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Exploring the Architecture of a Stream Register-Based
Snoop Filter

Matthias Blumrich, Valentina Salapura and Alan Gara

IBM Thomas J. Watson Research Center
Yorktown Heights, NY, USA

Abstract. Multi-core processors have become mainstream; they provide parallelism with
relatively low complexity. As true on-chip symmetric multiprocessors evolve, coherence
traffic between cores is becoming problematic, both in terms of performance and power.
The negative effects of coherence (snoop) traffic can be significantly mitigated through
the use of snoop filtering. The idea is to shield each cache with a device that can eliminate
snoop requests for addresses that are known not to be in the cache. This improves perfor-
mance significantly for caches that cannot perform normal load and snoop lookups simul-
taneously. In addition, the reduction of snoop lookups yields power savings. This paper
describes Stream Register snoop filtering, which captures the spatial locality of multiple
memory reference streams in a small number of registers. We propose a snoop filter that
combines Stream Registers with ”snoop caching”, a mechanism that captures the tempo-
ral locality of frequently-accessed addresses. Simulations of SPLASH-2 benchmarks on a
4-core multiprocessor illustrate tradeoffs and strengths of these two techniques. We show
that their combination is most effective, eliminating 94% - 99% of all snoop requests
using only a small number of stream registers and snoop cache lines.

1 Introduction

As single-core performance becomes increasingly hard to improve, and marginal costs are
growing, both in terms of complexity and power/performance inefficiency [1], the use of multi-
core solutions to improve throughput in multi-threaded workloads has become increasingly
attractive [2].

Unlike designs which target single-thread solutions with degrading power/performance ef-
ficiency, suitably scalable parallel workloads show little or no degradation in efficiency while
delivering significant increases in performance through the use of multithreaded workloads.
Using parallelism at the processor level also aligns with the limits of future technologies. Al-
though performance growth has been driven by technologically-enabled increases in processor
operating frequency for the past 20 years, it is increasingly hard to obtain with new technolo-
gies. One of the main reasons is the impact of wire delays as feature sizes are shrunk [3],
requiring increasingly more sophisticated microarchitectures.

While faster transistors and wires are increasingly hard to obtain, the application of Den-
nard’s CMOS scaling theory [4] is continuing to deliver improvements in density. Thus, multi-
core solutions are based on a commercially viable exploitation of modern CMOS fabrication
processes.

Several multi-core solutions have been introduced over the past few years, such as the IBM
POWER4 and POWER5 servers, the IBM Blue Gene/P system [5], the Intel Quad Core proces-
sors [6], and the Cell Broadband Architecture [7]. Indeed, multi-core is now a well-established
trend. A major challenge in the implementation of chip multi-processors is providing a suitable
memory subsystem and on-chip interconnect that combines low average access latency with
high bandwidth.
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As the number of processors per chip rises, the coherence traffic per processor consequently
increases. One solution to reducing the cost of coherence is to manage it in software; a solution
adopted by both the Blue Gene/L [8] and Cell system architectures. In Blue Gene/L, software
managed coherence is achieved by using one of two software abstraction models: virtual node
mode, wherein each processor is a separate node in the Blue Gene/L-optimized MPI imple-
mentation, or coprocessor mode, where one processor is a dedicated computational node and
a second processor provides I/O and system management functions. In the Cell Broadband
Architecture, coherent DMA and the SPU-local store provide the necessary memory abstrac-
tions for building high-performance systems. Although software-managed coherence offers
an attractive solution to achieving low-complexity memory architectures, it requires advanced
compilation technologies and careful application tuning. While this is acceptable for high-end
application-specific systems, providing low-complexity, coherent memory is an attractive so-
lution for a wider range of systems.

To reduce the complexity of implementing coherence in chip multiprocessors, two compo-
nent costs must be addressed:

– The bottleneck of a bus-based snoop implementation, which must be arbitrated between a
high number of nodes.

– The cost of providing snoop ports to each processor’s cache, or the cost of maintaining a
central directory.

In this paper we have investigated the use of coherence request filtering (or snoop filtering)
in a point-to-point coherence network to address these costs. The basic idea is to provide a
mechanism which will significantly reduce the interference of coherence requests with proces-
sor operations without incurring costs of chip area, memory latency, or complexity inherent in
existing hardware coherency support.

The contributions of this work include (1) a novel, highly efficient, point-to-point snoop
filter architecture filtering in excess of 98% of all snoop requests, (2) significant reduction of
area over a solution that duplicates cache directories to provide separate snoop directories,
(3) an architecture to exploit the cache replacement policy to periodically re-train the snoop
filters, increasing filtering effectiveness from an average of 30% to an average of 90% for
the workloads studied, and (4) evaluation of the proposed architecture, including variations of
several key parameters.

This paper is organized as follows. We begin with related work in Section 2. Then Section 3
describes the snoop filter architecture, and Section 4 gives a detailed description of stream
registers. The simulation environment and methodology are presented in Section 5, followed
by experimental results and analysis in Section 6. Finally, Section 7 concludes.

