
RC24503 (W0803-004) March 3, 2008
Computer Science

IBM Research Report

Online Optimization for Latency Assignment in Distributed
Real-Time Systems

Cristian Lumezanu
University of Maryland

Sumeer Bhola
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Mark Astley
Two Sigma Investments, LLC

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Online Optimization for Latency Assignment
in Distributed Real-Time Systems

Cristian Lumezanu∗
University of Maryland

lume@cs.umd.edu

Sumeer Bhola
IBM T.J. Watson Research Center

sbhola@us.ibm.com

Mark Astley∗
Two Sigma Investments, LLC
mark.astley@twosigma.com

Abstract

As distributed real-time applications gain in popu-
larity, a key challenge is to allocate resources so that
diverse real-time requirements (including non-real-time
applications), distributed application components and
varying workloads can all be accommodated without
violating timeliness constraints. We examine the prob-
lem of resource allocation in distributed soft real-time
systems, where both network and CPU resources are
consumed. The timeliness constraints of applications
are expressed through utility functions, which compute
“benefit” as a function of end-to-end latency. We present
LLA (Lagrangian Latency Assignment), a scalable and
efficient distributed algorithm which maximizes aggre-
gate utility by computing an optimal trade-off between
end-to-end latency and allocated resources. The algo-
rithm runs continuously and adapts to both workload
and resource variations. LLA is guaranteed to converge
if the workload and resource requirements stabilize. We
evaluate the quality of results and convergence charac-
teristics under various workloads, using both simulation
and real-world experimentation.

1. Introduction

Recent years have witnessed the emergence of dis-
tributed real-time systems as a platform for enterprise
applications seeking to respond rapidly to real world
events. Representative examples include program trad-
ing, risk management, medical alerting, patient moni-
toring, airline ticket pricing and environmental monitor-
ing. The common theme across all these applications
∗Work done while authors were at the IBM T.J. Watson Research

Center.

is that they leverage distributed and heterogeneous re-
sources to continuously process and analyze real-world
data in real-time and to build accurate models used for
prediction or prevention. Consider, for example, a pro-
gram trading application which trades securities based
on real-time analysis of market data. Bandwidth and
CPU are both constrained resources in such an appli-
cation: available network bandwidth must be balanced
between receiving market data, and issuing trades; and
CPU must be balanced between handling market data
and performing trading strategy analysis.

Ensuring that the real-time requirements of dis-
tributed applications are satisfied is challenging. First
of all, due to technology convergence, applications with
a diversified set of real-time demands share the same
infrastructure. Thus, a scheduling algorithm should be
flexible in accommodating different quality of service
requirements and in quantifying the importance of appli-
cations relative to each other. Second, the available re-
sources are not dedicated and may change over time due
to failures. Workloads may also vary, typically because
communication is triggered by real world events. Over-
provisioning is not feasible since it has significant cost in
terms of hardware, space, power and human resources.
Instead, it is preferable to manage the scheduling of ex-
isting resources dynamically. For example, in program
trading, a dynamic strategy which is work conserving is
particularly favorable as certain functions, such as trad-
ing strategy analysis, can use surplus resources to their
advantage. Managing resources statically, on the other
hand, may lead to underutilization or starve important
functions during high load.

In this paper we present LLA (Lagrangian Latency
Assignment), a distributed feedback-based optimization
algorithm to control the scheduling parameters for soft
real-time applications in a distributed system, such that

the aggregate system utility is maximized. There has
been much recent work in the real-time community on
feedback control approaches for scheduling sets of dis-
tributed applications. However, this research (see Sec-
tion 7 for a detailed comparison) is typically limited to
adjusting the aggregate CPU utilization on servers to en-
sure that all the distributed applications are schedulable.
It does not take into account flexible application dead-
lines, different levels of importance for applications or
network bandwidth resources. LLA, on the other hand,
incorporates limits on both CPU and network band-
width, and in general can accommodate any similar re-
source constraints. Moreover, our approach specifies the
utility of the system as a non-increasing function of the
latency of each application, which implicitly expresses
the application importance with respect to other appli-
cations as well as the importance of meeting a particular
latency requirement. Furthermore, it allows the use of
different percentiles of individual latencies when com-
puting the utility function. For instance, one application
may use a 99th percentile of all its individual latencies,
while another may use a 50th percentile, depending on
the nature of the application or its SLA.

The optimization problem is solved on-line, in a dis-
tributed manner, using the “price” of resources to co-
ordinate the resource consumption by different appli-
cations. As the optimization is constantly running, the
system is adaptive, and adjusts to both workload and re-
source variations. The algorithm is guaranteed to con-
verge if the workload and resource requirements stabi-
lize. Our optimization approach is model-based. For
each application and resource used by that application,
we predict the latency at that resource (the latency slice
contributing to the end-to-end latency) as a continuous
function of the scheduling parameter. The scheduling
parameter is a proportion of the resource allocated (i.e.,
we assume proportional share scheduling), but no partic-
ular implementation is mandated. The model itself can
be constructed on-line, and iteratively improved as the
system is running, as we show in our experiments.

The main contributions of this paper are:

1. A framework for unifying diverse real-time re-
quirements, using utility functions as metrics to
measure application importance, into an objective
for the system to achieve

2. A distributed algorithm that continually optimizes
the system utility, by adjusting scheduling param-
eters, and which takes into account feedback of
workload, resource and model changes. Under cer-
tain constraints, the algorithm is guaranteed to con-
verge to the optimal solution.

3. An experimental evaluation using both simulation
and a prototype implementation, that demonstrates

fast convergence, scalability, and the ability to im-
prove the latency models at runtime.

The paper is structured as follows. We present a pro-
gramming model for real-time applications in Section 2.
Next, we define the optimization problem (Section 3)
and describe the LLA algorithm (Section 4). We evalu-
ate LLA through extensive simulations (Section 5) and
real system experimentation (Section 6). We review re-
lated work is Section 7 and we conclude in Section 8.

