
RC24501 (C0802-004) February 15, 2008
Computer Science

IBM Research Report

Evaluating and Optimizing the Scalability of
Multi-core SIP Proxy Server

Jia Zou 1,2, Zhiyong Liang1, Yiqi Dai2

1IBM Research Division
China Research Laboratory

 Building 19, Zhouguancun Software Park
8 Dongbeiwang West Road, Haidian District

Beijing, 100094
P.R.China

2Department of Computer Science and Technology
Tsinghua University

P.R. China

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Evaluating and Optimizing the Scalability of Multi-core SIP Proxy Server

Jia Zou1,2, Zhiyong Liang1, Yiqi Dai2
1IBM China Research Lab, 2Dept. of Computer Science and Technology, Tsinghua Uinversity

zouj03@mails.tsinghua.edu.cn, liangzhy@cn.ibm.com, dyq@theory.cs.tsinghua.edu.cn

Abstract
The Session Initiation Protocol (SIP) is one popular
signaling protocol used in many collaborative applications
like VoIP, instant messaging and presence. In this paper,
we evaluate one well-known SIP proxy server (i.e.
OpenSER) on two multi-core platforms: SUN Niagara and
Intel Clovertown, which are installed with Solaris OS and
Linux OS respectively. Through the evaluation, we
identify three factors that determine the performance
scalability of OpenSER server. One is inside the OSes:
overhead from the coarse-grained locks used in the UDP
socket layer. Others are specific to the multi-process
programming model: 1.overhead caused by passing socket
descriptors among processes; 2. overhead brought by
sharing transaction objects among processes. To remedy
these problems, we propose several incremental
optimizations, including out-of-box dispatcher, light-
weight connection dispatcher and dataset partition, then
achieve the significant improvements: for UDP and TCP
transport, on SUN Niagara, speedup are improved from
1.5 to 5.8 and from 2.2 to 6.2, respectively; on Intel
Clovertown, speedup are improved from 1.2 to 3.1 and
from 2.6 to 4.8, respectively.

1. Introduction

Throughout the history of modern computing,
application developers have been able to rely on new
processor chips to deliver significant performance
improvement. Unfortunately, physical constraints on
power consumption and heat dissipation have made this
“free lunch” over [5]. Therefore, in recent years, chip
vendors have introduced multi-core architecture as the
strategy for continuing to increase computing power, e.g.
SUN Niagara [6], Intel Clovertown [7], AMD Barcelona
[8], IBM Cell [9], and so on. But, the multi-core trend will
not “automatically” benefit all applications. People need
understand workload characteristics on multi-core systems,
and carefully design and develop their applications to fully
exploit multi-core computing power.

The Session Initiation Protocol (SIP) [1] is used to
create, modify and terminate sessions between two or
more communication parties. It is one critical signaling
protocol in 3G IP Multimedia Subsystem (IMS) and Next
Generation Network (NGN). It is also becoming popular
in the Internet and enterprise network for various
collaborative applications, such as VoIP, instant
messaging and presence. To enable these applications,

several key SIP severs are defined in RFC 3261 [1],
including proxy, redirect and registrar server. Their
performance is very crucial for SIP-based network
infrastructure.

However, to our best knowledge, how SIP server
performs on multi-core systems is not well studied yet. In
this paper, we explore the main factors that determine the
scalability of SIP proxy server on multi-core systems.
Particularly, we focus our efforts on the factors from the
OS kernel and programming model, which are expected to
be generic for other network servers with similar design.
 We set up two testing servers running well-tuned
OpenSER SIP proxy server [10], which is popular and
widely used in the SIP community. One testing server is
installed with one SUN Niagara eight-core chip [6] and
Solaris OS. The other is installed with two Intel
Clovertown quad-core chips [7] and Linux OS.

Our experiments firstly identify two problems in the
implementation of OS UDP socket layer, which degrade
the scalability significantly for UDP transport: 1. In Solaris
OS, for the recvfrom() system call, a coarse-grained lock is
used to serialize the access to the socket structure; 2. In
Linux OS, a similar coarse-grained lock is implemented in
the sendto() system call. Accordingly, OpenSER server
suffers from receiving/sending the messages through one
single UDP port. To remedy this problem, we design an
out-of-box dispatcher to allow the OpenSER server to
receive/send the messages through multiple UDP ports.

Having eliminated the above obstacle, we identify other
two problems in the traditional multi-process (MP)
programming model: 1. overhead caused by passing the
socket descriptors of TCP connections among multiple
processes, especially when using one single process for
dispatching the socket descriptors; 2. synchronization
overhead caused by sharing transaction objects among
multiple processes.

