
RC24505 (W0802-110) February 28, 2008
Computer Science

IBM Research Report

Commutativity Analysis in XML Update Languages

Giorgio Ghelli
Università di Pisa

Dipartimento di Informatica
Via Buonarroti 2

I-56127 Pisa
Italy

Kristoffer Rose, Jérôme Siméon
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Commutativity Analysis in XML Update Languages

Giorgio Ghelli1, Kristoffer Rose2, and Jérôme Siméon2

1 Università di Pisa, Dipartimento di Informatica
Via Buonarroti 2, I-56127 Pisa, Italy

ghelli@di.unipi.it
2 IBM T.J. Watson Research Center

P.O.Box 704, Yorktown Heights, NY 10598, U.S.A.
krisrose and simeon@us.ibm.com

Abstract. A common approach to XML updates is to extend XQuery with up-
date operations. This approach results in very expressive languages which are
convenient for users but are difficult to reason about. Deciding whether two ex-
pressions can commute has numerous applications from view maintenance to
rewriting-based optimizations. Unfortunately, commutativity is undecidable in
most recent XML update languages. In this paper, we propose a conservative
analysis for an expressive XML update language that can be used to determine
whether two expressions commute. The approach relies on a form of path analy-
sis that computes upper bounds for the nodes that are accessed or modified in a
given update expression. Our main result is a commutativity theorem that can be
used to identify commuting expressions.

1 Introduction

Most of the proposed XML updates languages [1–5] extend a full-fledged query lan-
guage such as XQuery [6] with update primitives. To simplify specification and rea-
soning, some of the first proposals [1, 2, 4] have opted for a so-called snapshot seman-
tics, which delays update application until the end of the query. However, this leads to
counter-intuitive results for some queries, and limits the expressiveness in a way that is
not always acceptable for applications. For that reason, more recent proposals [5, 7] give
the ability to apply updates in the course of query evaluation. Such languages typically
rely on a semantics with a strict evaluation order. For example, consider the following
query, which first inserts a set of elements, then accesses those elements using a path
expression.

for $x in $doc/country return insert {<new/>} into {$x},
count($doc/country/new)

Such an example cannot be written in a language based on a snapshot semantics, as
the count would always return zero. However, it can be written in the XQuery! [5] or
the XQueryP [7] proposals, which both rely on an explicit left-to-right evaluation order.
Still, such a semantics severely restricts the optimizer’s ability for rewritings, unless the
optimizer is able to decide that some pairs of expressions commute.

Deciding commutativity, or more generally whether an update and a query inter-
fere, has numerous applications, including optimizations based on algebraic rewritings,
detecting when an update needs to be propagated through a view (usually specified as a

2 Giorgio Ghelli, Kristoffer Rose, and Jérôme Siméon

query), deciding whether sub-expressions of a given query can be executed in parallel,
etc. Unfortunately, commutativity is undecidable for XQuery extended with updates.
In this paper, we propose a conservative approach to detect whether two query/update
expressions interfere, i.e., whether they can be safely commuted or not. Our technique
relies on an extension of the path analysis proposed in [8] that infers upper bounds for
the nodes accessed and modified by a given expression. Such upper bounds are specified
as simple path expressions for which disjointness is decidable [9, 10].

Our commutativity analysis serves a similar purpose to independence checking in
the relational context [11, 12]. To the best of our knowledge, our work is the first to
study such issues in the XML context, where languages are typically much more ex-
pressive. A simpler form of static analysis is proposed in [4, 13], suggesting that sim-
ilar techniques can be used to optimize languages with a snapshot semantics. Finally,
commutativity of tree operations is used in transactional models [14, 15], but relies on
run-time information while our purpose is static detection.

Problem and examples. In the rest of the paper, we focus on a simple XQuery exten-
sion with insertion and deletion operations. The syntax and semantics of that language
is essentially that of [5], with updates applied immediately. This language is power-
ful enough to exhibit the main problems related to commutativity analysis, yet simple
enough to allow a complete formal treatment within the space available for this paper.
Here are some sample queries and updates in that language.

Q1 count($doc/country/new)

Q2 $doc/country[population > 20]

Q3 for $x in $doc//country
return ($x//name)

Q4 for $x in $doc/country
return $x/new/../very new

U1 delete {$doc/wines/california}

U2 for $x in $doc/country return
insert {<new/>} into {$x}

U3 for $x in
$doc/country[population < 24]

return
delete {$x/city}

Some of those examples obviously commute, for instance U1 deletes nodes that are
unrelated to the nodes accessed by Q1 or Q2. This can be inferred easily by looking at
the paths in the query used to access the corresponding nodes. On the contrary, U2 does
not commute with Q1 since the query accesses nodes being inserted. Deciding whether
the set of nodes accessed or modified are disjoint quickly becomes hard for any non-
trivial update language. For instance, deciding whether U3 and Q2 interfere requires
some analysis of the predicates, which can be arbitrarily complex in XQuery.

