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Abstract

The problem of provisioning servers in a cluster in-

frastructure includes the issues of coordinating access and

sharing of physical resources, loading servers with the ap-

propriate software images, supporting storage access to

users and applications, and providing basic monitoring and

control services for those servers. We have developed a sys-

tem called HOP-SCOTCH that automates the provisioning

process for large clusters. Our solution relies on direc-

tory services to implement access control. It uses network

boot and managed root disks to control the image of each

server. We leverage IBM’s Global Storage Architecture to

provide storage to users and applications. Finally, inter-

faces are provided to access the services both programmat-

ically and interactively. We demonstrate the scalable be-

havior of HOP-SCOTCH by experimenting with a cluster of

40 blade servers. We can provision all 40 servers with a

brand new image in under 15 minutes.

1 Introduction

The architecture of choice for many commercial appli-

cations is quickly shifting from scale-up (large SMPs) to

scale-out (clusters of smaller machines). This change is

motivated by a series of factors. First, there is the growing

capacity of inexpensive small servers. Second, there is an

improvement in the bandwidth and latency of the intercon-

nect between those servers. Finally, there are new classes

of applications that simply require too much capacity to be

served by anything other than a scale-out architecture.

The chief purpose of the Commercial Scale-Out (CSO)

project at IBM Research is to investigate architectures,

technologies, and tools that support efficient execution of

commercial applications on large clusters of servers. Our

previous feasibility studies of a scale-out environment for

commercial computing addressed functionality and perfor-

mance. We investigated the performance implications of

using a scale-out environment as opposed to a scale-up en-

vironment in [15, 16, 18, 20]. We also investigated the chal-

lenges of provisioning the large number of servers needed

for a scale-out environment in [7] and image management

techniques in [9].

More recently, we have identified a collection of require-

ments to enable greater adoption of scale-out architectures

for commercial applications. First, we must be able to ef-

ficiently share and aggregate resources. Second, we must

provide strong isolation guarantees between applications

and/or customers. Finally, we must ensure high reliability

and availability to the applications.

This paper describes our work on enabling the efficient

sharing and aggregation of resources. Specifically, it fo-

cuses on the efficient provisioning and repurposing of hard-

ware, as described in more detail in the next section. We

had previously addressed this topic in [7]. In that paper,

we described techniques to completely automate the provi-

sioning of a blade server in a virtualized environment. As

blades were inserted into the system, they were discovered,

updated, and configured to boot a shared, read-only filesys-

tem over a storage area network (SAN). During boot time,

the system also mounted a shared, high performance net-

work file system (GPFS) for application use and the storage

of state. That work has been released under the Common

Public License (CPL) with the HOP-SCOTCH1 name and

is the basis for continuing work.

We have now extended that work by tackling several as-

pects of the provisioning life cycle. We address the fol-

lowing issues. First, we developed an approach to handle

ownership and access of physical resources. Second, we

provided storage solutions to users and applications. Third,

we addressed the problem of loading the proper software

stack on a server. Finally, we provided interfaces to admin-

istrators and users to control the physical resources.

Our solution relies on directory services to implement

access control to owners and users of physical resources.

We leverage an existing IBM solution (Global Storage Ar-

chitecture – GSA) to provide storage to users and appli-

1HOP-SCOTCH is available for download on sourceforge.net, at

https://sourceforge.net/projects/hop-scotch.
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cations running on our system. We use network boot and

root disk management to deploy the software stack in the

servers. New interfaces are provided to access our services

both in a programmatic and interactive way.

The rest of this paper is organized as follows. Section 2

defines more precisely the challenges in managing the phys-

ical resources in a scale-out environment. Section 3 de-

scribes the approach we took in our solution to those chal-

lenges. Section 4 reports the results from experiments we

performed in an actual system. Section 5 discuses related

work. Finally, Section 6 presents our conclusions and fu-

ture work.

2 Challenges

A commercial scale-out infrastructure is used by orga-

nizations to run applications that support their business. It

is common to have a single physical infrastructure shared

by several applications and even competing organizations.

