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Abstract 
The Session Initiation Protocol (SIP) is one popular 
signaling protocol used in many collaborative applications 
like VoIP, instant messaging and presence. In this paper, 
we evaluate one well-known SIP proxy server (i.e. 
OpenSER) on two multi-core platforms: SUN Niagara and 
Intel Clovertown, which are installed with Solaris OS and 
Linux OS respectively. Through the evaluation, we 
identify three factors that determine the performance 
scalability of OpenSER server. One is inside the OSes: 
overhead from the coarse-grained locks used in the UDP 
socket layer.  Others are specific to the multi-process 
programming model: 1.overhead caused by passing socket 
descriptors among processes; 2. overhead brought by 
sharing transaction objects among processes. To remedy 
these problems, we propose several incremental 
optimizations, including out-of-box dispatcher, light-
weight connection dispatcher and dataset partition, then 
achieve the significant improvements: for UDP and TCP 
transport, on SUN Niagara, speedup are improved from 
1.5 to 5.8 and from 2.2 to 6.2, respectively; on Intel 
Clovertown, speedup are improved from 1.2 to 3.1 and 
from 2.6 to 4.8, respectively. 
 
1. Introduction 
 

Throughout the history of modern computing, 
application developers have been able to rely on new 
processor chips to deliver significant performance 
improvement. Unfortunately, physical constraints on 
power consumption and heat dissipation have made this 
“free lunch” over [5]. Therefore, in recent years, chip 
vendors have introduced multi-core architecture as the 
strategy for continuing to increase computing power, e.g. 
SUN Niagara [6], Intel Clovertown [7], AMD Barcelona 
[8], IBM Cell [9], and so on. But, the multi-core trend will 
not “automatically” benefit all applications. People need 
understand workload characteristics on multi-core systems, 
and carefully design and develop their applications to fully 
exploit multi-core computing power.  

The Session Initiation Protocol (SIP) [1] is used to 
create, modify and terminate sessions between two or 
more communication parties. It is one critical signaling 
protocol in 3G IP Multimedia Subsystem (IMS) and Next 
Generation Network (NGN). It is also becoming popular 
in the Internet and enterprise network for various 
collaborative applications, such as VoIP, instant 
messaging and presence. To enable these applications, 

several key SIP severs are defined in RFC 3261 [1], 
including proxy, redirect and registrar server. Their 
performance is very crucial for SIP-based network 
infrastructure. 

However, to our best knowledge, how SIP server 
performs on multi-core systems is not well studied yet. In 
this paper, we explore the main factors that determine the 
scalability of SIP proxy server on multi-core systems. 
Particularly, we focus our efforts on the factors from the 
OS kernel and programming model, which are expected to 
be generic for other network servers with similar design.  
    We set up two testing servers running well-tuned 
OpenSER SIP proxy server [10], which is popular and 
widely used in the SIP community. One testing server is 
installed with one SUN Niagara eight-core chip [6] and 
Solaris OS. The other is installed with two Intel 
Clovertown quad-core chips [7] and Linux OS. 

Our experiments firstly identify two problems in the 
implementation of OS UDP socket layer, which degrade 
the scalability significantly for UDP transport: 1. In Solaris 
OS, for the recvfrom() system call, a coarse-grained lock is 
used to serialize the access to the socket structure; 2. In 
Linux OS, a similar coarse-grained lock is implemented in 
the sendto() system call. Accordingly, OpenSER server 
suffers from receiving/sending the messages through one 
single UDP port. To remedy this problem, we design an 
out-of-box dispatcher to allow the OpenSER server to 
receive/send the messages through multiple UDP ports.  

Having eliminated the above obstacle, we identify other 
two problems in the traditional multi-process (MP) 
programming model: 1. overhead caused by passing the 
socket descriptors of TCP connections among multiple 
processes, especially when using one single process for 
dispatching the socket descriptors; 2. synchronization 
overhead caused by sharing transaction objects among 
multiple processes.  

