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ABSTRACT
Using and extending a framework is a challenging task whose
difficulty is exacerbated by the poor documentation that
generally comes with the framework. Even in the presence of
such documentation, developers often desire implementation
examples for concrete guidance. We propose an approach
that automatically locates implementation examples from a
code base given light-weight documentation of a framework.
Based on our experience with concern-oriented documenta-
tion, we created a tool that uses the framework documenta-
tion as a template and that finds instances of this template in
a code base. The concern instances represent self-contained
and structured implementation examples: the relationships
and the roles of parts composing the examples are uncovered
and explained. With a study comparing the results of our
tool with the expertise of Eclipse committers, we show that
our approach can locate examples with high precision.

1. INTRODUCTION
Understanding and extending an application framework is a
difficult task. Even when documentation artifacts such as
tutorials are available, developers often want to look at real
implementation examples for concrete guidance [12]: clear
and working examples are an important complement to text.

When developers want to look at examples of framework ex-
tensions documented in a tutorial, they can generally find
such examples in existing applications. For example, a large
number of applications extend the Eclipse Rich Client Plat-
form (RCP)1, which provides Graphical User Interface facili-
ties to create components such as editors and views. Finding
an extension example such as the implementation of an edi-
tor within an existing application requires identifying those
pieces of code that make up that extension. This can be
difficult, unfortunately, because those pieces of code might

∗This research was conducted while the author was working
at the IBM T.J. Watson Research Center.
1www.eclipse.org
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not be located together and might be intermixed with other
code, and some pieces of code might be shared among sev-
eral extensions. For instance, a typical Eclipse application
includes many editors, and it is not always obvious which
pieces of editor code belong to which editors. Even if a de-
veloper succeeds in identifying the important code elements
that implement a framework extension, the relationships and
the responsibilities of those elements, and their relationships
to the details in the tutorial, may not be clear. For exam-
ple, what is the role of StructuredTextEditor? What is the
relationship between it and JSPTagInfoHoverProcessor?

Two different families of approaches have been researched to
help developers locate implementation examples, unrelated
to documentation. Tools such as Strathcona [7] mine code
bases to recommend snippets of code relevant to a develop-
ment task. These snippets of code are useful to understand-
ing fine-grained framework extensions, but are generally not
adequate for extensions spanning multiple classes, such as
a text editor, because the examples are typically related
to code found in only one method. Feature-location tech-
niques [4, 9, 10, 20] are another family of approaches that
typically locate a set of functions implementing one feature.
Unfortunately, those techniques do not leverage the fact that
framework extensions exhibit a common structure, and this
structure is also not reflected when presenting the imple-
mentation to the user.

We propose a technique that enhances framework documen-
tation by automatically locating and structuring implemen-
tation examples of documented framework extensions in a
code base. The structure of the examples mirrors the organi-
zation of the documentation, and the relationships between
the elements comprising the examples are uncovered and ex-
plained. We implemented this technique in XFinder (eXam-
ple Finder), an extension to Mismar [3], which is a concern-
oriented documentation toolset. Guides to framework ex-
tensions are created and encoded as concerns in Mismar.
XFinder basically reuses these concerns as concern templates
and tries to find instances of these templates in the code
base. The two types of documentation artifacts augment
each other: the guide provides a template used to struc-
ture and locate the examples, and the examples are a form
of documentation in themselves. For instance, assume that
there is a Mismar guide to help developers create Eclipse
text editors. Given the entire Eclipse code base, XFinder
would find all text editors (Java, XML, HTML, JSP, etc.),
and for each of these editors, XFinder would identify the



piece of code implementing each step of the guide.

To validate to what extent our approach correctly identifies
implementation examples, we performed an experts study
on the Eclipse text editor framework extension, in which
XFinder’s results were compared to the expertise of the ed-
itors’ developers. We found that our approach correctly lo-
cated 93% of the implementation pieces of five text editors, a
high level of precision that was confirmed by two case stud-
ies performed on two other frameworks. The contributions
of this paper include (1) a technique to automatically locate
structured implementation examples of a framework exten-
sion based on documentation, and (2) a framework docu-
mentation toolset that integrates the documentation along
with examples.

In the remainder of this paper, we start by reviewing how to
create concern-oriented documentation with Mismar (Sec-
tion 2). Then we describe how we can use this type of
documentation to find implementation examples (Section 3)
and present the results of the preliminary evaluation we per-
formed on our approach (Sections 4 and 5). We cover the
related work (Section 6) and conclude in Section 7.

2. CONCERN-ORIENTED
DOCUMENTATION WITH MISMAR

Mismar is a toolset tightly integrated within the Eclipse de-
velopment environment that allows developers to create doc-
umentation simply by pointing out elements in the software
system that are important for a particular task [3]. Ele-
ments include classes, methods, extension points, files and
even web pages. From these elements, a guide for the task
with an appropriate step for each element is created. For
example, if the user selects the XYZ interface as an impor-
tant element, an “Implement XYZ interface” step is created.
Hence, a developer can create a complete guide by simply
dragging and dropping elements from a system to the guide
editor. Once a step is created, comments and references
to other artifacts can be added to provide contextual in-
formation. Moreover, it is possible to reorder the steps or
to change their nature (e.g., from “Implement XYZ inter-
face” to “Use XYZ interface”). We refer to this approach
as concern-oriented because it focuses on software artifacts
and their relationships instead of steps or process; a con-
cern [14, 17] is usually said to capture all elements in a
software system that are relevant to a particular point of
interest. Mismar guides are saved in an extensible concern
model [3].

The resulting guide is also tightly integrated into the devel-
opment environment, providing interactive support to the
user following the guide. For example, when the user per-
forms the“Implement XYZ interface”step by double-clicking
on it, the “Create new class” wizard in Eclipse is launched,
initialized with the step information. As the user performs
the steps, the resulting artifacts, called outputs, are recorded
for presentation as implementation examples to future users.
A collection of outputs in Mismar is called a result, and is
also a concern modeled in the concern model. A result can
be presented to the user in two ways: for each step, a list
of outputs from multiple results (see Figure 1), or overall
results, each showing a coherent set of outputs for all steps.