To remedy the first problem, we modify the OpenSER
server to enable each worker process to cache the TCP
connections in its own local memory, so that they need not
query the dispatcher process for the socket descriptors of
TCP connections each time, and then significantly reduce
the workload of the dispatcher process.

To remedy the second problem, we split the shared
transaction objects into a number of smaller groups, and
then divide one single shared memory block into multiple
smaller memory blocks. In this way, we can effectively
reduce the lock granularity and contention overhead.

By applying all the optimizations, we significantly
improve the scalability of the OpenSER server: 1. on Sun
Niagara from 1.5 to 5.8 for UDP transport, and from 2.2 to
6.2 for TCP transport; 2. on Intel Clovertown, from 1.2 to
3.1 for UDP transport, and from 2.6 to 4.8 for TCP
transport. Although our work is based on SIP proxy server,
the identified problems as well as our optimization
techniques can also be applied for other network servers
with similar design, especially those using UDP transport
and MP-like programming model.

The remainder of paper is organized as follows. Section
2 introduces the background and motivation of our work.
Section 3 describes the environment and methodology.
Section 4, Section 5 and Section 6 presents the
experimental results on performance evaluation and
optimization. Section 7 discusses the related work. Section
8 concludes the whole paper and discusses the future work.

2. Background and Motivation

2.1 SIP Overview

 SIP is an application-layer signaling protocol that can
establish, modify, and terminate multimedia sessions, e.g.
telephony call. SIP can also be used to invite participants
to one existing session, e.g. multiparty conference.

Similar with HTTP and SMTP, SIP uses the text-based
message format. SIP requests include INVITE (invite a
peer to join a call/session), ACK (confirm receipt of
message), BYE (terminate call/session), and etc. SIP
responses are also similar with HTTP and SMTP
responses, which are composed of a 3-digit number and an
interpreting phrase, e.g. 100 Trying (provisional response
indicating the effort to reach the target is occurring), 180
Ringing (provisional response indicating the phone is
ringing), 200 OK (final response indicating the request is
processed successfully).

A transaction is an important object defined in RFC
3261 [1]. A SIP transaction consists of one request and all
the responses to this request, which can include zero or
more provisional responses and one or more final
responses.

In different application scenarios, various SIP servers
are required, e.g. registrar server is used to provide the
location service; proxy server is used to forward the
messages between the end-points or proxies.

Figure 1 gives out a typical example of exchanging the
SIP messages between two end-points in VoIP application.

Figure 1: An example of exchanging SIP Messages

2.2 Programming Model for Network Server

In general, there are three basic programming models to
develop a concurrent network server: multi-process (MP),
multithreaded (MT), and event-driven state machine
(EDSM) [13] [14] .

In the MP model, all the processing on one TCP
connection or UDP message is handled by an individual
process. In UNIX system, it’s widely used in various
network severs, such as Apache Web server [12] and
OpenSER SIP server [10].

The popularity of MP programming model mainly lies
in several advantages it can offer:
1. Robustness. Since each process has its own private

address space, if one process crashes, other processes
will not be affected.

2. Less synchronization overhead. Some standard
library functions, such as malloc() and free(), use
global locks to achieve thread safety. This will bring
potential contention overhead to thread-based model
[17]. However, MP model doesn’t have such problem
since global locks are not required for these library
functions across multiple processes.

3. Easy implementation. In the MP model, programmer
need less care about the synchronization than the MT
model, and can utilize the abundant existing libraries,
while EDSM architecture is monolithic and usually
need to be implemented from the ground up [13] [19]

2.3 Potential Scalability Problems of a MP-based SIP
Proxy Server on Multi-core Systems

We expect three obstacles for the performance
scalability of a MP-based SIP proxy server with the
increasing number of cores/hardware threads:
 Scalability of UDP protocol stack
 Overhead of passing socket descriptors among

multiple processes;
 Overhead of sharing SIP transaction objects among

multiple processes.

2.3.1. Scalability of UDP protocol stack. According to
RFC 3261 [1], a SIP server is mandatory to support both
UDP and TCP transport. Performance scalability of TCP
protocol stack on multi-core systems was addressed in
several previous work, e.g. [4] [15] . However as for UDP
protocol stack, to our knowledge, there are not much
research work to explore its scalability on multi-core
systems yet. In this paper, we will examine the scalability
of UDP protocol stack for supporting an upper-layer SIP
proxy server.

2.3.2. Overhead of passing socket descriptors. In Unix
environment, each process is allocated one open file table
to store the indexes to file/socket objects which are stored
in a kernel table shared by all processes. Passing a socket
descriptor means the index to one socket object should be

passed correctly from one process to another, so that
multiple processes can share the same file/socket object.