2 Related Work

In prior art, JETTY [9] is a snoop filter that combines two complementary filtering methods.
The JETTY paper defines a characterization of filters as “include” or “exclude”. An include
filter tracks what is contained in a cache (or caches) while an exclude filter tracks what is not.
The exclude filter consists of a cache of recently invalidated lines. A snoop that hits in the
exclude filter is guaranteed not to be in the cache, so it can be filtered. The JETTY include
filter captures a superset of a cache’s contents. A snoop that hits in the include filter may be
in the cache and should not be filtered. The include filter is like a simple bloom filter with
direct-map hash functions applied to sub-fields of the address.

The JETTY paper makes an argument for snoop filtering as a means for power savings.
However, our work was primarily motivated by the need to filter useless snoops that reduce
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performance. We also considered chip area and power consumption as significant constraints,
causing us to look beyond the simple and accurate method of duplicating the cache tags as a
filter. Because our simulation methodology and system organization differ considerably from
the JETTY study, it is difficult to compare performance results. However, we simulated many
of the same applications using the same problem sizes.

Several coherent network switches contain snoop filters that block unnecessary coherence
requests from ever leaving a node. One such example is the Scalability Port Switch of the
Intel E8870 chipset [10]. In this case, the snoop filter tracks the state of all cache lines within
a 4-processor node for a system with up to four such nodes. Kant [11] modeled a similar
system architecture with such a snoop filter. This architecture is also described in the Azusa
system [12], which is based on Intel Itanium processors and may use an Intel chipset.

In [13], a HyperTransport network switch for use with AMD Opteron processors is de-
scribed. The snoop filtering technique is basically the same as that of the E8870, including the
fact that 4-processor nodes are supported.

A similar but more tightly-coupled architecture is evaluated in [14], where a single memory
controller switch connects multiple multi-processor nodes and contains a snoop filter. The filter
prevents unnecessary snoop requests between the nodes, and several variants are studied.

Snoop filters in tightly-coupled multiprocessors, such as chip multiprocessors (CMPs), can
be located at each processor in order to squash unnecessary snoops without changing the over-
all coherence scheme. Ekman et. al. [15] describe a CMP architecture with Page Sharing Ta-
bles, which are exclude filters at the granularity of memory pages rather than cache lines. This
architecture is a bit more involved in that the Page Sharing Tables coordinate to track page
sharing rather than just presence.

The idea of preventing remote snoop requests from being broadcast can also be applied at
the chip level as described in [16]. In this work, snoop filters keep track of memory regions,
which can be quite large, and block remote snoops for memory that is known not to be shared.

3 Snoop Filter Architecture

In symmetric multiprocessor (SMP) architectures, coherency snoop requests represent a sig-
nificant fraction of all cache accesses, but only a small fraction of snoop requests are actually
found in any of the remote caches [9, 17]. This is particularly true of supercomputing appli-
cations where data partitioning and data blocking have been performed to increase locality of
reference and optimize overall compute performance. As a result, embedded cores with single-
ported caches suffer significant performance loss due to unnecessary snooping because their
caches are unavailable during snooping.

While data reference locality may make a coherence implementation seem unnecessary,
there is a fine line between being able to prove that there is no data sharing at all, and the statis-
tical observation that almost all data references are local. The former is a program correctness
statement, the latter is a performance statement. Thus, providing an efficient snoop filtering im-
plementation that can filter the vast majority of non-shared data traffic without burdening the
cache bandwidth of every processor in the system provides a significant performance improve-
ment over traditional cache-coherent systems. Snoop filtering and cache coherence also offer
advantages over programs operating on fully disjoint data sets without hardware coherence
by simplifying application porting and tuning – it no longer becomes necessary to eliminate
all remote references under all circumstances, but most remote references for most situations,
leading to increased programmer productivity by letting programmers focus on the common
case.

This motivated us to introduce a simple hardware device that filters out incoming snoop
requests, reducing the number of actual snoop requests presented to the cache, thus increasing
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performance and reducing power consumption. A snoop filter is associated with each of the
four processors and is located outside the L1 cache. To make a snoop filter a viable implemen-
tation choice, it has to meet several requirements:

– Functional correctness – the filter cannot filter requests for data which are locally cached.
– Effectiveness – the filter should filter out a large fraction of received snoop requests.
– Design efficiency – the filter should be small and power-efficient.

In theory, a perfect snoop filter can be created by duplicating the cache tag directory and
using it to determine exactly which snoops should be forwarded to the cache. However, this
approach generally does not meet the design efficiency requirement because of practical lim-
itations. In particular, the cache tag store is a highly optimized and integrated component that
cannot easily be extracted, and a custom-designed equivalent with the same performance re-
quires a large investment of time and expertise to complete. Furthermore, this paper will show
that a highly-effective filter can be implemented in a fraction of the area needed for duplicate
cache tags.

Ideally, a snoop filter will operate at the (typically lower) memory nest frequency to reduce
power dissipation and design complexity. Lower frequency and reduced latch count reduces
the number of state transitions and load on clock nets, which are the major contributors to
power dissipation. Operating the snoop filter at a lower frequency simplifies the design, as
transactions have to be less heavily pipelined, eliminating a variety of bypass conditions which
have to be validated and tested. It also simplifies timing closure.