2. Programming Model

We consider distributed real-time applications that
can be modeled using the typical task and subtask
model, with the generalization that multiple jobs in a
subtask can be released without waiting for previous
jobs to finish. This generalization captures real-life
workloads with bursty arrivals. The context for our
model is a distributed system composed of nodes inter-
connected by links. Each node and link provides a set
of resources for which applications compete in order to
meet timeliness constraints. For example, nodes provide
CPU, whereas links provide network bandwidth.

Applications are defined similar to an end-to-end task
model [31] in which there are a set of tasks, T = {Ti},
each of which consists of a set of subtasks, Si = {Tij}.
Subtasks may utilize different resources. For simplicity
of exposition and without loss of generality, we impose
the restriction that each subtask consumes exactly one
resource.

Subtasks may also specify properties which describe
how a resource will be utilized, for example worst
case execution time (WCET). Note that an application
consisting of computation and communication will be
modeled uniformly in terms of subtasks: computation
is modeled as subtasks which consume processor re-
sources; and communication is modeled as subtasks
which consume network resources.

Tasks are dispatched/released in response to trigger-
ing events which are signals with an arrival pattern and
optional data. For example, a triggering event may be a
periodic signal at a constant rate. The arrival patterns of
triggering events are included in task specifications, or
measured at runtime, for scheduling purposes.

The release of subtasks is constrained by a prece-
dence relation called a subtask graph, which is a directed
acyclic graph of subtasks with a unique root. The root
is called the start subtask, and the leaf nodes are called
end subtasks. Edges in the graph represent precedence,
either in the form of data transmission or logical order-
ing constraints. Formally, the subtask graph, Gi, for task
Ti is denoted by the relation Gi ⊂ Si × Si where Gi is

2

Figure 1. A task T1 consists of a subtask
graph and a set of triggering events. When
a triggering event occurs, the first subtask
in the subtask graph becomes eligible for
release. The job sets and jobs resulting
from two task releases are shown in the
time-line on the right.

acyclic. A path p in Gi is defined to be a sequence of
subtasks Tia, Tib, . . . , Tin where:

• each adjacent pair (Tix, Tiy) ∈ Gi;

• Tia is the unique root of Gi; and

• Tin is a leaf node of Gi.

We denote by Pi all paths in the subtask graph of a task
i.

We use the term job to distinguish separate instances
of a released subtask. As mentioned earlier, jobs of a
subtask can be released concurrently or overlap. Regard-
less of overlap, precedence constraints across subtasks
must still be observed. The set of jobs which correspond
to a particular task release are called a job set and repre-
sent an instance of the subtask graph. Formally, a job set
Jij represents the jth instance of task Ti and consists of
a set of jobs Jij = {jjk : Tik ∈ Si}. Figure 1 illustrates
these concepts.

Task execution is subject to timeliness constraints
which we describe below.

2.1. Timeliness Constraints

The timeliness constraint for a task limits the total la-
tency incurred by a job set dispatched for the task. The
latency for a job set is defined as the interval between
the dispatch time of the root subtask and the completion
time of all eligible end subtasks. We specify this time-
liness constraint using a utility function which is a non-
increasing function that maps job set latency to a utility
value. The maximum allowable latency may be limited
by a critical time beyond which latency may not extend
regardless of utility. Thus, critical time is analogous to a
deadline.

Utility functions are a generalization of simple dead-
lines where, in addition to defining absolute constraints
(e.g., latency must not exceed the critical time), the
shape of the function can be used to derive trade-offs
between latency (i.e., resource allocation) and benefit to
the application. Thus, our goal is to satisfy all appli-
cation deadlines (i.e., critical times) while maximizing
utility.

The latency (and hence utility) of a job set depends
on the latency experienced by the individual jobs within
the set. The latency experienced by an individual job
depends on resource allocation and may vary accord-
ing to application parameters. Task specifications are
expected to define properties which help to determine
the latency for jobs (e.g., worst case or average case ex-
ecution time). Specifications could be derived or cor-
rected from runtime measurements. We can combine
these specifications (including trigger event specifica-
tions) together with a model of resources to derive the
predicted latency for a job.

When job latency is worst case, we can formalize
utility computation as follows (we consider other than
worst case below). Let Ti be a task with subtasks Si

and subtask graph Gi. For a subtask s ∈ Si, let lats be
the worst case latency for any release of s given current
resource allocations.

The (worst case) latency of a path, p ∈ Pi is the sum
of the latencies of each subtask in the path:

∑
s∈p lats.

We define the critical path as the path with the max-
imum latency among all possible paths in a subtask
graph. Thus, the (worst case) latency of a job set is the
latency of the critical path. Therefore, the utility for a
task Ti is given by the function:

Ui = fi(max
p∈Pi

∑
s∈p

lats) (1)

where examples of fi are the functions shown in Fig-
ure 2. That is, utility is computed from the worst possi-
ble latency experienced for the task.

The case where lat is other than worst case is more
complicated. Let latp

s be the latency bound for the pth

percentile of jobs released for subtask s. For example,
lat50

s gives the median latency. Note that for two sub-
tasks a and b, each with the same number of released
jobs, the sum latp

a + latp
b yields the p2

100 latency per-
centile. Thus, if all paths have the same length n, we
must use the p

1
n × 100

n−1
n latency percentile for each

subtask in order to compute utility as a function of the
pth latency percentile. If path lengths are not identical,
then separate latency functions must be used depending
on the path being computed. Our model can be used
with any latency percentile, but to simplify the exposi-
tion we will omit the percentile subscript and assume

3

that the percentiles have been appropriately chosen for
each subtask latency function. Also, for simplicity of
exposition, we assume that no two subtasks in the same
task consume the same resource.

3. Optimization Problem

Our goal is to find the latencies for each subtask in
the system such that we achieve optimal value for the
sum of utilities across all tasks. We express this goal as
a constrained optimization problem.

3.1. Optimization

Let R be the set of all resources. Every resource is
characterized by a share function to map subtasks to re-
source shares and an availability value. The resource
availability, Br ∈ [0, 1], represents the fraction of the
resource available to our competing tasks. We define the
share function later in this section.

