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ABSTRACT

In a typical military application, a wireless sensor network will operate in difficult and dynamic conditions.
Communication will be affected by local conditions, platform characteristics and power consumption constraints,
and sensors may be lost during an engagement. It is clearly of great importance to decision makers to know what
quality of information they can expect from a network in battlefield situations. We propose the development
of a supporting technology founded in formal modeling, using stochastic process algebras for the development
of quality of information measures. A simple example illustrates the central themes of outcome probability
distribution prediction, and time-dependency analysis.

1. INTRODUCTION

In military applications, command demands information with defined levels of accuracy and confidence, gathered
through sensor deployments and cued actions commonly specified beforehand. This may relate to long-term
strategic planning and activity (e.g. a humanitarian operation), shorter term tactical field operations (a day’s
reconnaissance), or to short duration, urgent events such as the tracking of incoming rocket-propelled weaponry,
or detection of a sniper’s gunshot. In all these situations, the effectiveness of the decision making depends on
the quality of information, or “QoI” available.

Traditionally, QoI has been studied in relation to the collection of information, its storage it in data ware-
houses, and the efficacy of its retrieval. Important quality attributes include accuracy, consistency, relevancy and
timeliness.1–3 In a military context, the decision making opportunities created by just-in-time, sensor-data-rich
information environments are opening up new and challenging research directions. QoI may be used to character-
ize the standard of the data flowing through the sensor network, and of the information derived from processing
these data.4 We anticipate that the use of QoI attributes in these environments will provide an efficient, effective
means for assessing the applicability of sensor-derived information to missions.

It would be exciting to find general attributes which could be assigned to given pieces of equipment that
result in effective fusion under all circumstances. However, the same piece of information in different contexts
may or may not be of value. For example, a low-quality, grainy, infrared photograph revealing persons moving
along a monitored path could be sufficient for the detection of important activity, but not for identifying and
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classifying the materiel under the group’s control. This examples indicates that quality of information is specific
to the combination of devices and mission goals.

For the purpose of this work, we consider that sensor-derived information is used to create a report of the state
of an entity in the scenario. Such a report may be inaccurate, and so we are interested in the difference between the
reported and actual state. For example, if the mission is to locate and monitor vehicles or targets, measurements
of acoustic, seismic, visual or radar features may be gathered and fused to aid in detecting the presence of
targets, their number, location (to some specified accuracy), and approximate velocity vectors. Bisdikian4

discusses detection and tracking through a multi-modal network of sensors, with measurement tolerances that
can influence QoI, and suggests that suitably specified QoI metrics could drive the autonomic operation of sensor
networks. These would adjust network-derived QoI values in the presence of changing mission needs or sensor
network capabilities.

Field observations can be affected by limitations of the sensing channel (e.g., foliage obscuring or falsely
cueing optical sensors), the sensing operation itself, and the communications path between the sensor and the
fusion center. As a result, field observations will provide an imperfect representation of the situation, giving rise
to uncertainty in estimated parameters. Such uncertainty is commonly represented by a probability distribution
or density function (pdf) over parameter values. These pdf’s also exhibit time-dependent behavior, capturing
the evolution of uncertainty in the parameters until, for example, a new set of field observations is fused into our
current impression of the facts.

It is an objective of our research endeavor to introduce modeling and analysis techniques for sensor-enabled
missions that will allow us to quantify the time-evolution of uncertainty in important parameters. This in turn
will permit us to estimate the QoI expected from variant configurations of the sensor deployments. Modeling of
this kind will therefore be of significant benefit to selecting the design, and optimization of the settings, of military
sensor networks embedded in the context of different operational plans and scenarios. We hope eventually to
directly synthesize design regimes, quality of information measures and fusion schemes. In this initial work,
we provide an introductory example demonstrating that information quality measures can be calculated from
solutions to probabilistic models, and illustrate the advantages of doing so using process algebra.

