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Abstract

Existing Software Transactional Memory (STM) designs attach metadata to ranges of shared
memory; subsequent runtime instructions read and update this metadata in order to ensure that
an in-flight transaction’s reads and writes remain correct. The overhead of metadata manipulation
and inspection is linear in the number of reads and writes performed by a transaction, and involves
expensive read-modify-write instructions, resulting in substantial overheads.

We consider a novel approach to STM, in which transactions represent their read and write sets
as Bloom filters, and transactions commit by enqueuing a Bloom filter onto a global list. Using
this approach, our RingSTM system requires at most one read-modify-write operation for any
transaction, and incurs validation overhead linear not in transaction size, but in the number of
concurrent writers who commit. Furthermore, RingSTM is the first STM that is inherently livelock-
free and privatization-safe while at the same time permitting parallel writeback by concurrent
disjoint transactions. We evaluate three variants of the RingSTM algorithm, and find that it offers
superior performance and/or stronger semantics than the state-of-the-art TL2 algorithm under a
number of workloads.
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1. Introduction
The recent flurry of research into the design and im-
plementation of high-performance blocking and non-
blocking software transactional memory (STM) [6, 8–
11, 15, 16, 22] was primarily influenced by Shavit and
Touitou’s original STM [25]. In this design, transac-
tional data is versioned explicitly by associating “own-
ership records” (orecs) with ranges of shared mem-
ory, where each orec encapsulates version and own-
ership information. The Shavit and Touitou STM has
formed the basis of numerous successful and scalable
runtimes, most notably TL2 [6], widely considered to
be the state-of-the-art.

1.1 Tradeoffs in Orec-Based STMs
In orec-based runtimes such as TL2, the use of location-
based metadata represents a tradeoff between single-
thread overhead and scalability. The main overheads
are outlined below, and deal with the use of metadata.
In return for these overheads, transactions whose meta-
data accesses do not conflict can commit concurrently.

• Linear Atomic Operation Overhead: A transaction
writing to W distinct locations must update the
metadata associated with those W locations using
atomic read-modify-write (RMW) operations such
as compare-and-swap (CAS). Some implementa-
tions require atomic acquire and atomic release, re-
sulting in a total of 2W RMW operations, but even
the fastest runtimes cannot avoid an O(W ) acquire
cost. Each RMW operation has a high overhead, as it
introduces some amount of bus traffic and ordering
within the processor memory consistency model.

• Linear Commit-Time Overhead: In most STMs, a
committing writer incurs overhead linear in both
the number of reads and the number of writes. The
commit step of STMs using commit-time locking
consists of an O(W ) orec acquisition, O(R) read-
set validation, O(W ) write-back, and O(W ) orec
release. When encounter-time locking is used, the
O(W ) acquisition overhead is incurred during trans-
action execution, rather than at commit, and O(W )
write-back can be avoided. Furthermore, when writ-
ing transactions are infrequent, the final O(R) vali-
dation overhead may be avoided via heuristics [28]
or global time [6, 20]. Several hardware propos-
als can decrease commit overhead to as low as
O(W ) [17, 23, 26, 30], albeit at increased hardware

complexity. On existing hardware with a heteroge-
neous workload including a modest number of writ-
ing transactions, commit overhead (excluding ac-
quisition) has a time overhead of O(R + W ).

• Privatization Overhead: When a transaction removes
or otherwise logically disables all global references
to a region of shared memory, subsequent access
to that region should not require transactional in-
strumentation. However, such “privatizing” transac-
tions may need to block at their commit point, both
to permit post-commit cleanup by logically earlier
transactions, and to prevent inconsistent reads by
doomed transactions [14, 27]. While future research
may discover efficient solutions to privatization, the
current state of the art appears to involve significant
overhead, possibly linear in the number of active
transactions.

• Read Consistency Overhead: A transaction reading
R distinct locations must ensure that there exists
a logical time at which all R reads were simulta-
neously valid. STMs descended from DSTM [11]
achieve this condition through O(R2) incremen-
tal validation, which can be reduced via heuris-
tics [28]; time-based STMs [6, 20, 21, 32] use a
postvalidation step that has constant overhead for
each transactional read. Some STMs ignore read
consistency until commit-time, and rely on sand-
boxing, exceptions, and signals to detect inconsis-
tencies [7, 8, 10, 22]. In these systems, additional
instructions or compiler instrumentation may be re-
quired to detect infinite loops due to inconsistency,
and “doomed” transactions may run for extended
periods (as long as a garbage collection epoch) after
performing an inconsistent read.