Approach. We rely on a form of abstract interpretation that approximates the set of
nodes processed by a given expression. The analysis must satisfy the following proper-
ties. Firstly, since we are looking to check disjointness, we must infer an upper bound
for the corresponding nodes. Secondly, the analysis must be precise enough to be useful
in practical applications. Finally, the result of the analysis must make disjointness de-
cidable. In the context of XML updates, paths are a natural choice for the approximation
of the nodes being accessed or updated, and they satisfy the precision and decidability
requirements.

Contributions. The path analysis itself is a relatively intuitive extension of [8] to
handle update operations. However, coming up with a sound analysis turns out to be a

Commutativity Analysis in XML Update Languages 3

hard problem for a number of reasons. First of all, we use paths to denote sets of ac-
cessed nodes, but the forthcoming updates will change the nodes denoted by the paths
that are being accumulated. We need a way to associate a meaning to a path that is sta-
ble in the face of a changing data model instance. To address that issue, we introduce
a store-based formalization of the XML data model and a notion of store history that
allows us to talk about the effect of each single update and to solve the stability issue.
Another challenge is to find a precise definition of which nodes are actually used or
updated by a query. For instance, one may argue that U3 only modifies nodes reached
by the path country/city. However, one would then miss the fact that U3 interferes with
Q3 because the city nodes may have a country or a name descendant, which is made un-
reachable by the deletion. In our analysis, this is kept into account by actually inserting
into the updated paths of U3 all the descendants of the deleted expression country/city,
as detailed in the table below.
U3 accessed paths: Q3 accessed paths:

$doc/country $doc//country
$doc/country/population $doc//country//name
$doc/country/city

updated paths: updated paths:
$doc/country/city/descendant-or-self::*

In Q4, if the returned expression $x/new/../very new were just associated to the path
country/new/../very new, the interference with U2 would not be observed, since the
path country/new/descendant-or-self ::*::∗ updated by U2 refers to a disjoint set of
nodes. Hence, the analysis must also consider the nodes traversed by the evaluation of
$x/new/../very new, which correspond to the path country|country/new|country/new/..,
whose second component intersects with country/new/descendant-or-self ::*::∗. The
main contributions of the paper are as follows:

– We propose a form of static analysis that infers paths to the nodes that are accessed
and modified by an expression in that language;

– We present a formal definition of when such an analysis is sound, based on a no-
tion of store history equivalence; this formal definition provides a guide for the
definition of the inference rules;

– We show the soundness of the proposed path analysis;
– We prove a commutativity theorem, that provides a sufficient condition for the com-

mutativity of two expressions, based on the given path analysis.

Organization. The rest of the paper is organized as follows. Section 2 presents the
XML data model and the notion of store history. Section 3 reviews the update language
syntax and semantics. Section 4 presents the path analysis and the main soundness
theorem. Section 5 presents the commutativity theorem. Section 6 reviews related work,
and Section 7 concludes the paper. For space reasons, proofs for the analysis soundness
and for the commutativity theorem are provided separately in the extended version of
this paper [16].

2 A Store for Updates

We define here the notions of store and store history, which are used to represent the
effect of XML updating expressions. Our store is a simplification of the XQuery Data

4 Giorgio Ghelli, Kristoffer Rose, and Jérôme Siméon

Model [17] to the parts that are most relevant to our path analysis. In this formalization
we ignore sibling order, since it has little impact on the approach and on the analysis
precision.

2.1 The Store

We assume the existence of disjoint infinite sets of node ids, N , the node kinds, K =
{element,text}, names, Q , and possible textual content, T . A node location is used
to identify where a document or an XML fragment originates from; it is either a URI or
a unique code-location identifier: loc ::= uri | code-loc.

A uri typically corresponds to the URI associated to a document and a code-loc is
used to identify document fragments generated during query evaluation by an element
constructor. Now we are ready to define our basic notion of store.

Definition 1 (Store). A store σ is a quadruple (N,E,R,F) where N ⊂ N contains the
set of nodes in the document, E ⊂ N×N contains the set of edges, R : N → loc is a
partial function mapping some nodes to their location, and the node description F =
(kindF ,nameF ,contentF) is a triple of partial functions where kindF : N → K
maps each node to its kind, nameF : N → Q maps nodes to their name (if any), and
contentF : N→ T maps nodes to their text content (if any).

We use Nσ, Eσ, Rσ, Fσ to denote the N,E,R,F component of σ. When (m,n)∈ E, we
say that m is a parent of n and n is a child of m. A “root” is a node that has no parent.

Finally a store must be “well-formed”: (1) all nodes mapped by R must be root
nodes, (2) every non-root node must be the child node of exactly one parent node, (3) the
transitive closure E+ of E must be irreflexive (4) element nodes must have a name and
no content; and (5) text nodes must have no name and no children but do have content.

In what follows, every store operation preserves store well-formedness.

2.2 Accessing and updating the store

We assume the standard definitions for the usual accessors (parent, children, descen-
dants, ancestors, name, text-content. . .), and focus on operations that modify the store
(insert,delete, and node creation).3 We define a notion of atomic update record, which
captures the dynamic information necessary for each update, notably allowing the up-
date to be re-executed on a store, using the apply operation defined below.