2. STOCHASTIC MODELING AND PROCESS ALGEBRAS
When a system involves many components with rich inhomogeneous structure and interactions, it is helpful – and
generally necessary – to define components whose individual behaviour we can comprehend, then compose them
together to generate the interactions which lead to the over-all behaviour of the system. When we need access
to probability distributions over the state of the system, this is approached in using a process algebra. Process
algebras are defined, analysed and implemented with the goal of producing formally verifiable, transformable
and comparable models. Timed stochastic process algebras (SPAs) are generally intended for use in modeling
real systems with temporal behaviours, such as the present monitoring example. We therefore explore the use of
distribution-based models defined using SPAs, because this keys into a substantial literature providing formalisms
(e.g.5,6) and tools for solution and model checking (e.g.7–9) which will assist in development, validation and
generalization.

A wide range of SPAs have been proposed and explored in the literature, each intended to address a particular
aspect of behaviour well. The “Performance Evaluation Process Algebra”, or PEPA, introduced by Jane Hillston5

was designed to address the needs of the performance analysis community to analyse interacting – or cooperating
— processes in a continuous time Markovian framework. Other process algebras are motivated by other aspects
of a general system. For example, Ambients10 are designed for the purpose of modeling activities in hierarchical
control volumes. The stochastic Pi calculus on the other hand, models communications between processes
explicitly. We have initiated the present work in PEPA because of our interest in the interactions between sensor
deployments and environmental conditions in the form of cooperations. As the work progresses we will take
advantage of the formally provable translations between popular calculi, and their solution in maturing tool sets,
to optimize the degrees of freedom in our models.

We model a sensor network in a process algebra by specifying a component process for each sensor, network
node, environmental aspect and actor. These comprise behavioural states, and incorporate actions with asso-
ciated execution time distributions leading to transitions between those states. In our example, these mimic



a sensor package (combination of sensor and network node selection and placement) in a deployment scenario
including environmental conditions which affect the functioning of the infrastructure. The state of the whole
system (comprising the state currently occupied by each component) then moves around a chain of states ac-
cording to the actions and combination of actions. This is most commonly a Markov chain, for which a rich set
of mathematical manipulation and solution tools exist. This Markov chain is represented as a vector of states
and a transition matrix of Poisson rates.

Each action follows a probabilistic description of its duration in the model. The resulting stochastic model
captures the potential evolutions of the system as a locus annotated with a probability measure. For example,
the model could provide a probability distribution over the potential locations of a moving target. This enables
the specification of a time-dependent evolution of entities interacting over specified actions. For example, a
sensor may not detect an acoustic event if it is masked by its acoustic environment. In the model we show later,
we create this behaviour by requiring the sensor, the target, and the acoustic environment to cooperateover the
hearing action. If one of these three components does not make the hearing action available, it will not occur.

With a suitably constructed model, we may examine selected outcomes, or groups of outcomes, in terms of
their probability during some form of equilibrium or mean behaviour, or as a transient response. An example
equilibrium behaviour may represent the distribution of target locations in an on-going monitoring scenario, and
perhaps specifically coinciding with certain events. For example, the location distribution at the arrival of a
tracking update from a sensor network will provide a measure of the predictable accuracy of such an update. A
transient response takes a starting state description, and provides the state distribution at a set instant in time
thereafter. For example, we may calculate the probability distribution of a target location as a function of time
in the period between updates from a sensor network.

2.1 PEPA

We are taking the initial steps in this work in PEPA5 due partly to its compatibility with our desire to analyse
cooperating processes, and partly to the availability of directly applicable solution tools, and translators from
PEPA into input forms for tools which analyse aspects of a system beyond the defined scope of PEPA itself,
such as transient behaviours.

A system model is constructed in PEPA by defining one or more component processes, each having one or
more states between which that process may transition as Poisson processes of constant mean rate. Any transition
in a process may be defined to cooperate – i.e. be constrained to occur simultaneously with – a transition in one
or more processes with the same label. If two objects cooperate over an action labelled “action”, but one defines
the rate as a, and the other defines the rate as b, then the cooperation will proceed as a Poisson process of rate
min(a, b). The cooperation formalism can be used to throttle or stop an activity by introducing a controlling
component. In the example we detail below, the acoustic environment can limit the ability of the sensor to detect
the target.

