.

Site Type Workloads Local Nodes
ST1 {WT1} {〈3, 0〉}
ST2 {WT2} {〈1, 0〉}
ST3 {WT2, WT2} {〈2, 0〉}
ST4 {WT2} {〈2, 0〉}
ST5 {WT1} {〈2, 0〉}

Fig. 5. Site Types

Fig. 6. Workload Model: Sample Transition Probability Transition Matrix

VI. RESULTS

In this section, we present several results obtained using our
analytical tool to study various policies for multi-site resource
management. For every experiment we used a different scenario
that best highlights the inferences we made from them. A scenario
is described using the site and workload model used to perform
the experiment. We use a small set of site types and workload
types in all our experiments. We first describe them in Figure5
and 6. For example, Figure 5 shows that a site of typeST1 runs
a workload of typeWT1 and has three local nodes of pool-type
zero; and a site of typeST2 runs a workload of typeWT2 and has
one local node of pool-type zero; and a site of typeST3 runs two
workloads both of typeWT2 and has two local nodes of pool-
type zero. The workload typesWT1 andWT2 are described later
in this section.

We now describe the first workload typeWT1. A workload
of type WT1 has 5 levels numbered 0, 1, 2, 3, and 4. At level
i, the workload requiresi nodes. At each leveli, the workload
spends an exponentially distributed amount of time with a mean
of 100 time units. The default transition probability matrix of the
workloads is as shown in Figure 6. In our experiments, we vary
this matrix to change the mean load and load variance. In this
example, the mean load is about two nodes; when averaged over
a long period of time, the workload is in level 2 for about 66%
of the time, in levels 1 and 3 each for about 13% of the time
and in levels 0 and 4 each for about 4% of the time. A workload
of type WT2 has 3 levels numbered 0, 1 and 2. At leveli, the
workload requiresi nodes. At each leveli, the workload spends
a Pareto distributed amount of time with a mean of 100 time
units and infinite variance. In our experiments we use different
transition probability matrices to achieve different meanloads and
load variances.

For all workloads we used the following simplified cost model.
We assume that every workloadw has a priority denoted by
priority(w). The violation cost parameterα(S, w) = nds(S, w) ∗

priority(w), wherends(S, w) denotes the difference between the
number of nodes required for workloadw and the number of
nodes actually allocated to workloadw (local and remote nodes
inclusive) in stateS. The remote node cost parameterγ(S, w)

= 0, that is, there is no penalty for using a remote node. The
reallocation costβ(S, S, w) is defined to be equal to the violation
cost experienced by the workload during the reallocation process.
Based on our measurements on our prototype (see next Section),
we observed that a reallocation involving a local node took 2time
units and that involving a remote node took 12 time units. Hence,
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β(S, S, w) = nlts(S, S′, w) ∗ priority(w) ∗ 2 + nrts(S, S′, w)

∗ priority(w) ∗ 12, wherenlts(S, S′, w) denotes the number of
nodes involved in local reallocation andnrts(S, S′, w) denotes the
number of nodes involved in a remote reallocation (for workload
w when the system transits from stateS to stateS′).

A. Scalability Experiments

In this section, we present performance and scalability results
on our policy evaluation tool. First we study the effect of distance
and cost threshold on the performance of the policy evaluation
tool. Second, we show the ability of our evaluation tool to
scale with the number of sites. Figure 7 shows the fraction
of remaining states for different values of distance and cost
threshold. Note that only important states are left behind when
our policy evaluation tool terminates. Also, the higher thedistance
and cost threshold, more states would be coalesced. Note that the
number of important states drops steeply as the threshold values
are increased. This is primarily because most of the system states
are indeed equivalent to one another and can be coalesced. For
example, in a transactional grid, the cost model is independent of
the disk i/o utilization. Hence, in all the final states disk i/o part
of the state vector would be eliminated (replaced by *).