1.2 Alternative Hardware and Software TMs
Among software-only TMs, the most prominent excep-
tion to the Shavit and Touitou design is JudoSTM [19],
which includes a variant in which only one atomic op-
eration is required. By using a single lock, sandbox-
ing, and write-back on commit, JudoSTM implicitly
avoids the privatization problem, and incurs only O(1)
atomic operations and O(R) commit-time validation
overhead, for a total commit overhead of O(W + R).
However, these benefits come at the cost of strongly se-
rialized commit: when a transaction is in the process of
committing updates to shared memory, no concurrent
reading or writing transactions can commit.
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Several proposals for hardware transactional mem-
ory (HTM) do not require the use of per-location meta-
data, instead relying on cache coherence messages or
custom processor data structures to ensure atomic and
isolated updates by successful transactions [14]. Nat-
urally, these systems incur minimal overhead (often
constant). Unfortunately, these designs are either com-
plex, or else limited in their ability to support trans-
actions unbounded in space and time. Recent designs
have shown, however, that Bloom filters [2] can be im-
plemented efficiently in hardware and used to acceler-
ate memory transactions [5, 17, 33].

1.3 Contributions
In this paper we present RingSTM, a novel STM al-
gorithm with several advantageous characteristics. By
using per-transaction Bloom filters [2] to detect con-
flicts among transactions, RingSTM avoids the heavy
overheads associated with per-location metadata that
are common to most existing STM designs, and pro-
vides stronger and simpler sematics than other STM
designs. The RingSTM design enables all of the fol-
lowing advantages at the same time: (1) read-write
transactions commit using only one atomic operation,
and read-only transactions do not require any atomic
operations, (2) the runtime is inherently livelock-free,
(3) non-conflicting read-write transactions do not pre-
vent read-only transactions from committing, (4) all
transactions are seamlessly privatization-safe, (5) non-
conflicting read-write transactions can commit concur-
rently, and (6) the runtime avoids the time and space
overheads of read set logging.

We consider three variants of RingSTM, which trade
worst-case overheads for increasingly concurrent com-
mit. Experiments on a 32-thread Sun Niagara T1000
chip multiprocessor show that RingSTM offers supe-
rior performance and/or stronger semantics than TL2.
Based on these results, we believe that RingSTM is the
preferred choice of STM design for a number of cases,
such as when privatization is frequent, seamless priva-
tization is necessary, writing transactions are rare, or
transactions have very large read and write sets. When
transactions are used to implement thread-level spec-
ulation [31], we also expect RingSTM to outperform
other STMs, due to its shortened commit sequence.

We describe the design of RingSTM in Section 2,
and present three variants that trade higher concurrency
for weaker worst-case guarantees on validation over-

head in Section 3. Section 4 evaluates the performance
of RingSTM, comparing to TL2. Lastly, we discuss fu-
ture directions in Section 5.

2. RingSTM Design
RingSTM transactions detect conflicts and ensure atom-
icity, isolation, and consistency through manipulation
of an ordered, fixed size ring data structure (the ring)1.
Transactional writes are buffered and performed upon
successful commit. Appending an entry to the ring
effects a logical commit and is the explicit lineariza-
tion point of a writing transaction; this ensures that
ring entries only describe successful writer transac-
tions, preventing unnecessary validation. In the default
RingSTM configuration, the position of an entry in the
ring specifies both logical and physical commit order
(that is, when the transaction added a ring entry and
when it completed write-back). This framework per-
mits numerous novel design aspects, outlined below.

2.1 Global Metadata Describes Committed
Transactions, not Locations

Each entry in the fixed-size ring describes a success-
ful writer transaction, and consists of four fields: a log-
ical timestamp (ts), a Bloom filter representing the set
of locations modified (wf), a status field, and a prior-
ity (prio). Figure 1 depicts an 8-entry ring. Only writ-
ing transactions make modifications to the ring, and
entries are added to the ring with a single RMW op-
eration. Initially, an entry’s status is writing, indicat-
ing that the corresponding transaction is logically com-
plete, but it has not performed all of its writes. Once
all writes are performed, the status is updated to reflect
that the transaction is complete. Multiple ring entries
can be in the writing state.

When an entry’s status is writing, all newer trans-
actions must treat the entry’s write set as locked. For
concurrent committing writers, this means that write-
after-write (WAW) ordering must be respected. We pro-
vide WAW between concurrent writers T1 and T2 as
follows: If T1’s ring entry has an earlier commit time
than T2’s entry, and T2 determines that its entry’s filter
has a nonzero intersection with T1’s filter, then T2 can-
not perform its writes until T1 sets its entry’s status to
complete. The update of T1’s status serves to release
the set of logical locks covering its write set.

1 The semantic limitations imposed by a fixed-size ring are dis-
cussed in Section 3.4
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ts = 40
wf � …
complete
prio = 0

ts = 41
wf � …
complete
prio = 0

ts = 39
wf � …
complete
prio = 0

ts = 46
wf � …
writing
prio = 0

ts = 45
wf � …
writing
prio = 0

ts = 42
wf � …
complete
prio = 0

ts = 43
wf � …
complete
prio = 0

ts = 44
wf � …
writing
prio = 0

ring_index = 47Figure 1. Example ring holding 8 entries. The newest
entry (47) represents a transaction that has linearized
but has not started writeback. Entries 44 . . . 46 are
performing write-back. Entries 40 . . . 43 are complete.