Unix programming environment usually provides two
approaches to pass socket descriptors: 1. use the sendmsg()
and recvmsg() system calls to pass socket descriptors; 2.
use STREAM pipe [14] [16] . Both the approaches may
incur significant overhead. Especially when using one
single dispatcher process to manage all the connections,
this dispatcher may become the scalability bottleneck.

2.3.3. Overhead of sharing SIP transaction objects.
According to RFC 3261 [1], a SIP proxy server can be
either stateless or stateful. In order to implement some
advanced functionalities like call accounting, forwarding
on busy, voice-mail and etc., stateful processing will be
needed.

In stateful processing, a proxy server need create a new
transaction object when receiving a new request and
update transaction state when receiving a retransmitted
request or any response.

A transaction object is the context to do stateful
processing. This context will be kept across multiple
messages, e.g. in Figure.1, the proxy server need keep one
transaction object across seven messages from INVITE
request to 200OK response. Accordingly, with the MP
model to implement a SIP proxy server, transaction objects
have to be shared among multiple processes. Then,
synchronization overhead to access these shared objects
may become the scalability obstacle.

2.4 Goal of this Work

The goal of this work can be summarized as following:
 Measure the scalability of a MP-based SIP proxy

server on two different multi-core systems;
 Identify the main factors that determine the

scalability of a SIP proxy server on the two multi-
core systems;

 Propose the solutions for any scalability problem
identified.

3. Environment and Methodology

3.1 Software

3.1.1. Software for SIP proxy server. In our experiments,
we use the OpenSER server [10] as our testing server.
OpenSER is an open source SIP proxy server, widely used
in the SIP community, and well recognized with its high
performance and reliability.

OpenSER uses two different MP-based programming
models for UDP and TCP transport respectively. For UDP
transport shown as Figure 2(a), multiple pre-forked worker
processes will invoke blocking-mode recvfrom() to
concurrently wait on the well-known port for incoming
messages.

For TCP transport shown as Figure 2(b), a dispatcher
process listens on the well-known port to accept each
incoming connection, and pass its socket descriptor to one

selected worker process using sendmsg() and recvmsg().
The selected worker process will watch and serve the
messages over that connection until it is closed or timeout.
Then the worker process will pass this dead connection to
the dispatcher for cleaning up. In the meantime, if one
worker process attempts to forward the message over an
existing connection belonging to another process, it has to
query the dispatcher for the connection socket descriptor.

All worker processes use shared memory as interprocess
communication mechanism, using memory-mapped I/O
(mmap()) [14] to map a file into shared buffer to share
memory pool structures and transaction objects including
transaction hash table and timer lists.

As shown in Figure 2, a single timer process will be
forked to traverse timer lists to check expired timers and
trigger corresponding callback functions. According to the
expiring time duration of different timer events, some
timer lists are traversed every ten milliseconds, and others
are traversed every second.

(a) UDP (b) TCP

Figure 2: MP-based programming model in OpenSER

3.1.2. Software for Load Generators. In our experiments,
we use multiple SIPp[11] instances to work as User Agent
Client (UAC) and use one stateless OpenSER instance as
User Agent server(UAS). SIPp is the popular software for
SIP performance testing.

3.2. Hardware and OS Configurations

3.2.1. Hardware and OS for SIP proxy server. Since
SIP proxy server may have different performance issues
on different multi-core systems, we choose two typical
multi-core systems as our test bed. One uses two Intel
Clovertown quad-core chips [7] , and each core is with 2.2
GHz and exploits instruction-level parallelism techniques.
The other uses one SUN Niagara eight-core chip [6] ,
which relies on explicitly thread-level parallelism. On
Niagara, each core is with 1.2 GHz and has four hardware
threads, and then it can support up to 32 different software
threads or processes to be executing simultaneously on one
single chip.

We install RedHat ES5.0 with a Linux 2.6.18 kernel on
Intel Clovertown, and Solaris 10 on Sun Niagara.

3.2.2. Hardware and OS for load generators. We use
four IBM blade servers to serve as UACs and another
server to serve as UAS. All these machines are installed
with Redhat ES 5.0.

3.3. Environment Setup and Measurement

We configure OpenSER as a stateful proxy server, and
perform SIPstone Proxy 200 test [2] for both UDP and
TCP transports. This test scenario is quite typical, and also
used by other SIP performance evaluation work [3].
Message flow in this scenario is the same with the example
shown in Figure 1 in Section 2.1.

In all the following experiments, the number of worker
processes is set to be equal to the number of active
hardware threads. For example, when enabling all
hardware threads in 8 cores (4 hardware threads per core)
on Niagara, we will start 32 worker processes.