To remedy the first problem, we modify the OpenSER 
server to enable each worker process to cache the TCP 
connections in its own local memory, so that they need not 
query the dispatcher process for the socket descriptors of 
TCP connections each time, and then significantly reduce 
the workload of the dispatcher process. 

To remedy the second problem, we split the shared 
transaction objects into a number of smaller groups, and 
then divide one single shared memory block into multiple 
smaller memory blocks. In this way, we can effectively 
reduce the lock granularity and contention overhead. 



By applying all the optimizations, we significantly 
improve the scalability of the OpenSER server: 1. on Sun 
Niagara from 1.5 to 5.8 for UDP transport, and from 2.2 to 
6.2 for TCP transport; 2. on Intel Clovertown, from 1.2 to 
3.1 for UDP transport, and from 2.6 to 4.8 for TCP 
transport. Although our work is based on SIP proxy server, 
the identified problems as well as our optimization 
techniques can also be applied for other network servers 
with similar design, especially those using UDP transport 
and MP-like programming model. 

The remainder of paper is organized as follows. Section 
2 introduces the background and motivation of our work. 
Section 3 describes the environment and methodology. 
Section 4, Section 5 and Section 6 presents the 
experimental results on performance evaluation and 
optimization. Section 7 discusses the related work. Section 
8 concludes the whole paper and discusses the future work. 

 
2. Background and Motivation 
 
2.1 SIP Overview 

 
    SIP is an application-layer signaling protocol that can 
establish, modify, and terminate multimedia sessions, e.g. 
telephony call. SIP can also be used to invite participants 
to one existing session, e.g. multiparty conference.  

Similar with HTTP and SMTP, SIP uses the text-based 
message format. SIP requests include INVITE (invite a 
peer to join a call/session), ACK (confirm receipt of 
message), BYE (terminate call/session), and etc. SIP 
responses are also similar with HTTP and SMTP 
responses, which are composed of a 3-digit number and an 
interpreting phrase, e.g. 100 Trying (provisional response 
indicating the effort to reach the target is occurring), 180 
Ringing (provisional response indicating the phone is 
ringing), 200 OK (final response indicating the request is 
processed successfully). 

A transaction is an important object defined in RFC 
3261 [1]. A SIP transaction consists of one request and all 
the responses to this request, which can include zero or 
more provisional responses and one or more final 
responses. 

In different application scenarios, various SIP servers 
are required, e.g. registrar server is used to provide the 
location service; proxy server is used to forward the 
messages between the end-points or proxies. 

Figure 1 gives out a typical example of exchanging the 
SIP messages between two end-points in VoIP application.  

 

 
Figure 1: An example of exchanging SIP Messages 

 
2.2 Programming Model for Network Server 
 

In general, there are three basic programming models to 
develop a concurrent network server: multi-process (MP), 
multithreaded (MT), and event-driven state machine 
(EDSM) [13] [14] .     

In the MP model, all the processing on one TCP 
connection or UDP message is handled by an individual 
process. In UNIX system, it’s widely used in various 
network severs, such as Apache Web server [12] and 
OpenSER SIP server [10].  

The popularity of MP programming model mainly lies 
in several advantages it can offer: 
1. Robustness. Since each process has its own private 

address space, if one process crashes, other processes 
will not be affected. 

2. Less synchronization overhead. Some standard 
library functions, such as malloc() and free(), use 
global locks to achieve thread safety. This will bring 
potential contention overhead to thread-based model 
[17]. However, MP model doesn’t have such problem 
since global locks are not required for these library 
functions across multiple processes.  

3. Easy implementation. In the MP model, programmer 
need less care about the synchronization than the MT 
model, and can utilize the abundant existing libraries, 
while EDSM architecture is monolithic and usually 
need to be implemented from the ground up [13]  [19]  

 
2.3 Potential Scalability Problems of a MP-based SIP 
Proxy Server on Multi-core Systems 
 

We expect three obstacles for the performance 
scalability of a MP-based SIP proxy server with the 
increasing number of cores/hardware threads: 
 Scalability of UDP protocol stack  
 Overhead of passing socket descriptors among 

multiple processes; 
 Overhead of sharing SIP transaction objects among 

multiple processes. 
 