Figure 1: Mismar Result View

Figure 2: XFinder view

3. LOCATING STRUCTURED EXAMPLES
Documentation of framework extensions is usually created
after a number of extensions have been implemented (gener-
ally by the framework developers themselves). As explained
in Section 2, Mismar keeps track of implementation exam-
ples, but some framework extensions might have been im-
plemented without the Mismar guide or before it was cre-
ated. We thus devised an approach that locates structured
examples related to a Mismar guide in a workspace. It is
implemented in an Eclipse plug-in called XFinder.

As a sample usage scenario, assume that a developer wants
to create a text editor for the Groovy Server Page language
(GSP)2, which combines the Groovy language with HTML.
A colleague provides a short tutorial on creating a text ed-
itor in Eclipse: the tutorial can already be in the form of
a Mismar guide or it can easily be converted to one by se-
lecting the important elements in the tutorial, as described
in Section 2. Because the functionality of the GSP editor
is similar to that found in three Eclipse text editors (Java,
HTML, and JSP), the developer wants to know how these
editors were implemented. S/he thus loads the Mismar guide
in an Eclipse workspace and starts XFinder to find examples.
XFinder locates all text editors in the workspace3 and lists
them in the XFinder view (Figure 2). The developer can

2groovy.codehaus.org/GSP
3The source code of the editors can be either in a project or
attached to the binaries.



browse the results to examine any editor implementations
of interest. Each is presented as the list of steps from the
guide, with a ranked list of potential outputs for each step.
The ranking is according to the probability that a potential
output is the right output for that step of the particular
implementation being examined. For example, XFinder in-
dicates that the class JavaOutlinePage, which displays the
members declared by a Java class, belongs to the Java class
file editor. By expanding the JavaOutlinePage entry further,
the developer could see that, indeed, JavaOutlinePage is ref-
erenced by the class ClassFileEditor, a key element of the
Java editor. Finally, a context menu action allows the user
to convert any editor shown into standard Mismar results.

3.1 Overview
To support such scenarios, we designed an algorithm that
locates coherent implementation examples. For each exam-
ple, the algorithm identifies an output, or the fact that there
is none, for each step in a given guide.

In Mismar, a guide is a structured concern that contains an
ordered list of steps. Each step has a type (e.g., “Extend a
Java class”) and most of the steps refer to a main element
(e.g., a Java class, an extension point, etc.). The idea is to
use the structure of the guide concern as a template to be
matched when searching for examples in a code base.

Given a Mismar guide and a code base, XFinder first searches
for all possible outputs for each step. For example, if the
type of a step is “Implement an interface” and its main el-
ement is the Java interface ITextEditor, XFinder finds all
classes that implement this interface directly or indirectly.
XFinder is not limited to Java-related steps: it can also han-
dle steps involving Eclipse artifacts such as plug-ins, and
XFinder plug-ins can provide support for more.

The result of this search is usually to find multiple outputs
for each step, belonging to different examples. A key chal-
lenge of this work is to cluster those outputs into coherent
example sets, one for each example containing all the ele-
ments of that example. This is done by means of an example-
aggregation algorithm. It starts with a user-designated seed
step, whose outputs are deemed to be in one-to-one corre-
spondence with the examples. For example, if the seed step
is “Create extension org.eclipse.ui.editor” and there are five
such extensions in the code base, XFinder will try to lo-
cate five editor implementations. Such extension steps are
typically good seed steps for Eclipse extensions. In other
contexts, a step asking to implement a major interface or to
extend a class is often a good seed step. Ideally, the seed
step should not be an optional step or one whose outputs
might be shared by multiple extensions. Although, in our
experience, one can usually find such seed steps easily, we
found during our evaluation (Section 4) that our algorithm
was relatively robust to the choice of seed step.

Each output of the seed step designates an example. With
this starting point, the aggregation algorithm greedily se-
lects appropriate outputs for other steps based on a variety
of relationships between outputs, and adds them to the ex-
ample set.4 The intuition is that those outputs making up

4We experimented with a fuzzy, relational clustering algo-

a single, coherent example will be more closely related to
one another than to outputs that belong to different exam-
ples. Details of relationship handling and the aggregation
algorithm are illustrated by Figure 3. It shows a pruned ex-
ample consisting of three guide steps, a few outputs for each
step, and two types of relationships. The snapshots shown
will be described below.

3.2 Relationship Types
XFinder uses different types of relationships to determine
whether two outputs are part of the same example. Given
two possible outputs, a confidence value between 0% and
100% is computed for each type of relationship. The higher
the confidence, the more probable it is that two outputs are
indeed related. The confidence value of a relationship falls in
four classes: Related, Not Related, Possibly Related (confi-
dence between 0% and 100%), and Inapplicable (confidence
is not taken into account). The last class of confidence value,
Inapplicable, is used when the types of outputs preclude a
certain relationship. For example, a Java class and a plug-
in extension cannot be related by a Java-to-Java relation-
ship. Snapshot #1 in Figure 3 illustrates the case where two
types of relationships are computed between JavaEditor and
the outputs of the other steps. Based on previous work on
program investigation [13] and semi-automated relationship
inferencing [6], we currently use four types of relationships.

Name similarity. If two potential outputs have similar
names, it is probable that they are related to the same ex-
ample. Given two possible output names (e.g., the short
names of two Java classes), the confidence of the name sim-
ilarity relationship is the number of common pairs of char-
acters divided by the total number of possible pairs. This
metric was previously shown to be robust for assessing the
similarity of code-related strings [19, p.4].

Location similarity. If the locations of two potential out-
puts are similar, it is probable that they are related to the
same example. XFinder computes a 3-part location for each
output: the container (e.g., the project), the module (e.g.,
Java package) and the unit (e.g., the Java source file). Given
two locations, the confidence of the location similarity rela-
tionship is the number of matching location parts divided by
the total number of location parts (e.g., 66% or 2/3 if the
containers and modules are the same, but not the units).

Java-to-Java relationship. Two Java elements (e.g., a
class and a method) are probably in the same example if
they are related. XFinder currently computes three Java
relationships: calls, contains, and refers to. The confidence
of a Java-to-Java relationship is 100% if the two Java outputs
are related. If an ancestor of one output has a Java-to-Java
relationship with the other output, the confidence is 100% -
5 * n, where n is the hierarchy distance between the ancestor
and the original output. Otherwise, the confidence is 0%.