At least one of the actions in a cooperation set must have a finite Poisson rate. In a cooperation with unequal
rates defined for the actions involved, the required joint transition occurs as a Poisson process with the minimum
rate taken from those defined in the cooperation.

3. STOCHASTIC MODELING OF QUALITY OF INFORMATION

Our overall goal is to produce a function which takes a description of a scenario, and provides one or more QoI
measures. Here, we construct a small, simplified example to produce a measure of information accuracy, and an
illustration of the decay of the quality of that information over time.

The quality of information embodied in a message may be interpreted as a probabilistic constraint on the
outcomes we should expect based on having received that message. If we receive a message with the essential
content “the target is in range”, then the prima facie interpretation is that the target is in range, with probability
1. In military situations in particular, there is no such thing as certainty, so we want to deal with quantitative
measures of the relationship between an apparently decisive declaration embodied in such a signal, and the
outcomes we expect in the field when it is received.



A scenario is characterized in a model, which may be empirical (statistical results of field tests), intuitive
(logical constraints on behaviours based on experience with equipment and personnel), speculative (creating
modeling factors which, if feasible, will be beneficial) or formal (abstract models in a suitable algebra). The
work in this paper forms the first step in the formal modeling aspect which is to be integrated in a holistic
manner with the whole range of perspectives, creating a framework within which the necessary mathematical
links between practice, theory and experience will be formulated.

The actions in a Markov chain model proceed as Poisson processes, which have a fixed form of probability
distribution function (pdf) over the time between transitions or sojourn time in the source state with one pa-
rameter: the rate constant. The pdf of time delays between Poisson events is te−λt, where t is the free variable
time, and λ the parameter we may set. This distribution decreases monotonically. Models based on continuous
time Markov chains (CTMCs) are commonly employed in the estimation of mean behaviours. However: few real
processes follow the Poisson distribution exactly, so higher moments of delays are poorly reproduced. This is
remedied by substituting a clique of states for a single state, which enables approximation of more realistic time
distributions by a suitable choice of transition rates within that clique (e.g.11). However, for the measure we
illustrate here, mean behaviour is an acceptable approximant, and leaves the model structure simple.

4. A SIMPLE MONITORING SCENARIO

Consider an actor who must be made aware of the location of a target which can be either “here” represented as
occupying location 1, or “away” represented as occupying location 2. We place a sensor and associated network
node in each location, and allow the network nodes to communicate with each other to transport detection
reports from each sensor. The actor receives reports from her local network node which may have originated
from either location’s sensor. The target moves between the two locations independently. The sensors detect
the presence of the target acoustically. To begin introducing realism, we include an acoustic environment which
can block detection of the target if ambient noise levels are high enough. The actor, sensors, network nodes,
target and acoustic environments are each modeled as individual components, which are combined through PEPA
cooperations, indicated in Figure 1.

Each state in the Markov chain derived from Figure 1 is a joint state of all the component processes. For
example, one such joint state will represent that both sensors are active, but not sampling, the target in location
1, the actor believing the target to be in location 2, the network node in location 1 ready to send to the node
in location 2 that the target is in location 2, and both acoustic environments loud. This one of the states less
fortunate for the actor, and indeed we can calculate the probability of being in that state.

When the actor receives a report specifying the location of a target which is not under their control, she
updates her opinion of where that target is. The most trivial update would be to adopt the prima facie inter-
pretation of the report: the target is now where this report states it to be. However, sensing, data transmission
and fusion are imperfect, so the behaviours leading to that imperfection must be modeled to enable prediction of
an interpretation with quantifiable attributes pertinent to the intended use of the information; i.e. the quality
of information.

When a network node receives a report from its local sensor or from another node in the network, it immedi-
ately prepares to send that information to the larger network. This immediate retransmission of the information
to the wider network is chosen to enable simple extension of the number of locations in our model in further
work by creating a ring or star connectivity. A sensor’s detection of the target will tend to be reported to all
locations in such a system. This is design from the point of view of expressivity of the model, which is to be
augmented with features drawn from practical network protocols.