Definition 2 (Atomic update records). Atomic update records are terms with the fol-
lowing syntax:

create(n̄,F) | R-insert(n, loc) | insert(E) | delete(n̄)

Definition 3 (Atomic update application). The operation apply(σ,u) returns a new
store as detailed below, but fails when the listed preconditions do not hold. ⊥ denotes
undefined.

3 Note that replace is trivial to add to the framework.

Commutativity Analysis in XML Update Languages 5

– apply(σ,create(n̄,F′)) adds n̄ to N and extends F with F′.
Preconditions: n̄ disjoint from N. (n̄,(),(),F′) is a well-formed store.

– apply(σ,R-insert(n, loc)) extends R with n→ loc.
Preconditions: n is a root node and R(nc) =⊥.

– apply(σ,insert(E′)) extends E with E′.
Preconditions: for each (np,nc) ∈ E′, nc has no parent in E∪E′ \ {(np,nc)}, and
R(nc) =⊥. The transitive closure of E∪E′ is irreflexive.

– apply(σ,delete(n̄)) deletes each edge (np,nc) ∈ E where nc ∈ n̄.
Preconditions: n̄⊆ N.

Definition 4 (Composite updates). A composite update, ∆, is an ordered sequence of
atomic updates: ∆≡ (u1, . . . ,un). apply(σ,∆) denotes the result of applying u1. . . un on
store σ, in this order.

We use created(∆) to denote the set of nodes created by ∆. A composite update ∆

respects creation time iff, for any ∆1,∆2 = ∆, no node in created(∆2) appears in ∆1.
Hereafter we will always assume that we only work with such ∆’s.

Finally, the notion of updated(∆1) gives a sufficient condition for non-interference
(S#T means that S and T are disjoint).

Definition 5 (Update target). The update target of each update operation is defined as

updated(create(n̄,F)) =def {}
updated(R-insert(n, loc)) =def {}
updated(insert(E)) =def {nc | (np,nc) ∈ E}
updated(delete(n̄)) =def n̄

Property 1. If ∆1,∆2 and ∆2,∆1 both respect creation time, then

updated(∆1)#updated(∆2) ⇒ apply(σ,(∆1,∆2)) = apply(σ,(∆2,∆1))

Intuitively, provided that creation time is respected, the only two operations that
do not commute are insert(np,nc) and delete(nc). Any other two operations either
do not interfere at all or they fail in whichever order are applied, as happens for any
conflicting R-insert-R-insert, R-insert-insert, or insert-insert pair.

2.3 Store History

Finally, we introduce a notion of store history, as a pair (σ,(u1, . . . ,un)). In our seman-
tics each expression, instead of modifying its input store, extends the input history with
new updates. With this tool we will be able, for example, to discuss commutativity of
two expressions Expr1,Expr2 by analysing the histories (σ,(∆1,∆2)) and (σ,(∆′2,∆

′
1))

produced by their evaluations in different orders, and by proving that, under some con-
ditions, ∆1 = ∆′1 and ∆2 = ∆′2.

Definition 6 (Store history). A store history η = (ση,∆η) is a pair formed by a store
and a composite update.

6 Giorgio Ghelli, Kristoffer Rose, and Jérôme Siméon

A store history (σ,∆) can be mapped to a plain store either by apply(σ,∆) or by
applying no-delete(∆) only, which is the ∆ without any deletion. The second mapping
(mrg((σ,∆))) will be crucial to capture the degree of approximation that store dynam-
icity imposes over our static analysis.

apply((σ,∆)) =def apply(σ,∆)
mrg((σ,∆)) =def apply(σ,no-delete(∆))

By abuse of notation we shall (1) implicitly interpret σ as (σ,()); (2) extend accessors
to store histories using the convention that, for any function defined on stores, f (η) =def
f (apply(η)); (3) when η = (σ,∆) then write η,∆′ =def (σ,(∆,∆′)). We define history
difference η\η′ as follows: (σ,(∆,∆′))\ (σ,∆) =def ∆′.

Definition 7 (Well-formed History). A history η is well-formed (wf(η)), if mrg(η) and
apply(η) are both defined.

3 Update language

The language we consider is a cut-down version of XQuery! [5] characterized by the
fact that the evaluation order is fixed and each update operation is applied immediately.
It is not difficult to extend our analysis to languages with snapshot semantics, but the
machinery becomes heavier, while we are trying here to present the simplest incarnation
of our approach. The language has the following syntax; we will use the usual abbrevia-
tions for the parent (p/..), child (p/name), and descendant (p//name) axes. We assume
that code-loc (See Section 2) is generated beforehand by the compiler.

Expr ::= $x | Expr/axis::ntest | Expr,Expr | Expr = Expr
| let $x := Expr return Expr | for $x in Expr return Expr
| if (Expr) then Expr else Expr | delete {Expr}
| insert {Expr1} into {Expr} | elementcode-loc{Expr}{Expr}

axis ::= child | descendant | parent | ancestor

ntest ::= text() | node() | name | ∗

The main semantic judgement “dEnv ` η0;Expr ⇒ η1; n̄” specifies that the evaluation
of an expression Expr, with respect to a store history η0 and to a dynamic environ-
ment dEnv that associates a value to each variable free in Expr, produces a value n̄ and
extends η0 to η1 = η0,∆. A value is just a node sequence n̄; textual content may be
accessed by a function f , but we otherwise ignore atomic values, since they are ignored
by path analysis. In an implementation, we would not manipulate the history η0 but the
store apply(η0), since the value of every expression only depends on that. However,
store histories allow us to isolate the store effect of each single expression, both in our
definition of soundness and in our proof of commutativity.