This sharing nature of resources leads to many challenges

that are characteristic to a commercial scale-out system and

not very common in scientific computing:

• Resource ownership: the resources of the cluster have

to be partitioned into sub-sets, owned by specific orga-

nizations, with strong isolation, minimal administra-

tive intervention, and virtually no interruption.

• Non-homogeneous resources: different applications

have specific resource requirements and these re-

sources must be available to the applications in an au-

tomated way.

• Time-varying load: commercial applications have

their resource demands tightly coupled to external fac-

tors that change dynamically (e.g., web-based shop-

ping patterns change during the day and from season

to season).

• Independence from resource location: the application

has to be capable of operating virtually without in-

terruption even if migrated among different compo-

nents in a given sub-set of the cluster, among sub-sets,

among clusters, and even among data centers.

The challenge faced by the CSO project can be clearly

stated: the need to share, provision, repurpose, monitor,

and control large amounts of computing resources in order

to support a set of heterogeneous commercial applications,

each one with inherently conflicting and highly dynamic re-

quirements. First, we need to be able to allocate physical re-

sources to specific groups that will use those resources for

their applications. Second, we need a mechanism to load

those physical resources with an appropriate software stack

to perform the application. It must be possible to quickly

change that software stack, thus changing the function as-

sociated with the resource. Finally, we need to be able to

monitor the behavior of those resources and perform basic

control operations such as boot, shutdown and grant/revoke

access.

We cannot expect to create a single tool that will perform

all the functions required to manage a commercial scale-out

infrastructure. Rather, the approach must be to create lay-

ered and extensible tools that can operate and compose with

other tools, sometimes developed by other vendors. The

tools must be accessible both through human-friendly inter-

faces (e.g., web pages) as well as programmatically (e.g.,

they can be scripted). These guidelines were followed as

we developed the HOP-SCOTCH management library for

the challenges described above.

3 Architecture

The CSO cluster is a testbed for scale-out commer-

cial computing and is managed by the HOP-SCOTCH li-

brary. The cluster architecture consists of various resource

pools. The resource pools are the computing, communica-

tion, storage, and provisioning pools.

The computing pool uses general-purpose nodes (i.e.,

blade servers) as elements to provide processor cycles and

volatile memory for application execution. The communi-

cation pool uses specific purpose nodes (e.g., switches) and

general purpose nodes (e.g., a blade server acting as a fire-

wall) to interconnect elements of an application. The stor-

age pool also uses specific purpose nodes (e.g., RAID disk

arrays) and general-purpose nodes (e.g., a blade server act-

ing as a NFS server) to allow the computing pool to access

the data used by applications. Finally, the provisioning pool

is formed by servers running the HOP-SCOTCH manage-

ment library (currently a single management server), along

with all other required services, including remote boot

(DHCP, PXE, TFTP), authentication/authorization (LDAP),

root disk image (NFS) and access interfaces (SOAP, CLI).

A consistent effort was made to centralize the cluster state

information in the provisioning pool. By keeping the re-

maining pools as stateless as possible, the system can

quickly respond to resource demand changes by repurpos-

ing the resources.

Figure 1 depicts the architecture of the CSO cluster. The

physical resources are displayed with their associated re-

source pool. Blade servers can be freely repurposed among

pools, in order to cope with resource demand surges or idle

capacity. All resources are exposed to applications through

virtual interfaces. The communication and storage compo-

nents are virtualized by the use of virtual network-capable

switches and Fiber Channel (FC) RAID storage controllers.

Sets of blade servers are packaged inside chassis. Each

blade server is then virtualized with the Xen [5] virtual ma-

chine monitor, in order to allow applications inside virtual

machines to be deployed on it.
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Figure 1. The CSO cluster resource pools.

By virtualizing the resources, it is our intent to allow an

application manager to focus solely on the application ar-

chitecture and topology. This enables a new level of virtu-

alization, in the form of application packages or templates

and frees the application manager from the job of configur-

ing physical resources.

