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Abstract—Because of their importance in military and other 

applications, Mobile Ad-Hoc Wireless Networks or MANETs 
have attracted significant attention in the research community. 
However, almost virtually all of the literature has focused on 
analyzing MANETs in an asymptotic case with a very large 
number of nodes under varying levels of node density and 
distribution. While the asymptotic analysis is extremely valuable, 
practical usage of MANETs requires us to be able to analyze 
networks of finite size. In this paper, we present an approach to 
analyze MANETs with a fixed number of nodes which can be used 
in many practical applications related to MANETs.  Our 
approach is based on simplifying the motion paths of a MANETs 
by applying a set of transformations, and decomposing the motion 
paths into a generalized Fourier series transformation of simpler 
periodic motions.  

I. INTRODUCTION 
Mobile ad-hoc wireless networks are an important area of 

study with many applications in the military and civil domains. 
These networks can be used for a variety of applications, e.g. 
creating a communication channel between several vehicles on 
the move in a military convoy or operation, managing 
connectivity among a group of unmanned aerial vehicles, 
creating ad-hoc networks based on buses or other vehicles 
moving on roads (e.g., DieselNet [1] ), collecting information 
from a bunch of sensors distributed in a geographic area, 
monitoring animals using RFID or other sensor tags (e.g., 
ZebraNet [2] and TurtleNet [3]), and a host of other 
applications 

Because of their importance several attempts have been 
made to analyze and characterize the properties of wireless 
mobile ad hoc networks. Several properties and results 
regarding the operation and properties of MANETs in the 
asymptotic case are known [4] [5] [6]. By the asymptotic case, 
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we mean a situation where there are a large number of mobile 
nodes which are distributed according to some density function 
and their movements are governed by a probabilistic random 
mobility model.  

While such analysis and asymptotic results are valuable in 
providing insights about network behavior, asymptotic 
networks which move according to some known mobility 
models are unlikely to be realized in practice. All practical 
instance of a MANET will have a finite number of nodes that 
may be too small for asymptotics to apply; these nodes would 
often be moving according to some type of mobility model 
dictated by the needs of their mission or operation. A convoy of 
trucks may form a mobile network moving along the roadways 
in the region, while a UAV would be programmed to fly on a 
predetermined path over a sensor field to collect information 
from the different sensors in the field. Clearly, we need to 
develop techniques and methodologies that can analyze the 
properties of the dynamic network created by such motion.   

The analysis of finite networks is hampered by the fact that 
such networks do not enjoy general ergodic properties that 
facilitate asymptotic analyses. Thus, particular attention must 
be paid to realization dependencies. We consider wireless 
networks, and as such the interactions between the `links’ or 
`edges’ cannot be ignored.  In particular, notions such as 
supportable rate or outage capacity of a link depends not only 
upon the transmitter (e.g., transmit power), the receiver (e.g., 
sophistication of the signal processing), but also upon the 
characteristics of the link (terrain dependent aspects such as 
fading and shadowing, but also interference due to traffic on 
nearby links). Finally, mobility induced effects (e.g., Doppler) 
cannot be ignored.   

If the network elements were not mobile, the analysis of the 
properties of the network is relatively straight-forward. One 
can analyze the graph defined by the nodes and edges of the 
network to obtain several properties such as the bandwidth and 
latency between two nodes in the network, the points of 
maximum vulnerability as defined by the minimum cut, the 
diameter of the network, etc. It would be highly desirable to 
obtain the same properties in a network where the elements 
were mobile and dynamic. There is a body of work on the 
Delay Tolerant Network (DTN) that develops routing protocols 
in intermittently connected networks based on predicted 
mobility pattern of mobile nodes [7] [8], but the literature lacks 
the effort to analyze fundamental characteristics of mobile 
networks of finite size.  Even in the static case, the literature on 
the analysis of finite sized networks is scanty; see, e.g., [9].  
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We show in this paper that it is possible to represent any 
MANET which is stable, finite and has defined motion paths 
into an equivalent graph with less complex motions paths in a 
manner such that the resulting graph would have the same 
average properties as the properties of the original graph. We 
discuss two types of transformations which result in the 
simplification of the motion paths – the first type may be 
viewed as rigid body transformations while the other type may 
be viewed as elastic transformations.  By using a series of 
transformations, we show that a dynamically varying network 
may be approximated by a static network which would have 
network properties similar to that of the original graph.  