The rest of the commit sequence has minimal over-
head: the ring entry is initialized and added to the ring
with a single RMW operation (O(1)). W writes are
then performed (O(W )), and the entry status is set to
complete (O(1)). In contrast, TL2 incurs O(W ) over-
head to acquire and release up to W physical locks, and
O(W ) overhead to perform its writes.

2.2 Trade Precision for Speed in Validation
When a transaction Ta begins, it identifies the oldest
ring entry with a status of writing, and sets its start
time to immediately before that transaction’s commit
time. Whenever a shared location is read, Ta validates
by scanning the ring and identifying any entries with
commit times later than its start time; Ta intersects
its read set with each such entry’s write set. If the
intersection is nonzero, Ta aborts and restarts. When
Ta computes a zero intersection with a filter F whose
writeback status is complete, Ta can ignore all future
intersections with F . Thus if NW transactions commit
after Ta begins, then Ta can issue at most R × NW
intersections, but at leastNW intersections. For a fixed-
size filter, this results in Ω(NW) validation overhead.

There are a number of tradeoffs involved in vali-
dation. First, filter intersection is prone to false con-
flicts. If transactions logged their read sets precisely,
they could test individual reads for membership in pub-
lished write filters. However, such tests still admit false
positives due to hash collisions, and we believe that
adapting filter size while incurring only constant stor-

age overhead is preferable to incurring linear space
overhead and potentially O(R2) time overhead. Fur-
thermore, when membership tests are not necessary, us-
ing fewer hash functions decreases false conflicts at any
filter size. Bloom filters are also prone to the “Birthday
Paradox” observation [34], which can be mitigated to a
degree by dynamically changing filter size.

Next, we note that the validation strategies listed
above ensure consistent reads (no sandboxing) but in-
troduce polling. Since each of the NW filters must be
checked before Ta commits, there is no practical bene-
fit to replacing polling with sandboxing. In fact, polling
decreases the incidence of false conflicts, since write
filters are tested early and then ignored once their status
is complete. If all potentially conflicting write filters
were tested during Ta’s commit, Ta’s read filter would
be at its most full, increasing the chance that a read-
after-write order be misinterpreted as a conflict. Fur-
thermore, polling decreases the risk of a transaction ex-
periencing ring overflow. If the number of write filters
that must be validated exceeds the number of ring en-
tries, then Ta must abort and restart. By polling, Ta can
ignore logically older filters once they are complete,
and such filters can then be reused by newer commit-
ting writers without impeding Ta’s progress.

2.3 Low Commit Overhead and Livelock
Freedom

Transactions do not perform validation after acquir-
ing a ring entry: instead, they validate before acquir-
ing a ring entry and then attempt to add a ring entry
by issuing a RMW operation that will only succeed if
the ring is unchanged since that validation. This deci-
sion ensures that all ring entries correspond to com-
mitted transactions, that is, failed transactions never
cause other transactions to fail. This decreases the inci-
dence of ring overflow. Furthermore, since the creation
of a ring entry logically locks all locations in the en-
try’s write filter, eliminating validation after issuing an
RMW operation decreases the size of the commit crit-
ical section. This is a notable difference from TL2 and
other STMs, where a writer must validate after locking,
incurring O(R + W ) overhead in its critical section.

Furthermore, since the entire write set is locked via a
single atomic operation, there is no need for contention
management [24] between incomplete transactions for
livelock prevention: until a transaction is logically com-
mitted, it is invisible to other transactions; once a trans-
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action is visible, it is represented by a ring entry and
is logically committed. Thus RingSTM is livelock free.
Informally, a transaction Ta will abort only if an en-
try E is added to the ring after Ta’s logical begin time,
and E’s write filter has a nonzero intersection with Ta’s
read filter. The addition of E to the ring by transac-
tion Te atomically transitions Te to a state in which
it is logically committed. Since Ta cannot be aborted
by an incomplete transaction, Ta’s abort signifies that
some transaction in the system (in this case Te) made
progress.

2.4 Contention Management
Bobba et al. warn that three “pathologies” affect trans-
actional runtimes that use deferred updates [4]: com-
mits can be unnecessarily serialized, starvation is pos-
sible, and multiple restarts can lead to convoying. They
propose a minimal amount of bookkeeping to perform
exponential backoff on abort, and show that it substan-
tially reduces convoying. Since RingSTM only serial-
izes the commits of transactions with likely WAW or-
dering constraints, we do not expect serialized commit
to be a problem (Bobba et al. focus on the case where
hardware TM uses a single commit token).