Figure 8 shows the accuracy of the evaluation tool for different
values of distance and cost threshold. Accuracy is measuredas
the ratio of the estimated system cost with state coalition and
without coalition. From Figure 7, as the threshold is increased
the number of remaining states decreases sharply. However,the
accuracy of the evaluation only marginally falls with the distance
and the cost threshold.

Figure 9 shows the time taken for policy evaluation for different
values of distance and cost threshold. The time it takes for the
policy evaluation tool to terminate falls very sharply withthe
threshold values. This is primarily because of the reduced number
of states. Note that the number of equations to be solved in order
to obtain a steady state solution for the queuing network model is
proportional to the number of states. Note that the cost of solving
a system ofn linear equations is proportional ton2.

Figure 10 shows the scalability of the system with the number
of sites for certain values of distance and cost threshold. Note
when the threshold values are zero, the time it takes for the
policy evaluation tool to terminate almost increases exponentially
with the number of sites. This is because the number of possible
system states increase exponentially with the number of sites,
thereby severely limiting the scalability of the policy evaluation
tool. However, as we raise the threshold the policy evaluation tool
is much better equipped to handle a system with larger number
of states.

B. Case Study

In this section we present a collection of case studies on multi-
site resource allocation. Even though our policy evaluation tool
allows different sites to use different cost models, in thissection
we assume that all sites use the same cost model.

1) When is Multi-Site Resource Allocation Useful?:In this
experiment, we identify the workload characteristics thatwould
make multi-site resource allocation a better choice when com-
pared to independent non-cooperating sites. This comparison is
achieved by explicitly comparing the aggregate violation cost of

cooperating Vs non-cooperating sites. The workload character-
istics of primary interest to us are the mean load and the load
variance.
Scenario I: Two sitesS1 and S2 both of typeST1. SiteS1 has one
workload W1 of typeWT1. SiteS2 has one workloadW2 of type
WT1. Both the workloadsW1 and W2 have the same priority.

Figure 11 shows the violation cost as the total mean load
of workloads W1 and W2 varies (under fixed variance = 1).
’lvc’ denotes the violation costs when the sites operate without
cooperating with each other (they optimize resource allocations
locally). ’vc’ denotes the violation costs when the sites cooperate
with another and borrow/donate nodes to handle peak loads. The
Figure 11 can be divided into three zones: (i) At light loads,
there is not much need to borrow resources and hence cooperating
multiple sites do not succeed in reducing the aggregate violation
cost significantly. (ii) At heavy loads the system (the collective
resources available at all sites) is insufficient and hence,cooper-
ation does not yield significant gains (unless the workloadsvary
largely in terms of their priorities). (iii) At moderate loads sites
can offload their peak demands to free nodes available at remote
sites thereby achieving much lower violation costs.

Figure 12 shows the aggregate violation cost as the load
variance changes (at fixed mean load = 4). As the variance
increases, the workloads spend most of their time at a state where
they need 4 nodes or at a state where they need just 0 or 1 node.
At lower load variance, the workloads spend a significant portion
of their time close to their mean, that is, when the workloadseach
need 2 nodes. As the variance increases, cooperating multi-sites
can handle peak demands at one site by borrowing resources from
the other site; although the variance is high, the peak demands
at the two sites are likely to be uncorrelated. Further, as the
variance increases, the workloads spend more and more time units
at a state where they require 4 nodes and at a state where they
require 0 nodes. Hence, as the variance increases, cooperating
multi-sites become a much better choice for resource allocation
when compared to non-cooperating sites.
Scenario II: Two sitesS1 and S2 both of typeST5. SiteS1 has one
workload W1 of typeWT1. SiteS2 has one workloadW2 of type
WT1. Both the workloadsW1 and W2 have the same priority.

In this experiment we demonstrate the usefulness of multi-site
resource allocation when the sites are unevenly loaded. Figure 13
shows the aggregate violation costs when the sites are unevenly
loaded. We fix the mean load on siteS1 to be 1.5 nodes and vary
the mean load on siteS2. When the load on siteS2 is very low
then cooperating multi-sites do not have any advantage. However
as the load onS2 increases, siteS2 can offload some its load to
site S1. But, when siteS1 gets loaded to its maximum capacity,
it can no longer accept load from siteS2. Hence, the difference
between ’lvc’ and ’vc’ does not diverge when the workload on
site S2 soaks up all the resources available in siteS2 and the
unused resources in siteS1.