The structure of this paper is as follows: In section 2, we 
provide a formalization of the problem of analyzing finite 
networks. In Section 3, we discuss the results of applying a 
rigid body transformations to a finite MANET, followed by a 
scheme for applying elastic transformations on the finite 
MANETs. Finally, we show how we can combine these 
transformations to simplify the motion of a finite-sized 
MANET, and areas for future work.    

 

II. PROBLEM FORMULATION 
We consider the analysis of the network connectivity 

property among a set N = {n1,… nk} representing k mobile 
nodes. Each of the nodes has a special vector property defined 
as its position, where the position of node ni is given by the 
vector (t)pi

r
. At any instant of time, the velocity of node ni is 

defined as 

(t)p)( i
rr

t
tvi ∂

∂
=  

 
    The set of all velocities {v1,… vk} is represented as V. For the 
sake of notational simplicity, we often drop the explicit 
dependence on time; e.g., V rather than V(t).  
  
Definition 1. A dynamic MANET is a 3-tuple { N, P0, V}, 
where 

• N represents the set of nodes {n1,… nk} 
• P0 represents the initial position of the nodes at time t = 0.     
• V represents the set of velocity vectors of the different 

nodes {v1,… vk}.  
 

An edge in dynamic MANET connects two vertices, and is 
associated with a set of time-varying scalar properties. Each 
property is a time-varying mapping from the set NxN to the set 
of real numbers. Examples of properties associated with the 
edge include the capacity of the edge, the delay of the edge, or 
the packet loss-probability of the edge. Each of these properties 
of the edges would have an instantaneous value. For simplicity, 
we are only considering nodes which have identical properties 
(e.g. transmission power, receiver fidelity, etc.) and transmit 
with a fixed power under uniform channel conditions.  

 

Definition 2. An edge-property of a dynamic MANET is an 
operation mapping the position of two nodes in the MANET to 
a real number.  

 
In other words, for any two nodes i and j, an edge property 

)p ,p f(  e jiji,
rr

=p   . Since the positions are functions of time, 

the edge properties are a function of time as well.  
 

Definition 3. A network property np of a dynamic MANET 
with k nodes is an operation mapping the k2 edge properties to a 
real number.  

 
As a convenience, we will use the convention np(M) to refer 

to the network property np of a MANET M. Since the edge 
properties are time-varying, the network properties will be 
time-varying as well.  

 
Examples of a network property (in addition to edge 

properties) include the diameter (maximum latency between 
any two points in the MANET), total capacity (sum of all edge 
capacities in the MANET), etc. in the dynamic MANET. Any 
combination of edge properties, e.g. shortest latency between a 
pair of nodes will also be a network property. It follows from 
the definition that any individual edge property is also a 
network property.  Note that all of these properties are 
time-varying, so at any time the property has an instantaneous 
value.  

If the network were not mobile, the network properties 
would be determined by means of graph-theoretic algorithms 
on the graph representing the nodes and edges of the network. 
We would reduce the problem of the determining MANET 
properties to that of determining the properties on an equivalent 
graph with a simpler set of motions. In order to do so, we would 
demonstrate a set of congruence relationships between 
MANETs that have different velocity vectors but consist of the 
same set of nodes.  

In order to demonstrate the congruence, we use the 
following definitions.   

 
Definition 4. An isotropic edge property of a MANET is an 
edge property which only depends on the properties of the 
nodes it connects and the distance between the two nodes of the 
edge.  

 
In other words, an isotropic property |)p -p f(|  ep jiji,

rr
= . 

Some examples of isotropic edge properties would be the 
propagation delay on an edge and the loss rate of an edge if the 
edge is in a homogenous medium.   

 
Definition 5. An isotropic network property is a network 
property which is independent of any non-isotropic edge 
properties of the MANET.  

 
In other words, an isotropic network property is obtained by 

a combination of one or more isotropic edge properties of the 
node.  
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Definition 6.  A dynamic MANET M1 = { N, P0, V } is 
defined to be congruent to a dynamic MANET M2    = { N’, P’0, 
V’, } with respect to a network property np iff N = N’ and 
np(M1) = np(M2,) at all times.     