To address starvation, we maintain a priority field in
each ring entry. A transaction T that aborts repeatedly
can request a higher priority. If the request is granted,
T then commits a “dummy” transaction (represented
by an empty write filter) with the new priority. Writ-
ers with lower priority cannot commit until T commits
and then lowers the ring priority level by committing
another “dummy” transaction with a reduced priority.
Raising the ring priority has no impact on concurrent
read-only transactions of any priority, since they lin-
earize at their final validation, which can be performed
against the writes of higher-priority transactions. How-
ever, the higher priority ring entry blocks low-priority
writers from committing changes that might force high
priority T to abort.

If starvation persists (due to multiple transactions
executing at a higher priority), T can elevate its pri-
ority further or become inevitable [1, 3, 12, 19, 29]. In
RingSTM, a transaction becomes inevitable by adding
a writing entry with a full filter (all bits set) and then
waiting for all older ring entries to set their status to
complete. Inevitable transactions forbid all concur-
rency and limit the use of retry-based condition syn-

chronization, but perform writes in place and can safely
call precompiled libraries and perform I/O.

2.5 Privatization is Free
In its default configuration, RingSTM does not incur
any overhead to support privatization. We argue this
position by demonstrating that neither “half” of the
privatization problem [27] affects RingSTM.

The “deferred update” problem deals with nontrans-
actional code failing to observe delayed transactional
writes to a privatized region. Since the ring captures the
notion of logical commit order, it is necessary only to
ensure that all logically older transactions than a priva-
tizing transaction Tp have set their status to complete
before Tp performs uninstrumented reads to newly pri-
vatized memory. Two of the three variants of RingSTM
presented in Section 3 give this guarantee implicitly;
the third can provide this guarantee by spinning on a
single global variable, as discussed in Section 3.3.

The “doomed transaction” problem requires the run-
time to prevent any transaction Tr that conflicts with Tp

from observing private writes that occur after Tp com-
mits but before Tr aborts. Since RingSTM transactions
poll the ring on every transactional read, and validate
their entire read set through filter intersections when-
ever the ring is modified, there is no doomed transac-
tion problem. Tr will detect the conflict on its first read
after Tp commits, and will immediately abort without
using any potentially inconsistent values.

2.6 Minimal Memory Management Overhead
Many STMs rely on garbage collection or epoch-based
deferred reclamation, and consequently suffer from
heap blow-up when there is any concurrency [13]. TL2
avoids this overhead by making a call to free appear
to write to the entire region being freed (achieved by
modifying some metadata). The worst-case cost of this
“sterilization” process is a number of RMW operations
proportional to the size of the region being freed.

Sterilization in TL2 is necessary because TL2 is not
privatization-safe. If T1 is reading a region of memory
that T2 frees, and the memory manager recycles the re-
gion and passes it to a nontransactional thread Q, then
Q’s subsequent uninstrumented writes will be visible
to T1, which may fail to detect that it must abort due
to conflict with a committed T2. By sterilizing meta-
data before freeing memory, TL2 ensures that doomed
readers of a freed region abort.
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Listing 1 RingSTM metadata
struct RingEntry
int ts // commit timestamp
filter wf // write filter
int prio // priority
int st // writing or complete

struct Transaction
set wset // speculative writes
filter wf // addresses to write
filter rf // addresses read
int start // logical start time

RingEntry ring[] // the global ring
int ring_index // newest ring entry
int prefix_index // RingR prefix field

Since RingSTM transactions poll for conflicts, and
validate their entire read set whenever a conflict is pos-
sible, there is no need for sterilization or any other
special mechanism. However, as in TL2, non-faulting
loads (or the appropriate signal handlers) may be re-
quired if the underlying allocator returns memory to the
operating system while it is being read by a concurrent
(doomed) transaction, and malloc and free instructions
must be logged, with frees deferred until commit and
mallocs undone upon abort.

3. Implementation
In this section we present three variants of the RingSTM
algorithm. The default version (RingSTM) permits par-
allel writeback and incurs no privatization overhead.
The single-writer algorithm (RingSW) restricts the run-
time to a single committing writer at a time, but offers
low asymptotic validation overhead. The relaxed write-
back algorithm (RingR) relaxes the writeback mecha-
nism relative to the default algorithm, at the expense of
additional overhead for privatization. The global meta-
data describing transactions and ring entries are com-
mon to all algorithms, and appear in Listing 1.