3.1 Storage features

The main application and user storage solution we

adopted for the CSO cluster was an IBM internal infrastruc-

ture called Global Storage Architecture (GSA). IBM em-

ployees can use GSA to create personal and project direc-

tories that reside in managed storage. Although this is an

internal IBM solution, it is representative of managed stor-

age solutions that coorporations can deploy for their own

use.

GSA provides two key features, networked storage and

user authentication. The GSA client is installed on the base

system image used to provision our servers. On a system

with the client installed, a user can log into any server us-

ing their GSA credentials. The user’s home directory on the

system is automounted over the network, as are project di-

rectories. The user or application is always able to access

their own data and access the same shared data. The GSA

authentication database is also used in the LDAP authenti-

cation schemes described in Section 3.3

We also found it useful to have a second form of network

storage available without the GSA authentication. The base

system image also mounts an NFS directory from the man-

agement server. The NFS based solution is of particular use

as scratchpad storage between the servers and as a small

store for application data that is preserved between migra-

tions and reprovisionings. The NFS based system could

also be used more extensively in a installation without an

enterprise storage solution such as GSA.

Other storage support has been added or expanded in the

tool, but is not discussed in detail in this paper. This func-

tionality includes automated support for SAN storage and

GPFS in a cluster. The tool can automatically map and zone

servers so certain luns are accessible. Additionally, the sys-

tem can automatically add or remove GPFS support to a

server.

3.2 Non-local root disks

We previously implemented a shared root filesystem ap-

proach [7]. We found that the heterogenous nature of com-

mercial applications led to small customizations needed for

individual groups of servers, different versions of the same

base root file system, as well as frequent updates to it. Ac-

commodating this heterogeneity in operation became oner-

ous in certain situations. We decided to pursue an improved

non-local root disk solution. Specifically, the solution had

to be storage efficient, capable of being performed by any

server in the CSO cluster, require as little state informa-

tion and configuration as possible, and have the ability to be

shared among a large group of servers.

The most mature storage candidate for our requirements

is NFS. Using an NFS-exported directory as the root filesys-

tem for a server is well documented and tested [1, 8]. NFS

provides a file-based access mechanism both to the server

using it as its root filesystem, and to the administrator on the

filesystem server, enabling quick modification of a root file

system without having to mount it. Additionally, it makes

strong usage of caching, thus reducing the bandwidth re-

quirements for clients.

The NFS server was implemented as a regular server that

accesses a set of root filesystems in a storage controller via

Fiber Channel (FC). We chose to use a standard server for

the NFS server instead of using a specific-purpose NAS de-

vice mainly because it allows any blade to perform this role.

We configure (using HOP-SCOTCH) a blade to boot from

a root disk on the FC storage and access the storage volume

containing all root file systems. Since this storage volume

can be shared, a configuration with a high availability (HA)

cluster can be used in order to eliminate a single point of

failure.

Even with an NFS solution there is still the issue of

choosing a native file system format that can then be NFS

exported. While NFS is a robust root file system solu-

tion, it has no intrinsic capability for storage consolidation.

Since the number of images grows both with the number

of servers and with the number of types, a scalability issue

arises.

We decided to use the ZFS [2] file system, part of the

OpenSolaris operating system, to address the storage effi-
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Figure 2. Structure of NFS root file systems.

ciency requirement. ZFS implements “snapshots”, a read-

only consistent virtual image of a file system at a given point

in time. ZFS then supports the creation of “writable clones”

from a snapshot. A writable clone can be modified and only

requires storage space for the data that is modified. Both

snapshots and writable clones can be created very quickly

(i.e, a few seconds) and require minimal storage space upon

their creation (i.e. hundreds of kilobytes), thanks to the use

of copy-on-write [4] technology.

We developed a naming scheme (Figure 2) based on the

need to maintain different types of root file systems for dif-

ferent purposes. A root type created for a specific purpose

is labelled with a brand. Different brands can be created

for various administrative, technical, and operational needs.