 
In other words, two MANETs are congruent for a network 

property if the two have the same set of nodes, and they have 
the same instantaneous value of the network property at all 
times t under consideration. If the graphs representing two 
MANETS are isomorphic at any instance, then their network 
properties should be the same at that instance. If the graphs 
representing two MANETs are always isomorphic, then they 
will be congruent for any network property. However, just 
because two MANETs are congruent for a network property 
does not imply that their graphs are isomorphic. Thus 
isomorphism of the graphs of two MANETs is sufficient for 
congruence under a network property, but not necessary.     

For the analysis of the MANETS, we will also introduce the 
notion of the center of a MANET, which is a hypothetical 
position defined by taking an average of the position of the 
different elements of the MANETs. More formally, 

  
Definition 7. Given a k-dimensional weight metric W = 

{ w1…wk} such that 1
1

=∑
=

=

ki

i
iw  and all weights are positive, 

the weighted center of a MANET with k nodes is a hypothetical 
node with the position vector defined by                                    

∑
=

=

ki

i
ii pw

1

r
 and the velocity vector ∑

=

=

ki

i
iivw

1

v
. 

 
The weighted center of MANET will be useful in showing 

the congruence properties discussed later in the paper.  
 

III. RIGID BODY TRANSFORMATIONS 
The transformations we perform to simplify the motion 

paths of a MANET can be provided an informal treatment by 
creating the imaginary  body which is obtained by connecting 
each node in the MANET to the other nodes by a wire. Under 
some types of motion of the MANET nodes, there would be no 
deformation in any of the wires connecting the different nodes 
in the MANET. We can define transformation of motion paths 
of the different nodes of the MANET which cause no 
deformation, and show that the resulting MANET will be 
congruent to the original MANET. Since the imaginary body 
created above would remain unchanged during these 
transformations, we refer to these transformations as rigid body 
transformations.  

Two types of rigid-body transformations are the notion of 
translation and rotation. In this section, we establish the 
congruence of isotropic properties under the notion of 
translation and rotation. In the next section, we examine the 
issue of congruence under different types of non-rigid body 
transformations.   

Let us consider a graph with k nodes, and define a 
homogenous velocity vector C = {c, … c}, i.e. a velocity vector 
where all k nodes are moving with a (not necessarily constant) 
velocity c. Given two velocity vectors, they can be added and 
subtracted using the normal rules for vector addition and 
subtraction, i.e. if  V = {v1,… vn} and   V’ = {v’1,… v’n} then 
V-V’ = {v1 – v’1,… vn –v’n}, etc.  

 
Theorem 1. If C is a homogenous velocity vector then the 
dynamic MANET M1={ N, P0, V} is congruent to the dynamic 
MANET  M2={ N, P0, V-C} with respect to any isotropic edge 
property.  

 Proof: Consider any isotropic edge property of the edge 
between nodes ni, and nj where ni ∈ N and nj ∈ N. Due to the 
definition of the isotropic edge property, it suffices to show the 
MANET will be congruent with respect to the edge property if 
the distance between the corresponding nodes in M1 and M2 is 
the same. Since the two nodes started out from the same initial 
position vectors (P0 is common between both MANETs), the 

position of  ni  at time t in M1 equals dtvp
t

ii ∫+
0

,0   where p0i is 

the initial starting position of ni  (i.e. the ith entry in P0 ) and vi is 
the ith entry in V . Similarly, the position  of  nj at time t in M1 

equals dtvp
t

jj ∫+
0

,0 .  

In M2, the corresponding positions are 

dtcvp
t

ii ∫ −+
0

,0 )(  and dtcvp
t

jj ∫ −+
0

,0 )(  respectively. If 

we take the difference in position vectors of the two nodes in 

M2, the common term dtc
t

∫
0

 cancel out and we see that it is 

equal to the difference in the position vectors of the two nodes 
in M1. The congruence then follows from the definition of the 
isotropic edge property.  

 Some interesting corollaries can be derived from Theorem 
1.  