3.1 The Default RingSTM Algorithm
Pseudocode for RingSTM appears in Listing 2; for
clarity, the pseudocode assumes an infinite-size ring
and omits constant time ring overflow tests and mod-
ular arithmetic for computing ring indices from times-
tamps. Ring rollover is discussed in Section 3.4. The
global ring data structure stores RingEntry records,
as described in Section 2.1, and the global integer

Listing 2 Pseudocode for RingSTM (default)
tm_begin:
1 read ring_index to TX.start
2 while ring[TX.start].st!=complete
3 TX.start--
4 fence(Read-Before-Read)

tm_read:
1 if addr in TX.wf && addr in TX.wset
2 return lookup(addr, TX.wset)
3 val=*addr
4 TX.rf.add(addr)
5 fence(Read-Before-Read)
6 check()
7 return val

tm_write:
1 TX.wset.add(addr, val)
2 TX.wf.add(addr)

tm_end:
1 if read-only return
2 commit_time=ring_index
3 check()
4 if !CAS(ring_index, commit_time,

commit_time+1)
5 goto 2
6 ring[commit_time+1]=(writing, TX.wf,

commit_time+1)
7 for i=commit_time downto TX.start+1
8 if intersect(ring[i].wf, TX.wf)
9 while ring[i].st=writing SPIN
10 fence(ReadWrite-Before-Write))
11 for (addr, val) in wset
12 write val at addr
13 while ring[commit_time].st==writing SPIN
14 fence(ReadWrite-Before-Write)
15 ring[commit_time+1].st=complete

check:
1 if ring_index==TX.start return
2 suffix_end=ring_index
3 for i=ring_index downto TX.start+1
4 if intersect(ring[i].wf, TX.rf)
5 abort()
6 if ring[i].st==writing
7 suffix_end=i-1
8 TX.start=suffix_end

ring index stores the timestamp of the newest ring
entry. Transaction is a private per-transaction de-
scriptor storing Bloom filters representing the ad-
dresses read (rf) and written (wf), and a buffer of
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speculative writes (wset). Its start field defines the
timestamp of the last writing transaction that completed
before the start of the current transaction.

The foundation of the default algorithm is an invari-
ant describing ring entries. Let Li represent the ith en-
try in the ring, with larger values of i indicating newer
entries in the ring. We define the suffix property as:

Li.st = writing =⇒ ∀k>i Lk.st = writing (1)

Informally, the suffix property ensures that commit-
ting transactions release the logical locks covering their
write set in the same order as the transactions logically
committed (acquired entries in the ring). For example,
in Figure 1, entries {44 . . . 47} comprise the suffix, and
entry 45 cannot set its status to complete while entry
44 is still writing.

Equation 1 enforces ordered completion among
writers, and prevents the “delayed update” half of the
privatization problem: If T2 privatizes a region with
outstanding updates by logically earlier transaction T1,
then T2 will not exit its commit sequence until T1 com-
pletes its writeback and releases its logical locks; hence
T2 is guaranteed to observe T1’s writes. When T1 and
T2’s write sets do not overlap, the corresponding phys-
ical writes can occur in any order; suffix-based serial-
ization only applies to the order in which ring entries
are marked complete.

Each transaction begins by determining its start
time, via an O(NW) call to tm begin. Given the suffix
property, a transaction can compute its start time by de-
termining the oldest entry in the ring whose writeback
is incomplete. By choosing a start time immediately
before this transaction’s completion, a new transaction
is certain not to overlook pending writeback by logi-
cally committed transactions, without having to wait
for that writeback to complete.

Transactional writes are buffered in a log (TX.wset);
the address to be written is also added to a write filter
TX.wf. To read a location, the transaction checks the
log, and immediately returns when a buffered write is
present. Otherwise, the transaction reads directly from
memory, adds the location to its read filter (TX.rf), and
then polls for conflicts via the check function. Alterna-
tive implementations are possible that do not update rf
until after calling check, thereby avoiding aborts when
a read to a new location conflicts with a ring entry that
is writing.

The check function validates a transaction against
every writer that committed after the transaction’s log-
ical start time. When it encounters a committed writer
(Tc) that is no longer writing, the check function re-
sets the transaction’s start time to after Tc. In this man-
ner, subsequent reads to locations that were modified
by Tc will not result in conflicts. Since each call to
check can lead to as many as NW filter intersections
(where NW is the number of committing writers dur-
ing a transaction’s execution), the maximum validation
overhead is (R + 1)×NW . In practice, we expect this
overhead to tend toward its lower bound of Ω(NW).

Lastly, as discussed in Section 2.3, the tm end func-
tion ensures a minimal contention window by perform-
ing all validation before acquiring a ring entry (and
hence locking its write set). The O(NW) loop on lines
7-9 ensures that write-after-write ordering is preserved,
but otherwise writeback (lines 11-12) can occur in par-
allel. Lines 13-15 preserve the suffix property by ensur-
ing that entries are marked complete in order.

As noted in Section 2.5, this Ring algorithm is
privatization-safe. To protect doomed transactions, ev-
ery transaction polls for conflicts before using the value
of any transactional read, ensuring that transactions
abort before using inconsistent values. By ensuring that
writer transactions depart the tm end function in the or-
der that they logically commit, there is no risk of com-
mitting and then reading stale values due to delayed
writeback by an older transaction.