We use the throughput as the performance metric. In our
paper, if not specified, the throughput is defined to be the
highest call rate (calls per second) with failure rate
(completed calls per second / total calls per second) less
than 0.01%, which is consistent with previous work [2]
[3] .

To obtain OS statistics and functional profiling results,
we use oprofile and mpstat on Intel Clovertown, and
lockstat, prstat and dtrace on Sun Niagara.

4. Overview of Scalability Results

4.1. Single-core Baseline

Figure 3 presents the single-core results on Niagara
system. We can see that the scalability of throughput with
the increasing hardware threads is pretty good for both
TCP and UDP transport, which indicates explicit thread-
level parallelism on Niagara chip can significantly benefit
SIP proxy workload. Figure 4 shows the single core results
on Clovertown system.

From Figure 3 and Figure 4, one observation is that for
both systems, OpenSER sever with UDP transport has
better single-core throughput than TCP transport, i.e. 1.8x
on Niagara and 2.1x on Clovertown. According to the
profiling results, the main factor is that OpenSER server
uses a dispatcher process for TCP transport, which brings
additional socket descriptor passing overhead as well as
context switch overhead.

4.2 Scalability Results
 Figure 5 and Figure 6 shows the overall scalability
results, which is very poor for both systems (where ideal
speedup is 8). We will identify the main factors that cause
such poor scalability and our corresponding optimizations
step by step in later sections.

1C1T 1C2T 1C3T 1C4T
400

600

800

1000

1200

1400

1600

1800

 Throughput
 Speedup

CPU configuration

cp
s

1

2

3

Speedup

1C1T 1C2T 1C3T 1C4T
200

300

400

500

600

700

800

900

1000

 Throughput
 Speedup

CPU configuration

cp
s

1

2

3

S
peedup

(a) UDP (b) TCP

Figure 3: Single-core results on Niagara system (xCyT denotes
that x cores and y hardware threads per core are activated)

UDP TCP
0

1000

2000

3000

4000

5000

6000

cp
s

Transport

 Throughput

Figure 4: Single core results on Clovertown system

1C4T 2C4T 4C4T 8C4T
1500

2000

2500

3000

3500

4000

 Throughput
 Speedup

CPU configuration

cp
s

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

S
peedup

1C4T 1C4T 4C4T 8C4T
900

1000

1100

1200

1300

1400

1500

1600

1700
 Throughput
 Speedup

CPU configuration

cp
s

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
peedup

(a) UDP (b) TCP

Figure 5: Scalability results on Niagara system

1C 2C 4C 8C
6000

7000

8000

9000

10000

11000

 Throughput
 Speedup

CPU configuration

cp
s

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
peedup

1C 2C 4C 8C

3000

4000

5000

6000

7000

8000
 throughput
 Speedup

CPU configuration

cp
s

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

S
peedup

(a) UDP (b) TCP

Figure 6: Scalability results on Clovertown system (xC denotes that
x cores are activated)

5. Scalability Issues in UDP protocol Stack

5.1. Issues in Solaris UDP Protocol Stack

5.1.1. Problem identification. The overall scalability
results of UDP transport on Niagara are shown in Figure
5(a). The poor scalability is mainly caused by a coarse-
grained lock used for synchronizing accesses to UDP
socket structure in the recvfrom() system call.

In Solaris, the system call recvfrom() corresponds with
the kernel function sotpi_recvmsg(). Figure.7 shows the
code path for sotpi_recvmsg()

kstrgetmsg() copies received packets from kernel socket
buffer to user buffer. The conditional variable SO_READ
is the mutex used to serialize the copy operations on one
socket. Thus, the operation mutex_vector_enter(so_lock)
which tries to acquire the spin lock so_lock will be
frequently called when a number of processes invoke
recvfrom() on the same socket. Besides, in the function
so_unlock_read(), all processes that sleep for the mutex
will be awaken, thus cause the “thundering herd” problem
[18],where many processes will be waken up and spin
together to contend for the so_lock, and accordingly
significant CPU cycles will be wasted.

sotpi_recvmsg(){
 …

so_lock_read_intr();
 kstrgetmsg();
 so_unlock_read();
 …
}

so_lock_read_intr(){
while (SO_READ==1)
{

cv_wait_sig();
cv_block();
swtch();
mutex_vector_enter(so_lock)

 }
 SO_READ=1;
}

so_unlock_read(){
 SO_READ=0;
 cv_broadcast()
}

Figure 7: Code path for Solaris sotpi_recvmsg()

According to our profiling results, in 8C4T case, the
overhead of recvfrom(), mutex_vector_enter(),
sotpi_recvmsg(), and so_lock_read_intr() is significant.
The total overhead caused by the recvfrom() system call is
larger than 50% CPU time. In result, as illustrated in
Figure 8, for 8C4T, most of CPU time is spent in the
kernel.