Each subtask is part of exactly one task and will uti-
lize exactly one resource. For simplicity, we abuse no-
tation and denote all subtasks associated with either a
particular task or resource by Si where i represents the
task or the resource, depending on the context. Simi-
larly, all resources where a task i executes are denoted
by Ri. Furthermore, unless we explicitly need to distin-
guish among separate instances of the same subtask or
task, we use interchangeably the terms job and subtask,
respectively job set and task. For every task i, Ci is the
critical time (i.e., deadline) of the task. Every subtask
s has a predicted latency (lats). The latency is deter-
mined by the resource the subtask utilizes using both
subtask properties (e.g., WCET) and resource properties
(e.g., lag in scheduling, share assignment).

Our objective is to maximize the total utility of the
system, defined as the sum of utilities across all tasks:

max
∑

i∈T
Ui (2)

There are two different constraints:

Resource Constraint. Each subtask competing for a
resource receives a share of the resource. To model
the correspondence between a subtask, its latency and
its share, we define, for each resource r, the function
sharer : Sr × R+ → [0, 1]. The resource constraint
states that the sum of resource shares allocated to each
subtask must be lower than the fraction of available re-
source:

∑

s∈Sr

sharer(s, lats) ≤ Br, ∀r ∈ R (3)

Figure 2. Utility functions for elastic and
inelastic tasks.

Critical Time Constraint. To ensure that a task in-
stance finishes in time, the end-to-end latency for each
path in the subtask graph must be smaller than its critical
time.

∑
s∈p

lats ≤ Ci, ∀i ∈ T , p ∈ Pi (4)

3.2. Discussion

Utility Functions. The utility of a task represents the
benefit derived from completion of the task. Following
the model of time-utility functions proposed by Jensen et
al. [8], utilities are non-increasing functions that map the
end-to-end task latencies to a benefit value. Figure 2 il-
lustrates two examples of utility functions. The function
on the left characterizes an elastic task in which bene-
fit increases as latency decreases. Such tasks are typical
of soft real-time systems and allow trade-offs between
overall system benefit and utilization of resources. The
function on the right characterizes an inelastic task and
represents traditional hard real-time scheduling where
the only important behavior is that tasks complete be-
fore their deadline. Inelastic tasks constrain resources,
but do not allow trade-offs between benefit and utiliza-
tion. Our approach can accommodate both elastic and
inelastic tasks as long as utility functions are concave
and continuously differentiable when latency is less than
the critical time.

Equation 1 defines the task utility in terms of the crit-
ical path in the subtask graph. However, since the algo-
rithm continuously adjusts the scheduling parameters to
reflect the best possible allocation, the critical path may
change. This behavior may make the objective function
non-concave and may prevent the algorithm from find-
ing a single optimal allocation. Therefore, to make the
problem tractable, we propose two variations of the util-
ity function of a task Ti:

• sum. The utility of Ti is a function of the sum of
the latencies of each subtask belonging to Ti.

• path-weighted. The utility of Ti is a function of
the weighted sum of the latencies of each subtask
belonging to Ti. The weight of each subtask s is

4

proportional to the number of paths that s belongs
to.

We believe that these variations are flexible enough to al-
low for a close approximation of the optimal allocation.
As we show in Section 5, the critical path obtained when
maximizing the path-weighted utility is always less than
1% smaller than the critical time (i.e., the maximum pos-
sible critical path).

Proportional Share scheduling. We use a propor-
tional share (PS) mechanism to map subtasks to share
requirements. In proportional share scheduling, every
subtask receives a fraction of the resource it utilizes.
This fraction, the share, provides an easy way to par-
tition CPU and link resources, and thus provides per-
formance isolation between subtasks [25]. In the con-
text of soft real-time systems, it is important to pre-
vent poorly behaved subtasks from consuming more
than their allotment of share. Furthermore, PS sched-
ulers are work-conserving, so spare capacity can be uti-
lized. Other mechanisms, like traditional priority or
time-sharing schedulers, are simpler than proportional
share, but do not offer a straightforward way for parti-
tioning resources or enabling performance isolation.

Admission Control. Admission control could be used
at the granularity of tasks, or for job sets in a task. We
assume any admission control is layered on top of our
approach, and is outside the scope of this paper.

4. Distributed Optimization Algorithm

In this section we describe LLA (Lagrangian Latency
Assignment). LLA is a distributed algorithm, based on
the Lagrange multiplier theory, that assigns latencies to
all subtasks in the system such that the total system util-
ity is optimal.

4.1. Overview

We assume there exists a task controller for each task
in the system. Each controller determines the resource
share and latencies for all subtasks that belong to the
task. Task controllers may execute on dedicated nodes
or may occupy the resources where the start subtasks of
each task execute.

We say that the system is congested whenever at least
one of the constraints defined by Equations 3 and 4 is vi-
olated. We identify two types of congestion, depending
on the type of constraint that is not respected. Resource
congestion occurs when a resource cannot schedule all
subtasks executing locally (i.e. the sum of their shares

is greater than Br) and path congestion occurs when a
path in the subtask graph cannot finish execution before
its critical time.

At any moment, we can make the utility of a task
higher by decreasing the latency of any of the subtasks
on the critical path of the task. This may potentially
create congestion in the system, both in a direct and an
indirect way. First, decreasing the latency of a subtask
makes the share allocated to the subtask bigger, which
can lead to resource congestion. The only way to control
the resource congestion is to give a smaller share to at
least one of the other subtasks executed on the resource.
However, decreasing the share of a subtask makes the
individual latency of the subtask bigger and, if the sub-
task is on a critical path, can delay the associated task
beyond its critical time. Thus, decreasing the latency
can also create path congestion in the system. To guar-
antee that no congestion occurs, a task controller would
have to be coordinated with all the other task controllers,
which is impractical in real systems. We use the concept
of price [13, 18] to solve the problem in a distributed
setting. A price is associated with each resource and
each path and indicates the level of congestion in the
resource or the path. Each resource1 computes a price
value and sends it to the controllers of the tasks that have
subtasks executing at the resource. Each controller com-
putes prices for all paths in the associated tasks. Based
on the received resource prices and the local path prices,
a controller can calculate new latencies for the subtasks
in its task.