4.1 Monitoring scenario PEPA components

We define the monitoring scenario shown in figure 1 as a set of components to be composed together through
cooperations over certain actions. The state of the system as a whole comprises the product of the component
state spaces. When we refer to a state which comprises A1at1, it can be any of those joint states which includes
A1at1 in its description.



Figure 1. The components of our system follow a pattern of state transitions, some of which result from actions cooperating
with actions in components. Components are shown boxed, and actions over which components cooperate are shown as
shaded ellipses. For example, the sensor in location 1 has an action t1hear which cooperates with the identically labelled
action available in the target model, but only when it is in location 1, (i.e. susceptible to detection by the sensor), and
the acoustic environment does not mask it (where “not masking” is modeled by making the transition available in the
cooperation). The sensor in location 2 will not detect the target, because it is not present to satisfy the cooperation on
the action. t2hear.

4.1.1 The actor

Our actor is stationed in location 1 and receives information from the network about the target through the
n1here or n1away actions which assert respectively the presence or absence of the target. State A1at1 indicates
that the actor believes the target to be present in location 1, and A1at2 believes it to be away in location 2.

A1at1 def= (n1here, n1hererate).A1at1
+ (n1away, n1awayrate).A1at2;

A1at2 def= (n1here, n1hererate).A1at1
+ (n1away, n1awayrate).A1at2;

4.1.2 The target

The target moves between locations 1 and 2 independently, and may be heard by a sensor in the same location.

T1Active
def= (t1hear, t1hearrate).T1Active
+ (t1activemove12, t1activemove12rate).T2Active;

T2Active
def= (t2hear, t2hearrate).T2Active
+ (t2activemove21, t2activemove21rate).T1Active;

State T{x}Active indicates the target is in location x. The activity is specified to allow for inclusion of states
in which it may, for example, be silent or in a stealth mode. Actions t{x}activemove{xy} give the rate of the
process of moving from location x to location y. The action t{x}hear describes, from the point of view of the
target, the process of being heard.



4.1.3 Sensors

The sensors operate independently, one located in each of locations 1 and 2, and hear the target only if it is in
the same location and it is sampling. The transition t1miss is included to avoid deadlock in this simple model,
but may also be used as a handle on false negatives. The sensor in location 1 is defined as follows:

S1Active
def= (s1sample, s1samplerate).S1Sampling;

S1Sampling
def= (t1hear, t1hearrate).S1Heard
+ (t1miss, t1missrate).S1Active;

S1Heard
def= (s1at1, s1at1rate).S1Active;

The sensor in location 2 is defined similarly, making textual replacements in the action and rate labels of 1
with 2 and vice versa.

S2Active
def= (s2sample, s2samplerate).S2Sampling;

S2Sampling
def= (t2hear, t2hearrate).S2Heard
+ (t2miss, t2missrate).S2Active;

S2Heard
def= (s2at2, s2at2rate).S2Active;

4.1.4 Network nodes

The network comprises a node in each location which registers a detection event if the sensor makes a s1at1
transition, and prepares to send a message. In this network of two nodes, the structure is symmetric, with the
node in location 1 defined as follows, then the node in location 2 defined by replacing 1 with 2 and vice versa:

N1Receive1 def= (s1at1, s1at1rate).N1Send1
+ (n2at2, n2at2rate).N1Send2
+ (n1here, n1hererate).N1Receive1;

N1Receive2 def= (s1at1, s1at1rate).N1Send1
+ (n2at1, n2at1rate).N1Send1
+ (n1away, n1awayrate).N1Receive2;

N1Send1 def= (n1at1, n1at1rate).N1Receive1
+ (s1at1, s1at1rate).N1Send1
+ (n2at1, n2at1rate).N1Send1
+ (n2at2, n2at2rate).N1Send2
+ (n1here, n1hererate).N1Send1;