Figure 14 shows how our evaluation tool can be used to
perform sensitivity analysis. Figure 14 shows a simple sensitivity
analysis on the overall system cost as we vary the workload model
parameters. We vary the mean load and the load variance (keeping
the mean load a constant) and study its effect on the system
cost. On the x-axis we show the factor by which a workload
parameter is changed and the y-axis shows the corresponding
factor by which the overall system cost changes. Figure 14 shows
that keeping the mean load a constant, increasing the variance by
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20% (a factor of 1.2), the overall cost goes up to the same extent
as increasing the mean load by 12-14%.

2) Borrowing Remote Nodes:In this section we study the
effect of borrow thresholdthr br on the aggregate violation cost.
Note that when a borrow threshold is enforced, only workloads w

with priority(w) ≥ thr br are permitted to borrow remote nodes.
The first experiment on borrow threshold shows that borrow
threshold is useful only when the system (inclusive of all sites) is
operating at high mean load. The second experiment shows how
our analytical tool can be used to perform worst case analysis.

Scenario III: Four sitesS1, S2, S3 and S4 all of which are of type
ST2. Site Si has one workloadWi of type WT2 for 1 ≤ i ≤ 4.
Priority of workloadWi is i (1 ≤ i ≤ 4).

Figure 15 shows the aggregate violation cost Vs aggregate
mean load for different values of borrow threshold. ’prj ’ indicates
only workloads{Wi: i ≥ j} can borrow remote nodes. The values
shown in the figure are normalized by ’pr1’ which indicates the
violation cost when all workloads can borrow remote nodes. At
very low loads, there is no need to borrow nodes; and hence
the threshold has no effect on violation cost. As the mean
load increases, there is opportunity to offload peak demand by
borrowing remote nodes; setting a threshold inhibits the system

from exploiting the free nodes available at remote sites forlower
priority workloads. However, at very high load, using a borrow
threshold is very useful; since the lower priority workloads are
not allowed to borrow nodes, there is not much time wasted in
reallocating resources among different workloads.

Figure 16 shows the cost distribution of two policiesP1 andP2

under heavy mean load = 8.P1 uses a borrow threshold of 4 and
P2 uses a borrow threshold of 2. Observe from figure 15 that the
average cost ofP1 is lower than the average cost ofP2. However,
the cost distribution in figure 16 shows that the worst case cost
for P1 is higher than the worst case cost ofP2. This is primarily
because under policyP1 three workloads are never permitted to
borrow resources and thus it incurs a higher cost when the load
due to workloadW4 is low and the rest (W1, W2 and W3) are
high. If the system administrator is interested in worst case costs,
then the administrator can graphically view the cost distributions
before deciding on the appropriate policy.

The second experiment on borrow threshold shows the effect
of local resource allocation strategy. In this scenario, the resource
manager uses a priority-based preemptive resource allocation
strategy for managing local resources. Figure 17 shows the viola-
tion cost Vs mean load for different values of borrow threshold.
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’prj ’ indicates only workloads{Wi: i ≥ j} can borrow remote
nodes. The values shown in the figure are normalized by ’pr1’
which indicates the violation cost when all workloads can borrow
remote nodes. The main emphasis in this experiment is that one
needs to be careful in choosing borrow thresholds. For instance,
’pr3’ and ’pr4’ in the figure behave much worse than ’pr1’ under
all values of mean loads (even under high loads, as against figure
15). This is because, in this scenario, the workloadsW3 andW4

never need to borrow nodes. The local optimization cycle always
grabs node from a local lower priority workload and transfers it
to a higher priority workload. Since,W3 andW4 require no more
than two nodes, they are always guaranteed to be allocated local
nodes. Hence, ’pr3’ and ’pr4’ are equivalent to the case where
the sites are non-cooperating (W3 andW4 never need to borrow
nodes;W1 andW2 are not permitted to borrow nodes).