3.2 The Single Writer Algorithm (RingSW)
For workloads with high proportions of read-only
transactions, the value of parallel writeback can be out-
weighed by the R factor in the worst-case overhead of
validation. The single-writer variant of the RingSTM
algorithm (RingSW) reduces validation overhead to
exactly NW filter intersections, but forbids concurrent
writeback. In effect, RingSW is an optimized version
of the default algorithm when the suffix is bounded to
a length of at most one. Listing 3 presents pseudocode
for RingSW.

The principal differences between the default al-
gorithm and RingSW are that tm begin has constant
overhead, and that tm end both skips write-after-write
ordering and ignores the suffix property, since it is im-
plicit in the single-writer protocol. All enforcement of
the single-writer protocol is performed in the check
function, via lines 6-8. In addition to blocking (which
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Listing 3 Pseudocode for RingSW
tm_begin:
1 read ring_index to TX.start
2 if ring[TX.start].st!=complete
3 TX.start--
4 fence(Read-Before-Read)

tm_read: (unchanged from default)
tm_write: (unchanged from default)

tm_end:
1 if read-only return
2 commit_time=ring_index
3 check()
4 if !CAS(ring_index, commit_time,

commit_time+1)
5 goto 2
6 ring[commit_time+1]=(writing, TX.wf,

commit_time+1)
7 fence(Write-Before-Write))
8 for (addr, val) in TX.wset
9 write val at addr
10 fence(Write-Before-Write)
11 ring[commit_time+1].st=complete

check:
1 my_index=ring_index
2 if my_index==TX.start return
3 for i=my_index downto TX.start+1
4 if intersect(ring[i].wf, TX.rf)
5 abort()
6 while ring[my_index].st!=complete
7 SPIN
8 fence(Read-Before-Read)
9 TX.start = my_index

should not dominate as long as R >> NW ), enforce-
ment of the single-writer protocol introduces an addi-
tional R read-before-read memory fences on proces-
sors with relaxed memory models, to order the spin on
line 6 before the next call to tm read.

As a specialized implementation of the default al-
gorithm for suffix lengths no greater than 1, RingSW
has no privatization overhead. The main differences
deal with serialization and complexity: RingSW for-
bids concurrent writeback by nonconflicting transac-
tions, but has O(1) overhead in tm begin, exactly
NW validation overhead, and only O(W ) overhead in
tm end. In contrast, the default algorithm has a worst-
case O(NW) overhead in tm begin and tm end.

Listing 4 Pseudocode for RingR
tm_begin:
1 read prefix_index to TX.start
2 while ring[TX.start+1].st==complete
3 TX.start++
4 fence(Read-Before-Read)

tm_read: (unchanged from default)
tm_write: (unchanged from default)
check: (unchanged from default)

tm_end:
1 if read-only return
2 commit_time=ring_index
3 check()
4 if !CAS(ring_index, commit_time,

commit_time+1)
5 goto 2
6 ring[commit_time+1]=(writing, TX.wf,

commit_time+1)
7 for i=commit_time downto TX.start
8 if intersect(ring[i].wf, TX.wf)
9 while ring[i].st = writing SPIN
10 fence(ReadWrite-Before-Write)
11 for (addr, val) in wset
12 write val at addr
13 fence(Write-Before-Write)
14 if prefix_index<TX.start
15 prefix_index=TX.start
16 fence(Write-Before-Write)
17 ring[commit_time+1].st=complete

3.3 Relaxed Commit Order (RingR)
While the suffix property specified in Equation 1 per-
mits concurrent commit, it enforces ordered departure
from tm end for writing transactions. In this section we
present the relaxed commit order algorithm (RingR),
which permits disjoint writers to complete write-back
in any order and immediately execute new transactions.
In return for this relaxation, RingR transactions incur
some overhead when privatizing.

In the default Ring algorithm, the suffix property
implies a prefix property as well. If Li represents the
ith entry in the ring, then:

∃i : Li.st = complete =⇒ ∀k≤iLk.st = complete
(2)

Informally, the prefix property states that regardless of
the state of the newest entries in the ring, the set of
“oldest” entries in the ring have all completed write-
back. In the default algorithm, the suffix and prefix are
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adjacent, and their union includes all ring entries. In
RingR, we preserve the prefix property but not the suf-
fix property. Since there can be multiple ring entries
that satisfy the prefix property, we safely approximate
the prefix with the prefix index global variable. At
times, prefix index may not store the largest value
of i for which Equation 2 holds, but it will always de-
scribe a correct prefix of the ring.