N1Send2 def= (n1at2, n1at2rate).N1Receive2
+ (s1at1, s1at1rate).N1Send1
+ (n2at1, n2at1rate).N1Send1
+ (n2at2, n2at2rate).N1Send2
+ (n1away, n1awayrate).N1Send2;

The network node maintains a representation of which location the target is in (the number appended to the
state name) which is decoupled from that of the actor. For example, we could be in a state which comprises
A1at1 and N1Receive2 (we refer to a system state which includes a particular sub-state as part of its description
as comprising that sub-state). This allows in a simple manner for the actor to be misinformed even if the
network’s record is correct. This network node is constructed such that we could easily grow the network to a
star configuration, or a ring, despite the tiny state structure.



Action s1at1 cooperates with the sensor in the same location to indicate that the target has been sensed
locally. Action n2at2 cooperates with the node in location 2 to pass a message from that node indicating that
it believes the target to be in location 2. The node in 2 may also indicate that it believes the target to be in 1 -
this is an arbitrary choice to leave design options open.

When the node in location 1 is ready to send a message to the node in location 2, it enters state N1Send1 if
it is to indicate the target is in location 1, and N1Send2 if in location 2. The belief state may be updated by the
local sensor at any time by a s1at1 action, or to either belief state by a message from the other network node.
This behaviour is simplified, and intended to allow for simple extension in subsequent modeling experiments.

Actions n1here and n1away inform the actor (through cooperation) that the target is “here” (in location
1) or away (in location 2). We could code these actions as passive in either the node or the actor, indicating
respectively the actor polling the node, or the node emitting updates automatically.

4.1.5 Acoustic environments

We introduce an acoustic environment to intermittently block the sensors from hearing the target, independently
of their sampling behaviour. It is either loud or quiet; either blocking or allowing detection by the sensor. For
location 1, this is modeled as follows, using AE0in1 to indicate zero noise in location 1, i.e. quiet, and AE1in1
to indicate some noise in location 1, i.e. noisy. An environment transitions between levels of noise according to
independent actions acoustic{xy}ratein{z} jumping from level x to level y at the specified rate in location z.

AE0in1 def= (acoustic01in1, acoustic01ratein1).AE1in1
+ (t1hear, t1hearrate).AE0in1;

AE1in1 def= (acoustic10in1, acoustic10ratein1).AE0in1;

The independently defined process for the acoustic environment in location 2, we replace “in1” with “in2”.
When we include these environments in the model cooperating over actions t1hear and t2hear with the target, a
sensor only hears the target if it is present, and the acoustic environment enables the corresponding hear action.
This model can be extended to include more levels of noise, and enriched to cause gradual reduction of the ability
to here the target by associating low rates with the hearing action to reduce the likelihood of it completing before
the sensor registers a miss.

4.1.6 The monitoring scenario system

The whole system is formed by composing the component processes together through cooperations. In PEPA,
this is made explicit through cooperations over specified actions, which is notated as a bow-tie ( BC

{action1,action2,...}
),

and the set of actions written under the bow-tie. If no set of cooperation actions is specified, the processes are
independent, running in parallel.

The state of each component of the system given in the definition is chosen so as to provide a notional starting
point for evolution of the system. This ensemble must represent a feasible state for the total system, i.e. one
which will be revisited, and can be reached by all other operating states. The whole system is shown here with
some bracketed cooperating pairs laid out vertically to simplify presentation:

System
def= A1at2

BC8
>><
>>:

n1here,
n1away

9
>>=
>>;

((

N1Send2

BC8
>>>>>>>>><
>>>>>>>>>:

n1at1,
n1at2,
n2at1,
n2at2

9
>>>>>>>>>=
>>>>>>>>>;

N2Receive2

)
BC8

>><
>>:

s1at1,
s2at2

9
>>=
>>;

((
S1Active

BC
∅

S2Active

)
BC8

>><
>>:

t1hear,
t2hear

9
>>=
>>;

((
AE1in1

BC
∅

AE1in2

)
BC8

>><
>>:

t1hear,
t2hear

9
>>=
>>;

T1Active)))

Reading the system equation from the right, we see the target cooperating with the acoustic environment,
then these cooperating with a sensor to represent the sensor hearing the target if the acoustic environment allows



for it. The sensors pass on reports to their own network node because the actions are named specifically for the
locations. The network nodes share their information with each other, and the node in location 1 passes it on
to the actor.