1C4T 2C4T 4C4T 8C4T --

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%

CPU configuration

 USR
 SYS
 IDLE

Figure 8: CPU utilization at the throughput points in figure 5(a)

5.1.2. Optimization. To solve the above problem, we
configure the OpenSER sever to listen on multiple ports
and design an out-of-box dispatcher to dispatch incoming
packets evenly to those ports. With this optimization, the
CPU time spent in the kernel space at the throughput point
of 8C4T case has been significantly reduced from 66% to
less than 30%. The total overhead caused by the recvfrom()
system call has also been reduced from >50% CPU time to
less than 10%.

However, we observe the jitters in both CPU utilization
and packet drop ratio of UDP socket layer, as shown in
Figure 9 (a). In the OpenSER server, the timer process
periodically scans the timer lists and in the meantime, the
worker processes also need access the timer lists for
inserting or modifying the timers. Therefore, the worker
processes will be stalled by the timer process when the
timer lists are locked and scanned for a long time. So we
infer that the jitters are mainly caused by such contention.

The jitters will bring the significant call failures. If these
failures are counted to measure the throughput, we will see
that the throughput isn’t improved much although CPU
utilization is reduced significantly. But, if we do not count
in the failures, the speedup on Niagara is increased from
1.5 to 4.6, as shown in Figure 9(b).

For the jitter problem, we will deal with it in Section 6.2.

1C4T 2C4T 4C4T 8C4T
1000

2000

3000

4000

5000

6000

7000

8000

9000 Throughput
 Speedup

CPU configuration

cp
s

1

2

3

4

5

Speedup

(a) Jitters at 8100cps, 8C4T (b) Scalability

Figure 9: Results for using out-of-box dispatcher on Niagara for
UDP transport

5.2. Issues in Linux UDP Protocol Stack

5.2.1. Problem identification. Linux has a similar
problem in the sendto() system call, where one coarse-
grained lock is used. It causes the poor scalability for UDP
transport on Clovertown system, shown as Figure 6(a).

In Figure 10, we can see that in the code path of the
function udp_sendmsg(), which is the corresponding
kernel function of sendto(), lock_sock() is invoked to
synchronize the copy operation from kernel buffer to the
user buffer. This coarse-grained lock will bring significant
contention overhead.

Ip_append_data(){
 …

 ip_generic_getfrag();
 …
}

udp_recvmsg()
{
 …
 lock_sock();

 ip_append_data();
 release_sock();
 …
}

ip_generic_getfrag(){
 …
 //copy data from kernel to user buffer
memcpy_fromiovecend()

…
}

Figure 10: Code path for Linux udp_sendmsg()

5.2.2. Optimization. We solve the above problem in
sendto() by modifying OpenSER codes to allow sending
the packets over multiple sockets. The speedup is
improved from 1.2 to 3.1, as shown in figure 11.

1C 2C 4C 8C

6000
8000

10000
12000
14000
16000
18000
20000
22000
24000

 Throughput
 Speedup

CPU configuration

cp
s

1.0

1.5

2.0

2.5

3.0

speedup

Figure 11: Scalability results for using multi-send-sock on

Clovertown for UDP transport

6. Performance Issues in Programming Model

After remedying the problems in UDP protocol stack,
we further identify two performance issues in the MP
programming model used by the OpenSER server: 1)
Overhead of passing connection socket descriptors among
multiple processes; 2) Synchronization overhead caused
by sharing transaction objects among multiple processes.

0 50 100 150 200

0

20

40

60

80

100

%

Timestamp (s)

 CPUUtilization
 UDPDropRate

UDP drop rate matches well
with CPU Utilization bursts

6.1. Overhead for Passing Socket Descriptors

6.1.1. Problem identification. As shown in Figure 6(b),
on Niagara system, when the number of TCP worker
processes is larger than 16, increasing the number of
worker processes will not bring any further performance
gain. That’s mainly because worker processes query the
dispatcher for passing the socket descriptors of TCP
connections. This will be a heavy workload for the
dispatcher.

Figure 12 shows the breakdown of CPU time for
Niagara system. It can be seen that when starting more
than 8 worker processes on Niagara system, TCP
dispatcher process will get overloaded ahead of other
processes. In the meantime, the profiling results show that
the functions relevant with passing socket descriptors:
send_fd(), receive_fd(), sendmsg(), and recvmsg(),
account for more than half of dispatcher’s processing time.
It shows that the overhead of passing socket descriptors
brings the dispatcher process into a performance
bottleneck.