 
Corollary 1.1: If C is a homogenous velocity vector then the 
dynamic MANET M1={ N, P0, V} is congruent to the dynamic 
MANET  M2={ N, P0, V-C} with respect to any isotropic 
network property..  

Proof:  All edge properties that the network property is 
dependent on are isotropic by definition, and the two MANETs 
will be congruent with respect to all those edge properties, it 
follows that it will be congruent with respect to the network 
property. 

 
Corollary 1.2 For any isotropic edge property, a MANET is 
congruent with respect to that edge property to another 
MANET in which an arbitrarily selected node is stationary.  

Proof:  For any arbitrary node ni, replace the homogenous 
velocity vector in Theorem 1 with the velocity vector where all 
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nodes are moving with the velocity of vi.  Then, the resulting 
MANET has the node ni as stationary and is congruent to the 
original MANET.  

 
Corollary 1.3 For any isotropic edge property, a MANET is 
congruent with respect to that edge property to another 
MANET in which the weighted center of the MANET is 
stationary.  

Proof:  replace the homogenous velocity vector in Theorem 
1 with the velocity vector of the weighted center of the 
MANET. 

 
Corollary 1.4 For any isotropic network property, a MANET 
is congruent with respect to that network property to another 
MANET in which the weighted center of the MANET is 
stationary.  

Proof:  Combine corollary 1.3 with the fact that isotropic 
network property is composed as function of isotropic edge 
properties. 

 
Let us now demonstrate the congruence of MANETs under 

the notion of rotation of a rigid body.  
 

Let us consider a graph with k nodes, and define a rotation 
velocity vector R = }...{ ki rr rr

with respect to an origin 0pr  
where each of the rotation velocity vectors satisfies the 
following conditions at all times:  

0).( 0 =− ii ppr rrr
, where . is the vector dot product.  

 
|)(|/|)(|||/|| 00 jiji pppprr rrrrrr

−−=   

The rotation vector describes the type of motion which 
would be created when the entire MANET is viewed as being 
on a virtual fixed plane rotating around the origin with some 
rotational speed. The rotational speed need not be a constant 
during the time of the rotation.  

 
Theorem 2. If R is a rotation velocity vector then the dynamic 
MANET M1={ N, P0, V} is congruent to the dynamic MANET  
M2={ N, P0, V-R} with respect to any isotropic edge property.  

Proof: Consider any isotropic edge property of the edge 
between nodes ni, and nj where ni ∈ N and nj ∈ N. Due to the 
definition of the isotropic edge property, it suffices to show the 
MANET will be congruent with respect to the edge property if 
the distance between the corresponding nodes in M1 and M2 is 
the same. Since the two nodes started out from the same initial 
position vectors (P0 is common between both MANETs), the 

position of  ni  at time t in M1 equals dtvp
t

ii ∫+
0

,0   where p0i is 

the initial starting position of ni  (i.e. the ith entry in P0 ) and vi is 
the ith entry in V . Similarly, the position of  nj at time t in M1 

equals dtvp
t

jj ∫+
0

,0 .  

In M2, the corresponding positions are dtrvp
t

iii ∫ −+
0

,0 )(  

and dtrvp
t

jjj ∫ −+
0

,0 )(  respectively. If we take the 

difference in position vectors of the two nodes in M2, the 

difference in position would be dtrr j

t

i )(
0

−∫ . However, that is 

the difference in positions obtained among two points each of 
whom is rotating at a uniform speed around the origin point 

0pr , which would always be zero. A more formal proof can also 
be defined based on the definition of the rotation vector above.  

  
 The following corollaries follow from Theorem 2. 
 

Corollary 2.1 For any isotropic edge property, a MANET is 
congruent with respect to that edge property to another 
MANET in which nodes have no net rotational component 
around the weighted center of the MANET.  

Proof:  Choose the weighted center as the origin point and 
remove the sum of rotational components of other nodes 
around the origin.  

 
Corollary 2.2 For any isotropic network property, a MANET 
is congruent with respect to that network property to another 
MANET in which the weighted center of the MANET is 
stationary, and at least one node of the MANET has no rotation 
component.  

Proof:  Combine corollary 1.3 with Theorem 2, and remove 
the rotation component for any one node.   