Plug-in-To-Java relationship. A plug-in extension is
probably related to a Java class if the former explicitly refers
to the latter (e.g., the editor extension element indicates

rithm, but found that it was not as effective as a greedy
algorithm, for reasons too complex to explain here.
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Figure 3: XFinder Algorithm with strong combination strategy

which Java class realizes the editor functionality). The con-
fidence of this relationship is 100% if the plug-in extension
explicitely refers to the Java class and 0% otherwise.

3.3 Combining Relationships
The separate relationships between two outputs, each with
its own confidence level, need to be aggregated into a single
relationship whose confidence level expresses the likelihood
that the two outputs belong in the same example. For ex-
ample, in Snapshot #1 of Figure 3, two relationships, loc
(location similarity) and java (Java-to-Java), are shown be-
tween JavaEditor and each output of each other step. In
Snapshot #2 they are combined into a single relationship,
rel, showing that JavaHover is the most closely-related el-
ement, and therefore the one most likely to belong in the
same example as JavaEditor.

During our initial experimentation, we tried several com-
bination strategies: (1) average: averaging the confidence
value of all relationships, (2) bonus: giving different weights
to relationships based on their confidence values, and (3)
strong: like bonus, but favoring domain-specific relation-
ships (Java-To-Java and Plug-in-To-Java), which we refer to
as strong relationships. Because we use a greedy aggregation
algorithm, a naive combination strategy might throw off our
approach by selecting an inaccurate output and then send-
ing the greedy algorithm down an erroneous path. Both the
bonus and strong approaches operate on a list of relation-
ships ordered by confidence value, but the strong approach
moves any strong relationship(s) before all others. The com-
bination function weights relationships based on their posi-
tion in the list using the formula

Pn−1
i=0 riα(1− α)i

Pn−1
i=0 α(1− α)i

where R = r0, ...rn−1 is the ordered list of relationships be-
tween two outputs, and α is a decay constant. The higher
the value of α, the greater the weight we give to the favored
relationships. In the case of the strong strategy, it sometimes
happens that no strong relationship is found between two
outputs: we then only compute the average of the relation-
ships’ confidence value to ensure that we will not promote a
less relevant relationship. We found the strong combination
strategy with an α value set to 0.8 to be the most successful
strategy during initial prototyping: this was later confirmed

in our evaluation (see Section 4.4).

3.4 Example-Aggregation Algorithm
The objective of the example-aggregation algorithm is to
compute the example set containing all the step outputs
making up a single, coherent example. Some steps might be
found not to have outputs, because the steps were optional,
or, perhaps, because the example is imperfect.

The algorithm starts with the example set containing a sin-
gle output for the seed step (e.g., JavaEditor in snapshot
#1). Each iteration adds one more output to the set, from
a step not yet represented in the set (called a remaining
step), or determines that all remaining steps have no out-
put, which terminates the algorithm. The algorithm also
remembers all computed relationships as it proceeds, for its
own use in later iterations and for presentation to the user.

The first iteration starts with the single seed output in the
example set. It computes all relationships between this out-
put and all outputs in all remaining steps (snapshot #1 of
Figure 3). It then aggregates the relationships, as described
earlier (snapshot #2), and selects the new output with the
largest confidence (JavaHover in snapshot #2). If the con-
fidence is less than a threshold value of 50%, the selected
output is dropped, all remaining steps are deemed to have
no outputs, and the algorithm terminates. Otherwise the se-
lected output is greedily placed in the example set, and the
algorithm proceeds to the next iteration. Note that all re-
lated outputs are eventually listed for the user in confidence
order, but the algorithm greedily selects just the highest one
for use in its subsequent iterations.

Each subsequent iteration evaluates the relationships be-
tween the new output added to the example set and the
outputs of all the remaining steps (snapshot #3 in Figure 3,
which shows both the aggregated relationships computed
during the first iteration (dashed) and the new ones, be-
tween JavaHover and the outputs of step 1 (solid)). These
new relationships are aggregated, as before. Now we have a
situation where each output in each remaining step is related
to multiple outputs in the example set. These relationships
are also aggregated, using the strong combination approach,
as before (snapshot #4). Finally, the new output referred
to by the aggregated relationship with the largest confidence
(jdt.ui in snapshot #4) is selected, and the algorithm pro-



ceeds as above. It should be noted that the step ordering is
irrelevant for this algorithm: in Figure 3, an output for step
2 is selected before step 1, because of the confidence levels.

As noted above, the algorithm uses a threshold confidence
value of 50% to detect cases where steps do not have out-
puts in a particular example. A confidence value below 50%
roughly means that the output does not have a strong re-
lationship with any other previously-selected output, and
that more than half of its name and location are different
from the other outputs’. If no output has a combined confi-
dence over 50%, XFinder presumes that no output is similar
enough to belong in the example set.

The complexity of the algorithm is bounded by n, the num-
ber of steps in the guide, and m, the maximum number of
possible outputs per step, which is typically higher than n.
Computing the relationships between two outputs and ag-
gregating them is assumed to take constant time k, because
the number of relationships is fixed (at 4). Since we compute
the relationships between the last selected output and the
potential outputs of all the remaining steps, the complexity
of our example-aggregation algorithm can be expressed as

nX

i=1

kim = km
n(n + 1)

2
= O(mn2)

3.5 Seed Step Heuristic
During early experimentation with some small projects, we
observed that, when an example contains artifacts shared
with other examples, the greedy aggregation algorithm could
become confused: once it selects a shared artifact, it starts
evaluating other shared artifacts, sometimes at the expense
of specific artifacts. We thus added an optional heuristic
that gives a 15% bonus to the name and location relation-
ships between the seed step output and any other poten-
tial output. Given two artifacts with equivalent strong rela-
tionships, one shared and one specific to the example, this
heuristic favors the specific artifact. If most artifacts have
a similar location and name, this heuristic can be harm-
ful, however, as discussed in Section 5.1. XFinder therefore
automatically recommends that this heuristic be disabled in
one case of such co-location: when XFinder runs on a project
that does not reference any other projects. More sophisti-
cated recommendations are a topic for future research.

4. EXPERTS STUDY
To validate to what extent XFinder produces correct results,
we designed two studies. The first, presented in this section,
quantitatively evaluates the various factors impacting the ef-
fectiveness of our approach by comparing XFinder’s results
on one framework extension with results obtained from ex-
perts on this extension. The second study, presented in Sec-
tion 5, evaluates the effectiveness of XFinder with respect
to two other frameworks. For this experts study, we were
interested in evaluating these criteria:

1. The overall quality of the results provided by XFinder
as measured by the number of correct outputs selected
for each framework extension example.