Worker (Avg.) Dispatcher Timer
0

20

40

60

80

100

%

OpenSER Processes

 USR
 SYS
 IDLE

Worker (Avg.) Dispatcher Timer
0

20

40

60

80

100

%

OpenSER Processes

 USR
 SYS
 IDLE

Worker (Avg.) Dispatcher Timer
0

20

40

60

80

100

%

OpenSER Processes

 USR
 SYS
 IDLE

Worker (Avg.) Dispatcher Timer
0

20

40

60

80

100

%

OpenSER Processes

 USR
 SYS
 IDLE

Figure 12: Comparison of CPU utilization with different workers

The profiling results on Clovertown system also show

that although at the throughput point, the CPU utilization
is less than 60%. The functions relevant with passing
socket descriptors also account for significant overhead
(more than 35% for 8C case).

6.1.2. Optimization and Results. To avoid the bottleneck
of the central dispatcher, we propose the “lightweight
connection dispatcher” optimization to offload the
workload from the dispatcher to the worker processes, thus
eliminating the central bottleneck. More specifically, each
worker process will cache the connection socket descriptor
in its local memory. Each time a worker process wants to
send out a message over one connection, it firstly looks for
the connection in its local memory, if not found, it will try
to establish a new connection and cache this connection
rather than query the dispatcher. Each worker process is in
charge of cleaning all the connections cached in local
memory rather than passing dead connections to the
dispatcher for cleanup. By such way, we can not only
reduce the overhead of passing socket descriptors but also

reduce the context switch overhead, because the dispatcher
process will be invoked less frequently.

We implement the lightweight dispatcher optimization
upon OpenSER server.

On Niagara system, the speedup is improved to 3.5. We
can see that when worker processes are less than 16,
scalability is close to linear (speedup from 1C4T to 4C4T
is 3.8). However, when the number of worker processes
increase further, the performance degrades. We will
discuss the reason for this in Section 6.2.

The lightweight dispatcher optimization also can bring
benefits to the Clovertown system. The speedup of the
OpenSER server on Clovertown system has been
improved by 85%, from 2.6 to 4.8, as shown in figure
13(b).

1C4T 2C4T 4C4T 8C4T
1000

2000

3000

4000

5000

6000

 Throughput
 Speedup

CPU configuration

cp
s

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
peedup

1C 2C 4C 8C
2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

 Throughput
 Speedup

CPU configuration

cp
s

1

2

3

4

5

Speedup

(a) Niagara (b) Clovertown

Figure 13: Results for OpenSER with a lightweight dispatcher for
TCP transport

6.2. Synchronization Overhead for Sharing
Transaction Objects

6.2.1. Problem identification. According to OpenSER’s
programming model, transaction objects are shared among
the multiple worker processes, including three important
data structures are shared: memory pool, timer list and
transaction table.

OpenSER server implements its own spin lock utility in
the user space. The function tsl() will spin to acquire a
lock, and if the lock is not obtained after spinning for a
number of times (default is 1024), lwp_yield() will be
invoked to put the corresponding worker process to the
end of the OS scheduling queue and schedule another
process to run.

 On Niagara system, for both UDP and TCP transports,
after applying all the optimizations in the prior sections,
when worker processes are more than 16, synchronization
overhead on transaction objects becomes significant and
dominant.

Shown as in Figure 14, we can see that the functions tsl()
and lwp_yield() accounts for significant CPU time. Other
profiling results show that the major function contributing
to lwp_yield() is set1_timer(), which need to acquire the
lock before scanning the timer lists for the expired timers.
This will cause the jitters described in Section 5.1.2. Next
two largest synchronization overheads are due to sharing
memory pool and transaction hash table.

However, on Clovertown system, those functions only
account for less than 1% of total overhead.

(a) 4 children workers (b) 8 children workers

(c) 16 children workers (d) 32 children workers

_so_sendto

lwp_yield

tsl

fm_malloc

memcpy

matching_3261

parse_via

get_lock

0 2 4 6 8 10
%

 Percentage

lwp_yield

memcpy

_so_send

fm_malloc

q_memchr

tsl

tcp_read_headers

parse_via

0 2 4 6 8 10 12 14
%

 Percentage

(a) UDP (b) TCP

Figure 14: Function profiling at the throughput point for 8C4T case
on Niagara.

6.2.2. Optimization and Results. To solve the above
problem, we propose the “dataset partition” optimization.
Specifically, we use multiple shared memory blocks
instead of one shared memory block, and each shared
memory block contains its own timer lists, memory pool
and transaction hash table. Then, for each incoming
message, we use the Call-ID and CSeq values obtained
from the corresponding fields of SIP messages to generate
memory block ID, and all the information on the message
will be stored in the memory block specified by the ID.
We modify all the functions that need to access the shared
data structure. For example, for the function set1_timer(),
we convert it into scanning multiple smaller timer lists
belonging to different memory blocks in a loop fashion.