As an example, we present here the rule for insert expressions; the complete seman-
tics can be found in [16]. Let n̄d be the descendants-or-self of the nodes in n̄. Insert-into
uses prepare-deep-copy to identify a fresh node mi ∈ m̄d for each node in n̄d , while
Ecopy and Fcopy reproduce for Eapply(η2) and Fapply(η2) for m̄d , and m̄ is the subset of

Commutativity Analysis in XML Update Languages 7

m̄d that corresponds to n̄. Hence, create(m̄d ,Fcopy),insert(Ecopy) copy n̄ and their
descendants, while insert({n}× m̄) links the copies of n̄ to n. Notice how the rule
only depends on apply(η2), not on the internal structure of η2.

dEnv ` η0;Expr1 ⇒ η1; n̄
dEnv ` η1;Expr2 ⇒ η2;n

(m̄, m̄d ,Ecopy,Fcopy) = prepare-deep-copy(apply(η2), n̄)
η3 = η2, create(m̄d ,Fcopy),insert(Ecopy),insert({n}× m̄)

dEnv ` η0;insert {Expr1} into {Expr2} ⇒ η3;()

It is easy to prove that, whenever dEnv ` η0;Expr ⇒ η1; n̄ holds and η0 is well-formed,
then η1 is well-formed as well.

4 Path analysis

4.1 Paths and prefixes

We now define the notion of paths that is used in our static analysis. Observe that the
paths used by the analysis are not the same as the paths in the target language. For
example, they are rooted in a different way, and the steps need not coincide: if we
added order to the store, we could add a following-sibling axis to the language, but
approximate it with parent::∗/child:: in the analysis.

Definition 8 (Static paths). Static paths, or simply paths, are defined as follows.

p ::= () | loc | p0|p1 | p/axis::ntest

where axis denotes any of the axes in the grammar.

Note that paths are always rooted at a given location. In addition, the particular fragment
chosen here is such that important operations, notably intersection, can be checked
using known algorithms [9, 10].

Definition 9 (Path Semantics). For a path p and store σ, [[p]]σ denotes the set of nodes
selected from the store by the path with the standard semantics [18] except that order
is ignored, and Rσ is used to interpret the locations loc. The following concepts are
derived from the standard semantics:

Inclusion. A path p1 is included in p2, denoted p1 ⊆ p2, iff ∀σ : [[p1]]σ ⊆ [[p2]]σ.

Disjointness. Two paths p1,p2 are disjoint, denoted p1#p2, iff ∀σ : [[p1]]σ∩ [[p2]]σ = /0.

Prefixes. For each path a we define pref(a) as follows.

a loc p/axis::ntest p|q
pref(a) {loc} {p/axis::ntest}∪pref(p) {p|q}∪pref(p)∪pref(q)

Prefix Closure. For a path a we write prefclosed(a) iff ∀p : p ∈ pref(a) ⇒ p⊆ a.

The prefixes of a path are all its initial subpaths, and a path is prefix-closed when it
includes all of its prefixes. For example, the paths /a//b |/a |/a//b/c and /∗ |/a/b are
both prefix-closed (the latter because /a⊆ /∗).

8 Giorgio Ghelli, Kristoffer Rose, and Jérôme Siméon

4.2 The meaning of the analysis

Definition 10 (Path analysis). Given an expression Expr and a path environment pEnv
which is a mapping from variables to paths, our path-analysis judgment

pEnv ` Expr ⇒ r; 〈a,u〉

associates three paths to the expression: r is an upper approximation of the nodes that
are returned by the evaluation of Expr, a of those that are accessed, and u of those that
are updated.

The r path is not actually needed to check commutativity, but is used to infer u and a
for those expression that update, or access, their argument.

There are many reasonable ways to interpret which nodes are “returned” and “ac-
cessed” by an expression. For example, a path $x//a only returns the $x descendants
with an a name but, in a naive implementation, may access every descendant of $x. De-
ciding what is “updated” is even trickier. This definition should be as natural as possible,
should allow for an easy computation of a static approximation and, above all, should
satisfy the following property: if what is accessed by Expr1 is disjoint from what is
accessed or updated by Expr2, and vice-versa, then the two expressions commute.

In the following paragraphs we present our interpretation, which will guide the def-
inition of the inference rules and is one of the basic technical contributions of this work.