5. EQUILIBRIUM AND TRANSIENT SOLUTIONS FOR UPDATE ACCURACY

We want to calculate the probability distribution over potential locations of the target at the instant of arrival
of a message from the local network node stating that it is present, specifically changing the actor’s opinion from
“the target is at location 2” to “the target is at location 1”. In the PEPA model, this corresponds to an n1here
transition from any state of the whole system which has the actor in state A1at2 i.e. believing the target to be
in location 2, from any state which comprises A1at1.

Solution for the equilibrium state occupation probabilities of the system is a fundamental result when
analysing a Markov chain. The majority of interesting results are constructed using its probabilities, includng the
rates of the reversed process,12 as will be of use in the example calculation below. To construct the probability
distribution we want here, we consider the circumstances in terms of the n1here process. This is a Poisson
process, so on entry to a state which is a target of that transition, we can take the subset of states which are
reached by that action and normalise their probabilities from the total equilibrium (we can do this essentially
because of the random observer property13).

5.1 Calculation procedure
We consider an observation taken at an independent instant, seeing state Si. The state occupation probabilities
in the continuous Markov chain of the model at an independent instant (i.e. one chosen without reference to
system state) conform to the equilibrium distribution found by solution of the Chapman Kolmogorov probability
flux balance equations.13 Let the equilibrium state occupation probability of state Si thus calculated be ei.

Define F as the set of indices in list of states S which comprise A1at1. Define H similarly for states comprising
T1Active, i.e. the target being in location 1 in any state of operation. For states we are interested in, the observed
state is indexed in F , and the previous state not indexed in F . We then want the probability p1 of such observed
states being indexed in H.

If we can calculate a value p̂1 for the probability of the target being in location 1, we can compare the
distribution of locations of the target (p1 = p̂1, p2 = 1 − p̂1) at the report arrival instant with that implied by
the signal (p1 = 1, p2 = 0). This probability p̂1 is to be conditioned on the previous state having comprised
A1at2. This is the probability of the observed current state having been entered from Sj /∈ F .

To calculate this, for each state Si, i ∈ F , we sum the probability fluxes of the reversed process12 fj,i between
that state and states Sj , j /∈ F to give fi, and the probability fluxes in the reverse process gj,i between it and
states Sk ∈ F to give gi. The probability ci of observing the state Si when it was previously a state Sj , j /∈ F

is then ci = fi

fi+gi
. This is the proportion of the reverse process’ probability flux into a state comprising A1at2

from a particular observed state comprising A1at1. Multiplying the forward process’ rate from state i to state
j by ej and dividing by ei gives the rate in the reverse process from state j to state i. The reverse process has
the same equilibrium solution as the forward process.

The modeled probability p̂1 of the target being in location 1 at the instant of arrival of a message represented
as n1here from a state Sj , j /∈ F is then:

p̂1 =
nh

nh + na
, where nh =

∑

i∈H

eici, na =
∑

i/∈H

eici, and ci =
fi

fi + gi

This is the probability that a signal indicating that the target is in location 1, given to the actor in location
1 who currently believes the target to be in location 2, is correct.