2.3.1. Scalability of UDP protocol stack. According to 
RFC 3261 [1], a SIP server is mandatory to support both 
UDP and TCP transport. Performance scalability of TCP 
protocol stack on multi-core systems was addressed in 
several previous work, e.g. [4] [15] . However as for UDP 
protocol stack, to our knowledge, there are not much 
research work to explore its scalability on multi-core 
systems yet. In this paper, we will examine the scalability 
of UDP protocol stack for supporting an upper-layer SIP 
proxy server.  
 
2.3.2. Overhead of passing socket descriptors. In Unix 
environment, each process is allocated one open file table 
to store the indexes to file/socket objects which are stored 
in a kernel table shared by all processes. Passing a socket 
descriptor means the index to one socket object should be 



passed correctly from one process to another, so that 
multiple processes can share the same file/socket object.  

Unix programming environment usually provides two 
approaches to pass socket descriptors: 1. use the sendmsg() 
and recvmsg() system calls to pass socket descriptors; 2. 
use STREAM pipe [14] [16] . Both the approaches may 
incur significant overhead. Especially when using one 
single dispatcher process to manage all the connections, 
this dispatcher may become the scalability bottleneck.  
 
2.3.3. Overhead of sharing SIP transaction objects. 
According to RFC 3261 [1], a SIP proxy server can be 
either stateless or stateful. In order to implement some 
advanced functionalities like call accounting, forwarding 
on busy, voice-mail and etc., stateful processing will be 
needed.  

In stateful processing, a proxy server need create a new 
transaction object when receiving a new request and 
update transaction state when receiving a retransmitted 
request or any response.  

A transaction object is the context to do stateful 
processing. This context will be kept across multiple 
messages, e.g. in Figure.1, the proxy server need keep one 
transaction object across seven messages from INVITE 
request to 200OK response. Accordingly, with the MP 
model to implement a SIP proxy server, transaction objects 
have to be shared among multiple processes. Then, 
synchronization overhead to access these shared objects 
may become the scalability obstacle. 
 
2.4 Goal of this Work 
 

The goal of this work can be summarized as following: 
 Measure the scalability of a MP-based SIP proxy 

server on two different multi-core systems; 
 Identify the main factors that determine the 

scalability of a SIP proxy server on the two multi-
core systems; 

 Propose the solutions for any scalability problem 
identified.  

    
3. Environment and Methodology 
 
3.1 Software  
 
3.1.1. Software for SIP proxy server. In our experiments, 
we use the OpenSER server [10] as our testing server. 
OpenSER is an open source SIP proxy server, widely used 
in the SIP community, and well recognized with its high 
performance and reliability.  

OpenSER uses two different MP-based programming 
models for UDP and TCP transport respectively. For UDP 
transport shown as Figure 2(a), multiple pre-forked worker 
processes will invoke blocking-mode recvfrom() to 
concurrently wait on  the well-known port for incoming 
messages.  

For TCP transport shown as Figure 2(b), a dispatcher 
process listens on the well-known port to accept each 
incoming connection, and pass its socket descriptor  to one 

selected worker process using sendmsg() and recvmsg(). 
The selected worker process will watch and serve the 
messages over that connection until it is closed or timeout. 
Then the worker process will pass this dead connection to 
the dispatcher for cleaning up. In the meantime, if one 
worker process attempts to forward the message over an 
existing connection belonging to another process, it has to 
query the dispatcher for the connection socket descriptor. 

All worker processes use shared memory as interprocess 
communication mechanism, using memory-mapped I/O 
(mmap()) [14] to map a file into shared buffer to share 
memory pool structures and transaction objects including 
transaction hash table and timer lists.  

As shown in Figure 2, a single timer process will be 
forked to traverse timer lists to check expired timers and 
trigger corresponding callback functions. According to the 
expiring time duration of different timer events, some 
timer lists are traversed every ten milliseconds, and others 
are traversed every second. 