 
Corollary 2.3 For any isotropic network property, a MANET 
where the movement of each node is independent of the others 
is congruent with respect to that network property to another 
MANET in which the nodes movement is restricted to be radial 
movement towards or away from a fixed location.  

Proof:  Combine corollary 2.2 with the fact that with 
independent motions of particles, a zero rotation component on 
the average is only possible if the rotation component of each of 
the independent nodes is zero. This implies that the 
independent motion of nodes will be restricted to moving 
towards or away from the weighted center of mass. 1 

 
The congruence under translation and rotation implies that 

we can consider any finite set of MANETs as a system which 
does not have a net rotational or net translational component in 
its motion. Thus, the finite MANET can be considered as 
comprising of nodes whose motion consists primarily of 

 
1 Note that the statement is not true for dependent motions, e.g. if one node 

were moving at the exact opposite of another node, or one node were moving 
twice as fast as another node, and a third one rotating thrice as fast in opposite 
direction, then it is possible to have a net rotation of zero with non-zero rotation 
components of individual nodes.  
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movement towards or away from a weighted center, and a 
rotation vector that is dependent.  

 
 
An appropriately selected weight function can thus be used 

to determine a good weighted center, and to analyze the 
characteristics of a MANET using an appropriately constructed 
graph.  
 

IV. ANALYZING ELASTIC BODY TRANSFORMATIONS 
The concept of rigid body translation and rotations can only 

simplify the motion paths of MANETs to a limited extent. A 
more comprehensive simplification of their motion paths may 
be obtained by means of transformations that allow the body 
formed by the different nodes in the MANET to twist and adapt 
its shape.  

In order to provide an intuitive understanding of the notion 
behind elastic transformations, let us imagine a planar MANET 
which is drawn on an elastic membrane. Under the rigid body 
transformations, the elastic membrane was rotated or moved 
about. Under the elastic transformations, let us imagine an 
individual pulling on the elastic sheet so that it doubles in size 
along its two axes and then pushing it back into the original size 
at regular periodic intervals. As the membrane is stretched in 
this manner, the distance among the different nodes in the 
MANET varies in a sinusoidal fashion. 

In this section, we first describe how to analyze a MANET 
which is subject to sinusoidal elastic transformations, and then 
using a combination of such sinusoidal elastic transformations 
to analyze MANETs with arbitrary motion paths. 

     

A. MANET Analysis under elastic oscillations  
Consider any finite MANET which starts from some 

original position of the various nodes, and then is subjected to a 
sinusoidal elastic transformation. One specific property of the 
stretching all dimensions of elastic members equally along all 
dimensions is that each edge stretches by an equal amount at a 
regular rate. As a result, all nodes in the MANET have the same 
transformation (lengthening or shortening) that are 
synchronized in time. As a result of the changes in the path 
links, all isotropic edge properties of the MANET will vary and 
expand in the same manner.  

With any such sinusoidal motion, that the mean value of an 
edge property will not be affected. However, the variance 
(second momentum) and higher momentum measure of the 
variations of the edge property over time would be different.  

Let us consider a MANET in an initial position where the 
length of a specific edge initially is l0. Under a sinusoidal elastic 
transformation of amplitude A, and frequency ω, the length at 
any given time t will be l0+Asin(ωt).  

Any isotropic edge or network property of  the MANET 
would vary periodically in accordance with the amplitude and 
period of the sinusoidal elastic motion. Since the size of the 
edge at any instant is known, the mean and other higher 

moments of the edge (and corresponding network properties) 
can be calculated in a relatively straight-forward manner.   

A

B D

E

C

F

u(t) =u0+Asin(ωt)

w(t) =w0+Asin(ωt)

x(t) =x0+Asin(ωt)

y(t) =y0+Asin(ωt)

z(t) =z0+Asin(ωt)r(t) =r0+Asin(ωt)

v(t) =v0+Asin(ωt)

s(t) =s0+Asin(ωt)

q(t) =q0+Asin(ωt)

Figure 1

 
As an example, consider the MANET which starts in an 

initial position with the nodes and edges as shown in Figure 1. 
As it goes through the sinusoidal expansion and contraction, 
the length of the different edges change and correspondingly 
the edge properties and associated network properties of the 
graph would change. As an example,  Figure 2 shows the 
variation of the length of edge AD and the corresponding 
variation in the edge properties of bandwidth, delay and loss 
rate on that edge. Note that the bandwidth is caped below by 0 
and loss rate above by 100%.  