In some sense, a snoop filter trades off power consumed by cache lookups with power
consumed by the filter. However, there is an additional overall energy reduction because the
processor performance benefit resulting from reduced snoop interference causes applications
to complete sooner. Therefore, energy, measured as power consumed in time, is reduced.

In this work, we only consider a write-through L1 cache, where data integrity between the
processors is maintained with a cache coherence protocol based on snoop invalidates. Thus,
every time a processor issues a store, snoop invalidate messages are generated at all other
processors, and no other coherence messages are required. This approach could be extended to
write-back coherence protocols, where both read and write snoops generally require responses
from remote caches. At each remote cache, the snoop filter would quickly determine whether
the snooped address was not present, and if so, immediately send the response without the need
to snoop the cache.

3.1 Point-to-Point Snoop Filter Interconnection
Previous work on snoop filters has only considered bus based systems. In such systems, all
cache controllers snoop a shared bus to determine whether they have a copy of every requested
data block. A simple and common-place coherence protocol that utilizes snooping is “write-
invalidate”.

In a write-invalidate protocol, each write causes all copies of the written line to be invali-
dated in all other caches. If two or more processors attempt to write the same data simultane-
ously, only one of them wins the race, causing the other processors’ copies to be invalidated.
The use of the shared bus enforces write serialization.

For every write bus transaction, all cache controllers have to check their cache address tags
(a.k.a. snoop) independently to see if they are caching the written line. With the increasing
number of processors on a bus, snooping activity increases as well. Unnecessary coherency
requests degrade performance of the system, especially impacting the supercomputing appli-
cations where only a small fraction of snoop requests are actually found in any of the remote
caches.
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In [9], several proposals for reducing snoop requests using snoop filters are described.
While reducing the number of snoop requests presented to a cache up to about 70%, the per-
formance of the systems are still limited because of the interconnect architecture and lack of
support for multi-porting. The architecture described is based on a shared system bus, which
establishes a common event ordering across the system. While such global time ordering is
desirable to simplify the filter architecture, it limits the possible system configurations to those
with a single, shared bus. Alas, such systems are known to be limited in scalability due to con-
tention for the single global resource. In addition, global buses tend to be slow, due to the high
load of multiple components attached to them, and inefficient to place in CMPs.

Thus, in a highly-optimized, high-bandwidth system, it is desirable to provide alternate
interconnect architectures, such as star or point-to-point. These are advantageous, as they only
have a single sender and transmitter, thereby reducing the load, allowing the use of high speed
protocols, and simplifying floor planning in CMPs. Using point-to-point interconnects also al-
lows several transmissions to be in-progress simultaneously, thereby increasing the data trans-
fer parallelism and overall data throughput.

Another limitation of the bus-based architecture is the inability to perform snoop filtering
on several requests simultaneously, because simultaneous snoop requests from several pro-
cessors have to be serialized by the bus. Allowing the processing of several snoop requests
concurrently provides a significant increase in the number of requests that can be handled at
any one time, and thus increases overall system performance. However, this increased data
throughput means that snoop filters for such interconnects must be designed to accommodate
multiple requests simultaneously.

In this paper, we opt for a system incorporating snoop filters to increase overall perfor-
mance and power efficiency without limiting the system design options to a common bus. We
have designed a snoop filter architecture supporting systems using point-to-point connections
that allows each processor’s snoop filter to filter requests from multiple memory writers con-
currently. Our high-performance snoop filter is implemented in a pipelined fashion to enable
high system clock speeds. Figure 1 illustrates our approach.

Write
Bcast

Processor 0

Snoop
Unit

Processor 1 Processor 2 Processor 3

Write
Bcast

Snoop
Unit

Write
Bcast

Snoop
Unit

Write
Bcast

Snoop
Unit

L1 snoop L1 snoop L1 snoop L1 snoop

Fig. 1. Chip multiprocessor using snoop filters and a point-to-point interconnection architecture. All
writes are broadcast by each processor to all remote caches for invalidation.

To take advantage of the point-to-point architecture and allow for concurrent filtering of
multiple snoop requests, we implement a separate snoop filter block, or “port filter”, for each
interconnect port. Thus, coherency requests of all ports are processed concurrently, and a small
fraction of all requests are forwarded to the processor. For example, each snoop filter in Fig-
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ure 1 would have three separate port filters, each of which handles requests from one remote
processor.

As the number of processors in a CMP scales up, the interconnect naturally transitions from
point-to-point to a network-on-chip (NoC). At those scales, coherence protocols are likely to
be based on directories, where filtering effectively takes place at the source. Therefore, our
system architecture is most obviously applicable to CMPs of modest scale [18].

It should be noted that the snoop filters are basically transparent with respect to the behavior
of the point-to-point interconnect. This interconnect poses particular design challenges, such
as ordering between snoop invalidates, that exist regardless of the presence of snoop filters. In
this study, we assumed a consistency protocol that is not sensitive to the order of invalidations
coming from different processors. When necessary, a global synchronization would be used to
enforce completion of all snoops.

3.2 Snoop Filter Variants

Early on, we decided to include multiple filter units which implement various filtering algo-
rithms in each port filter block. The motivation for this decision was to capture various char-
acteristics of the memory references because some filtering units best capture time locality of
memory references, whereas others capture reference streams. We will show in this paper that
the combination of filtering algorithms achieves the highest snoop filtering rate, reducing the
number of snoop requests up to 99%.