      
(a) UDP                                 (b) TCP 

Figure 2:  MP-based programming model in OpenSER 
 
3.1.2. Software for Load Generators. In our experiments, 
we use multiple SIPp[11]  instances to work as User Agent 
Client (UAC) and use one stateless OpenSER instance as 
User Agent server(UAS). SIPp is the popular software for 
SIP performance testing. 
 
3.2. Hardware and OS Configurations 
 
3.2.1. Hardware and OS for SIP proxy server. Since 
SIP proxy server may have different performance issues 
on different multi-core systems, we choose two typical 
multi-core systems as our test bed. One uses two Intel 
Clovertown quad-core chips [7] , and each core is with 2.2 
GHz and exploits instruction-level parallelism techniques. 
The other uses one SUN Niagara eight-core chip [6] , 
which relies on explicitly thread-level parallelism. On 
Niagara, each core is with 1.2 GHz and has four hardware 
threads, and then it can support up to 32 different software 
threads or processes to be executing simultaneously on one 
single chip.  

We install RedHat ES5.0 with a Linux 2.6.18 kernel on 
Intel Clovertown, and Solaris 10 on Sun Niagara.  
 
3.2.2. Hardware and OS for load generators. We use 
four IBM blade servers to serve as UACs and another 
server to serve as UAS. All these machines are installed 
with Redhat ES 5.0. 



 
3.3. Environment Setup and Measurement 
 

We configure OpenSER as a stateful proxy server, and 
perform SIPstone Proxy 200 test [2] for both UDP and 
TCP transports. This test scenario is quite typical, and also 
used by other SIP performance evaluation work [3]. 
Message flow in this scenario is the same with the example 
shown in Figure 1 in Section 2.1.  

In all the following experiments, the number of worker 
processes is set to be equal to the number of active 
hardware threads. For example, when enabling all 
hardware threads in 8 cores (4 hardware threads per core) 
on Niagara, we will start 32 worker processes. 

We use the throughput as the performance metric. In our 
paper, if not specified, the throughput is defined to be the 
highest call rate (calls per second) with failure rate 
(completed calls per second / total calls per second) less 
than 0.01%, which is consistent with previous work [2] 
[3] . 

To obtain OS statistics and functional profiling results, 
we use oprofile and mpstat on Intel Clovertown, and 
lockstat, prstat and dtrace on Sun Niagara.  

 
4. Overview of Scalability Results  
 
4.1. Single-core Baseline 
 

Figure 3 presents the single-core results on Niagara 
system. We can see that the scalability of throughput with 
the increasing hardware threads is pretty good for both 
TCP and UDP transport, which indicates explicit thread-
level parallelism on Niagara chip can significantly benefit 
SIP proxy workload. Figure 4 shows the single core results 
on Clovertown system.  

From Figure 3 and Figure 4, one observation is that for 
both systems, OpenSER sever with UDP transport has 
better single-core throughput than TCP transport, i.e. 1.8x 
on Niagara and 2.1x on Clovertown. According to the 
profiling results, the main factor is that OpenSER server 
uses a dispatcher process for TCP transport, which brings 
additional socket descriptor passing overhead as well as 
context switch overhead.  
 
4.2 Scalability Results 
   Figure 5 and Figure 6 shows the overall scalability 
results, which is very poor for both systems (where ideal 
speedup is 8). We will identify the main factors that cause 
such poor scalability and our corresponding optimizations 
step by step in later sections.  
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(a) UDP                                           (b) TCP 

Figure 3: Single-core results on Niagara system (xCyT denotes 
that x cores and y hardware threads per core are activated) 
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Figure 4: Single core results on Clovertown system 
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(a) UDP                                (b) TCP 

Figure 5: Scalability results on Niagara system 
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(a) UDP                               (b) TCP 

Figure 6: Scalability results on Clovertown system (xC denotes that 
x cores are activated) 

 
5. Scalability Issues in UDP protocol Stack  
 
5.1. Issues in Solaris UDP Protocol Stack  
 
5.1.1. Problem identification. The overall scalability 
results of UDP transport on Niagara are shown in Figure 
5(a). The poor scalability is mainly caused by a coarse-
grained lock used for synchronizing accesses to UDP 
socket structure in the recvfrom() system call. 