The use of different brands allows a subset of resources in

the CSO cluster to be effectively compartmentalized for an

organization. A root brand can experience several revisions

throughout its lifetime. Since such revisions are required

for an assortment of purposes, we make use of snapshots to

implement a versioning mechanism.

HOP-SCOTCH maintains a brand’s root directory as

a “golden image”, and is capable of creating on-demand

snapshots of this golden image. An incremented version

number is appended to each snapshot. In this way, changes

made to the golden image are captured, stored, and made

available in an efficient way, and the changes can be rolled

back if required. Writeable clones are made from the snap-

shots to create the root file systems presented to the servers.

The capability to quickly create a clone from a snapshot

from an arbitrary brand gives the CSO cluster the ability to

quickly reprovision and repurpose resources. Because the

reprovisioning process is so efficient, the root file systems

can even be destroyed and recreated at each reboot. This

assures a consistent state after a power cycle.

After a base golden image is created, the provisioning

process comprises three steps: cloning, sharing, and reboot-

ing. The cloning phase is time constant and requires the

specification of a server name, a brand, and its version for

the creation of a writable clone. The sharing phase consists

of configuring the NFS server to export the writable clone

and configuring the target blade to boot from the network.

When those two steps are complete, the blade can be booted

immediately.

3.3 LDAP Authentication

A major focus of the work this year was the addition of

user authentication and the concept of ownership of servers.

In the past we had used ad-hoc techniques to allocate the

ownership of servers within our own cluster, leading to in-

efficient use of the servers and contention for them.

There are several requirements for an authentication sys-

tem. First and foremost it has to be able to allow for user au-

thentication and for users to atomically checkout or release

servers. Additionally, another repository of user accounts

should not be created if it can be avoided. Finally, the au-

thentication system should honor the general system design

principals used in the rest of HOP-SCOTCH, namely the

system has to be extensible, user accessible, and program-

matically accessible in as open a way as possible.

The server ownership data requires a database of some

form to store the current ownership data. We decided to use

an LDAP [19, 13] directory server for the ownership infor-

mation database. The LDAP directory server comes with

several advantages. First, it has explicit support for atomic

operation on records. Second, it is inherently a network

service with clean access protocols, enabling remote access

and programmatic use. Third, in many cases there already

is an existing LDAP directory for user accounts that can be

extended for the server ownership. We used the OpenLDAP

server for our system, but any LDAP directory should have

sufficed.

Three essential pieces of information need to be stored

in the LDAP directory: (i) the server name, (ii) the server

owner (decides who can operate the server) , and (iii) mem-

bers who are allowed to operate the server. We use the

GroupOfNames schema from the OpenLDAP core schema

to store this information. The server name is the common

name (cn), the server owner is the owner, and the members

are the members. Other schemas representing collections of

users would have also worked.

In addition to the servers, we also need to specify the

users in the system. However, many organizations have

existing LDAP directories for user information. To ad-

dress the problems of existing user accounts, we exploited

OpenLDAP’s ability to proxy other LDAP servers. The

proxy database passes along certain LDAP queries to an-
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Figure 3. HOP-SCOTCH LDAP architecture.

other LDAP server. We configured a proxy database to our

enterprise LDAP server. The architecture is demonstrated

in Figure 3, including the possibility of a user accessing the

database through the HOP-SCOTCH libraries, or directly.

Using the proxy database back-end, a user is authenti-

cated on our LDAP server by passing along the authentica-

tion request to the enterprise LDAP server, allowing us to

fully leverage the existing infrastructure.

A third aspect of the server database is enforcing useful

security semantics on the server data. Given that a server

has been checked out, we want only the owner of that server

to update the server’s entry in the database, such that an-

other user cannot steal the server or give oneself access to

the server. We also want to make sure that a checkout of a

server is atomic, and a second checkout request that arrives

during a previous request fails. Additionally, we want to

ensure that no user can put the entries into a bad state, such

that others cannot use the server.