We implement the “dataset partition” scheme upon the
OpenSER server, using 32 shared memory blocks with the
size of 256MB. Scalability results are shown in Figure 16,
which show that such optimization brings significant
benefits to Niagara system. On Niagara system, the
speedup for UDP transport has been improved to 5.8,
increased by 286%, if compared with the original case; the
speedup for TCP transport has been improved to 6.2,
increased by 182%. In addition, the jitters in CPU
utilization and packet drop ratio described in Section 5.1.2
are not observed any more.

1C4T 2C4T 4C4T 8C4T

2000

4000

6000

8000

10000

 Throughput
 Speedup

CPU configuration

cp
s

1

2

3

4

5

6

S
peedup

1C4T 2C4T 4C4T 8C4T

1000

2000

3000

4000

5000

6000

7000

8000

9000

 Throughput
 Speedup

CPU configuration

cp
s

1

2

3

4

5

6

S
peedup

(a) UDP (b) TCP

Figure 15: Results for OpenSER with dataset partition on Niagara
System

But the dataset partition optimization can not bring
obvious performance gain to Clovertown system. That’s
mainly because much less worker processes are run on
Clovertown system (i.e. 8 workers on Colvertown for 8C
case, but 32 workers on Niagara for 8C4T case). In this
situation, synchronization overhead to access transaction
objects is not significant to the performance.

6.3. Discussion

Particularly, for Clovertown system, we also find some
additional factors that will affect the performance:

1. By applying all the optimization, the scalability on
Clovertown system is worse than Niagara system (i.e. for
UDP transport, Niagara’s speedup is 5.8, but Clovertown’s

is 3.1) This is mainly caused by IRQ affinity policy, which
will direct all incoming network interrupts to one CPU for
receive processing, thus this core will be one scalability
bottleneck.

Although, we try to reduce such bottleneck effects by
setting CPU affinity for the OpenSER processes to allow
one core dedicated for packet receiving, this can not fully
solve the problem. However, at the high load, this problem
still becomes the scalability bottleneck. One possible
solution to solve such problem is to use NIC designed with
Receive-Side Scaling (RSS) [4] technology, which can
bind each core with interrupts processing of a group of
network flows. With RSS technology, packet receiving
can happen in multiple CPUs so that above bottleneck can
be avoided.

2. On Clovertown system, for a given core number,
different core configuration can result in different
performance. For example, the throughput for the
configuration with two cores on the same chip is
significantly higher than with two cores on different chips
(e.g. for UDP transport, the throughput results are 9250
and 7250 respectively). We believe that is mainly due to
the cache coherency overhead and cache locality. In our
experiments, in order to obtain the best performance, we
choose the configurations which enable physical cores as
close as possible, e.g., for the case of two cores, we
activate two cores sharing the same L2 cache on one chip;
for the case of four cores, we activate four cores on one
chip.

In addition, for Clovertown system and Niagara system,
we have no intention to use the scalability results to
suggest any one of the two systems is better than the other.
That’s mainly because they are too heterogeneous in many
aspects of hardware design and OS, e.g. CPU frequency,
cache size, OS network stack implementation, and etc.,
which will make such comparison elusive, complex and
difficult to validate.

7. Related Work

As SIP has been adopted by more and more applications,
there is a good deal of research work focusing on the
performance issues of SIP server. Nahum et al [3]
evaluate the performance of several common SIP scenarios
like registrar, proxy, and proxy with authentication on the
Intel single-core system. They also use OpenSER server as
the testing server. Their work focus on how to design the
comprehensive benchmark for various SIP severs. As to
SIP optimization, Zou et al [20] design a scheme to offload
SIP message parsing from the SIP server to a hardware
accelerator. Janak [21] proposes the optimization for SIP
server implementation, including lazy parsing, counted
string, and memory pool. Compared with their work, our
work is focus on identifying and solving the scalability
issues of a SIP proxy server on multi-core systems.

As to the work around application performance on
multi-core platforms, Veal et al[4] evaluate the scalability
of Apache web server on one Intel multi-core system,
examine a series of expected scalability obstacles and

propose the solutions for the problems identified. Petrin et
al [22] evaluate the performance of the Sweep3D software
on Cell system, and identify a series of unexpected
problems. Different from their work, we focus on the
scalability of SIP protocol and our work helps to
understand the scalability of SIP protocol on multi-core
systems.