2. The stability of our algorithm with respect to exter-
nal factors not under the control of XFinder, i.e., the
quality of the guide and the choice of the seed step.

3. The impact of various XFinder parameters: α, the
combination strategy, and the seed step heuristic.

4.1 Experimental Design
To evaluate the above criteria, we selected the text editor
extension of the Eclipse platform,5 which enables develop-
ers to create text editors that provide standard features such
as code completion, text hovering, and syntax highlighting.
Based on our own experience with text editors, we created
a guide in Mismar consisting of 13 steps (shown under the
Class File editor in Figure 2). More precisely, the guide con-
tains (1) mandatory configuration steps such as creating a
project and a plug-in extension, (2) mandatory Java steps
such as implementing the ITextEditor interface, and (3) op-
tional Java steps related to optional functionality such as
syntax highlighting. The idea was to use this guide as an
input to XFinder and to find text editor implementations in
a standard Eclipse distribution.

To evaluate the correctness of XFinder results, we contacted
ten Eclipse committers within IBM who were responsible for
the development and maintenance of Eclipse text editors,
and asked them to complete a questionnaire on a specific
editor they were familiar with. Eight of the ten commit-
ters replied positively and six of them completed the ques-
tionnaire. The questionnaire consisted of two mandatory
sections on a specific Eclipse text editor and two optional
sections on their experience with framework documentation.
Since all responders agreed to detailed reporting of their an-
swers, the questionnaire along with the answers from the
mandatory sections are available online.6 On average, the
responders had 7.1 years of experience in Java development
and 5.4 years of experience specific to Eclipse development.
Four of them were the main developers of the editors they
were asked to evaluate; the two others evaluated editors they
were familiar with.

One of the mandatory sections presented the 13-step guide
to creating a text editor. For each step, we provided a list of
potential outputs for the step, and asked the responder to
identify the correct one(s) by: (1) selecting one, (2) selecting
multiple and ranking them according to their importance for
this step, (3) indicating that this step was not implemented,
or (4) indicating an output not listed. The list of outputs
was created by selecting all outputs that resided in the same
project as the editor under evaluation, adding a random list
of outputs from other projects (not exceeding 15 outputs in
total) and then randomizing the order of the outputs.

The answers from the Eclipse committers gave us an oracle
to validate the results of XFinder for the Ant Editor, Java
Source Editor, Java Class Editor, HTML Editor, JSP Edi-
tor, and Feature Editor (an editor for an Eclipse extension
artifact). These editors represent an interesting range of im-
plementation examples because they exhibit characteristics
that typically make locating code examples difficult. For ex-
ample, the two Java editors (class and source) share many
classes, and the HTML and JSP editors are scattered among
multiple projects and share one main class. The Feature,
HTML and JSP editors also implement some parts of the

5www.eclipse.org
6bart.prologique.com/projects/mismar/xfinder-eval



Editor All Name & Strong
Relationships Location only

Ant 92 (100) 83 (92) 58 (66)
Java source 92 (92) 58 (58) 58 (58)
Java class 92 (92) 42 (75) 58 (58)
HTML 100 (100) 50 (50) 42 (42)
JSP 92 (92) 58 (58) 42 (42)
Feature 33 (92) 33 (92) 0 (0)

Average 83 (94) 54 (71) 43 (44)
w/out outlier 93 (95) 58 (67) 52 (53)

Table 1: XFinder results

editor in a non-standard way, using mechanisms not cov-
ered by Eclipse tutorials. The Ant editor is the simplest
editor in our sample because it is the only editor defined in
its project and it provides a single output for each step.

We executed XFinder using the text editor guide as input
on an Eclipse workspace referencing the following plug-in
families: Web Tool Platform, Plug-in Development Envi-
ronment, Java Development Tools, Platform Text, and Ant.
We then compared the results obtained by various configu-
rations of XFinder with the answers given by the six Eclipse
committers. We analyzed the results in the light of the three
criteria mentioned at the beginning of Section 4. The results
of each execution are also available online.

4.2 Quality
To evaluate the quality of the results provided by our ap-
proach, we executed XFinder by selecting the step “Create
editor extension element” as the seed step and using the fol-
lowing parameters: α = 0.8, combination strategy = strong,
seed step heuristic = enabled. The seed step we chose is
the only step in the guide that cannot potentially refer to a
shared output: each editor in Eclipse must be declared by
this extension element, and only one editor can be declared
by each element. All of the other steps can produce an out-
put that is shared by multiple editors (e.g., the HTML and
JSP editors both share the same implementation of IText-

Editor). The parameters we used were found to be the most
successful during early validation of the approach.

After 128 seconds, XFinder returned a list of 49 editors, 21
of which were text editors (the others were form or graphical
editors). For the six editors evaluated by the Eclipse com-
mitters, we looked at the 12 steps (the 13th was the seed
step) and compared XFinder’s recommendations with the
answers from Eclipse committers. We considered that a rec-
ommendation for a step was correct if either (1) XFinder’s
top recommendation matched one of the outputs identified
by the Eclipse committer or if (2) XFinder and the Eclipse
committer both indicated that there was no output for that
step. We also relaxed the metric by considering for each step
the top three recommendations when XFinder had selected
an output: if one of the three recommendations matched an
output selected by the Eclipse committer, we considered the
recommendation to be correct according to the relaxed met-
ric. These two metrics accommodate the scenarios where
a tool would automatically use the results of XFinder and
where a user would browse the results: in the former case,
only the top recommendation is used, but in the latter case,
the user is expected to look at least at the top three recom-
mendations while reviewing the results.

Table 1 shows the results of this study. The first column
gives the name of the editor and the second column contains
the percentage of correct recommendations. The number in
parentheses represents the percentage of correct recommen-
dations if we consider the top three outputs suggested by
XFinder.7 For example, for the Ant editor, XFinder rec-
ommended the correct output for 11 of the steps (11/12 or
92%), and the correct output was in the top three recom-
mendations for all steps (12/12 or 100%).