We were able to meet all those requirements through

specifying appropriate permissions on the entries. OpenL-

DAP has an ordered permission scheme in which a number

of policies can be specified, and the first matching policy

is used. Additionally, a permission scheme can be matched

against a set of entries based on location in the database, as

well as upon values in the entry itself.

The following summarizes the permission scheme that

we implemented. Note that the first matching policy is used

to determine access, so the rules need to be considered in

the order listed: (1) Unauthenticated users have no access.

(2) For a server with an owner, the owner can write or clear

their own name from the owner field and all users can read

the owner field. (3) For a server without an owner, all users

can write their own names in the owner field and all users

can read the owner field. (4) For all servers, the owner can

write to any field and all users can read any field.

The above policy ensures the properties we desired. For

instance, any authenticated user can checkout a server by

writing their own name in the owner field. However, if

someone already owns the server, the second rule applies,

and the user will be denied write access to the owner field.

Similarly, the permission scheme prevents a user from

transferring a server to a non-existent user. The second rule

explicitly limits what the owner of a server can write in the

owner field. The owner can only clear the entry and cannot

write someone else’s name. The owner is allowed to write

to any other field according to the last rule, but the second

rule takes precedence on access to the owner field.

The system as described above allows for the normal

checkout and release of servers in the system. However,

it does not address certain administrative policies that are

likely desired. It allows any user to check out any num-

ber of free servers and hold on to those servers as long as

they please. That level of freedom is clearly not desired in

any shared computing infrastructure. As such, we include

an administrative account. The administrative account has

complete read and write permission on the server entries.

Therefore, the administrator may release servers forcefully

when needed, and transfer those servers to other users as

needed. One could also use the override feature to imple-

ment various administrative policy, such as limiting the du-

ration a server checkout.

The design of the LDAP based user authentication and

server checkout implements the entire checkout policy

within the LDAP directory. This enables at least two dis-

tinct use cases: checkout through HOP-SCOTCH tool or

checkout through direct interaction with the LDAP direc-

tory server. The primary use is for the HOP-SCOTCH li-

braries to use the LDAP directory information. We’ve im-

plemented additional command line switches and checks

to check out servers, query server state, and to verify that

a user has permission to use the server before processing

commands.

However, the way the authentication functionality was

implemented enables the direct access to the LDAP direc-

tory server itself. A user can checkout a blade through the

direct interaction with the LDAP server. Additionally, the

LDAP interface can be programmatically controlled. We

use this ability in the following section when building web

page and web services interfaces to HOP-SCOTCH.

3.4 Web Services and Web Interface

We extended HOP-SCOTCH to have more interfaces

through the use of web services and a web interface. HOP-

SCOTCH has always been designed with a goal of extensi-

bility: its constituent libraries have been written in a layered

manner, exposing functionality at many levels. A user can

call the HOP-SCOTCH functionality remotely, and is able

to build extensions on any computing platform. Our ap-

proach is to expose HOP-SCOTCH as a web-service using

SOAP [11] (Simple Object Access Protocol) and WSDL [6]

(Web Services Description Language). Additionally, to in-

crease the usability of the tool, we developed a web inter-
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face to HOP-SCOTCH leveraging the SOAP interface and

the LDAP interface.

SOAP is an Internet messaging protocol standard built

upon XML, and enjoys wide support, including support in

most major programming languages. We have used SOAP

messages in a simple request and response pattern. A re-

mote client can submit a SOAP message across the network

specifying an operation, options, and targets to the HOP-

SCOTCH library. The management server performs the op-

eration and returns the requested information to the client.

WSDL is a companion language to SOAP. WSDL is used

to specify the operations supported by a service, and the

specification of the SOAP messages involved in perform-

ing the operation. Given the WSDL document describing

the HOP-SCOTCH service, any desired architecture can be

used to generate and parse the SOAP messages needed to

remotely access the HOP-SCOTCH functionality.