The third experiment on borrow threshold shows the effect
of threshold adaptation. In threshold adaptation, the threshold
value is decayed by a constant decay factor on every remote
optimization cycle. However, it is reset to its original (default)
value whenever a borrow operation fails to obtain a remote node.
When the system is heavily loaded, the borrow requests for lower
priority workloads is very likely to fail and hence the borrow
threshold would stay close to its default value. On the other
hand, if the system is lightly loaded most borrow requests would
succeed in fetching a free remote node. Therefore, at low loads,
the borrow threshold would be very low and thus, most workloads
would be permitted to borrow nodes. We use the same scenario as
in Scenario III described earlier in this section. Figure 18shows
violation cost Vs mean load for different values of decay factor.
At very low loads, the decay factor has no influence on violation
cost since the individual sites have sufficient resources tohandle
their peak demands. When the decay factor is very close to one,
we are being highly conservative in permitting lower priority
workloads in borrowing nodes; thus, higher decay factors tend to
perform poorly at moderate loads (underutilized resources). When
the decay factor is low, we encourage lower priority workloads
to borrow nodes; thus, low decay factors tend to perform poorly
at high loads (thrashing due to frequent reallocation).

3) Cycle Breaking Rule:Scenario V: Four sitesS1, S2, S3 and
S4 all of which are of typeST2. Site Si has one workloadWi of
typeWT2 for 1 ≤ i ≤ 4. Priority of workloadWi is i (1 ≤ i ≤ 4).

Cycle breaking rule is a policy added to improve the systems
stability: ”No local workload with higher priority is executed on
a remote node when a remote workload with lower priority is
being run on a local node”. The key motivation behind a cycle
breaking rule is as follows. LetA → B denote that siteA is using
some nodes from siteB. Let the setwpA denote the priority of a

workload that belong to siteA and are currently running on nodes
in site B (and similarly forwpB). Then, the cycle breaking rule
requires thatwpA > wpB . Clearly, if the cycle breaking rule were
strictly implemented then there would be no cycles in the resource
borrowing graph, that is, siteA will not be using the resources at
site B and siteB using the resources at siteA at the same time
instant. On the contrary, if we assume that there exists a cycle A

→ B → · · · → A then it would mean thatwpA > wpB > · · ·

> wpA − an obvious contradiction.
Figure 19 compares the remote node cost (’rsc’) and the

violation cost (’vc’) with and without cycle breaking rule for
different values of mean load. The figure shows the ratio of
each cost with cycle breaking rule to that without the rule. At
very low load, no borrow operations are required as the sites
are self-sufficient. As the mean load increases more and more
nodes may be required to be borrowed. The cycle breaking rule
decreases the number of borrow operations and thus ensures that
the remote node cost and the reallocation cost are substantially
smaller. At high load there are no free nodes available at either
site that could be borrowed. Hence, at very high load the number
of borrow operations come down and consequently the cost
difference between a policy with and without cycle breakingrule
decreases.

4) Lease Time:Scenario VI: Two sitesS1 andS2 each of which
is of typeST4. SiteS1 has one workloadW1 of typeWT2 and site
S2 has one workloadW2 of typeWT2. Priority of workloadWi is
i (1 ≤ i ≤ 2).

This section studies the effect of lease time on the workload
violation costs. Lease time based policies allow resourcesto be
borrowed or donated for a fixed period of time, namely, the
lease time. Leases are non-preemptable, that is, once a resource
is leased the donor cannot withdraw that resource before the
specified lease time. On the other hand, the site that borrowed
a resource could return the resource before its lease terminates.