In Solaris, the system call recvfrom() corresponds with 
the kernel function sotpi_recvmsg(). Figure.7 shows the 
code path for sotpi_recvmsg()  

kstrgetmsg() copies received packets from kernel socket 
buffer to user buffer. The conditional variable SO_READ 
is the mutex used to serialize the copy operations on one 
socket. Thus, the operation mutex_vector_enter(so_lock) 
which tries to acquire the spin lock so_lock will be 
frequently called when a number of processes invoke 
recvfrom() on the same socket. Besides, in the function 
so_unlock_read(), all processes that sleep for the mutex 
will be awaken, thus cause the “thundering herd” problem 
[18],where many processes will be waken up and spin 
together to contend for the so_lock, and accordingly 
significant CPU cycles will be wasted. 

 



sotpi_recvmsg(){ 
      … 
    

so_lock_read_intr(); 
      kstrgetmsg(); 
      so_unlock_read(); 
     … 
} 

so_lock_read_intr(){ 
while (SO_READ==1) 
{   

cv_wait_sig(); 
cv_block(); 
swtch(); 
mutex_vector_enter(so_lock) 

     } 
     SO_READ=1; 
} 

so_unlock_read(){ 
     SO_READ=0; 
     cv_broadcast() 
} 

 

Figure 7: Code path for Solaris sotpi_recvmsg() 
 

According to our profiling results, in 8C4T case, the 
overhead of recvfrom(), mutex_vector_enter(), 
sotpi_recvmsg(), and so_lock_read_intr() is significant. 
The total overhead caused by the recvfrom() system call is 
larger than 50% CPU time. In result, as illustrated in 
Figure 8, for 8C4T, most of CPU time is spent in the 
kernel. 
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Figure 8:  CPU utilization at the throughput points in figure 5(a) 

 
5.1.2. Optimization. To solve the above problem, we 
configure the OpenSER sever to listen on multiple ports 
and design an out-of-box dispatcher to dispatch incoming 
packets evenly to those ports. With this optimization, the 
CPU time spent in the kernel space at the throughput point 
of 8C4T case has been significantly reduced from 66% to 
less than 30%. The total overhead caused by the recvfrom() 
system call has also been reduced from >50% CPU time to 
less than 10%. 

However, we observe the jitters in both CPU utilization 
and packet drop ratio of UDP socket layer, as shown in 
Figure 9 (a). In the OpenSER server, the timer process 
periodically scans the timer lists and in the meantime, the 
worker processes also need access the timer lists for 
inserting or modifying the timers. Therefore, the worker 
processes will be stalled by the timer process when the 
timer lists are locked and scanned for a long time. So we 
infer that the jitters are mainly caused by such contention.  

The jitters will bring the significant call failures. If these 
failures are counted to measure the throughput, we will see 
that the throughput isn’t improved much although CPU 
utilization is reduced significantly. But, if we do not count 
in the failures, the speedup on Niagara is increased from 
1.5 to 4.6, as shown in Figure 9(b).  

For the jitter problem, we will deal with it in Section 6.2.   
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(a) Jitters at 8100cps, 8C4T            (b) Scalability 

Figure 9: Results for using out-of-box dispatcher on Niagara for 
UDP transport 
 
5.2. Issues in Linux UDP Protocol Stack 
 
5.2.1. Problem identification. Linux has a similar 
problem in the sendto() system call, where one coarse-
grained lock is used. It causes the poor scalability for UDP 
transport on Clovertown system, shown as Figure 6(a). 

In Figure 10, we can see that in the code path of the 
function udp_sendmsg(), which is the corresponding 
kernel function of sendto(), lock_sock() is invoked to 
synchronize the copy operation from kernel buffer to the 
user buffer. This coarse-grained lock will bring significant 
contention overhead.  