The meaning of r seems the easiest to describe: an analysis is sound if pEnv `
Expr ⇒ r; 〈a,u〉 and dEnv ` η0;Expr ⇒ η1; n̄ imply that n̄ ⊆ [[r]]apply(η1). Unfortu-
nately, this is simplistic. Consider the following example:

let $x := doc(’u1’)/a return (delete($x), $x/b)

Our rules bind a path u1/a to $x, and finally deduce a returned path u1/a/b for the
expression above. However, after delete($x), the value of $x/b is not in [[p]]apply(η) any-
more; the best we can say it is that it is still in [[p]]mrg(η). This is just an instance of
a general “stability” problem: we infer something about a specific store history, but
we need the same property to hold for the store in some future. We solve this prob-
lem by accepting that our analysis only satisfies n̄ ⊆ [[r]]mrg(η1), which is weaker than
n̄⊆ [[r]]apply(η1) but is stable; we also generalize the notion to environments.

Definition 11 (Approximation). A path p approximates a value n̄ in the store history
η, denoted p⊇η n̄, iff n̄⊆ [[p]]mrg(η).

A path environment pEnv approximates a dynamic environment dEnv in a store
history η, denoted pEnv⊇η dEnv, iff

($x 7→ n̄) ∈ dEnv ⇒ ∃b. ($x 7→ b) ∈ pEnv and b⊇η n̄

Thanks to this “merge” interpretation, a path denotes all nodes that are reached by that
path, or were reached by the path in some past version of the current history. This
approximation has little impact, because the merge interpretation of a history is still a
well-formed store, where every node has just one parent and one name, hence the usual
algorithms can be applied to decide path disjointness.

Commutativity Analysis in XML Update Languages 9

The approach would break if we had, for example, the possibility of moving a node
from one parent to another. Formally, mrg(η) may now contain nodes with two parents.
In practice, one could not deduce, for example, that (a/d)#(b/c/d), because $x/a/d
and $x/b/c/d, if evaluated at different times, may actually return the same node, be-
cause its parent was moved from $x/a to $x/b/c in the meanwhile. Similarly, if nodes
could be renamed, then node names would become useless in the process of checking
path disjointness.

The commutativity theorem in Section 5 is based on the following idea: assume that
Expr1 transforms η0 into (η0,∆) and only modifies nodes reachable through a path u,
while Expr2 only depends on nodes reachable through a, such that u#a. Because Expr1
only modifies nodes in u, the histories η0 and (η0,∆) are “the same” with respect to a,
hence we may evaluate Expr2 either before or after Expr1.

This is formalized by defining a notion of history equivalence wrt a path η ∼p η′,
and by proving that the inferred a and u and the evaluation relation are related by the
following soundness properties.

Parallel evolution from a-equivalent stores, first version:
η′0 ∼a η0 and dEnv ` η0;Expr ⇒ (η0,∆); n̄
imply dEnv ` η′0;Expr ⇒ (η′0,∆); n̄, i.e. the same n̄ and ∆ are produced.

Immutability out of u, first version:
∀c : c#u and dEnv ` η0;Expr ⇒ (η0,∆); n̄
imply η0 ∼c (η0,∆).

To define the right notion of path equivalence, consider the Comma rule

pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
pEnv ` Expr2 ⇒ r2; 〈a2,u2〉

pEnv ` Expr1,Expr2 ⇒ r1|r2; 〈a1|a2,u1|u2〉
(COMMA)

The rule says that if η′0 ∼a1|a2 η0 then the evaluation of Expr1,Expr2 gives the same re-
sult in both η0 and η′0. Our equivalence over p will be defined as “∀p′ ∈ pref(p).P(p′)”,
so that η′0 ∼a1|a2 η0 implies η′0 ∼a1 η0 and η′0 ∼a2 η0. Hence, by induction, if we start
the evaluation of Expr1,Expr2 from η0 ∼a1|a2 η′0, then Expr2 will be evaluated against
(η0,∆) and (η′0,∆), but we have still to prove that η0∼a2 η′0 implies (η0,∆)∼a2 (η′0,∆).
This is another instance of the “stability” problem. In this case, the simplest solution is
the adoption of the following notion of path equivalence: two histories η1 and η2 are
equivalent modulo a path p, denoted η1 ∼p η2, iff:

∀p′ ∈ pref(p). ∀∆. [[p′]]apply(η1,∆) = [[p′]]apply(η2,∆)

The quantification on ∆ makes this notion “stable” with respect to store evolution, which
is extremely useful for our proofs, but the equality above actually implies that:

∀∆. (wf (η1,∆) ⇒ wf (η2,∆)) ∧ (∀∆. wf (η2,∆) ⇒ wf (η1,∆))

This is too strong, because, whenever two stores differ in one node, the ∆ that creates
the node can only be added to the store that is missing it. Similarly, it they differ in one

10 Giorgio Ghelli, Kristoffer Rose, and Jérôme Siméon

edge, the ∆ that inserts the edge can only be added to the store that is missing it. Hence,
only identical stores can be extended with exactly the same set of ∆’s.

So, we have to weaken the requirement. We first restrict the quantification to updates
that only create nodes that are fresh in both stores. Moreover, we do not require that
wf (η1,∆) ⇒ wf (η2,∆), but only that, for every n of interest, a subset ∆′ of ∆ exists
which can be used to extend η1 and η2 so to have n in both. The resulting notion of
equivalence is preserved by every update in the language whose path does not intersect
pref(p); this notion is strong enough for our purposes (∆′ ⊆i ∆ means the ∆′ creates and
deletes the same edges as ∆, but the inserted edges are a subset).