We have explored a number of snoop filter variants, but have selected the combination
of a stream register based filter and a snoop cache. The snoop cache is essentially a Vector-
Exclusive-JETTY [9]. It filters snoops using an algorithm which is based on the temporal
locality property of snoop requests, meaning that if a single snoop request for a particular
location was made, it is probable that another request to the same location will be made soon.
This filter unit records a subset of memory blocks that are not cached.

The stream registers use an orthogonal filtering technique, exploiting the regularity of
memory accesses. They record a superset of blocks that are cached. Results of both filter units
are considered in a combined filtering decision. If either one of the filtering units decides that
a snoop request should be discarded, then it is discarded.

The snoop cache filter unit keeps a record of memory references which are guaranteed not
to be in the cache. These blocks have been snooped recently (thus invalidated in the cache)
and are still not cached (i.e. they were not loaded into the cache since invalidation). The snoop
cache filter unit contains a small array of address tags. An entry is created for each snoop
request. A subsequent request for the same block will hit in the snoop cache, and be filtered. If
the block is loaded in the processor cache, the corresponding entry is removed from the snoop
cache, and any new coherency request to the same block will miss in the snoop cache and be
forwarded to the processor cache. There is one dedicated snoop cache filter unit for each remote
memory writer (processor, DMA, etc.) to allow for concurrent filtering of multiple coherency
requests, thus increasing system performance.

A single snoop cache contains M snoop cache lines, each consisting of an address tag field,
and a valid line vector. The address tag field is typically not the same as the address tag of the
L1 data cache, but is reduced by the number of bits used for encoding a valid line vector. The
valid line vector is a bit-vector that records the presence of individual, consecutive lines within
an aligned block. Thus, N least significant bits from the address are decoded to a valid line
vector with 2

N bits, where each bit of the vector effectively utilizes the remainder of the stored
address, significantly increasing the snoop cache capacity efficiently. In the extreme case when
N is zero, the whole entry in the snoop cache represents only one L1 data cache line, and the
valid line vector has only one bit, corresponding to a “valid” bit.
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4 Stream Registers
The stream register filter unit was introduced in [19]. Unlike the snoop cache that keeps track
of what is not in the cache, the stream register filter keeps track of what is in the cache (i.e. it is
an include filter). More precisely, the stream registers keep track of at least the lines that are in
the cache, but may assume that some lines are cached which are not actually there. However,
forwarding some unnecessary snoop requests to the cache does not affect correctness. The
stream registers capture address streams, so they are advantageous for applications where too
many spatially-distributed references overflow the snoop cache filter units.

The stream register filter unit consists of two sets of stream registers and masks (active and
history sets), port filter logic, cache wrap detection logic, and stream register update logic, as
illustrated in Figure 2. The stream registers and masks keep track of data which were recently
loaded into the cache of the processor. One active stream register is updated every time the
cache loads a new line, which is presented to the Stream Register Update Logic with appro-
priate control signals. A particular register is chosen for update based upon the current stream
register state and the address of the new line being loaded into the cache.

Every remote snoop (snoop requests 0-2) is checked against the stream registers to see
if it might be in the cache or not. This check can be performed in parallel because stream
register lookups never change the state of the registers. Therefore, our architecture includes a
port filter for each remote processor (or other snoop source such as DMA). Figure 2 shows
three Port Filters. Snoop requests coming from one of the remote processors are checked in
one of the Port Filters. Each arriving snoop requests address is compared with the state of the
stream registers to determine if the snoop request could possibly be in the cache. In parallel, it
is checked against a snoop cache, one of which exists in each Port Filter. If either the stream
register or snoop cache lookup determine that the address is not in the L1 cache, then it is
filtered out. Otherwise the request is forwarded to the Arbitration and Multiplexing interface
and on to the cache. The Arbitrate and Multiplex logic shares the snoop interface of the cache
between the Port Filters and queues unfiltered snoop requests, allowing for the maximum snoop
request rate.

A stream register actually consists of a pair of registers (the base and the mask) and a valid
bit. The base register keeps track of address bits that are common to all of the cache lines
represented by the stream register, while the corresponding mask register keeps track of which
bits these are. For example, if considering an address space of 2

32 bytes with a cache line size
of 32 bytes, a cache line load address is 27 bits in length, and the base and mask registers of
the stream registers are also 27 bits in length.

Initially, the valid bit is set to zero, indicating that the stream register is not in use, and the
contents of the base and mask registers are irrelevant. When the first cache line load address
is added to this stream register, the valid bit is set to one, the base register is set to the line
address, and all the bits of the mask register are set to one, indicating that all of the bits in
the base register are significant. That is, an address that matches the address stored in the base
register exactly is considered to be in the cache, while an address differing in any bit or bits is
not.

At some point, another cache line load address will be added to this stream register. The
new address is compared to the base register AND-ed with the mask register to determine
which significant bits are different, and the mask register is then updated so that the differing
bit positions become zeros in the mask. These zeros indicate that the corresponding bits of the
base register are “don’t-care”, or can be assumed to take any value (zero or one). Therefore,
these bits are no longer significant during comparisons to the stream register.