In 83% of the cases, XFinder correctly identified the out-
puts belonging to a particular editor and the steps where no
output had been produced. When looking at the top three
recommendations, XFinder achieved a success rate of 94%.
This is evidence that our approach can automatically locate
framework extension examples with considerable accuracy.
In 13 of the 18 cases where an Eclipse committer had selected
multiple outputs for a step, XFinder gave a high confidence
value to multiple correct outputs. For example, in the Java
source editor, all four classes implementing the syntax high-
lighting feature were recommended with the same confidence
value (78) and one of them was selected by XFinder: our
approach selects one output because the current version of
Mismar only supports one output per step.

The only exception is the Feature editor, for which XFinder
performed poorly by only identifying the correct output for
four steps. Looking more closely at the Feature editor, we
realized that it did not match exactly the definition of a text
editor as provided by the Eclipse platform: this editor is a
multi-page editor, i.e., a composite editor that offers mul-
tiple views of the same data. It provides nine views, seven
of them being form-based and two of them being text edi-
tors. Moreover, the extension element defining the Feature
editor (the seed step) refers to the class FeatureEditor which
belongs to the hierarchy of MultiPageEditor and does not im-
plement the interface ITextEditor. This means that strong
relationships from the main class implementing the Feature
editor are useless for finding outputs of other text-editor
steps. The algorithm must thus rely on weaker relationships
such as location and name similarity, which are less accurate.
This is a limitation of our approach: XFinder struggles to
locate an example whose structure greatly differs from the
documentation, rather than identifying the problem. In this
particular case, a guide on creating multi-page editors would
probably give better results. Because we consider this editor
to be an outlier, we did not include its results when assessing
the impact of other factors in the next sections: there was
no factor that improved the results for this editor and the
presence of an outlier might have hindered our evaluation.

Finally, we also executed XFinder using only Name and Lo-
cation relationships (second column of Table 1), and then
only Java-To-Java and Plug-in-To-Java relationships (third
column). XFinder performed poorly and selected correct
outputs in 54% and 43% of the cases, respectively. These
results provide evidence that all relationships are necessary
and that a more naive approach, considering only weak or
strong relationships, would probably fail in identifying most
of the correct outputs.

7Correctness will always be reported in this format from
now on.



Seed Precision Editors

Editor extension element 93 (95) 5/5
Project 96 (100) 2/5
SourceViewerConfiguration 86 (94) 3/5
ITextEditor 92 (94) 3/5

Table 2: Choice of seed step

Steps # of steps Precision

Complete 13 93 (95)
w/o optional 8 94 (100)
w/o configuration 9 85 (93)
w/o SourceViewerConfig. 11 74 (74)

Table 3: Guide quality

4.3 Stability
When locating examples, there are two main factors that
are outside the control of XFinder: the choice of the seed
step and the quality of the guide. To assess the algorithm’s
robustness with respect to the choice of the seed step, we ex-
ecuted XFinder by selecting different seed steps that, based
on the guidelines given in Section 3.1, could likely be chosen
by a user because they are mandatory and usually repre-
sentative of an editor. Table 2 contains the results of this
analysis. The first column indicates the seed step we used,
the second column presents the percentage of correct rec-
ommendations, and the third column indicates the number
of editors that could be found using this seed step. For ex-
ample, for the seed step “Create a plug-in project” (seed =
Project), there were only two editors out of the five that
could be found, the outlier not included. For those two edi-
tors, XFinder correctly identified an output for 96%(100%)
of the steps. The editors value, 2/5, is obtained by counting
the number of editors that do not share an output for the
seed step. For the project seed step, we cannot include the
Java source, Java class or JSP editors because they are de-
fined in the same project as other editors: XFinder is thus
confused and selects arbitrary outputs that are located in
the project. Unfortunately, XFinder does not detect the
presence of multiple examples, a limitation that remains an
area for future work. Overall, these results suggest that our
approach can produce accurate results even with subopti-
mal seed steps, for the cases it can handle. For example,
with the project seed, XFinder could not compute strong
relationships (e.g., Java-to-Java) between the seed step out-
put and other potential outputs. To circumvent this prob-
lem, XFinder greatly favored outputs that were in the same
project using the seed step heuristic until stronger relation-
ships could be computed. These stronger relationships were
eventually necessary for editors like the HTML editor, whose
implementation was scattered in multiple projects.

Another factor that might impact XFinder’s effectiveness
is the quality of the guide used to locate an example. In-
deed, framework documentation is often incomplete or out
of date. To assess the impact of the documentation’s qual-
ity, we executed XFinder with various subsets of the steps
in the original guide. Table 3 reports the results. The first
column indicates the steps that we removed from the orig-
inal guide, the second gives the number of steps, including
the seed step, remaining in the guide, and the third shows
the percentage of correct recommendations for the five edi-
tors. The first row reports the results of executing XFinder

Parameter Precision Parameter Precision

heuristic 93 (95) α=0.5 85 (87)
w/o heuristic 85 (88) α=0.6 93 (97)
average 52 (53) α=0.7 93 (97)
bonus 83 (93) α=0.8 93 (95)
strong 93 (95) α=0.9 93 (95)

Table 4: XFinder parameters

with the complete guide (13 steps). The second row repre-
sents the guide without the optional steps, such as providing
syntax highlighting. For the third execution, we simulated
a tutorial dealing only with code elements, because many
tutorials focus exclusively on these: we removed the con-
figuration steps such as the creation of a project and the
addition of dependencies. In the fourth execution, we eval-
uated a particularly bad scenario by removing two critical
steps: those asking to extend and call a method from the
SourceViewerConfiguration class, an essential element of any
text editor.

In general, our approach is robust with respect to the qual-
ity of the guide. Not surprisingly, removing optional steps
increased the success rate: outputs of optional steps are typ-
ically more difficult to locate because they are sometimes
accessed indirectly (no strong relationships) or they are not
present at all (it is harder to be sure that an output is not
provided). Removing the configuration steps slightly de-
creased the success rate because the few outputs that de-
pended only on the name and location similarity did not
reach a high-enough confidence level. Finally, the removal
of the two key steps related to the SourceViewerConfiguration

class had a major impact on XFinder effectiveness. Because
this class is usually the hub connecting all the other classes
in a text editor, XFinder was unable to compute strong rela-
tionships and missed several correct outputs. These results
suggest that XFinder will probably perform well with in-
complete or slightly out-of-date guides, but its effectiveness
will degrade significantly if key steps are missing.