Ip_append_data(){ 
 … 

   ip_generic_getfrag(); 
     … 
} 

 
udp_recvmsg() 
{ 
      … 
    lock_sock(); 

      ip_append_data();
      release_sock(); 
     … 
} 

ip_generic_getfrag(){ 
   … 
  //copy data from kernel to user buffer 
memcpy_fromiovecend() 

… 
} 

Figure 10: Code path for Linux udp_sendmsg() 
 

5.2.2. Optimization. We solve the above problem in 
sendto() by modifying OpenSER codes to allow sending 
the packets over multiple sockets. The speedup is 
improved from 1.2 to 3.1, as shown in figure 11.  

1C 2C 4C 8C

6000
8000

10000
12000
14000
16000
18000
20000
22000
24000

 Throughput
 Speedup

CPU configuration

cp
s

1.0

1.5

2.0

2.5

3.0

speedup

 
Figure 11: Scalability results for using multi-send-sock on 

Clovertown for UDP transport  
 
6. Performance Issues in Programming Model 
 

After remedying the problems in UDP protocol stack, 
we further identify two performance issues in the MP 
programming model used by the OpenSER server: 1) 
Overhead of passing connection socket descriptors among 
multiple processes; 2) Synchronization overhead caused 
by sharing transaction objects among multiple processes.  
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6.1. Overhead for Passing Socket Descriptors 
 
6.1.1. Problem identification. As shown in Figure 6(b), 
on Niagara system, when the number of TCP worker 
processes is larger than 16, increasing the number of 
worker processes will not bring any further performance 
gain. That’s mainly because worker processes query the 
dispatcher for passing the socket descriptors of TCP 
connections. This will be a heavy workload for the 
dispatcher.  

Figure 12 shows the breakdown of CPU time for 
Niagara system. It can be seen that when starting more 
than 8 worker processes on Niagara system, TCP 
dispatcher process will get overloaded ahead of other 
processes. In the meantime, the profiling results show that 
the functions relevant with passing socket descriptors: 
send_fd(), receive_fd(), sendmsg(), and recvmsg(),  
account for more than half of dispatcher’s processing time. 
It shows that the overhead of passing socket descriptors 
brings the dispatcher process into a performance 
bottleneck. 
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Figure 12: Comparison of CPU utilization with different workers  

 
The profiling results on Clovertown system also show 

that although at the throughput point, the CPU utilization 
is less than 60%. The functions relevant with passing 
socket descriptors also account for significant overhead 
(more than 35% for 8C case). 
 
6.1.2. Optimization and Results. To avoid the bottleneck 
of the central dispatcher, we propose the “lightweight 
connection dispatcher” optimization to offload the 
workload from the dispatcher to the worker processes, thus 
eliminating the central bottleneck. More specifically, each 
worker process will cache the connection socket descriptor 
in its local memory. Each time a worker process wants to 
send out a message over one connection, it firstly looks for 
the connection in its local memory, if not found, it will try 
to establish a new connection and cache this connection 
rather than query the dispatcher. Each worker process is in 
charge of cleaning all the connections cached in local 
memory rather than passing dead connections to the 
dispatcher for cleanup. By such way, we can not only 
reduce the overhead of passing socket descriptors but also 

reduce the context switch overhead, because the dispatcher 
process will be invoked less frequently. 

We implement the lightweight dispatcher optimization 
upon OpenSER server.  

On Niagara system, the speedup is improved to 3.5. We 
can see that when worker processes are less than 16, 
scalability is close to linear (speedup from 1C4T to 4C4T 
is 3.8). However, when the number of worker processes 
increase further, the performance degrades. We will 
discuss the reason for this in Section 6.2. 

The lightweight dispatcher optimization also can bring 
benefits to the Clovertown system. The speedup of the 
OpenSER server on Clovertown system has been 
improved by 85%, from 2.6 to 4.8, as shown in figure 
13(b). 
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(a) Niagara                                (b) Clovertown 

Figure 13: Results for OpenSER with a lightweight dispatcher for 
TCP transport 

 
6.2. Synchronization Overhead for Sharing 
Transaction Objects 
 
6.2.1. Problem identification. According to OpenSER’s 
programming model, transaction objects are shared among 
the multiple worker processes, including three important 
data structures are shared: memory pool, timer list and 
transaction table.  