Figure 20 shows the violation cost of the two workloads as
the lease time increases. Note that leases are non-preemptable;
but a borrow resource can be returned before a lease expires
(if the borrowing site decides that the borrowed node is no
longer required). Consider a scenario wherein the lower priority
workload W1 has borrowed a node. Now, if the higher priority
workload W2 needs a node, it has to wait till the lease expires.
When the lease expires,W1 is denied a lease extension and the
node is assigned toW2. Hence, as the lease duration increases,
the violation cost for higher priority workload increases.Beyond
a certain value, increase in lease duration does not affect the
violation cost because the borrowing site would return the node
(because its peak demand is over) almost always before the lease
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actually expires.
5) Reallocation Time:Scenario VII: Two sitesS1 and S2 each

of which is of typeST4. SiteS1 has one workloadW1 of typeWT2

and siteS2 has one workloadW2 of typeWT2. Priority of workload
Wi is i (1 ≤ i ≤ 2).

In this section, we measure the effect of node reallocation
duration with violation cost. If the reallocation time is very high
then one would have to be very conservative about borrowing /
donating nodes. We assume that reallocation is non-preemptable,
that is, once a node reallocation operation has begun it cannot be
aborted. Also, we assume that when a node is being reallocated,
it is unusable. Figure 21 shows the violation cost as the amount
of time taken to perform a reallocation increases. Reallocation is
shown as a percentage of the mean burst time. Note that the values
shown in the figure have been normalized by ’lvc’, the violation
cost when sites are non-cooperating. When the reallocationtime
is very high the violation cost for cooperating multi-sitesbecomes
larger than that of non-cooperating sites (normalized value > 1).
When the lease time exceeds about 50% of the mean burst time,
the violation costs of cooperating multi-sites surpasses that of
non-cooperating sites.

VII. VALIDATION

In this section, we present a validation of our analytical model
against a real implementation. We present two scenariosA andB.
ScenarioA is used to quantitatively compares the results obtained
from our policy evaluation tool to a real implementation. Scenario
B illustrates how we could use our policy evaluation tool to
compare and refine policies.

A. ScenarioA

ScenarioA used for experimental measurement is as follows:
We have two sitesS1 and S2. Site S1 has three nodess11,
s12 and s13; and siteS2 has one nodes21. All the nodes in
sitesS1 and S2 belong to the same pool-type: Intel Pentium III
1 GHz processors with 256 MB RAM running RedHat Linux
release 7.1. SiteS1 hosts the trade2 application (trade2 is J2EE
application publicly available from IBM [8]); and siteS2 has no
workloads. SiteS1 runs the workload manager [35] for trade2
and the site resource manager (TIO [5]); siteS2 runs only its
site resource manager (TIO [5]). We use a client-side HTTP load
generator program that dynamically adjusts the load according to
the workload model. More specifically, we used workload of type
WT1 for our experimental run. The workload manager uses the
Network Dispatcher [3] to distribute this load among all thenodes
assigned to workload trade2. We use a simple registry wherein

all site resource managers register themselves upon startup so
that the resource managers can identify their counterparts. All
interactions between the resource managers are implemented as
web services [39] that use Simple Object Access Protocol (SOAP
[38]) messages on HTTP.

Figures 22 validates our analytical model against our prototype
by comparing estimated costs from our model and the measure-
ments obtained from our prototype. Costs compared are violation
cost ’vc’, remote node cost ’rsc’ and reallocation cost ’rc’. Figure
22 validates the numerical solution obtained for our analytical
model when the workload events are exponentially distributed.
Figure 23 validates the simulation results when the workload
events are Pareto distributed. We ran this experiment for 8000
seconds (little over 2 hours). From the experimental run we
measured the workload violation cost (VC), remote node cost
(RSC) and the reallocation cost (RC). These costs are expressed
as the fraction of time (over this duration of 8000s) wherein
the workload’s SLA was not met (VC), a remote node was
used (RSC) and the remote node was being reallocated (RC).
Figure 22 shows the results obtained from our analytical model
and the real measurements, when the workload events follow
an exponential distribution. Figure 23 shows the results obtained
from our simulation model and the real measurements, when the
workload events follow a heavy-tailed Pareto distribution.