4.4 XFinder Parameters
Thus far, we executed XFinder by fixing values to three
main parameters: the usage of the seed step heuristic (Sec-
tion 3.5), the combination strategy (Section 3.3), and the α
value used in some combination strategies. To validate the
optimality of these values, we report the result of executing
XFinder with different parameter values in Table 4. The
first and third columns indicate which value was given to a
certain parameter and the second and fourth columns show
the percentage of correct recommendations. Default values
used in the previous sections are in italics.

The first parameter we studied was the usage of the seed
step heuristic. This heuristic was essential in selecting cor-
rect outputs for the two editors that were scattered among
multiple projects, i.e., the HTML and JSP editors. Indeed,
the class that implements the interface ITextEditor for both
editors, StructuredTextEditor, is shared by multiple other
editors and refers to default implementations of optional fea-
tures. By increasing the confidence value of implementations
that had a name or location similar to the seed of these ed-
itors, the heuristic helped XFinder in selecting the outputs
that were specific to them. While enabled, the heuristic
did not hinder the location of outputs for other examples,



but disabling the heuristic slightly reduced XFinder’s suc-
cess rate: our approach missed the correct output for 3 steps
in the HTML editor and 2 steps in the JSP editor. This
indicates that, generally, the seed step heuristic should be
enabled, but we show in Section 5.1 when it should not.

The second parameter we studied was the selection of one of
our three combination strategies. As can be seen in Table 4,
the naive average strategy was unsuccessful and XFinder
recommended the correct output in only 52% of the cases.
The bonus strategy performed better, with a success rate
of 83%, approaching the success rate of the strong strategy,
93%. The variation between the last two combination strate-
gies can be explained by the fact that, for six steps, location
similarity was favored at the expense of a Java relationship,
resulting in the selection of an incorrect output.

Finally, because it appeared that the strong relationship
combination strategy was best, we ran XFinder with dif-
ferent values for the α parameter, effectively varying the
degree to which we favor strong relationships. Except for a
value of 0.5, the variation in the α parameter did not signif-
icantly impact our results. The only difference is that one
correct output is ranked third for a value of 0.6 and 0.7 and
ranked fourth for a value of 0.8 and 0.9, hence the variation
in the top three recommendations’ correctness. We conclude
that between 0.6 and 0.9, our algorithm is not sensitive to
the value of α, which suggests that it should not need to be
tailored to a particular framework extension.

4.5 Threats to Validity
Although we analyzed the results of six editors, the external
validity of our study is limited by the fact that we only stud-
ied one framework extension and one guide, which means
that it might not generalize to other frameworks and tu-
torials. This is mitigated by the fact that the framework
extensions we studied exhibited a wide variety of structures,
and we evaluated the impact of the documentation qual-
ity. The analysis of various parameters also suggests that
some strategies are clearly more efficient than others, which
should limit the need to tailor those parameters to a par-
ticular framework. Furthermore, to reduce this threat, we
present in the next section two case studies that we per-
formed on other frameworks.

Investigator bias was mostly limited to the choice of frame-
work extension and the creation of the documentation. We
argue that Eclipse text editors are common enough to be of
interest. As for the documentation, three Eclipse commit-
ters reviewed our guide and concluded that it was mostly
complete, with one committer suggesting one extra step.
Though we used experts to validate the correctness of our
results, human errors remain; in fact, we needed to contact
two responders to correct mistakes in their answers. Finally,
even if our approach usually provides correct results, we can
only make hypotheses about how developers would use our
tool. Validating those hypotheses is a natural next step in
the evaluation of XFinder.

5. CASE STUDIES
To gather preliminary evidence that our approach produces
similarly high-quality results when applied to other frame-
works and guides, we performed two case studies on frame-

1- Create a Java project
2- Extend soot.toolkits.scalar.AbstractFlowAnalysis
3- Call soot.toolkits.scalar.AbstractFlowAnalysis:doAnalysis
4- Extend soot.Transformer
5- Implement soot.tagkit.Tag
6- Call soot.tagkit.Host:addTag
7- Call soot.Transform:Transform
8- Call soot.Pack:add

Figure 4: Soot Guide

work extensions outside of the Eclipse platform. Although
investigator bias is inevitable with such studies, we tried to
reduce its impact by selecting framework extensions that (1)
were simple enough for us and external reviewers to manu-
ally review the results, (2) had publicly-available documen-
tation so we could create a Mismar guide as objectively as
possible, and (3) had a decent number of implementations.
We found two such framework extensions, Soot data flow
analysis [16], and Swing JTable.8 The results of both case
studies are available online.

5.1 Soot Static Analysis
Our first target system, Soot, is a static analysis framework
commonly used by researchers to create various kinds of
static analyses and improve the performance of Java and
AspectJ programs. The version we studied was 2.2.4 and it
comprised 180739 lines of code. We selected the ability to
create a custom data flow analysis as the framework exten-
sion. We used two Soot tutorials related to this extension9,10

to write a guide: we basically dragged the main classes and
methods in the Soot source code that were referenced by the
tutorials and dropped them into our guide editor, a process
that took less than 5 minutes. The final guide consisted
of 8 steps helping a developer to create a data flow anal-
ysis, annotate classes using this flow analysis and register
the analysis within the Soot framework. Figure 4 lists the
steps of the guide without the textual description accompa-
nying them. The tutorials indicate that the last five steps
are optional.

Because Soot already defines a significant number of flow
analyses (some are optional and are registered with the frame-
work), we used Soot as a client program. We selected the
second step, “Extend AbstractFlowAnalysis”, as the seed
step and we executed XFinder on a workspace containing the
source code of the Soot project. We used the same parame-
ters as in Section 4.2 except that the seed step heuristic was
disabled on XFinder’s recommendation (see Section 3.5).
After 93 seconds, XFinder returned a list of 43 data flow
analyses, 4 of them being abstract analyses not interesting
for this case study. We then randomly selected 15 of these
flow analyses. For each class extending the AbstractFlow-

Analysis abstract class in our random sample, we manually
identified the output for each step. We then compared our
findings with the results provided by XFinder: 97.8% of the
time, XFinder’s recommendation matched our finding. By
computing a 95% confidence interval, we estimated the pre-
cision of XFinder on this framework extension to be 97.8%
± 4%, or 6.8 ± 0.3 correct recommendations out of 7 steps.