As an example, suppose the first two cache line load addresses are 0x1708fb1 and
0x1708fb2 (hexadecimal values). Then the contents of the stream register after these loads
is:
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Fig. 2. Architecture of a snoop filter using stream registers. There are three port filters in order to handle
snoop requests from all remote processors simultaneously.

Step 0: Base = 0x1708fb1, Mask = 0x7ffffff
Step 1: Base = 0x1708fb2, Mask = 0x7fffffc

As the second address and the base register differed in the two least significant bits, those bits
are cleared in the mask register. At this point, the stream register indicates that the addresses
0x1708fb0, 0x1708fb1, 0x1708fb2, and 0x1708fb3 can all be in the cache because
it can no longer distinguish the two least significant bits.

Every cache line load address is added to exactly one of the multiple stream registers.
Therefore, the collection of stream registers represents the complete cache state. The decision
of which active register to update is made by the register update logic. In order to capture
streams, we want addresses separated by the same stride to be added to the same stream reg-
ister. We say that such addresses have an affinity for one another. We considered two policies
for determining affinity and selecting which stream register to update:

– choose the stream register with minimal Hamming distance from the line load address
(i.e. the stream register which will result in the minimum number of mask register bits
changing to zero).

– choose the stream register where the most upper bits of the base register match those of
the line load address.

Either mechanism guarantees that all addresses presented to the stream registers will be in-
cluded within them.

Another issue is when to choose a new register instead of one that already contains a stream.
We do this by assigning an “empty affinity” to unused registers and then including them in the
update selection process. So when using the Hamming distance policy, for example, an empty
register is chosen if the empty affinity is less than the affinity calculated for all used registers.

Over time, as cache line load addresses are added to the stream registers, they become less
and less accurate in terms of their knowledge of what is actually in the cache. Every mask bit
that becomes zero increases the number of cache lines that the corresponding stream register
specifies as being in the cache, reducing the effectiveness of the stream register filtering. In the
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limit, the mask register becomes all zeros and every possible address is included in the register
and considered to be in the cache.

Loss of accuracy is a disadvantage common to every snoop filtering technique that uses
much less storage than the cache tag array. Snoop registers are specifically intended to remain
accurate for strided streams, but they will not fare well with random addresses. To overcome the
progressive loss of accuracy, the stream register snoop filter includes a mechanism for resetting
the registers back to their initial condition. As there is no efficient way to remove an address
from the stream registers and guarantee correctness, the filter clears the registers whenever the
cache has been completely replaced, and they begin accumulating addresses anew. We call this
complete replacement (relative to some initial state) a “cache wrap”. The cache wrap detection
logic monitors cache updates and determines when all of the cache lines present in the initial
state have been overwritten. To do this, information must be provided by the L1 cache, either
in the form of individual replacement notifications, or as a single event indicating that a wrap
has occurred.

At that point, all of the stream registers are copied to a second “history” set of registers
and masks and the “active” stream registers are all cleared to begin accumulating cache line
load addresses anew. In addition, the state of the cache at the time of the wrap becomes the
new initial state for the purpose of detecting the next cache wrap. The stream registers in the
history set are never updated. However, they are treated the same as the active set by the Port
Filters when deciding whether a snoop address could be in the cache. Their purpose is to make
up for the fact that individual cache sets wrap at different times, but never survive two cache
wraps.

The stream registers exploit periodic cache wrapping in order to refresh, and they rely upon
knowing when the wraps occur. The second requirement is not difficult to implement, but does
require a modified cache that either indicates all replacements, or tracks them from some point
in time and indicates when all lines have been replaced.

Periodic cache wrapping is not guaranteed, but occurs frequently in practice. Caches with
a round-robin replacement policy, such as those of the IBM PowerPC cores used in the Blue
Gene/L and Blue Gene/P supercomputers, wrap relatively frequently. Specific wrapping behav-
ior is a function of replacement policy and workload behavior. In either case, it is statistically
possible that wrapping occurs infrequently, or never (i.e. a particular cache set is seldom or
never used), but this pathological situation is not a threat to correctness. If this is a serious con-
cern, then the stream register architecture could be extended to include a full cache invalidation
and stream register reset when no wrap occurs for a long period of time.

5 Experimental Methodology

The experiments in this paper represent our top-down approach of validating the stream register
ideas and showing that stream registers are effective for a broad range of applications. Our
methodology trades detail for the ability to process huge traces of several applications. We feel
that this is the best approach because the order of memory accesses is the critical factor in
determining snoop filter effectiveness. That is, the order of a snoop request for some address
relative to a snoop filter acquiring that address is what determines whether the filter rejects the
address or not. Other papers (such as JETTY [9]) relate filter effectiveness to performance gain
and power reduction. For example, the JETTY paper estimates that L2 cache snooping alone
accounts for 33% of the total power of a typical 4-way SMP.

For our experiments, we used several applications from the publicly-available SPLASH-
2 [20] benchmark suite. These are well known benchmarks containing shared-memory appli-
cations that have driven much research on memory system architectures and cache-coherence
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protocols. We have chosen to use these publicly-available codes because they are good repre-
sentatives for a wide range of scientific applications, which is where we expect to see the most
significant impact of CMPs. We have run the kernels (LU, FFT, Cholesky, and Radix), and
some of the applications (Barnes, Ocean, Raytrace, and Fmm).