Pseudocode for the RingR algorithm appears in List-
ing 4. The principal difference is in the maintenance of
the prefix index variable. As in the default, success-
ful calls to check advance the logical start time of the
transaction; however, we now use this start time to as-
sist in maintaining the prefix index. Since the logi-
cal start time is based on the oldest committed transac-
tion for which writeback is incomplete, the transaction
that committed immediately before a transaction’s log-
ical start time is a valid value of i for Equation 2.

Since there are many correct values for the prefix-
index, we maintain its value through regular stores

(as opposed to atomic instructions). Occasionally this
will result in the prefix moving “backward”, but does
not compromise correctness. Furthermore, even though
readers may be aware of a more precise value of
prefix index, only successful writers maintain the
variable. This ensures that read-only transactions never
modify global metadata.

Use of prefix index is straightforward: in tm-
begin, the transaction reads prefix index and then

advances its start time as far as possible. For a bounded
ring, the overhead of this loop is linear in ring size; in
practice, we expect the prefix index to be close to
optimal, introducing little common-case overhead.

Since writers can exit tm end in any order, RingR is
not privatization-safe. To make the algorithm safe, we
can ensure that a committed privatizer Tp does not ac-
cess shared data nontransactionally until prefix index
≥ T ′

ps commit time. Once the prefix index ad-
vances to Tp’s commit time, Tp is guaranteed that there
are no deferred updates to the privatized region. Since
transactions still poll for conflicts, RingR does not in-
troduce a doomed transaction problem.

3.4 Ring Rollover
The previous discussion assumed an infinite-size ring.
To support a bounded ring, only a small number of
constant-overhead instructions are needed. First, when
check is called, a rollover test must be issued before

returning, to ensure that, after all validation is com-
plete, the oldest entry validated has not been overwrit-
ten (accomplished with a test on its timestamp field).
Secondly, the order in which ring entries are updated
matters. During initialization, updates to a new ring
entry’s timestamp must follow the setting of the write
filter and the status (write-after-write ordering). Addi-
tionally, calls to check from tm end must begin by
waiting until the newest ring entry’s timestamp is set.

RingSW requires no further changes. In the default
RingSTM algorithm, threads must ensure that there is
always at least one ring entry whose status is write-
back complete. When the number of active transac-
tions is less than the number of ring entries, this re-
quirement is implicitly satisfied. Otherwise, a test is
required in tm end before acquiring a new ring entry.
This test is required in RingR, which must also ensure
that the prefix head always points to a live entry in
the ring. This can be achieved either through the use of
an atomic RMW instruction, or by adding an additional
test to the use of prefix head in tm begin.

3.5 Summary
In each of the RingSTM implementations, only one
RMW operation is required, regardless of write set
size. In the common case, all algorithms should in-
cur overhead linear only in NW , the number of con-
current writers. Privatization is either free, or can be
achieved by waiting for a single global variable to sat-
isfy a simple predicate. Read-only transactions commit
without issuing writes, and read-only workloads can
avoid all validation, although they must issue R tests
of the ring index variable.

4. Evaluation
We have implemented the RingSTM, RingSW, and
RingR algorithms as a C library, compatible with 32-
bit C and C++ applications on the POWER, SPARC,
and x86 architectures. In this section we focus on the
results on an 8-core (32-thread), 1.0 GHz Sun T1000
(Niagara) chip multiprocessor running Solaris 10; we
believe the Niagara is representative of a strong emerg-
ing trend in processor design.

Our STM runtime library is written in C, and all
benchmarks are written in C++ and compiled with
gcc/g++ version 4.1.1 using –O3 optimizations. Each
data point represents the median of five trials, each of
which was run for five seconds.
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Figure 2. Red-black tree storing 20-bit integers; 50%
of transactions are read-only.

4.1 Runtime Systems Evaluated
We parameterized each of the RingSTM algorithms by
filter size, using small (32-bit), medium (1024-bit), and
large (8192-bit) filters. The medium and large filters
are optimized through the addition of a small (32-bit)
summary filter; filter intersections are computed on
the summary filters first, with the larger filters used
only when the summary intersection is nonzero. In all
runtimes, the ring stores 1024 entries.

We compare the resulting nine RingSTM systems
against a local implementation of the published TL2
algorithm [6], which represents the state of the art. Our
implementation of TL2 uses an array of 1M ownership
records, and resolves conflicts using a simple, blocking
contention management policy (abort on conflict). Our
implementation of TL2 shares as much code as possi-
ble with RingSTM, to prevent implementation artifacts
from affecting results.

4.2 Scalability
In Figure 2, we evaluate the scalability of our RingSTM
algorithms on a concurrent red-black tree. For the
benchmark, random 20-bit values were used, with 50%
lookup transactions and the remaining transactions
evenly split between inserts and removals. The tree
was pre-populated with 29 unique elements. Not sur-
prisingly, we find that all RingSTM variants scale well,
and that performance is on par with our TL2 implemen-
tation until about 14 threads, at which point ring con-
tention (competing to acquire ring entries) dampens the
rate of scaling; we discuss this property further in Sec-
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Figure 3. RandomGraph benchmark with 50% node
inserts and 50% node removals.

tion 4.4. Finding the right match of filter size to work-
load is important: the 32-bit filters are too small, re-
sulting in decreased scalability due to increased aborts
from false positives. After 10 threads, even the 1024-bit
filters cause false positives.