LLA solves the optimization problem iteratively. A
single iteration consists of latency allocation and price
computation. Latency allocation predicts the optimal
latencies at a certain time, given fixed resource and path
prices. Price computation computes new values for the
prices, given constant latencies for all subtasks in the
system. The algorithm iterates indefinitely but the allo-
cations may be only enacted periodically or when sig-
nificant changes occur.

4.2. Latency Allocation

The latency allocation algorithm runs at each task
controller and computes new latencies for all subtasks
in the task, based on feedback from the resources where
these subtasks run and from the paths to which they be-
long. Latencies are computed using the Lagrangian [4]
of the original optimization problem (Equations 2,3 and
4):

1Prices for link resources are computed by one of the endpoints of
the link.

5

L(lats, µr, λp) =
∑

i∈T
Ui

−
∑

r∈R
µr(

∑

s∈Sr

sharer(s, lats)−Br)

−
∑

i∈T ,p∈Pi

λp(
∑
s∈p

lats − Ci) (5)

where µr and λp are the Lagrange multipliers and can be
interpreted as the price per unit of resource r and path p,
respectively. We will simply refer to µr as resource price
and to λp as path price.

We assume that the utility functions, expressed in
terms of subtask latencies, are concave and continuously
differentiable, in the region where the critical time con-
straint is satisfied (Equation 4). We also assume that the
share functions are strictly convex and continuously dif-
ferentiable, since increasing latency leads to diminish-
ing returns in terms of decreasing share (and vice versa).
This implies that if the utility functions were expressed
in terms of share allocation, they would be strictly con-
cave and continuously differentiable. This strict concav-
ity, along with the fact that the resource constraints and
critical time constraints are convex sets, means that find-
ing the maximum for the objective function is equivalent
to finding the maximum for the Lagrangian (dual prob-
lem) [4]. Thus, instead of solving the original optimiza-
tion problem, we solve the following alternative problem
for each task i, given specific values for µr and λp:

D(µr, λp) = max
Li

L(lats, µr, λp)

Li = {lats,∀s ∈ Si}, r ∈ Ri, p ∈ Pi (6)

Based on the earlier assumptions, the objective func-
tion in Equation 6 is strictly concave and continuously
differentiable. The maximum is found by setting its
derivative with respect to each lats ∈ Li to 0:

∂L

∂lats
=

∂Ui

∂lats
−

∑

p∈Pi

λp − µr
∂sharer(s, lats)

∂lats
(7)

where i is the task containing subtask s and r is the re-
source utilized by subtask s.

The latency allocation step is performed by executing
the following algorithm at the controller of each task:

4.3. Price Computation

Prices reflect the congestion of resources and paths.
At every iteration, the newly computed latencies may
potentially affect the schedulability of subtasks on re-
sources or the end-to-end latencies of paths and thus

Latency Allocation
OUTPUT: Latencies lats, ∀i ∈ T , ∀s ∈ Si, at iteration

t = 1, 2, ...
1: Receive the resource price values µr, ∀r ∈ Ri.
2: Compute the path price values λp, ∀p ∈ Pi.
3: Compute new latencies lats by setting the deriva-

tive w.r.t. lats of the Lagrangian to 0.
4: Send lats to the resource where the corresponding

subtask s is executed.

may change the levels of congestion. Consequently, the
resource and path prices need to be readjusted. The price
computation consists of determining new values for the
resource and path prices, given the latencies computed
in the previous step. Resource prices are computed by
each resource locally, while path prices are computed
by the controller of the task to which the path belongs.
We use price adjustment algorithms similar to those de-
scribed by Low et al. [18]. They are based on the gradi-
ent projection method: prices are adjusted in a direction
opposite to the gradient of the objective function of the
dual problem (Equation 6). The component of the gra-
dient corresponding to the prices µr, ∂D

∂µr
, represents the

available fraction of resource r. Similarly, ∂D
∂λp

is the
available time the end-to-end latency of path p can af-
ford to increase (i.e., slack of the path).

The resulting formulas for adjusting resource and
link prices are:

µr(t + 1) = µr(t)− γr(Br −
∑

s∈Sr

sharer(s, lats)) (8)

λp(t + 1) = λp(t)− γp(1−
∑

s∈Sp
lats

Ci
) (9)

where r ∈ R, i ∈ T , p ∈ Pi; and γr, γp are step sizes,
with γr, γp ∈ [0,∞). The step sizes control how ag-
gressive the price updates are and implicitly, how much
latencies vary. Intuitively, large step sizes trigger more
aggressive updates and speed up the convergences, but
may lead to oscillations. On the other hand, smaller step
sizes slow the algorithm significantly, but produce less
oscillations. In Section 5 we show how to adaptively
choose step sizes based on resource congestion.

The resource price computation algorithm is shown
below (the path price computation is similar):

4.4. Discussion

For the experiments conducted in this paper, the la-
tency for subtasks is the worst-case latency. The share
function is modeled on the worst case execution time of

6

Resource Price Computation
OUTPUT: Resource price µr, for resource r, at iteration

t = 1, 2, ...
1: Receive the computed latencies of all subtasks run-

ning at r
2: Compute a new resource price µr based on Equa-

tion 8
3: Send the price µr to the controllers of tasks that have

subtasks running at r

subtasks (cs), latency of the subtask (lats), and the re-
source lag (lr) due to PS scheduling. The share can be
computed as:

sharer(s, lats) =
cs + lr
lats

(10)

Conversely, we can predict the latency of a subtask if
we know its share of the resource. Since the worst case
execution time and the lag are fixed, the share varies
only with the latency. Subtasks with smaller shares take
longer to execute, while subtasks with bigger shares will
have smaller latencies.