8. Conclusions and Future Work

In this paper, we evaluate a well-known OpenSER
server on two different but typical multi-core systems:
Intel Clovertown and Sun Niagara. In result, we identify
three scalability issues on UDP protocol stack and MP
programming model. We also propose and implement a
series of incremental optimization techniques and achieve
the significant performance improvements, as shown in
Table 1. It is important to emphasize that the problems
we’ve identified in this paper will also have similar effects
on other network servers with similar design on the multi-
core systems. Therefore, our optimizations are also helpful
for those servers.

Table 1: Summary of speedup results
 original out-of-box

dispatcher
TCP

lightweight
dispatcher

dataset
partition1

Niagara-UDP 1.5 4.6 - 5.8
Niagara-TCP 2.2 - 3.5 6.2

Clovertown-UDP 1.2 3.1 - -
Clovertown-TCP 2.6 - 4.8 -

From this work, we also learn the fact that programming

with the threads and locks on multi-core systems is time-
consuming and error-prone. One potential solution is to
design a new SIP programming framework which will
divide messages into logically independent groups
according to the session-ID. The framework guarantees
that all messages belonging to the same session-ID will be
dispatched to the same process for stateful processing. By
this way, we can eliminate inter-process communication
because the messages belonging to different call sessions
need not share the states and timers. Accordingly,
programmers don’t need the efforts to synchronize those
processes any more.

9. References

[1] J.Rosenberg, H.Schulzrinne and etc. “SIP: session

initiation protocol”, RFC3261, June, 2002
[2] H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle,

“SIPstone: benchmarking SIP server performance,”
http://www.sipstone.com, 2007

[3] E. M. Nahum, J. Tracey, and C. P. Wright, “Evaluating
SIP server performance”, ACM SIGMETRICS

1 For the column “dataset partition”, we use “out-of box dispatcher
+ dataset partition” optimization for UDP transport, and
“lightweight TCP dispatcher + dataset partition” optimization for
TCP transport.

Performance Evaluation Review, Volume 35, issue 1.
Pages 349-350, Jun 2007.

[4] B. Veal, A.Foong, “Performance scalability of a multi-
core web server”, Proc. of 3rd ACM/IEEE Symposium
on Architecture for networking and communication
systems (ACNS 2007), Pages 57-66, Dec 2007.

[5] H. Sutter, “The free lunch is over: a fundamental turn
toward concurrency in software”, Dr. Dobb’s Journal,
Volume 30, issue 3. Mar, 2005.

[6] P. Kongetira, K.Aingaran, and K. Olukotun, “Niagara: a
32-way multithreaded Sparc processor”, IEEE Micro,
Volume 25, issue 2. Pages 21–29, Mar/Apr 2006.

[7] “Multi-core from Intel – products and platforms”,
http://www.intel.com/multi-core/products.htm, 2006.

[8] AMD Opteron, http://multicore.amd.com/us-
en/quadcore/.

[9] IBM Cell, http://www.research.ibm.com/cell/.
[10] OpenSER, http://www.openser.org
[11] SIPp, http://sipp.sourceforge.net/ 2006
[12] Apache Software Foundation, http://www.apache.org.
[13] D. E. Comer, D. L. Stevens, “Internetworking with

TCP/IP, Vol. III: client-server programming and
applications (fourth edition)”, Pearson Education, Inc.,
2002.

[14] W. Richard Stevens, “UNIX network programming
(second edition)”, Prentice Hall, 1998.

[15] S. Tripathi. “FireEngine—a new networking architecture
for the Solaris operating system”, White paper, Sun
Microsystems, Nov. 2004.

[16] W. Richard Stevens,“Advanced programming in the
UNIX environment”, Addison-Wesley, Inc, 1992.

[17] C. Lever, D. Boreham, “Malloc() performance in a
multithreaded Linux environment”, Proceedings of the
USENIX Annual Technical Conference (USENIX 2000),
Pages 56-66, June 2000.

[18] “Thundering herd problem”,
http://en.wikipedia.org/wiki/Thundering_herd_problem

[19] “State threads for Internet applications”, http://state-
threads.sourceforge.net/docs/st.html.

[20] J. Zou, W. Xue, Z. Liang, and etc., “SIP parsing offload:
design and performance evaluation”, Proceedings of
IEEE Global Telecommunications Conference
(Globecom 2007), Page 2774-2779, Nov 2007.

[21] J. Janak. “SIP proxy server effectiveness,” Master thesis,
Department of Computer Science, Czech Technical
University, Prague, Czech, May, 2003

[22] F. Petrini, G. Fossum, and etc., “Multicore surprises:
lessons learned from optimizing Sweep3D on the Cell
broadband engine”, Proceedings of IEEE Parallel and
Distributed Processing Symosium (IPDPS 2007). Page 1-
10, Mar 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