Definition 12 (Store equivalence modulo a path). Two stores σ1 and σ2 are equiva-
lent modulo a path p, denoted σ1 ∼p σ2, iff:

∀p′ ∈ pref(p). ∀∆. created(∆)#(Nσ1 ∪Nσ2) ∧ n ∈ [[p′]]apply(σ1,∆)

⇒ ∃∆′ ⊆i ∆. n ∈ [[p′]]apply(σ1,∆′) ∧ n ∈ [[p′]]apply(σ2,∆′)

∀p′ ∈ pref(p). ∀∆. created(∆)#(Nσ1 ∪Nσ2) ∧ n ∈ [[p′]]apply(σ2,∆)

⇒ ∃∆′ ⊆i ∆. n ∈ [[p′]]apply(σ1,∆′) ∧ n ∈ [[p′]]apply(σ2,∆′)

Definition 13 (Store history equivalence modulo a path).

η1 ∼p η2 ⇔def apply(η1)∼p apply(η2)

Since [[p]]apply(η1,∆) is monotone wrt ⊆i, the above definition implies that:

η1 ∼p η2 ⇒ (∀∆. wf (η1,∆) ∧ wf (η2,∆) ⇒ [[p]]apply(η1,∆) = [[p]]apply(η2,∆))

We are now ready for the formal definition of soundness.

Definition 14 (Soundness). The static analysis pEnv ` Expr ⇒ r; 〈a,u〉 is sound for
the semantic evaluation dEnv ` η0;Expr ⇒ η1; n̄ iff for any well-formed η0, η1, dEnv,
pEnv, Expr, n̄, r, a, u, such that:

pEnv ` Expr ⇒ r; 〈a,u〉
dEnv ` η0;Expr ⇒ (η0,∆); n̄
pEnv⊇η0 dEnv

the following properties hold.

– Approximation by r: r is an approximation of the result: r⊇η1 n̄

– Parallel evolution from a-equivalent stores: For any store history η′0, if η′0 ∼a η0
and Nη′0

#created(∆), then dEnv ` η′0;Expr ⇒ (η′0,∆); n̄

– Immutability out of u: (1) u⊇η1 updated(∆)
(2) ∀prefclosed(c) : c#u ⇒ η0 ∼c (η0,∆).

In the Parallel evolution property, the condition Nη′0
#created(∆) is needed because,

if η′0 did already contain some of the nodes that are added by ∆, then it would be
impossible to extend η′0 with ∆. This condition is not restrictive, and is needed because

Commutativity Analysis in XML Update Languages 11

we identify nodes in different stores by the fact that they have the same identity. We
could relate different store using a node morphism, rather that node identity, but that
would make the proofs much heavier.

Immutability has two halves. The first, u⊇η1 updated(∆), confines the set of edges
that are updated to those that are in u, and is important to prove that two updates com-
mute if u1#u2. The second half specifies that, for every c#u, the store after the update is
c-equivalent to the store before. Together with Parallel evolution, it essentially says that
after Expr is evaluated, the value returned by any expression Expr1 that only accesses
c is the same value returned by Expr1 before Expr was evaluated, and is important to
prove that an update and a query commute if a1#u2. The path c must be prefix-closed for
this property to hold. For example, according to our rules, delete(/a/b) updates a path
u = /a/b/dos::∗. It is disjoint from c = /a/b/.., but still the value of /a/b/.. changes
after delete(/a/b). This apparent unsoundness arises because c is not prefix-closed. If
we consider the prefix-closure a = /a|/a/b|/a/b/.. of /a/b/.., we notice that a is not
disjoint from u.

4.3 Path analysis rules

We present the rules in two groups: selection and update rules.

Selection rules. These rules regard the querying fragment of our language. We extend
the rules from [8] for the proper handling of updated paths.

The (Comma) rule has been presented above.
The (Var) rule specifies that variable access does not access the store. One may won-

der whether r should not be regarded as “accessed” by the evaluation of $x. The doubt
is easily solved by referring to the definition of soundness: the value of $x is the same in
two stores η0 and η′0 independently of any equivalence among them, hence the accessed
path should be empty. This rule also implicitly specifies that variable access commutes
with any other expression. For example, $x,delete($x) is equivalent to delete($x),$x.

($x 7→ r) ∈ pEnv
pEnv ` $x ⇒ r; 〈(),()〉

(VAR)

The (Step) rule specifies that a step accesses the prefix closure of r. Technically,
the rule would still be sound if we only put r|(r/axis::ntest) in the accessed set. How-
ever, the commutativity theorem relies on the fact that, for any expression, its inferred
accessed path is prefix-closed, for the reasons discussed at the end of the previous sec-
tion, and the addition of the prefix closure of r does not seem to seriously affect the
analysis precision.

pEnv ` Expr ⇒ r; 〈a,u〉
pEnv ` Expr/axis::ntest ⇒ r/axis::ntest; 〈pref(r/axis::ntest)|a,u〉

(STEP)

Iteration binds the variable and analyses the body once. Observe that the analysis
ignores the order and multiplicity of nodes.