Python supports SOAP and WSDL through a few tools,

including the Zolera Soap Interface (ZSI). We used the ZSI

tools to implement the SOAP interface to HOP-SCOTCH.

Unfortunately, ZSI does not have support for generat-

ing WSDL documents for existing functions2, but it does

support making a stub code from a given WSDL docu-

ment. Therefore we manually created the WSDL document

describing the available HOP-SCOTCH functions. The

WSDL document specifying the exposed HOP-SCOTCH

functionality is available on the project site.

The addition of LDAP authentication and SOAP inter-

face provides a great deal of flexibility for extending HOP-

SCOTCH. We have added a web interface leveraging the

SOAP and LDAP interfaces in addition to the existing

command-line interface. The addition of the web interface

has two-fold value: it greatly simplifies the use of the HOP-

SCOTCH system for certain tasks, and it demonstrates the

flexibility available in extending the HOP-SCOTCH func-

tionality in other languages.

We wrote a number of web pages using PHP. The PHP

code handles authentication with the system, and directly

accesses the LDAP and SOAP interfaces to HOP-SCOTCH.

We list two examples of pages in the web interface. One

page enumerates all available servers in the system, listing

details about each server, and allowing the user to check out

a subset of the servers. Figure 4 shows another page that

presents all the servers the given user owns, along with but-

tons to control the server (such as powering off or reboot-

ing the blade). We found that the web pages proved to be

much more convenient for server checkout procedures than

the command-line and generally useful.

Initially, we experienced a problem of pages taking too

long to load because of the SOAP commands. We were

2SOAP messages are strongly typed, while Python is not. Since Python

is not strongly typed it is hard to determine the types needed in the SOAP

messages.

Figure 4. HOP-SCOTCH web interface.

able to rewrite the affected pages with the addition of

JavaScript to make the SOAP commands execute asyn-

chronously, making the web interface much more respon-

sive.

4 Experimental results

As a proof-of-concept, we report results from using

HOP-SCOTCH in a system that we developed for a po-

tential customer. The system consists of a rack with 3

BladeCenter-H chassis, each with 14 blades. The blades

are dual-processor/dual-core (total of four cores per blade)

with 16 GiB of memory. Some of the blades have internal

disk, but for the purpose of our experiments we treat all the

blades as diskless. That is, we never use their internal disks.

In addition to the blade chassis, our system contains a

“master node” from which we perform the control opera-

tions and an NFS server node that manages the root file

systems for the blades in a ZFS file system. Storage for

that NFS server is in the form of a Fiber Channel-attached

RAID box. The ZFS file system contains three brands

of golden images, which can be used for provisioning the

blades. Each brand has on average 5 versions. For the ex-

periments, we use a golden image with approximately 140

thousand files and total size of 9.7 GB, for an average file

size of 70 kB.

Using the above configuration, we perform provisioning

(cloning and booting) of different sets of blades. We use

sets of 1, 5, 10, 20 and 40 blades. We monitor both net-

work traffic and the NFS server activity during clone and

boot. The cloning operation is performed serially. That is,

we finish cloning one blade before proceeding to the next.

The boot operation is performed in parallel. We initiate the

boot operation in a blade, wait 5 seconds and then move

to the next blade without waiting for the boot to complete.

The 5-second interval between blades helps stagger the boot

process.

Figure 5 shows clone and boot times for different num-

bers of blades. We observe that clone time increases lin-

early with the number of blades. This is expected since
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Figure 5. Clone and boot times.

we perform those operations sequentially. The time is ap-

proximately 14 seconds per blade, independent of image

size (since ZFS does copy-on-write for the clones). We at-

tempted to perform multiple cloning operations in parallel

but we ran into stability problems with our servers. Never-

theless, our results show that we can prepare the images for

all the blades in our configuration in approximately 10 min-

utes. The boot time is sub-linear with the number of blades.

In fact, we can boot one blade in approximately 2 minutes

and 40 blades in only 4 minutes. The cloning time starts to

be the dominant time for provisioning with about 20 blades.