Generally, we found the artifacts comprising Soot data flow
analyses to be strongly related to one another, and often

8java.sun.com/products/jfc/tsc/articles/architecture/
9www.sable.mcgill.ca/soot/tutorial/analysis/index.html

10www.sable.mcgill.ca/soot/tutorial/tagclass/index.html



System Version LOC

Abacus GUI Builder 1.8 57171
BNF for Java alpha 1 9058
JDecompiler 1.2 85607
Fredy’s SQL Tool 2.4.2 41809
Class Editor 2.23 10027

Table 5: Target systems

1- Create a Java Project
2- Implement javax.swing.table.TableModel
3- Use javax.swing.JTable
4- Use javax.swing.JScrollPane
5- Call javax.swing.ListSelectionModel:addListSelectionListener
6- Implement javax.swing.table.TableCellRenderer
7- Call javax.swing.table.TableColumn:setCellRederer
8- Implement javax.swing.table.TableCellEditor
9- Call javax.swing.table.TableColumn:setCellEditor

Figure 5: Swing Guide

to be similarly named, which matched the premises of our
approach. For example, ParityAnalysis is called by Parity-

Tagger, which annotates classes by creating instances of String-
Tag, a common class used by many analyses. XFinder missed
two outputs because the usage of a factory method intro-
duced an indirection, inhibiting the computation of strong
relationships. The presence of such methods is not uncom-
mon, and XFinder is usually able to rely on weaker rela-
tionships to identify the correct output, but in this case the
name and location of the correct outputs were not similar
enough to previously-selected outputs. Additionally, in this
particular case, dynamic analysis would be required to iden-
tify the correct output because the factory method uses a
condition on the value of a program argument.

Finally, we went against the recommendation of XFinder by
running the analysis with the seed step heuristic enabled and
we observed that the precision fell to 81%. This drop is due
to two factors that reinforce each other: (1) the presence
of many optional steps and (2) the similar names and loca-
tions of potential outputs (e.g., almost all analysis classes
contain the word “Analysis” in their names and many anal-
yses are in the same package). The seed step heuristic in-
creased the confidence value of similarly-named and located
outputs for optional steps, which resulted in the selection
of wrong outputs for steps that had none. Our greedy ag-
gregation algorithm then computed relationships from these
wrong outputs, resulting in the selection of wrong outputs
for the remaining optional steps. With fewer optional steps,
the absence of relationships between correct outputs and
wrong outputs would prevail over the presence of relation-
ships between wrong outputs, as in the case of the Eclipse
editor guide.

The Soot case study indicates that XFinder can locate im-
plementation examples with high precision even if there are
many optional steps and the artifacts comprising the various
implementation examples have similar names and locations.

5.2 Swing JTable
Our second case study involves the Swing framework, which
provides graphical user-interface capabilities on the Java
platform. We chose to study the JTable extension, which
enables a developer to create a table with rows, columns
and cells. We created a guide consisting of 9 steps taken

from the Swing JTable tutorial.11 Creating the guide was
a challenging task for three main reasons. First, the Swing
API offers many ways of doing the same thing: for exam-
ple, there are many constructors and setters with different
parameters that can be used to bind a JTable instance with
a TableModel instance. We therefore kept the number of
method-call steps to a minimum, and only used a subset of
the methods mentioned in the tutorial. Second, the Swing
platform offers default implementation for virtually every-
thing, making any step optional. Third, it is possible to
extend the Swing framework in two ways: by composing ob-
jects (e.g., you bind a custom TableModel with a JTable) or
by extending classes (e.g., you extend JTable) which makes
it doubtful that one tutorial will be representative of all ex-
tensions. Figure 5 lists the steps of the guide without the
accompanying textual description.

After we created the guide, we looked on SourceForge12 to
find five open source programs that used JTable and that
were small enough to be inspected manually. Table 5 shows
the client programs we chose for this case study.

We selected the second step in our guide, “Implement Table-
Model”, as the seed step and we executed XFinder on a
workspace containing the source code of the five projects.
We used the same parameters as in Section 4.2, except that
the seed step heuristic was again disabled on the recom-
mendation of XFinder. After 85 seconds, XFinder returned
a list of 49 table models, 4 of them being abstract tables
not interesting for this case study. We then randomly se-
lected 15 of these tables. For each class implementing the
TableModel interface in our sample, we manually identified
the output for each remaining step. We then compared our
findings with the results provided by XFinder: in 88.5% of
the cases, XFinder’s recommendation matched our finding.
For this case study, we considered that if a step described
some alternative not used in a particular JTable (e.g., ex-
tending a JTable instead of composing it), XFinder should
not select any output for that step. By computing a 95%
confidence interval, we estimated the precision of XFinder
on this framework extension to be 88.5% ± 8.1%, or 7.1 ±
1.1 correct recommendations out of 8 steps.

Because all the steps were optional, no table in our sample
implemented the full guide. XFinder was still able to detect
most of the cases where no output was provided by a table
implementation, as illustrated by the high precision. Most
of the wrong outputs were selected because of the unusu-
ally large number of optional steps and the many explicit
references to framework default implementations. Figure 6
shows an example of the problem: if a particular JTable im-
plementation explicitly uses framework default implementa-
tions for multiple steps, the number of outputs belonging to
the framework might outnumber the outputs belonging to
the specific JTable. Even if this JTable does not provide
implementation for the remaining optional steps, XFinder
might select wrong outputs if they also explicitly refer to
the framework default implementations: the presence of re-
lationships between framework outputs and wrong outputs
prevails over the absence of relationships between specific

11java.sun.com/docs/books/tutorial/uiswing/components/
table.html

12www.sourceforge.net
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Figure 6: Framework defaults problem

correct outputs and wrong outputs. This problem did not
occur in the Eclipse text editor study because there were
fewer optional steps and the editors provided specific imple-
mentations for most steps.

The results of the JTable case study indicate that XFinder
can locate framework extension examples with reasonable
precision even when some examples use alternatives not doc-
umented in the guide. It also suggests that future work
is required to reduce the problems introduced by default
framework implementations.

6. RELATED WORK
Automatically locating framework extension examples inter-
sects with three main research areas: code example location,
feature location and framework documentation.