The results in table 1 are for all rates in the model set to 1.0, except the target motion rate of 0.01, the
hear action rate of 100.0, and the rate at which the acoustic environments return to silence, which is set to 10.0,
except where varied in the results table.



varied Varied rate: 0.1 1.0 10.0 100.0
environment(s) Update

1 and 2 2 to 1 0.8966 0.9654 0.9734 0.9822
1 to 2 0.9036 0.9728 0.9814 0.9896

2 2 to 1 0.5976 0.9522 0.9734 0.9806
1 to 2 0.9962 0.9881 0.9814 0.9898

1 2 to 1 0.9934 0.9819 0.9734 0.9823
1 to 2 0.5376 0.9614 0.9814 0.9880

Table 1. p̂1 for update 2 to 1 (A1at2 to A1at1) and p̂2 for an update 1 to 2 for a range of values of acoustic10ratein1
and acoustic10ratein0. A lower rate increases the proportion of time spent in a state which does not permit the sensor
in the same location to hear a target. The three groups of results are for the environments in both locations varied
simultaneously, then constant at 10.0 in location 1 and varied in 2, then constant in 2 and varied in 1.

The rates used to generate these results are contrived to show that different parts of the system can interact
in surprising ways. We would expect the probability of the target being where the network reports it to drop
with higher noise levels, and this is the case when we vary the acoustic environments symmetrically. However,
we can pick rates for the system which lead to counter-intuitive results, as seen in the non-monotonic response
when the environments are differentially varied. This means that an intuitive result from a single test run of a
system should not be regarded as proof that the behaviour will follow expectations under all conditions. Part
of our research path will include automating the discovery of counter-intuitive behaviours, whether beneficial or
detrimental to a mission. These features then motivate re-design of the model to improve generality.

Augmentation of the action behaviours will enable discovery of any counter-intuitive effects like this in real
systems.

5.2 Time evolution of meaning

To calculate the evolution of the target location probability distribution over time after an update, we look again
to the probability flux. This flux describes the rate of change of probability of the states as a redistribution or
flow of probability between them. This gives us ordinary differential equations, which we integrate with respect
to time, starting from the probability distribution at the update instant.

Specifically, we are interested in the probability distribution over potential locations of the target which
ought to be assumed if no further information arrives. The arrival of this information does not affect the target’s
motion, because there is no feedback from the actor to the target, so in this specific example model, we can
directly calculate the target’s location independently (we are effectively selecting those state evolution sequences
which do not include arrival of a signal). We show the time evolution of the meaning of an update A1at2 to
A1at1 via action n1here in terms of the change in p1, denoting t1activemove12rate and t2activemove21rate as
α, since they have the same value in our example:

p2(t) = 1− p1(t)
dp1

dt
= α(p2 − p1)

dp2

dt
= α(p1 − p2)

Integrate simultaneous ODEs from p1(0) and p2(0) over time t

⇒ p1(t) =
1
2

(
p1(0)(1 + e−2αt) + p2(0)(1− e−2αt)

)

This begins with the distribution we calculated at update, and decays to the equilibrium probability. This
expression is only valid for this particular model, but we will see this general decay trend in a number of
characteristics of interest. These could be referred to as information quality decay or staleness, and knowledge
of the precise geometry of such curves will be essential in properly calculating their effect in a scenario.



6. CONCLUSIONS

We have demonstrated that modeling a target monitoring scenario using a stochastic process algebra allows us
to quantify aspects of the quality of disseminated information depending on the environment, target, sensor and
network behaviours in a time-dependent manner. We are by no means unique in desiring an effective treatment
of quality of information in sensing applications. For example, Hossain et al14 describe quantification of similar
quality of information attributes to those discussed by Bisdikian,4 but in relation to face recognition. The
advantage we offer in this latest work is in the synthesis of formal models which key into the total sensing and
response problem at whatever levels of abstraction are found to be necessary. While there have been a number
of treatments of low level measures of accuracy and related attributes, the stochastic modeling approach we have
initiated will provide components which support links between the physics of measurement and the fulfillment
of complex demands by command in military applications.

The advantageous novelty we offer springs from the proposal of a means for capturing the practicalities of
military operations in flexible, formal stochastic models which reproduce the necessary degrees of freedom in a
manner which enables the calculation of meaningful measures of quality of information. We have constructed a
simple candidate quality of information metric describing the accuracy of an update from a sensor network, and
shown how that quality decays over time. The research directions from this point include experimentation with
different types of sensor, multiple sensor deployments in a given location, network protocol design, and mission
characteristics.
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