We have described LLA as a distributed iterative algo-
rithm. It is interesting to consider how often we should
enact the allocations. LLA runs continuously and adapts
as the models or other aspects of the system change.
However, new allocations are computed and enacted
only when significant changes occur. For example, in
our prototype experiments, described in detail in Sec-
tion 6, the optimization algorithm executes much less
frequently than regular processing, yielding low compu-
tation overhead. To minimize network overhead from
the regular exchanges of prices between task controllers
and resources, we can run the algorithm in batch mode,
stopping it after it converges.

5. Simulation Experiments

In this section, we evaluate our optimization algo-
rithm through simulation. We observe convergence
properties by measuring algorithm performance over
several workloads and using different formulations of
the utility function.

5.1. Workload

We have constructed several test workloads by speci-
fying a set of tasks and their characteristics.

The basic test workload has three tasks, as shown
in Figure 4. Each of the three tasks is intended to
mirror one type of distributed application with real-
time requirements. The first task follows a push-based

T21

T22

T23 T25

T24

T26

T27 T28

Figure 4. Basic test workload.

All tasks are triggered by
periodic events occuring
every 100ms. The critical
times are respectively 45,
76 and 53ms. The subtask
parameters are described
in Table I.

T

T11 T13

14

T12

T15

T16

TASK 2

TASK 3

TASK 1

T31 T32 T33 T34 T35 T36

T17

model similar to the publish/subscribe and multicast
paradigms. In such a model, a distributed computation
consists of a few nodes producing information and prop-
agating it to all interested nodes. The second task rep-
resents a complex pull-based model employed by appli-
cations such as sensor-based systems or RSS feeds. The
distributed computation starts with a node requesting in-
formation, aggregating it and sending it to other nodes.
Finally, the third task is meant to represent a simpler
pull-based model used in client-server applications. All
three tasks are triggered by periodic events occurring ev-
ery 100ms. Their end-to-end deadlines (critical times)
are respectively 45, 76 and 53ms. Every task consists
of several subtasks, each utilizing a different resource—
either CPU or network bandwidth. The parametrization
of the subtasks is given in Table 1. Ignore the rows corre-
sponding to latency and critical path for now. We chose
the parameters such that all resources are close to con-
gestion: for every resource r, the sum of the shares re-
ceived by each subtask running on r is close to Br. The
performance of LLA when resources are close to conges-
tion constitutes a lower bound for its performance with
all other schedulable workloads. We experiment with
both utility variations discussed in Section 3.2: sum and
path-weighted.

5.2. Convergence

First we focus on the convergence properties of the
algorithm. We use the path-weighted variation for the
utility function:

Ui = fi(
∑

s∈Si

ws × lats) (11)

7

TASK 1 TASK 2 TASK 3
T11 T12 T13 T14 T15 T16 T17 T21 T22 T23 T24 T25 T26 T27 T28 T31 T32 T33 T34 T35 T36

Resource 0 1 2 3 4 5 6 0 1 2 4 5 6 3 7 0 1 2 4 6 7
Exec time 2 3 4 5 4 3 2 2 4 3 6 7 5 2 3 3 2 2 3 4 4
Latency 9.7 13.8 19.5 14.4 21.4 10.5 19.2 10.3 15.0 15.1 19.3 12.8 16.6 5.1 9.3 9.9 7.9 6.2 9.8 10.3 8.7
Crit.Time 45 76 53
Crit.Path 44.9 75.6 52.8

Table 1. Task Parameters and Optimization Results (Execution time, latency, critical time and
critical path are measured in milliseconds)

-100

-50

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

ut
ili

ty

iterations

γ = 0.1
γ = 1

γ = 10
γ adaptive

Figure 5. The effect of fixed and adaptive
step sizes

The weight ws of a subtask is equal to the number of
paths in the task that the subtask belongs to. To map la-
tency to benefit we use a simple linear continuous func-
tion: fi(lat) = k ∗ Ci − lat, where k ≥ 1. In the
experiments, we chose k = 2. Other values of k and
other shapes of the utility yield similar results. We run
the simulation four times, each time stopping it after 500
iterations. An iteration consists of a latency allocation
run by each task controller and a resource allocation run
at each resource. We measure the global value of the
utility after each step. Since we want a fair trade-off be-
tween resource allocation and latency, we assume that
the resource and path step sizes (γr and γp) are equal to
each other and denote them simply by γ. At first, we
assign fixed values to the step size. Later, we show how
to adaptively change the value of γ. We experimented
with several different values of the step size. Figure 5
depicts the system utility for three of them: 0.1, 1, and
10 (ignore the line corresponding to adaptive γ for now).

When the step size is high (γ = 10), the value of the
utility oscillates with high amplitude around 50. If we
decrease the step size (γ < 10), the utility converges.
The number of iterations needed to achieve convergence

depends on the value of γ. When γ = 0.1, the stabiliza-
tion occurs after more than 1000 iterations (not shown
in the figure), while for γ = 1, convergence is achieved
after around 500 iterations. Thus, larger values of the
step size lead to faster convergence, but they also make
the oscillations larger. To turn this trade-off to our ad-
vantage, we should start with large step size values to
ensure fast convergence. Then, we should decrease γ to
minimize the size of the fluctuations.

We have implemented the following heuristic, based
on experimentation, to adaptively change the value of
the step sizes for resources and paths:

1. start with a fixed value for γ

2. at each iteration, if resource r is congested, double
the step size associated with r, as well as the step
sizes of all paths that traverse r

3. as soon as r becomes uncongested, revert the step
sizes to the initial values

As long as a resource is congested, we increase mul-
tiplicatively the step sizes associated with it to speed up
the convergence of the algorithm. When the resource be-
comes uncongested, we need more fine-grained updates
to determine the convergence point, therefore we make
the step sizes small again. We experimented with differ-
ent starting values for the step size and we obtained the
best results for γ = 1. We compare these results with
those for fixed step size in Figure 5. The utility stabi-
lizes faster and to a better value when the heuristic for
adaptive γ was used. In Table 1 we show the subtask
latencies and the task end-to-end latencies correspond-
ing to the optimal utility. Each task completes execution
before its critical time is reached.