The mean and other moments of any edge or network 
properties that are not subject to a threshold (e.g. delay in this 
example) can be calculated analytically based on their periodic 
variation.  For properties where a threshold is involved, 
analytic forms would tend to be more complex, but can be 
computed numerically in a straight-forward manner.  

 

(a)

t

distance

x0

A+x0

bw

(c)

t

(D)

t

LOSS

100%

Figure 2

(a)

t

min

max

delay

 
 

B. Analyzing Arbitrary MANET motion paths 
 Most MANETs do not tend to have motion that can be  

nicely modeled by oscillatory functions. However, for a variety 
of complex motions, one can use the results from the analysis of 
oscillatory motion to get a reasonable estimation of the 
properties of the network.  

 Consider the oscillatory stretching movements of a graph 
drawn on an elastic membrane, but being done at different 
frequencies of ω, 2ω,3ω,4ω, we can see that these oscillatory 
motions can be viewed as making a Fourier series in 
2-dimensions, and most types of random stretching of the 
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elastic membrane can be expressed as a linear combination of 
the various oscillatory motions as a 2-dimensional Fourier 
expansion characterizing the actual oscillation [13]. The result 
is applicable to 3-dimensional oscillatory motion as well.  

One can thereby approximate the arbitrary oscillatory 
movement of a MANET whose center is stationary by means of 
its Fourier expansion in the various oscillatory components, 
and then calculate the impact on the edge property by 
accumulating the impact from the accumulation of the 
oscillatory movements at the various base frequencies that 
make up the Fourier expansion of the same.  

On a more formal note:  
 
Let us define a base oscillatory  motion vector E(ω,Α, 0pr ) = 

{v1,… vn} as an oscillatory vector with respect to an origin 0pr  
and amplitude (maximum change in position) A, where the 
position of the ith  node in the MANET is given by the 
expression  )sin(])0([)( 00 tppptp ii ωrrrr

−=− , which is 
akin to having the MANET on an elastic surface being 
stretched by a maximum of unit dimension back and forth. 
Consider the basic motion vectors described by the set of 
motion vectors E(ω,Α, 0pr ),E(2ω, Α, 0pr ),E(3ω, Α, 0pr )…  

We can express the motion paths of any MANET in terms 
of  

V = R + α1E(ω,Α, 0pr )+ α2E(2ω,Α 0pr )+ 

α3E(3ω,Α, 0pr ) + ... 
Where αi are the constants marking the coefficients in the 

Fourier expansion of the motion of the MANET, and R is a 
rigid body motion, i.e. comprising of a translation and 
rotational motion vector only.  

For analyzing the properties of the MANET, we can select 
the amplitude A to be a distance at which the effective 
bandwidth between any two nodes in the network would be 
zero, and we can choose the original point for the elastic body 
transformations to be the weighted center of the MANET. In 
that case, we simply need to understand what happens to the 
network and edge properties of the network in the presence of 
the different elastic body transformations. Thus, the properties 
of the MANET can be reduced to that of a congruent MANET 
with a motion defined by  

V’ = α1E(ω)+ α2E(2ω)+ α3E(3ω) + ... 
The above can be viewed as the Fourier expansion of the 

motion characterizing the MANET after the rigid body 
transformations are accounted for. For many types of 
MANET motion paths, only the first few series in the Fourier 
expansion need to be considered for a reasonably approximate 
solution. For such motion paths, the analysis method provided 
in the preceding subsection can be used to estimate the impact 
of each types of  motion component, and then the net result 
combined to obtain the final characteristics of a finite 
MANET, providing the characteristic of the MANET under 
the oscillatory elastic properties are analyzable.  

The Fourier expansion may not simplify all types of motion 
paths for MANETs, but given its applicability in many other 

disciplines, we anticipate that many various types of motion 
paths can be analyzed in this manner.  

 

V. APPLICATION EXAMPLES OF ANALYSIS 
In this section, we provide some example scenarios of finite 

MANETs that we can examine using the properties and 
equivalence that we have described above. We consider some 
examples, and show how one can analyze the characteristics of 
those nodes using the results provided above.  