For each of the benchmarks chosen, we have simulated a full, four-processor application
run and collected the entire L1 data cache miss sequence to determine coherence snoop re-
quests. Table 1 shows the benchmarks used, the total number of accesses to memory, and the
average percentage of misses in the L1 caches. Whereas the hit rate in the local cache of a
processor is high, the percentage of hits in the caches of all other processors (we refer to such
processors as “remote”) is very low.

Table 1 shows that across all benchmarks virtually all coherency snoop requests will miss
in the remote caches, this representing the total coherency snoop filter opportunity. Such small
hit rates are due to the relatively small (32KB) first-level caches and highlight the importance
of snoop filtering for CMP cache coherence, particularly when maintained between L1 caches.
Although few snoops hit, the ones that do are essential and the ones that do not should be
filtered. We also list the total number of snoop requests generated by all four processors col-
lectively (i.e. the total number of writes).

Benchmark Input Accesses Local cache Remote cache Total coherency
parameters to memory hit rate hit rate accesses

Barnes 16K particles 1,602,120,476 99.73% 0.00047% 1,968,916,971
FFT 256K points 58,481,113 97.12% 0.0000057% 52,627,671
LU 512 matrix 202,643,933 99.24% 0.0000088% 204,434,958
Ocean 258 x 258 ocean 310,234,016 93.36% 0.03% 143,647,839
Cholesky tk15.O 678,266,460 99.43% 0.00043% 614,572,560
FMM 16K particles 2,084,764,684 99.76% 0.00016% 2,976,937,884
Radix 10M keys 2,716,061,135 99.48% 0.00068% 3,491,931,132
Raytrace car 404,977,091 98.43% 0.018% 358,731,051

Table 1. SPLASH-2 benchmark characteristics. The low remote cache hit rate shows that almost all
invalidation snoops are useless and can be eliminated.

We used a custom simulator written with Augmint [21] to collect the memory access traces.
Augmint is a public-domain, execution-driven, multiprocessor simulation environment for In-
tel x86 architectures, running UNIX or Windows. Augmint does not include a memory back-
end, thus requiring users to develop one from scratch. We modeled the L1 data caches of four
PowerPC 440 processors [22] and an ideal memory system below that (since we were only con-
cerned with the order of accesses and their effect on snoop filtering rates). Then we collected
a trace of all memory references, including the source processor and address.

We developed a custom back-end simulator to process the traces and produce the results in
this paper. Because we wanted to measure the relative effectiveness of snoop filters over very
long traces, we were not concerned with cycle accuracy. We were only concerned with the order
of accesses and their effect upon the snoop filters and caches. Therefore, the trace entries are
processed in order, and they have an instant, atomic effect upon the simulated caches and snoop
filters. This simplification allowed us to compare many different alternative architectures, while
exposing the significant trends. As a result, however, we could not measure execution times.

The back-end simulator models the private L1 data caches and snoop filters of four pro-
cessors. We model the cache of the PowerPC 440 embedded processor, which is the building
block for the Blue Gene/L supercomputer [8]. Each cache is 32KB in size and has a line size



11

of 32 bytes. The caches are organized as 16 sets, each of which has 64 ways and utilizes a
round-robin replacement policy.

While such high associativity may seem extreme, it is important to note that associativity
is a characteristic that improves cache accuracy at the potential cost of cycle time. Overall, the
gain in accuracy from high associativity can compensate for ever-increasing memory latencies,
especially in a CMP where the overall performance is not as closely coupled to the cycle
time as it is in a uniprocessor. Round-robin replacement is a viable, perhaps necessary, choice
for a highly-associative cache because of its implementation simplicity (compared to LRU).
Because we were only concerned with the order of accesses and their effect on snoop filtering
rates, we did not model the memory system below the L1 caches.

The back-end simulator responds to loads and stores as follows:

– LOAD: Update the local cache. Then update the stream registers (insert the load address)
and the snoop caches (delete the load address) of the local snoop filter.

– STORE: Update the local cache. Then update the three remote snoop filters, which in-
cludes a lookup to see if the snoop resulting from the store should be filtered, and a snoop
cache update if it is not. Finally, propagate snoop invalidations to all remote caches for
which the snoop request was not filtered.

6 Experiments and Simulation Results

We are interested in exploring the snoop filter design space to find the best compromise that
yields a good filtering rate. We studied the impact of several design parameters. For stream
registers, we considered their number, the replacement policy, and the empty affinity. For the
snoop cache, we considered the number of entries and the size of the valid line vector. The
goal is to eliminate as many unnecessary coherence requests as possible, thus improving per-
formance and reducing power dissipation. We also analyze the impact of using both snoop
filter units together to exploit their combined strength, and explore several configurations to
identify the optimal design point.

6.1 Stream Register Size
In order to determine the optimal number of stream registers, we have varied their number
exponentially from 4 to 32, as shown in Figure 3. Not surprisingly, our experiments show
that more stream registers filter a higher percentage of coherence snoop requests. But even
when using only eight stream registers, we filter more than 90% of all snoop requests for three
benchmark applications.