12 Giorgio Ghelli, Kristoffer Rose, and Jérôme Siméon

pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
(pEnv+$x 7→ r1) ` Expr2 ⇒ r2; 〈a2,u2〉

pEnv ` for $x in Expr1 return Expr2
⇒ r2; 〈a1|a2,u1|u2〉

(FOR)

Element construction returns the unique constructor location, but there is no need
to regard that location as accessed.

pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
pEnv ` Expr2 ⇒ r2; 〈a2,u2〉

pEnv ` elementcode-loc{Expr1}{Expr2}
⇒ code-loc; 〈a1|a2,u1|u2〉

(ELT)

Local bindings just returns the result of evaluating the body, but the accesses and
side effects of both subexpressions are both considered.

pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
(pEnv+$x 7→ r1) ` Expr2 ⇒ r2; 〈a2,u2〉

pEnv ` let $x := Expr1 return Expr2 ⇒ r2; 〈a1|a2,u1|u2〉
(LET)

The conditional approximates the paths by merging the results of both branches.

pEnv ` Expr ⇒ r0; 〈a1,u1〉
pEnv ` Expr1 ⇒ r1; 〈a2,u2〉
pEnv ` Expr2 ⇒ r2; 〈a3,u3〉

pEnv ` if (Expr) then Expr1 else Expr2
⇒ r1|r2; 〈a1|a2|a3,u1|u2|u3〉

(IF)

Update rules. The second set of rules deals with update expressions.
The first rule is the one for delete. The “updated path” u is extended with all the

descendants of r because u approximates those paths whose semantics may change after
the expression is evaluated, and the semantics of each path in r/descendant-or-self ::∗
is affected by the deletion. Assume, for example, that ($x 7→ loc) ∈ pEnv, ($x 7→ n) ∈
dEnv, and n is the root of a tree of the form 〈a〉〈b〉〈c/〉〈b/〉〈a/〉.

The evaluation of delete {$x/b} would change the semantics of $x//c, although
this path does not explicitly traverse loc/b. This is correctly dealt with, since the pres-
ence of loc/b/descendant-or-self :: ∗ in u means: every path that is not disjoint from
loc/b/descendant-or-self :: ∗ may be affected by this operation, and, by Definition 9,
loc//c is not disjoint from loc/b/descendant-or-self ::∗.

Observe that delete {$x/b} also affects expressions that do not end below $x/b,
such as “$x/b/..”. This is not a problem either, since the accessed path a computed for
the expression $x/b/.. is actually loc|(loc/b)|(loc/b/..), and the second component is
not disjoint from loc/b/descendant-or-self ::∗.

pEnv ` Expr ⇒ r; 〈a,u〉
pEnv ` delete {Expr} ⇒ (); 〈a,u|(r/descendant-or-self ::∗)〉

(DELETE)

Commutativity Analysis in XML Update Languages 13

Similarly, insert {Expr1} into {Expr2} may modify every path that ends
with descendants of Expr2. Moreover, it depends on all the descendants of Expr1, since
it copies all of them.

pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
pEnv ` Expr2 ⇒ r2; 〈a2,u2〉

pEnv ` insert {Expr1} into {Expr2}
⇒ (); 〈a1|a2|(r1/descendant-or-self ::∗),u1|u2|(r2//∗)〉

(INSERTCHILD)

4.4 Soundness Theorem

Theorem 1 (Soundness of the analysis). The static analysis rules presented in Sec-
tion 4.3 are sound.

Soundness is proved by induction, showing that the soundness properties are pre-
served by each rule. A detailed presentation of the soundness proof for the most impor-
tant rules can be found in [16].

5 Commutativity Theorem
Our analysis is meant as a tool to prove for specific expressions whether they can be
evaluated on a given store in any order or, put differently, whether they commute.

Definition 15 (Commutativity). We shall use [[Expr]]dEnv
η as a shorthand for the pair

(apply(η′),bag-of(n̄)) such that dEnv ` η;Expr ⇒ η′; n̄, and where bag-of(n̄) forgets
the order of the nodes in n̄.

Two expressions Expr1 and Expr2 commute in pEnv, written Expr1
pEnv←→ Expr2, iff,

for all η and dEnv such that pEnv⊇η dEnv, the following equality holds:

[[Expr1,Expr2]]
dEnv
η = [[Expr2,Expr1]]

dEnv
η

Hence, Expr1
pEnv←→ Expr2 means that the order of evaluation of Expr1 and Expr2

only affects the order of the result. We explicitly do not require that the order of the
individual nodes updated by the expressions is preserved.