We want to point out that the motion vectors in the 
examples shown below are relatively simple – intended 
primarily so that we can show that the results are applicable and 
the final analysis presented in a simple manner. However, using 
numerical approaches, the decomposition provided in the 
earlier sections can be done for the more complex motion that 
we encounter in real MANETs.. 
 

A. Military Squadron 
A squadron of 5 airplanes is flying from New York to 

California in the formation shown in Figure 3. The airplanes 
maintain a common speed maintaining the distances shown 
between them, and are able to communicate with each other if 
they are within 500 meters of each other and transmit at a fixed 
bandwidth of 512 Kbps. What is the best spanning tree 
structure that should be used for communication among the 
airplanes?   

Flight path

NY
CA

300m

150m

400m

300m

300m
400m

450m

Figure 3
 

Answer:  Let us define the direction of the x-axis along the 
flight path taken by the planes. Each of the 5 planes has a 
velocity vector of  V = {v0,v0,v0 ,v0 ,v0}, where v0 is the 
time-varying  common velocity of the planes. As per Theorem 
1, we can remove this homogenous velocity vector, and the 
resulting MANET will be congruent to the original MANET. 

The resulting MANET is a static graph with no motion, and 
the nodes with the edge-distances as shown in Figure 3. It is 
straight-forward to determine the best minimum spanning tree 
on a static graph.  

In a real scenario, the planes would have stochastic 
variations in their relative positions which would also need to 
be accounted for. Example C below provides such a scenario.     
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B. Surveillance UAVs 
 
 

Figure 4

5R

5R

R5 R52

R10 5R

In order to detect 
suspicious vehicles, four UAVs are circulating over the 
headquarters of the US/UK headquarters in Baghdad. The 
UAVs can sustain a bandwidth b with each other which is given 
by the formula b = Be-d/D, where d is the distance between the 
two nodes, and B and D are constants. 2Assuming that the 
UAVs are rotating at 1 rotation every 10 minutes, at the 
distance of R apart from each other, and phased equally along a 
circle, what is the bandwidth possible for communication 
between each pair of UAVs. 

 
Answer:  Since the UAVs are rotating at the same rotational 

velocity, Theorem 2 tells us that they are congruent to a 
MANET where they can be considered to be stationary with 
respect to each other. The distance between the different nodes 
and the center is as shown in the right hand side of the diagram. 
Given the angle between the center and the locations of the 
UAVs (90o each), and the distances from the center, the 
distance between the UAVs can be calculated using 
trigonometric relationships. That distance is shown in the right 
hand image of Figure 4. Knowing the distance and the formula 
mapping the bandwidth to distance, the feasible bandwidth 
between each pair of UAVs calculated.  
 

C. Military Convoy 
In this scenario, each vehicle sets up a communication 

channel with its immediate neighbor, and the communication 
between two vehicles that are not right in front of or behind 
each other takes place through multi-hop connection. We index 
the vehicles from the head of the group to the tail with 1, 2, 
…,and  6, and denote the distance between adjacent two 
adjacent vehicles by d12, d23, …, and d56. These inter-vehicle 
distances can vary over time, and we assume these distances 
follow stationary distributions with the respective density 
functions f12(d), f23(d), …, f56(d) with maximum and minimum 
distances dmax and dmax. Given the achievable bandwidth, B(d), 
as an arbitrary decreasing function of distance d between two 
nodes communicating directly over the wireless channel, and 
the minimum bandwidth, Cmin, required for two nodes to be 
able to successfully communicate with each other, what is the 
probability of this network of vehicles being connected? Also 
what is the achievable bandwidth between any pair of vehicles, 

 
2 This modeling is consistent with various models of power and bandwidth 

fading, e.g. one presented in [10]. 

assuming there is no interference between different wireless 
links thanks to, e.g., multi-channel allocation? 