We observed that the effect of increasing the number of stream registers is not linear with
respect to the snoop filter rate. Choosing only four stream registers is clearly a bad policy. For
the SPLASH-2 benchmarks, selecting 8 or 16 stream registers seems to be the best compro-
mise, whereas 32 stream registers (which doubles the area compared to 16 stream registers)
only increases the snoop filter rate significantly for one benchmark.

6.2 Stream Register Update Policy
As previously described, every cache line load address is added to exactly one stream register.
The register selected for update depends on the stream register update policy and the empty
affinity value. We have evaluated two different selection policies:

– minimal Hamming distance, and
– most matching upper bits (MMUB).
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Fig. 3. Stream register filter behavior. Percentage of snoops filtered as the number of stream registers is
increased.

For the minimal Hamming distance selection policy, we calculate the Hamming distance
between each new load address and all stored values in the stream registers combined with
their paired masks so that only relevant bits (i.e. bits that are 1 in the mask) are considered.
The affinity is the number of mask register bits that will be changed to 0, and the stream register
with the minimum affinity is selected for update. In the MMUB update policy, we choose the
stream register where the largest number of relevant upper bits match those of the line load
address.

In our evaluation of stream register update policies, we have also varied the empty affinity
value. As discussed in Section 4, empty affinity is the default threshold value assigned to an
empty register. Figures 4(a) to 4(f) show the effect of varying the empty affinity for various
stream register sizes using the MMUB update policy. If the empty affinity is set too low, empty
stream registers are used to establish new streams even for memory accesses belonging to
the same stream. As a result, the filter rate of the stream registers will be very low because
few streams are captured. Similarly, setting the empty affinity value too high causes streams
to share registers and obliterate each others mask bits, resulting in a low filter rate. When the
empty affinity is increased to more than 13, it starts to play a role in the filter rate, depending on
the number of stream registers. For filters having a higher number of stream registers, a higher
affinity value is advantageous because it allows for more sensitive stream determination. For
configurations with a smaller number of stream registers, a lower affinity allows for the most
effective stream discrimination. Overall, the optimal empty affinity value is about 19 for eight
stream registers, and about 23 for 32 stream registers.

Figure 5 shows the effect of varying the empty affinity for various stream register sizes
using the minimum Hamming distance update policy. Similar to the MMUB update policy,
setting the empty affinity too low or too high causes the filter rate of the stream registers to be
low. The optimal empty affinity number is between 19 and 25, depending on the number of
stream registers in the filter and the application’s memory access pattern.

Across all applications, the sensitivity of the filter rate to the empty affinity value seem to
be less for the MMUB update policy when compared with the minimum Hamming distance
policy. In addition, for some applications - like Raytrace and FMM - the MMUB update policy
significantly outperforms the Hamming distance policy. While MMUB achieves almost 100%



13

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Empty affinity

%
 fi

lte
re

d

32 SRs
16 SRs
8 SRs
4 SRs

(a) Ocean benchmark

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Empty affinity

%
 fi

lte
re

d

32 SRs
16 SRs
8 SRs
4 SRs

(b) FFT benchmark

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Empty affinity

%
 fi

lte
re

d

32 SRs
16 SRs
8 SRs
4 SRs

(c) Cholesky benchmark

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Empty affinity

%
 fi

lte
re

d

32 SRs
16 SRs
8 SRs
4 SRs

(d) FMM benchmark

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Empty affinity

%
 fi

lte
re

d

32 SRs
16 SRs
8 SRs
4 SRs

(e) Radix benchmark

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Empty affinity

%
 fi

lte
re

d

32 SRs
16 SRs
8 SRs
4 SRs

h

(f) Raytrace benchmark

Fig. 4. Percentage of snoops filtered as the empty affinity and number of stream registers is varied using
the MMUB update policy.
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Fig. 5. Percentage of snoops filtered as the empty affinity and number of stream registers is varied using
the minimum Hamming distance update policy.
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filtering for these applications, the Hamming distance policy reaches less than 40%, even for
the largest configurations.

The MMUB policy has the advantage of ignoring low-order address bits when establishing
streams. The minimum Hamming distance policy results in well-correlated addresses that dif-
fer in their low-order address bits being mapped to different stream registers, thereby causing
a kind of pollution which limits effectiveness.
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Fig. 6. Effectiveness of stream registers when implementing cache wrap for the FFT benchmark.

6.3 Stream Register Clearing
As described in Section 4, the stream registers need to be cleared periodically in order to track
changes in programs’ L1 cache contents. The need for this is illustrated in Figure 6, which
shows average, cumulative stream register effectiveness for a portion of the FFT benchmark
running on a 4-processor CMP. During the course of the run, the caches wrapped 200 times.

Initially, the L1 working set is captured effectively by the stream registers and resetting pro-
vides no benefit. At around the 100th wrap, the working set changes, and the stream registers
with reset can track the change. The stream registers without reset, however, forward many
unnecessary snoops, causing their effectiveness to plummet. Although the stream registers
without reset only become less accurate over time, the modest recovery in their effectiveness
only indicates that the cache contents has changed in their favor.