Example location. A number of approaches have been
proposed to locate code examples and leverage them to doc-
ument framework usage. Strathcona is a tool that mines the
source code of several example programs and recommends
snippets of code found in a method of an example program
that is similar to the local programming context [7]. Code
examples proposed by Strathcona are first presented as a
small UML diagram showing a main class with its most rel-
evant dependencies. Then, the user can see example code
taken from a method in the main class or move on to the
next recommendation. Strathcona is limited to examples
whose code comes from a single method: the tool does not
recommend examples that are scattered across several arti-
facts, which limits its applicability for coarse-grained frame-
work extensions such as text editors. Another limitation
of Strathcona with respect to finding implementations of
framework extensions is that the structure and the rationale
behind the returned code snippets are inconsistent across
recommendations: as stated on the tool’s website, “some of
the heuristics in the backend make different types of guesses
to generate the examples and some of them may not be
useful to you”13. Because XFinder uses the documentation
structure to present the code examples, the user always re-
views the results in familiar settings, i.e., as an implemen-
tation example of a tutorial.

FrUIT is a tool that solves the opposite problem addressed
by XFinder: by applying data mining to a set of framework
extension examples, it infers the framework documentation
in the form of usage rules such as “Extend class ABC”, and
“Override method m1” [2]. These usage rules, displayed with
code examples implementing them, can greatly reduce the
time required to learn a framework, but it is difficult at this
stage to assess the cost of this approach because a full valida-
tion study has yet to be published. For example, the authors
mentioned in their paper that their data-mining algorithm
was not yet scalable enough.

13lsmr.cpsc.ucalgary.ca/projects/heuristic/strathcona/using

Code examples automatically retrieved from a local repos-
itory or from the web14 are respectively used by Prope-
spector [11] and PARSEWeb [18] to recommend Method-
Invocation Sequences (MIS), i.e., a list of method calls that
produce an instance of a destination class, given a source
class. For example, a developer who wants to obtain an in-
stance of ICompilationUnit from an instance of IEditorPart

could query PARSEWeb, which would then recommend a
sequence of three methods to call. XSnippet is another tool
that mines examples from a local repository and can recom-
mend a code snippet showing how to instantiate a particular
class [15].

One important advantage these tools have over XFinder is
that they do not require any kind of documentation to locate
examples of a framework extension and infer usage rules. On
the other hand, they do not address the problem of finding
examples to illustrate documentation, and they do expect
the user to have sufficient knowledge of the framework ex-
tension to produce a query. Moreover, code examples and
usage rules produced by these tools are usually only related
to one main class or method (e.g., getting an instance of
ICompilationUnit) and are thus more suitable for finding ex-
amples of fine-grained framework extensions such as syntax
highlighting. Our evaluation showed that XFinder can doc-
ument both fine-grained extensions like JTable and coarse-
grained extensions like Eclipse text editors. Finally, as op-
posed to XFinder, these example-location tools only deal
with Java code elements and do not take into account other
artifacts such as plug-in extensions and configuration files.

Feature location. Numerous techniques have been devised
to automatically locate a feature implementation in source
code. For example, SNIAFL is a static feature-location
tool that combines static analysis, in the form of branched
call graph analysis, and information retrieval to identify the
functions that compose a particular feature [20]. Other ap-
proaches use dynamic analysis to find functions that were
used during one or multiple program executions [4, 9, 10]
and that are specific to a feature. Feature-location tech-
niques are targeted toward identifying a specific feature im-
plementation (e.g., the HTML editor) whereas we want to
identify multiple implementations of the same framework
extension point. To achieve these related goals, feature lo-
cation tools have requirements similar to XFinder: they need
feature description (often taken from specification or design
documents) or execution traces and we need lightweight doc-
umentation of the feature extension.

Results returned by feature-location tools often take the
form of lists of functions along with confidence numbers indi-
cating to what extent each function is relevant to a feature.
One could thus run a feature-location tool on a target sys-
tem for each desired framework extension implementation
(e.g., the Java, JSP and HTML editors). As opposed to
XFinder, though, the results for each implementation would
probably not be presented with the same structure (e.g., the
functions would not be presented in the same order, not all
parts of the editor would be selected, etc.).

14www.google.com/codesearch



Framework documentation. Various approaches have
been proposed to document framework usage and framework
extension examples. Fairbanks et al. devised a technique
that enables a developer to document patterns of engage-
ment with a framework, called Design Fragments [5] (e.g.,
call methodA() before methodB()). When extending a frame-
work, developers can annotate the extension to map the code
entities to a design fragment; a tool then statically checks for
conformance to the design. Users of design fragments have
access to a catalog of fragments along with a list of instances
(i.e., implementation examples) for each fragment. Our ap-
proach does not require a manual mapping between the doc-
umentation and the implementation examples, but we could
use design fragments as templates to locate examples and
then check their full conformance with the fragment.

Framework-specific modeling languages (FSML) offer an-
other way of describing framework extensions and enable
semi-automatic location of implementation examples [1]. A
framework extension (called a concept) can be represented
as a hierarchy of features, which are themselves composed of
structural and behavioral patterns defined with a pointcut-
like language [8]. For each of these patterns, the authors
offer several queries that can locate instances in the code
of one project. The authors give an example where they
are interested in a feature that displays a message in an
applet: the query they use returns the string values of all
messages that could be determined statically in the code.
The patterns are more fine-grained than Mismar steps and
can be used to identify very specific behavior. Because the
user must select an adequate query for each pattern, we con-
sider this approach to be semi-automatic. Although a Mis-
mar guide could be encoded using some of the more coarse-
grained patterns offered by FSML, it is not clear how this
approach could be used to cluster the results at the granu-
larity of the framework extension instead of the project.

7. CONCLUSION
We presented a technique for automatically locating struc-
tured examples of framework extensions given guides that
document the framework. Our approach uncovers the rela-
tionships and the roles of the elements in each example. The
use of a generic concern model guides the example-location
process and allows the inclusion of different artifact types.
Our evaluation provides evidence that our approach is effi-
cient and reasonably accurate: an experts study performed
on the Eclipse text editor framework extension showed that
our approach could correctly locate 93% of the implemen-
tation of five text editors. We conclude that given concern-
oriented documentation, it is possible to use the underlying
concern model as a concern template and then transform the
problem of finding implementation examples into a simpler
problem: finding instances of this concern template. Docu-
mentation not specifically concern-oriented, such as tutorials
and cheat sheets, nonetheless has underlying concerns—the
elements referenced—so we believe our approach to be more
generally applicable. Deriving the concern models automat-
ically remains an area for future research.
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