OpenSER server implements its own spin lock utility in 
the user space. The function tsl() will spin to acquire a 
lock, and if the lock is not obtained after spinning for a 
number of times (default is 1024), lwp_yield() will be 
invoked to put the corresponding worker process to the 
end of the OS scheduling queue and schedule another 
process to run. 

 On Niagara system, for both UDP and TCP transports, 
after applying all the optimizations in the prior sections, 
when worker processes are more than 16, synchronization 
overhead on transaction objects becomes significant and 
dominant.  

Shown as in Figure 14, we can see that the functions tsl() 
and lwp_yield() accounts for significant CPU time. Other 
profiling results show that the major function contributing 
to lwp_yield() is set1_timer(), which need to acquire the 
lock before scanning the timer lists for the expired timers. 
This will cause the jitters described in Section 5.1.2. Next 
two largest synchronization overheads are due to sharing 
memory pool and transaction hash table.  

However, on Clovertown system, those functions only 
account for less than 1% of total overhead.  

(a) 4 children workers (b) 8 children workers 

(c) 16 children workers (d) 32 children workers
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(a) UDP                                (b) TCP 

Figure 14: Function profiling at the throughput point for 8C4T case 
on Niagara. 

 
6.2.2. Optimization and Results. To solve the above 
problem, we propose the “dataset partition” optimization. 
Specifically, we use multiple shared memory blocks 
instead of one shared memory block, and each shared 
memory block contains its own timer lists, memory pool 
and transaction hash table. Then, for each incoming 
message, we use the Call-ID and CSeq values obtained 
from the corresponding fields of SIP messages to generate 
memory block ID, and all the information on the message 
will be stored in the memory block specified by the ID. 
We modify all the functions that need to access the shared 
data structure. For example, for the function set1_timer(), 
we convert it into scanning multiple smaller timer lists 
belonging to different memory blocks in a loop fashion.  

We implement the “dataset partition” scheme upon the 
OpenSER server, using 32 shared memory blocks with the 
size of 256MB. Scalability results are shown in Figure 16, 
which show that such optimization brings significant 
benefits to Niagara system. On Niagara system, the 
speedup for UDP transport has been improved to 5.8, 
increased by 286%, if compared with the original case; the 
speedup for TCP transport has been improved to 6.2, 
increased by 182%.  In addition, the jitters in CPU 
utilization and packet drop ratio described in Section 5.1.2 
are not observed any more. 

1C4T 2C4T 4C4T 8C4T

2000

4000

6000

8000

10000

 Throughput
 Speedup

CPU configuration

cp
s

1

2

3

4

5

6

S
peedup

1C4T 2C4T 4C4T 8C4T

1000

2000

3000

4000

5000

6000

7000

8000

9000

 Throughput
 Speedup

CPU configuration

cp
s

1

2

3

4

5

6

S
peedup

 
(a) UDP                                (b) TCP 

Figure 15: Results for OpenSER with dataset partition on Niagara 
System 

But the dataset partition optimization can not bring 
obvious performance gain to Clovertown system. That’s 
mainly because much less worker processes are run on 
Clovertown system (i.e. 8 workers on Colvertown for 8C 
case, but 32 workers on Niagara for 8C4T case). In this 
situation, synchronization overhead to access transaction 
objects is not significant to the performance.  

 
6.3. Discussion 

Particularly, for Clovertown system, we also find some 
additional factors that will affect the performance: 

1. By applying all the optimization, the scalability on 
Clovertown system is worse than Niagara system (i.e. for 
UDP transport, Niagara’s speedup is 5.8, but Clovertown’s 

is 3.1) This is mainly caused by IRQ affinity policy, which 
will direct all incoming network interrupts to one CPU for 
receive processing, thus this core will be one scalability 
bottleneck. 