We also tested the algorithm using the sum variation
for the utility function but the results were not different
in terms of convergence properties. From now on, unless
specified otherwise, all results will be presented for an
adaptive γ with path-weighted variation for the utility
and fi(lat) = 2 ∗ Ci − lat as utility function.

8

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20 40 60 80 100

ut
ili

ty

iterations

3 tasks
6 tasks

12 tasks

Figure 6. The effect on convergence as we
scale the number of tasks

 0

 50

 100

 150

 200

 0 20 40 60 80 100
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

ut
ili

ty

fr
ac

tio
n

of
 r

es
ou

rc
e

ut
ili

ze
d

iterations

Figure 7. Using LLA to test the schedulability
of a workload

5.3. Scalability

We verify if the algorithm maintains its convergence
properties as we scale the number of tasks that execute
simultaneously in the system. We start with the base
workload and for each of the tasks we add another task
with the same characteristics (subtasks, subtask parame-
ters, subtask graph, subtask-to-resource mapping). Thus
we obtain a workload with 6 tasks. We repeat the ex-
periment to increase the number of tasks to 12 and we
run LLA for the three workloads. However, as we add
more tasks, more subtasks will contend for the same
resources and the workload may become unschedula-
ble. We ensure that schedulability is maintained by over-
provisioning the system (e.g., we set a high enough crit-
ical time for each task in all three workloads). Since the
utility depends on the critical times, this will also pro-
duce higher values for the utility of each task. The re-
sults, presented in Figure 6, show that the convergence
speed of the algorithm does not depend on the number
of tasks executing simultaneously and that the value of
the utility increases linearly with the number of tasks.

5.4. Workload Schedulability

LLA can be used to test the schedulability of a work-
load with respect to given system resources. An un-
schedulable workload should not show convergence of
utilities, or the resource and critical time constraints
should not be satisfied. As an experiment, we used the
scaled six task workload from the previous section, but
did not scale the critical times (the critical times were
the same as for the three task workload). Figure 7 shows
the total system utility (solid line) and the sum of shares
for each resource as the number of iterations increase.

Even after 100 iterations the utility and shares have not
converged (compare with the convergence in figure 6).
However, the fluctuations are slowly dampening, so one
could conclude that this shows slow convergence. This
conclusion is invalidated by observing the critical path
latencies for the tasks and comparing with the critical
time constraints. Across all the tasks, the critical path
latencies are between 1.75 − 2.41 times the constraint.
For instance, for task 1, the critical path latency is 79ms,
while the constraint is 45ms. So the system is not con-
verging to a solution.

6. System Implementation

In this section, we describe a prototype implemen-
tation of our approach and its evaluation under a sam-
ple workload. In particular, we describe a mechanism
for accommodating differences between predicted (i.e.,
modeled) and actual performance.

6.1. Prototype

In order to test our approach under more realistic con-
ditions, we have implemented a Java prototype which
uses LLA to assign resources for Java-based tasks. The
prototype executes on a virtual machine which sup-
ports the Real-Time Specification for Java (RTSJ) and
includes IBM’s Metronome Real-Time Garbage Col-
lector [3]. The virtual machine executes atop IBM’s
Linux with Real-Time support (IBM-RTLinux), which
has been further modified to allow share scheduling of
the CPU. IBM-RTLinux is based on RedHat Enterprise
Linux 4 and offers additional capabilities such as prior-
ity inheritance. The share scheduling support in the ker-

9

nel implements a modified version of Surplus Fair-Share
Scheduling [6].

6.2. Workload

The workload consists of four tasks, each with three
subtasks, which are linearly dependent 2. Each of the
subtasks in a task runs on a different CPU resource, and
there are a total of three CPU resources in the system.
Therefore each CPU resource has 4 subtasks compet-
ing for it, one from each task. The subtasks are charac-
terized using WCET, and a periodic arrival rate. Tasks
1, 2 have identical characteristics, and similarly tasks 3,
4 are identical. All subtasks of tasks 1, 2 have WCET
of 5ms, and arrival rate of 40/second, and tasks 3, 4
have subtasks with WCET of 13ms, and arrival rate
of 10/second. All tasks have the same utility function,
fi(lat) = −lat, with tasks 1, 2 having a critical time
of 105ms, and tasks 3, 4 a critical time of 800ms. For
the remainder of this discussion, we will refer to tasks 1,
2 as the fast tasks and tasks 3, 4 as the slow tasks.

Based on the arrival rate and WCET, the minimum
share needed by each subtask of the fast tasks is 0.2
(40
second × 5ms) and that by each slow subtask is 0.13.

This is the share needed to keep up with the workload
(otherwise jobs will queue up in an unbounded man-
ner). So the sum of the minimum shares at each CPU is
0.2∗2+0.13∗2 = 0.66 (66%), and this is also the CPU
utilization due to this workload. In addition, a share of
0.1 was given to the Metronome garbage collector.

The network was not a constraint in this experiment.

6.3. Online Model Error Correction

The share function for each subtask is the one de-
scribed earlier in equation 10, with a resource lag of
5ms. This share function is not always accurate. One
important source of inaccuracy is that the release time
of jobs for different subtasks sharing the same resource
may not be synchronized, which leads to over-prediction
of latency. To overcome this we use a simple additive
error correction model, and do exponential smoothing
of the error value. The samples for error correction
were collected periodically, and high percentile samples
(greater than 90th percentile) were used.

6.4. Experimental Results

The goal is to demonstrate: (1) the optimization al-
gorithm running in a real system, (2) the effectiveness

2We use a smaller workload than the simulation experiments due
to the lack of machine availability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000
-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

sh
ar

e

sm
oo

th
ed

 e
rr

or
 (

m
s)

time

share ’fast subtask’
share ’slow subtask’

error ’fast subtask’
error ’slow subtask’

Figure 8. System experiment with model
error correction

of model error correction, and (3) the ability of the opti-
mizer to change its allocation based on model error cor-
rection.