B. ScenarioB

ScenarioB used in our experimental evaluation shows how
our policy evaluation tool can be used to compare one or more
policies and refine them. In this scenario we have two sitesS1

and S2 each have 3 nodes. Each site has the same set of 3
workloadsW1, W2 andW3 with priority of workloadWi being
i. For each of the workloads we used the Trade2 application. The
system has two policy setsPS1 andPS2. Policy set PS1 has the
following policies:thr br = 1, thr dn = 90%, lease time = 600
seconds, preempt remote workload = true. We usethr dn = x to
denote that a site donates nodes to remote workloads only if it its
average node utilization is lower thanx%. When preempt remote
workload is true, the site can prematurely break a lease on node
that it has donated to a remote workload. Policy setPS2 has the
following policies:thr br = 2, thr dn = 80%, lease time = 600
seconds, preempt remote workload = false. When preempt remote
workload is false, a node leased to a remote workload cannot be
prematurely broken. However, a request to extend a lease (for the
next 600 seconds) can be declined.

Figure 24 shows the total cost (violation + reallocation + remote
node cost) for the policy setsPS1 and PS2 Vs the mean load.
While PS1 performs better at lower loads, at higher loads the
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policy setPS2 performs better. This is because of the following
reasons. (i) At high loads number of borrows could be high,
thereby increasing the reallocation cost, (ii) The conservative
nature of policy setPS2 reduces the reallocation cost (higher
borrow threshold and lower donation utilization threshold), and
(iii) Further, we observed that the policy setPS1 donates nodes
too often and breaks the lease too often (at high load), thereby
increasing its reallocation costs significantly.

The policy evaluation tool helps us identify the crossover
point between the policy setsPS1 and PS2. It also helps the
administrator to construct a policy setPS3 from PS1 and PS2

that imitatesPS1 when the low load and imitatesPS2 at high
load. Figure 24 shows the total cost incurred by policy setPS3

from our real-implementation. Note that the costs for policy sets
PS1 andPS2 in figure 24 are obtained from our policy evaluation
tool.

In summary, our initial experiments show that our tool is
capable of estimating these costs within a precision of about
5%. We found that a real experiment has to be run for at least
one hour for the workload costs (per unit time) to converge to
some steady value. On the other hand, our numerical solution
can be computed in a couple of seconds; and our simulation
model requires only a few tens of seconds before the cost values
converge to a steady-state value. This makes it possible fora
policy maker to interactively use this tool to define and fine-tune
a site’s policies.

VIII. C ONCLUSION

This paper presents an analysis methodology for studying
the effect of resource sharing policies on a multi-site resource
management system. We demonstrated that our tool could be very
useful for system designers in building effective solutionstrate-
gies, and the methodology can be incorporated into a planning
and system management tool that would permit policy-makersto
understand, fine-tune and analyze the effect of policies on the
system. We have presented a validation of our model against
a prototype implementation of multi-site resource management
system. A summary of the key results obtained by using our
analysis methodology on multi-site resource management include:
(i) Moderate mean-load and high load variance are best handled
by cooperating sites. (ii) Borrow threshold policy is useful only
under high load; at lower loads a high borrow threshold tends
to increase the aggregate workload costs. (iii) Short leasetimes
are good for high priority workloads. In conclusion, our tool is
capable of evaluating complex policies on a multi-site resource

management system and permits independent policies for each
site, so that policy makers can quickly evaluate several alternatives
and their effects on the workloads before deploying them.

As a part of our future work we are exploring three directions.
First, we are exploring techniques to extend our policy analysis
tool to operate with general distributions for node failureand
recovery model and workload models. We plan to use G/M/1
queuing networks (using embedded Markov chains [33]) and
G/G/1 queuing networks (using well-known approximations [33]).
Second, we plan to explore the economics of multi-site resource
allocation wherein each site is operated by competing agents
using game theoretic techniques. Third, we intend applyingour
techniques to perform policy evaluation in other application
domains, in particular, policy evaluation for SANFS (storage area
network file system).
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