Theorem 2 (Commutativity). Consider two expressions and their analyses in pEnv:

pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
pEnv ` Expr2 ⇒ r2; 〈a2,u2〉

If the updates and accesses obtained by the analysis are independent then the expres-
sions commute, in any environment that respects pEnv:

u1#a2,a1#u2,u1#u2 ⇒ Expr1
pEnv←→ Expr2

14 Giorgio Ghelli, Kristoffer Rose, and Jérôme Siméon

Commutativity is our main result. The proof can be found in [16]. It follows the
pattern sketched in Section 4, after Definition 11. The proof is far easier than the proof
of soundness, and is essentially independent on the actual definition of the equivalence
relation. It only relies on soundness plus the following five properties, where only Sta-
bility is non-trivial.

p⊇η0 n̄ ⇒ p⊇η0,∆ n̄ (Stability)
for each p, ∼p is an equivalence relation (Equivalence)

p#(q0|q1) ⇔ p#q0 ∧ p#q1 (|#)
η0 ∼(q0|q1) η1 ⇒ η0 ∼q0 η1 (|∼)

q0 ⊆ q0|q1 (|⊆)

6 Related work

Numerous update languages have been proposed in the last few years [1–5]. Some of
the most recent proposals [5, 7] are very expressive, as they provide the ability to ob-
serve the effect of updates during query evaluation. Although [7] limits the locations
where updates occur, this has little impact on our static analysis which also works for a
language where updates can occur anywhere in the query such as [5]. Very little work
has been done so far on optimization or static analysis for such XML update languages,
a significant exception being the work by Benedikt et al [4, 13]. However, they focus on
analysis techniques for a language based on snapshot semantics, while we consider a
much more expressive language. A notion of path analysis was proposed in [8], which
we extend here by considering side effects.

Independence between updates and queries has been studied in the relational con-
text [11, 12]. The problem becomes more difficult in the XML context because of the
expressivity of existing XML query languages. In the relational case, the focus has been
on trying to identify fragments of datalog for which the problem is decidable, usually
by reducing the problem to deciding reachability. Instead, we propose a conservative
approach using a technique based on paths analysis which works for arbitrary XML
updates and queries. Finally, commutativity properties for tree operations are important
in the context of transactions for tree models [14, 15], but these papers rely on dynamic
knowledge while we are interested in static commutativity properties, hence the techni-
cal tools involved are quite different.

7 Conclusion
In this paper, we have proposed a conservative approach to detect whether two expres-
sions commute in an expressive XML update language with strict evaluation order and
immediate update application. The approach relies on a form of path analysis which
computes an upper bound for the nodes accessed or updated in an expression. As there
is a growing need to extend XML languages with imperative features [7, 5, 19], we
believe the kind of analysis we propose here will be essential for the long-term devel-
opment of those languages. We are currently exploring the use of our commutativity
analysis for the purpose of algebraic optimization of XML update languages.

Commutativity Analysis in XML Update Languages 15

References

1. Chamberlin, D., Florescu, D., Robie, J.: XQuery update facility. W3C Working Draft (2006)
2. Lehti, P.: Design and implementation of a data manipulation processor for an XML query

processor, Technical University of Darmstadt, Germany, Diplomarbeit (2001)
3. Tatarinov, I., Ives, Z., Halevy, A., Weld, D.: Updating XML. In: SIGMOD. (2001)
4. Benedikt, M., Bonifati, A., Flesca, S., Vyas, A.: Adding updates to XQuery: Semantics,

optimization, and static analysis. In: XIME-P’05. (2005)
5. Ghelli, G., Ré, C., Siméon, J.: XQuery!: An XML query language with side effects. In:

DataX Workshop. Lecture Notes in Computer Science, Munich, Germany (2006)
6. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Siméon, J.: XQuery 1.0:

An XML query language (2006)
7. Carey, M., Chamberlin, D., Florescu, D., Robie, J.: Programming with XQuery. Draft sub-

mitted for publication (2006)
8. Marian, A., Simeon, J.: Projecting XML documents. In: Proceedings of International Con-

ference on Very Large Databases (VLDB), Berlin, Germany (2003) 213–224
9. Benedikt, M., Fan, W., Kuper, G.M.: Structural properties of xpath fragments. Theor. Com-

put. Sci. 336(1) (2005) 3–31
10. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of xpath. J. ACM 51(1)

(2004) 2–45
11. Elkan, C.: Independence of logic database queries and updates. In: PODS. (1990) 154–160
12. Levy, A.Y., Sagiv, Y.: Queries independent of updates. In: 19th International Conference on

Very Large Data Bases, August 24-27, 1993, Dublin, Ireland, Proceedings, Morgan Kauf-
mann (1993) 171–181

13. Benedikt, M., Bonifati, A., Flesca, S., Vyas, A.: Verification of tree updates for optimization.
In: CAV. (2005) 379–393

14. Dekeyser, S., Hidders, J., Paredaens, J.: A transaction model for xml databases. World Wide
Web 7(1) (2004) 29–57

15. Lanin, V., Shasha, D.: A symmetric concurrent b-tree algorithm. In: FJCC. (1986) 380–389
16. Ghelli, G., Rose, K., Siméon, J.: Commutativity analysis in XML update languages (2006)

http://www.di.unipi.it/˜ghelli/papers/UpdateAnalysis.pdf.
17. Fernández, M., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.: XQuery 1.0 and XPath 2.0

data model (2006)
18. Wadler, P.: Two semantics of xpath. Discussion note for W3C XSLT Working Group (1999)

http://homepages.inf.ed.ac.uk/wadler/papers/xpath-semantics/xpath-semantics.pdf.
19. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without tiers (2006)

Unpublished Manuscript.