Although, we try to reduce such bottleneck effects by 
setting CPU affinity for the OpenSER processes to allow 
one core dedicated for packet receiving, this can not fully 
solve the problem. However, at the high load, this problem 
still becomes the scalability bottleneck. One possible 
solution to solve such problem is to use NIC designed with 
Receive-Side Scaling (RSS) [4] technology, which can 
bind each core with interrupts processing of a group of 
network flows. With RSS technology, packet receiving 
can happen in multiple CPUs so that above bottleneck can 
be avoided. 

2. On Clovertown system, for a given core number, 
different core configuration can result in different 
performance.  For example, the throughput for the 
configuration with two cores on the same chip is 
significantly higher than with two cores on different chips 
(e.g. for UDP transport, the throughput results are 9250 
and 7250 respectively). We believe that is mainly due to 
the cache coherency overhead and cache locality. In our 
experiments, in order to obtain the best performance, we 
choose the configurations which enable physical cores as 
close as possible, e.g., for the case of two cores, we 
activate two cores sharing the same L2 cache on one chip; 
for the case of four cores, we activate four cores on one 
chip. 

In addition, for Clovertown system and Niagara system, 
we have no intention to use the scalability results to 
suggest any one of the two systems is better than the other. 
That’s mainly because they are too heterogeneous in many 
aspects of hardware design and OS, e.g. CPU frequency, 
cache size, OS network stack implementation, and etc., 
which will make such comparison elusive, complex and 
difficult to validate. 

 
7. Related Work 
 

As SIP has been adopted by more and more applications, 
there is a good deal of research work focusing on the 
performance issues of SIP server. Nahum et al [3]  
evaluate the performance of several common SIP scenarios 
like registrar, proxy, and proxy with authentication on the 
Intel single-core system. They also use OpenSER server as 
the testing server. Their work focus on how to design the 
comprehensive benchmark for various SIP severs. As to 
SIP optimization, Zou et al [20] design a scheme to offload 
SIP message parsing from the SIP server to a hardware 
accelerator. Janak [21]  proposes the optimization for SIP 
server implementation, including lazy parsing, counted 
string, and memory pool. Compared with their work, our 
work is focus on identifying and solving the scalability 
issues of a SIP proxy server on multi-core systems. 

As to the work around application performance on 
multi-core platforms, Veal et al[4] evaluate the scalability 
of Apache web server on one Intel multi-core system, 
examine a series of expected scalability obstacles and 



propose the solutions for the problems identified. Petrin et 
al [22] evaluate the performance of the Sweep3D software 
on Cell system, and identify a series of unexpected 
problems. Different from their work, we focus on the 
scalability of SIP protocol and our work helps to 
understand the scalability of SIP protocol on multi-core 
systems. 
 
8. Conclusions and Future Work 
 

In this paper, we evaluate a well-known OpenSER 
server on two different but typical multi-core systems: 
Intel Clovertown and Sun Niagara. In result, we identify 
three scalability issues on UDP protocol stack and MP 
programming model. We also propose and implement a 
series of incremental optimization techniques and achieve 
the significant performance improvements, as shown in 
Table 1. It is important to emphasize that the problems 
we’ve identified in this paper will also have similar effects 
on other network servers with similar design on the multi-
core systems. Therefore, our optimizations are also helpful 
for those servers.  
 

Table 1: Summary of speedup results  
 original out-of-box 

dispatcher 
TCP 

lightweight 
dispatcher 

dataset 
partition1

Niagara-UDP 1.5 4.6 - 5.8 
Niagara-TCP 2.2 - 3.5 6.2 

Clovertown-UDP 1.2 3.1 - - 
Clovertown-TCP 2.6 - 4.8 - 

 
From this work, we also learn the fact that programming 

with the threads and locks on multi-core systems is time-
consuming and error-prone. One potential solution is to 
design a new SIP programming framework which will 
divide messages into logically independent groups 
according to the session-ID. The framework guarantees 
that all messages belonging to the same session-ID will be 
dispatched to the same process for stateful processing. By 
this way, we can eliminate inter-process communication 
because the messages belonging to different call sessions 
need not share the states and timers. Accordingly, 
programmers don’t need the efforts to synchronize those 
processes any more. 
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