6.4 Snoop Cache Size
In order to determine the optimal sizing for a snoop cache-based filter, we have varied two
parameters: the number of lines, ranging from 4 to 64, and the number of bits used in the valid
line vector, ranging from 1 to 64 (encoding 0 to 6 consecutive lines respectively). The results
are illustrated in Figure 7 for several SPLASH-2 benchmarks.

Our experiments show that using filters with a greater number of snoop cache lines and/or
a longer valid line vector are more effective at filtering snoop requests. But even for relatively
small snoop caches having only 4 cache lines each, and with valid line vectors of 32 bits, we
reach the snoop cache filter limit across the benchmark applications. The filter limit varies for
various applications from 82% for Ocean to 99% for FMM.

We observe that for each application, depending of its memory access pattern, the shape
of the cache size/valid vector line length surface differs. By increasing only the number of
cache lines or only the length of the valid line vector, the maximum filtering possibility for a
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Fig. 7. Snoop cache filter behavior. Percentage of snoops filtered as the number of entries and the number
of lines per entry is varied.



17

particular application can be reached. For example, Ocean (Figure 7(a)) reaches its maximum
filtering rate of 83% for snoop cache filter units with almost minimal sizing, having only 4
cache lines and as little as 2-bit-long valid line vectors. Similarly, FMM (Figure 7(d)) reaches
its filtering maximum of 99% with a small configurations of only 8 cache lines and 8-bit long
valid line vectors.

On the contrary, the FFT benchmark reaches maximum filtering only for bigger configu-
rations. As illustrated in Figure 7(b), at least 8 cache lines and 64-bit long valid line vectors
are needed to reach the maximum filtering rate of 93%. The memory access pattern of FFT
requires a higher number of cache lines because it has a high number of streams, and a higher
number of bits in the valid line vector because these streams are longer.

The optimal snoop filter configuration achieves near maximum filtering across all bench-
marks, requiring a minimal number of latches for its implementation. This translates directly
to a minimal number of aggregated bits. The dependency on the number of bits required by
each of the snoop cache sizes explored is illustrated in Figure 8.

We observe that the effect of increasing the number of cache lines and valid line vector
length is not linear with respect to the area requirements. Whereas the snoop filtering rate
varied symmetrically with the number of cache lines and the valid line vector length, the area
requirement increases significantly when increasing the number of cache lines. Thus, snoop
cache configurations with lower numbers of cache lines and longer valid line vectors are better
design points. For the SPLASH-2 benchmarks, selecting 8 cache lines with 32- or 16-bit valid
line vectors seems to be the best compromise.
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Fig. 8. Approximate number of latches required to implement a snoop filter unit with snoop caches,
depending on the number of entries and the lines per entry.

6.5 The Most Effective Combination

We have discussed and analyzed two snoop filters separately. As both filters cover different
memory access patterns, the most effective filtering is achieved when putting the two filters
together. We will show that using the combination of two filters, we can achieve high filtering
rates even though each filter unit is quite small.

In order to determine the optimal sizing for our snoop filter, we have varied three parame-
ters: the number of stream registers (4, 8, or 16), the number of snoop cache lines (4 or 8), and
the empty affinity (in the most effective range from 19 to 25). We keep the snoop cache valid
line vector at 32 bits in length. The results for several SPLASH-2 benchmarks are illustrated in
Figures 9(a) to 9(f). Clearly, combining the two filtering techniques results in a highly effective
combination across all of the benchmarks we studied.
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Fig. 9. Combined filter behavior. Percentage of snoops filtered for several stream register and snoop cache
configurations as the empty affinity is varied in its most effective range.
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Once again, we must consider the size of the combined filter in terms of latch count in
order to determine the optimal configuration. Figure 10 shows how latch count varies with the
number of stream registers and snoop cache lines for a valid line vector of 32 bits. The stream
registers grow faster than the snoop caches, so the optimal configuration prefers larger snoop
caches over more stream registers. The knee in the latch count and performance curves appears
to be at 8 stream registers and 8 entries per snoop cache. By way of comparison, the L1 cache
tags of the PowerPC 440 processor require more than an order of magnitude more latches.
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Fig. 10. Approximate number of latches required to implement a snoop filter unit with both snoop caches
and stream registers, for several effective configurations.

7 Conclusion
With the emergence of commodity CMPs, we have entered the era of the SMP-on-a-chip.
These high-performance systems will generate an enormous amount of shared memory traffic,
so it will be important to eliminate as much of the useless inter-processor snooping as possible.
In addition, power dissipation has become a major factor in chip density, so mechanisms to
eliminate useless coherence actions will be important.

In this paper, we have described and evaluated a snoop filtering architecture that is appro-
priate for high-performance CMPs. Our architecture uses multiple, complementary filtering
techniques and parallelizes the filters so that they can handle snoop requests from all remote
processors simultaneously.

We have described stream register snoop filtering, which uses a small number of registers to
capture strided access streams. We explored the stream register and snoop cache design spaces
using the SPLASH-2 benchmarks together with a custom trace generator and simulator.

Finally, we developed a highly-effective snoop filter that combines stream registers with
snoop caches, and experimentally evaluated this design. We show that the combined filter can
be very small in size, yet effective over all of the benchmarks we studied.
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