1 2

3

4

5

6

d12
d23

d34

d45

d56

1

2

3

4

5

6

w12

w23

w34

w45

w56

Figure 6
 

Answer: Since the vehicles are moving back-to-back along 
the same path and the network property (i.e., end-to-end 
connectivity) we are concerned with in this scenario is 
dependent only on the distance between vehicles, they can be 
simply regarded moving along a 1-dimensional line, where 
there is clearly no rotational component in their mobility. Let us 
select vehicle 3, and subtract the motion of vehicle 3 from each 
of the other vehicle’s motion. According to Theorem 1, the 
original mobile network of the vehicles is congruent to a 
network in which vehicle 3 is stationary and all others oscillate 
around it. Now since the minimum bandwidth is Cmin, in order 
for two vehicles to be able to communicate with each other (i.e., 
to be connected), they must be within distance d* = B-1 (Cmin). 
Therefore, assuming  dmin < d* < dmax, the probability, pi,j, that 
two adjacent vehicles i and j are connected is 

dxxfp
d

d
ijji ∫=

*

min
, )( . Also the effective average bandwidth, 

Ci,j, between two adjacent vehicles i and j  is 

dxxfxCC
d

d
ijji ∫=

*

min
, )()(  (If d* < dmin, pi,j = 0 and Ci,j = 0, and 

if  d* > dmin, pi,j = 1 and dxxfxCC
d

d
ijji ∫=

max

min
, )()( ). Hence, 

our answers can be found by looking at the static graph on the 
right-hand image of Figure 5, with the edge weights replaced 
by pi,j (for connectivity) or  Ci,j (for bandwidth). More 
specifically, the connectivity probability Pc(i,j), and the 
effective average bandwidth, Be(i,j), between arbitrary pair of 

vehicles i and j (i < j), are ∏
−

=
+−−=

1

1, )1(1),(
j

ik
kkc pjiP , 

and 1,1,...,
min),( +−=

= kkjike CjiB . 

 

D. Reconnaissance Vehicles 
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In this scenario, four reconnaissance vehicles leave a central 
location to travel a distance of D along the four compass 
directions at equal speeds and then return back to the base.  The 
reconnaissance vehicles keep on doing this at the constant 
speed returning to the base once every hour. The effective 
bandwidth between any two pair of vehicles is Be-d/D. The 
vehicles communicate in the pattern shown by the dotted 
arrows. What is the mean and variance of the communication 
bandwidth possible along any one link?  
 

N

W

S

E

Figure 6  
 
 
Answer:  The graph modeling the communication network 
between the vehicles is shown in Figure 7.  As the vehicles 
move back and forth, they can be viewed as performing an 
oscillatory motion with a period of 1 hour. Thus, applying the 
principles of Section 2.A, we can model the distance of any 
single link as varying between the limits of 0 and D2  
regularly over a time-period of T, and the bandwidth varying 
according to the formula provided above. The mean and 
standard deviation can each be computed to be B(e+1)/2e.  

1

3

42

(a)

Figure 7

T0

D

distance

time

(b)

T0

B

bandwidth

time

(c)

 
 
 

Although the examples provided above can be viewed as 
toy examples illustrating the analysis of finite MANETs, it 
should be apparent that they can be extended to analyze more 
complex motion vectors and a larger number of nodes. 

It is possible to develop a software package that tracks the 
instantaneous velocity vectors of the nodes, and then builds a 
quasi-static model of the static network using the velocity 
vectors at any given instance. Such a system can then be used to 

answer questions regarding which node in the MANET is best 
connected, which is likely to lose connectivity in the near future, 
and which one needs to use more than one path to maintain a 
given bandwidth need.  
 

VI. CONCLUSIONS 
In this paper, we have presented a method to analyze 

wireless MANETs of finite size by converting them into 
congruent MANETs with a simpler type of motion vector. The 
method is applicable to isotropic properties – which are 
independent of the positions of individual nodes in the network. 
The method has been shown to be useful in the context of some 
example scenarios, and can be used to analyze the average 
values of some properties of finite sized MANETs.  

 
In future work, we would like to develop a scheme to 
understand and analyze non-isotropic properties of the network, 
as well as develop the concept of analyzing graphs with 
time-varying edge properties that are not readily convertible to 
a static equivalent graph. We would like to combine our results 
with work on graph algorithms that handle node additions and 
deletions [11] to address a larger set of analysis problems 
related to dynamic mobile networks.  We would also develop a 
software package that can analyze the properties of arbitrary 
finite MANETs.  
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