The optimizer runs continuously until the utility im-
provement from the previous iteration is below 1%.
When the utility stabilizes, we run the optimization once
a minute. To improve latency estimates, we perform
error correction after every iteration. The computation
overhead induced by the optimizer is rather small (below
1% of the total computation); the only observable over-
head appears at the start of the optimization when there
are large improvements in utility between iterations.

We start the experiment without model error correc-
tion, and let the optimizer compute share allocations
based purely on the theoretical model. To meet the crit-
ical time constraint of the fast tasks the optimizer has to
give them a higher share of the CPUs, and the remain-
der is allocated to the slow tasks. All the fast subtasks
get the same share and similarly for the slow subtasks.
A representative subtask is shown for each in figure 8.
At time 277, shown by the vertical line in the figure,
we enable error correction. At this instant the share of
fast subtasks is 0.26 and slow subtasks is 0.19. Subse-
quently, the optimizer realizes that it can meet the crit-
ical time constraint of the fast tasks with a lower share,
and eventually adjusts the allocation down to the mini-
mum share for these subtasks (0.2 share). The remaining
share is allocated to the slow subtasks (0.25 share). The
percentage change in share allocation, due to error cor-
rection, is −23% and +32% for fast and slow subtasks
respectively. The marginal resource cost of increasing
the utility of the slow tasks is lower than that of the
fast tasks, hence the former get a higher share. Note

10

that the error value continues to fluctuate, however it ex-
hibits some stability in its mean after the shares con-
verge. This shows that additive error correction is not
a perfect model (though possibly adequate), but despite
that, the optimization algorithm converges to the opti-
mal.

7 Related Work

Research related to our distributed optimization algo-
rithm can be categorized as: deadline slicing in real-time
systems, schedulability analysis and feedback-control
scheduling, and network flow optimization.

Deadline slicing Deadline slicing techniques [21, 10,
9, 7, 26, 5, 11] try to find the deadlines that optimize a
predefined measure of schedulability. These algorithms
work with a fixed end-to-end deadline, limited charac-
terizations of tasks (e.g., periodic tasks, with WCET),
and are offline.

BST [21] is a greedy breadth-first search algorithm
that assigns slices—static execution windows in time—
to tasks. The algorithm iteratively computes paths in the
task graph that minimize the overall laxity, and assigns
slices to the tasks by evenly distributing the path laxity.
AST [10, 9] uses a task assignment algorithm which ex-
tends BST for the case where the resource to task map-
ping is not fixed a priori. Neither BST nor AST account
for resource capacity. Garcia and Harbour [7] provide an
iterative offline algorithm which assigns deadlines to se-
quential tasks. At each iteration, new deadlines are com-
puted based on how far from schedulability each subtask
is with its current deadline. Saksena and Hong [26] de-
rive subtask deadlines by maximizing the critical scal-
ing factor [16] of the task set. However, this algorithm
works only with sequential tasks and as the authors as-
sert, their solution is not optimal. Bettati and Liu [5]
focus on distributed systems that can be characterized
by a flow shop model: sequential subtasks execute on
different resources in turn, following the same order.
The authors assume identical execution times for all
subtasks executing on the same resource and assign lo-
cal deadlines by evenly distributing the end-to-end task
deadline. In the context of soft real-time systems, Kao
and Garcia-Molina [11] divide the deadline assignment
problem into serial and parallel subtask problems. They
propose simple strategies for both problems based on
minimizing the deadline miss ratio.

The latency of a task in our framework can be in-
terpreted as a soft deadline, that is then sliced to give
individual soft deadlines for each subtask. Our algo-
rithm produces an optimal latency assignment through
on-line optimization. The objective function reflects dif-
ferent task importance and latency requirements.

Schedulability Analysis Meeting deadline require-
ments has traditionally relied on proper scheduling
and schedulability analysis techniques. However, most
scheduling algorithms focus on controlling performance
on a single processor. Approaches such as Rate Mono-
tonic and its extensions [16] use static allocation and as-
sume a priori knowledge of the task parameters. In con-
trast, dynamic scheduling algorithms work with incom-
plete knowledge about the task set. These algorithms
guarantee schedulability either by relying on informa-
tion about the system resources [17], or through admis-
sion control and planning [23, 32]. Feedback-control
scheduling [28, 19, 2, 24, 29] circumvents the problems
of static and dynamic scheduling in unpredictable envi-
ronments by continuous monitoring and adjustment of
deadlines based on system feedback. Lu et al. [19] pro-
pose a feedback-control scheduling framework to mini-
mize the deadline miss ratio of soft, independent tasks.
Abdelzaher et al. [2] use utilization-based schedulabil-
ity [1] to guarantee deadlines of aperiodic requests to a
web server. Vengerov [29] proposes an approach based
on reinforcement learning to schedule parallel jobs onto
multiprocessor servers such that the average utility of
completed jobs is increased. In the context of dis-
tributed systems, Stankovic et al. [27] use feedback-
control scheduling to guarantee deadlines for sets of in-
dependent tasks that run on different processors.

Our work is most closely related to that of Lu et
al. [20,31], in which utilization-based schedulability [1]
is applied to schedule end-to-end tasks on a distributed
platform. Lu et al. propose both centralized and dis-
tributed algorithms that control the invocation rate of
tasks in order to adjust utilization of resources. Rate
control can be considered a form of admission control,
and is complementary to our approach of controlling la-
tency (as opposed to rate). However, we consider much
broader task behavior by allowing flexibility in latency
sampling (i.e. percentiles), and task elasticity and im-
portance (based on utility).