Lastly, we observe that for high thread levels,
RingSW performance is slightly lower than RingSTM,
and that RingR performs best, though by only a small
margin. These characteristics are directly related to
write-back. At high thread levels, multiple writers are
likely to reach their commit point simultaneously. In
RingSW, one of these writers must block before ac-
quiring a ring entry, limiting parallelism. Likewise, in
RingSTM, a writer may delay after writeback in order
to preserve the suffix property.

Since these effects are common to all of our bench-
marks, we omit further discussion of RingSW and
RingR; the behavior of RingSTM is characteristic of
all three algorithms, and since it does not require over-
head for privatization, we feel that its performance is
most interesting.

4.3 Commit Overhead
To highlight the impact of O(R) validation overhead,
we consider the RandomGraph benchmark from the
RSTM suite [16, 18]. The benchmark maintains a
graph, where nodes are stored in a list and each node
maintains its neighbors in an adjacency list. Trans-
actions add or remove nodes with equal probability,
with new nodes receiving four random neighbors. The
benchmark does not admit parallelism, but its large
read sets (potentially hundreds of elements) and mod-
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Figure 4. Hash table benchmark with 8 bit keys and
33% lookups.

erately large write sets (tens of elements) tax STM
systems that rely on ownership records. In Figure 3,
we observe that RingSTM performs between 33% and
50% faster than TL2, since TL2 incurs O(R) overhead
at commit time.

4.4 Bottlenecks
We lastly consider the impact of a single global ring
on scalability. Figure 4 shows a hash table benchmark.
The hash table stores 8-bit integers in 256 buckets with
chaining, and insert, lookup, and remove operations are
equally likely. The data structure should scale almost
linearly, but transactions are short enough that global
shared variables (the TL2 timestamp and the ring) be-
come bottlenecks.

As expected, there is a point at which the coherence
traffic on the global TL2 timestamp dominates, and the
benchmark ceases to scale. Ring contention also be-
comes a bottleneck, with worse effect than in TL2 for
a number of reasons. First, an update to the ring causes
multiple cache misses in concurrent threads (the ring
entry and the ring index variable reside in separate
lines, and the ring’s write filter is likely to reside in mul-
tiple lines). Secondly, the writer must update the ring
entry after completing writeback; if concurrent transac-
tions have already polled for conflicts, then the writer
will take a write miss on the entry. Third, initializing a
ring entry takes several cycles; during initialization, the
ring is effectively locked. Lastly, as in TL2, attempts
to increment a single global integer inherently serialize
otherwise nonconflicting transactions.

5. Conclusions and Future Work
In this paper we presented RingSTM, a software trans-
actional memory algorithm that avoids the use of per-
location metadata to ensure isolation and consistency,
instead using a global ring of Bloom filters that can
each be evaluated in O(1) time via a simple inter-
section. In its default configuration, RingSTM has no
privatization problem, requires a single RMW oper-
ation per transaction, is inherently livelock-free, and
has constant space overhead to maintain its read set.
RingSTM offers an attractive alternative to TL2, the
current state of the art STM, for a number of workload
characteristics. When privatization is frequent, or ex-
isting privatization mechanisms are too expensive even
for limited use, RingSTM provides low-cost privatiza-
tion. When transactions are used for thread-level specu-
lation [31], RingSTM offers a shorter commit sequence
than orec-based algorithms. In workloads with high ra-
tios of read-only transactions, or workloads with large
read and write sets, we expect RingSTM to offer lower
latency due to decreased metadata manipulation.

RingSTM is sensitive to its filter configuration. As
future work, we plan to develop a variant that adapts
its filter sizes, as well as a “profiling mode”, in which
additional bookkeeping permits the programmer to dis-
tinguish between real conflicts and conflicts due to filter
imprecision; the programmer can then statically change
the filter size or hash functions. We also plan to inves-
tigate techniques to dynamically recompile code to use
an orec-based runtime (such as TL2) or RingSTM, to
give the best performance to workloads that strongly fa-
vor one approach. We are also investigating nonblock-
ing implementations, suitable for use in operating sys-
tem code.

Lastly, we have begun to look at hardware optimiza-
tions for RingSTM. Our hope is to identify primitives
that are not specific to STM, but that can alleviate the
cost of shared memory communication, further accel-
erating RingSTM without committing hardware manu-
facturers to a fixed TM design. Additionally, we believe
that the fixed-size metadata requirements of RingSTM
will help keep RingSTM-specific hardware simple.
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