We note that we can go from a completely idle system to all

blades provisioned and running in less than 15 minutes.

We also want to understand in more detail the behavior

of the NFS server during boot. We know that the server

is not very busy during cloning (CPU utilization stays be-

tween 1-2%) and it is the boot operation that has the poten-

tial to saturate the server. Figure 6 plots both the maximum

and the average CPU utilization of the NFS server during

the boot process, for different numbers of blades. As ex-

pected, both the maximum and average CPU utilization of

the server increase with the number of blades. We note that

the maximum reaches only 50% even with all the blades

booting in parallel. Furthermore, the average utilization is

less than 20% with 40 blades. This demonstrates that the

NFS server still has plenty of capacity to serve more blades

in parallel.

Another important resource during the boot is the Ether-

net network connecting the blades to the NFS server. Fig-

ure 7 plots both the maximum and average network uti-

lization during the boot process, for different numbers of

blades. We observe that the network seems to be saturating

at about 50% utilization. This is understandable, since the

average network packet size during boot is relatively small

(under 800 bytes). Although we may not be able to drive the

maximum network utilization beyond what we are already

achieving, the average network utilization is relatively mod-

est, staying under 15% even with 40 blades. Again, this

indicates that we can support even more blades with our
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Figure 6. NFS server utilization during boot.
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Figure 7. Network utilization during boot.

current NFS server infrastructure.

We demonstrate the storage efficiency of ZFS by report-

ing the disk usage in our approach. If we were to store all

versions of the three brands we use explicitly, that would re-

quire 286 GB. With ZFS we use only 52 GB. Furthermore,

preparing 40 clones of each golden image brand (one clone

per blade that we want to deploy) we would need approxi-

mately 400 GB of storage per brand per version. With the

ZFS copy-on-write approach, the total storage we use for

all versions of a given brand is only 25 GB, resulting in a

substantial reduction in storage needs.

5 Related work

The work reported in this paper builds upon and is re-

lated to a nuber of other projects. A number of tools exist

to support the low level provisioning of servers, including

IBM’s Remote Deployment Manager, PXE boot, and the

Red Hat network install process (Anaconda). All of these

tools can be used to install an operating system on a server.

Additionally, there are a number of packages for installing

HPC clusters, including [12, 17].

Additionaly, there are many papers discussing the chal-

lenges and issues for a commercial scale out infrastructure

(cluster), as well as its many incarnations: “utility data cen-

ter” [14], “computing utility” [3], “virtual data center” [10].
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One common key aspect on all these previous compilations

and descriptions are the heterogeneity required for this kind

of cluster, both in time (i.e., changing during the cluster’s

cycle of operation) and space (i.e., in specific portions of

the cluster).

6 Conclusions

In this paper we have presented our recent work in ex-

tending the HOP-SCOTCH tool with a scalable server pro-

visioning tool. We addressed the problem of sharing phys-

ical resources with an LDAP-based solution for control-

ling ownership and access privileges. We support the rapid

installation of software images in servers by means of a

ZFS/NFS infrastructure for the root file system of those

servers. We used GSA to provide users and applications in

those servers with persistent storage. Finally, we developed

new interfaces for users to control and monitor the resources

by leveraging web services standards.

Our experimental results strongly support the evidence

that we can manage an entire rack of blades, which can ac-

comdate at most 56 blades, with a single ZFS/NFS server.

This leads to a scalable approach with each rack having its

own root file system server and the collection of images that

can be used to provision the blades.

There are several areas of future work for us. First,

we want to explore more parallelization in our tools. We

demonstrated good parallelism in the booting process of

blades, but the cloning process still has stability issues that

force us to operate serially. We also want to investigate

other approaches to root file systems, including the possi-

bility of using only a RAM-based root file system for at

least some cases. Finally, and most importantly, we want

to deploy HOP-SCOTCH in environments with more users

and more machines, to demonstrate its effectiveness in real

production scenarios.
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