Network Optimization Several approaches for opti-
mizing a system-wide utility function have been pro-
posed in the area of network flow optimization. For
practical reasons, distributed algorithms are highly de-
sirable, often based on the dual decomposition [4, 22].
Relevant research includes work in unicast [18, 13, 14,
15] and multicast flow optimization [12, 30], in which
flow rates are varied in order to optimize system util-
ity. Our work is also based on dual decomposition, but
defines system utility as a function of task latency (rele-
vant for soft real-time applications) rather than flow rate.
This formulation results in a somewhat different opti-
mization problem, namely, we have nonlinear resource
constraints due to the use of share scheduling and map-

11

ping latencies to shares.

8. Conclusions

In this paper we have framed the problem of latency
assignment for soft real-time distributed applications as
a utility optimization problem. Our framework allows us
to accommodate flexible timeliness requirements, using
various utility function shapes, and different percentiles
of end-to-end latency. Moreover, this allows the system
to make trade-offs based on different importance of ap-
plications. We have presented a novel distributed opti-
mization algorithm that continuously optimizes the sys-
tem, using feedback of resource congestion and latency
constraints, and demonstrated fast convergence and scal-
ability using both simulations and real system experi-
ments.

References

[1] T. F. Abdelzaher and C. Lu. Schedulability analysis and
utilization bounds for highly scalable real-time services.
In RTAS, 2001.

[2] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Per-
formance guarantees for web server end-systems: A
control-theoretical approach. IEEE Transactions on Par-
allel and Distributed Systems, 13(1):80–96, 2002.

[3] D. F. Bacon, P. Cheng, D. Grove, and M. T. Vechev.
Syncopation: generational real-time garbage collection
in the metronome. In LCTES ’05, pages 183–192, New
York, NY, USA, 2005. ACM Press.

[4] D. Bertsekas. Nonlinear Programming. Athena Scien-
tific, 1999.

[5] R. Bettati and J. W.-S. Liu. End-to-end scheduling to
meet deadlines in distributed systems. In ICDCS, 1992.

[6] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus
fair scheduling: A Proportional-Share CPU scheduling
algorithm for symmetric multiprocessors. In OSDI 2000,
pages 45–58, 2000.

[7] J. J. G. Garcı́a and M. G. Harbour. Optimized priority
assignment for tasks and messages in distributed hard
real-time systems. In WPDRTS, 1995.

[8] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven
scheduling model for real-time systems. In Real-Time
Systems Conference, 1985.

[9] J. Jonsson. A robust adaptive metric for deadline assign-
ment in heterogeneous distributed real-time systems. In
IPPS / SPDP, 1999.

[10] J. Jonsson and K. G. Shin. Deadline assignment in
distributed hard real-time systems with relaxed locality
constraints. In ICDCS, 1997.

[11] B. Kao and H. Garcia-Molina. Deadline assignment in
a distributed soft real-time system. IEEE Transcations
on Parallel and Distributed Systems, 8(12):1268–1274,
1997.

[12] K. Kar, S. Sarkar, and L. Tassiulas. Optimization based
rate control for multirate multicast sesions. In IEEE In-
focom, 2001.

[13] F. P. Kelly, A. Maulloo, and D. Tan. Rate control for
communication networks: shadow prices, proportional
fairness and stability. Journal of Operations Research
Society, 49(3):237–252, 1998.

[14] S. Kunniyur and R. Srikant. End-to-end congestion con-
trol schemes: Utility functions, random losses and ECN
marks. IEEE/ACM ToN, 11(5):689–702, 2003.

[15] R. J. La and V. Anantharam. Charge-sensitive TCP and
rate control in the Internet. In IEEE Infocom, 2000.

[16] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and aver-
age case behavior. In RTSS, 1989.

[17] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1):46–61, 1973.

[18] S. H. Low and D. E. Lapsley. Optimization flow control
I: Basic algorithm and convergence. IEEE/ACM ToN,
7(6):861–874, 1999.

[19] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feed-
back control real-time scheduling: Framework, model-
ing, and algorithms. Real-Time Systems Journal, 23(1-
2):85–126, 2002.

[20] C. Lu, X. Wang, and X. Koutsoukos. End-to-end utiliza-
tion control in distributed real-time systems. In ICDCS,
2004.

[21] M. D. Natale and J. A. Stankovic. Dynamic end-to-end
guarantees in distributed real time systems. In RTSS,
1994.

[22] D. P. Palomar and M. Chiang. On alternative decom-
positions and distributed algorithms for network utility
problems. In IEEE Globecom, 2005.

[23] K. Ramamritham and J. A. Stankovic. Dynamic task
scheduling in distributed hard real-time systems. IEEE
Software, 1(3), 1984.

[24] B. Ravindran, P. Kachroo, and T. Hegazy. Adaptive
resource management in asynchronous real-time dis-
tributed systems using feedback control functions. In
ISADS, 2001.

[25] J. Regehr. Some guidelines for proportional share CPU
scheduling in general-purpose operating systems. In
RTSS, 2001.

[26] M. Saksena and S. Hong. An engineering approach to
decomposing end-to-end delays on a distributed real-
time system. In WPDRTS, 1996.

[27] J. A. Stankovic, T. He, T. Abdelzaher, M. Marley,
G. Tao, S. Son, and C. Lu. Feedback control schedul-
ing in distributed real-time systems. In RTSS, 2001.

[28] J. A. Stankovic, C. Lu, and S. H. Son. The case for
feedback control real-time scheduling. Technical report,
1998.

[29] D. Vengerov. A reinforcement learning framework
for utility-based scheduling in resource-constrained sys-
tems. Sun Microsystems Laboratory Technical Report
141, 205.

[30] W.-H. Wang, M. Palaniswami, and S. H. Low. Nec-
essary and sufficient conditions for optimal flow con-
trol in multirate multicast networks. IEE Proceedings-
Communications, 2003.

12

[31] X. Wang, D. Jia, C. Lu, and X. Koutsoukos. Decentral-
ized utilization control in distributed real-time systems.
In RTSS, 2005.

[32] W. Zhao, K. Ramamritham, and J. A. Stankovic. Pre-
emptive scheduling under time and resource constraints.
IEEE Transactions on Computers, 36(8), 1987.

13

