
RC24517 (W0803-096) March 21, 2008
Computer Science

IBM Research Report

Compound Event Processing Using Regular Expressions:
Examples from EventScript

Norman H. Cohen
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Compound Event Processing Using Regular Expressions:
Examples from EventScript

Norman H. Cohen
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598, USA

+1.914.784.7536
ncohen@us.ibm.com

ABSTRACT
Many formalisms have been proposed for specifying patterns of
events and responses to the recognition of such patterns. Too of-
ten, these formalisms are intricate, unintuitive, and unfamiliar to
typical programmers. We propose an alternative that is simple,
intuitive, and familiar: regular expressions with placeholders for
particular types of events, interleaved with actions that perform
computations and emit output events. We have designed and im-
plemented a language called EventScript that uses such regular
expressions as the basis for building event-processing applications.
Through dozens of short examples, spanning the spectrum from
device-level events to cyber-physical system events to business
events, we show that regular expressions with actions are a pow-
erful and versatile basis for specifying event-processing logic.

Categories and Subject Descriptors
C.3 [Special Purpose and Application-Based Systems]: Real-
time and embedded systems; D.2.2 [Software Engineering]:
Design Tools and Techniques – State diagrams; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features –
Patterns; H.2.4 [Database Management]: Systems – Rule-based
databases; I.5.1 [Pattern Recognition]: Models – Structural; J.1
[Administrative Data Processing]: Business; J.7 [Computers in
Other Systems]: Industrial control; Process control; Real time

General Terms
Algorithms, Design, Languages

Keywords
event processing; reactive programs; event patterns; regular ex-
pressions

1. INTRODUCTION
Many previous approaches for specifying patterns of events are
extremely intricate, providing a dizzying range of unfamiliar op-
erators, modes, and options. We assert that a much simpler and
more familiar approach—the use of regular expressions to specify

patterns of events—is sufficient for a wide variety of event-
processing applications.

Event patterns arise at many levels of event-processing systems.
Close to the hardware, event patterns can be used to interpret raw
sensor input as an indication of a physical occurrence or condi-
tion—for example, to sample sensor signals periodically or to
report a set of closely spaced signals from an RFID tag as a single
tag reading. In a cyber-physical system, event patterns can be
applied to indications of the physical occurrences to detect situa-
tions meaningful to an application, such as a combination of sig-
nals from light-beam detectors and RFID readers indicating that a
package on a conveyor belt is missing an RFID tag, or computing
the average time it takes for car-mounted RFID tags to get from
one point on a highway to the next. At the business-process level,
event patterns can be applied to sequences of business events
produced by business IT systems, to maintain inventories at ap-
propriate levels or monitor suspicious patterns of ATM withdraw-
als. Event-processing systems at these various levels have differ-
ent nonfunctional requirements: Near the hardware level, real-
time response is important, and near the business-process level,
recoverability without data loss is important. However, we assert
that the same kinds of compound-event patterns are useful at each
level. The single regular-expression model we propose here can
be implemented by various systems with various nonfunctional
characteristics.

We have defined and implemented a language called EventScript
for writing regular expressions that match sequences of incoming
events. Placeholders in these regular expressions match incoming
events of particular event types. Actions performing computations
and emitting output events can be embedded within the regular
expression. EventScript also provides for events triggered by the
passage of time and the grouping of events into separate event
streams, each of which is matched independently against the same
regular expression, based on the contents of the incoming events.

A previous paper [5] focuses on details of the EventScript lan-
guage and on programming-language design and implementation
issues. Our focus here is on paradigms for using regular expres-
sions to solve practical real-world event-processing problems,
illustrated by several dozen short EventScript examples. We ex-
plain EventScript language features as they arise in our examples,
but the reader is referred to [5] for a comprehensive discussion of
language constructs and rules.

This paper is structured as follows: Section 2 compares our ap-
proach to previous approaches for defining compound-event pat-

terns. In Section 3 we define our fundamental notions of an event
and an event-processing program. Section 4, which constitutes the
bulk of the paper, illustrates the use of regular expressions for
applying ten paradigms that are common in event-processing ap-
plications; each paradigm is illustrated by an example involving
embedded devices, an example involving cyber-physical systems,
and an example involving business. Section 5 observes that
EventScript programming is conducive to distinct styles of pro-
gramming, in which the state of the computation is reflected either
by current positions within a regular expression or by the values
of variables. Section 6 describes current implementations of
EventScript and Section 7 summarizes our argument for the use of
regular expressions.

2. PREVIOUS APPROACHES
Most approaches to the specification of event patterns can be
traced back to active databases, such as HiPAC [7]. Event-
condition-action rules for such databases can be written at a more
abstract level by viewing certain combinations of low-level data-
base events as constituting higher-level compound events.

In the COMPOSE event system [9] for the Ode object database, a
compound event E[h] is a subset of a history, h, of event occur-
rences. Compound-event operators are defined in terms of set
operations on event histories. A primitive event p maps a history h
to the set of all event occurrences of p in h; E.F, where E and F
are event expressions, maps h to E[h]3F[h]; !E maps h to h–E[h].
Other compound-event operators are defined in terms of these.
For example, prior(E,F) takes place when F takes place and E has
taken place some time earlier; sequence(E,F) takes place when E
takes place on one event occurrence and F takes place on the next;
(<n>E) takes place the nth time that E takes place; (every <n> E)
takes place every nth time that E takes place; E|F maps a history
h to F[E[h]]. Named composite events are defined by rules, for
example A(x,y) = prior(B(x),C(y)), that associate a name with an
event expression and specify how attributes of the composite
event are computed.

The NAOS compound-event model [6] features event expressions
consisting of placeholders for single primitive events of a speci-
fied type, joined by eight operators: negation, disjunction, con-
junction, exclusive or, sequence (in which the set of primitive
events matching the left operand may overlap in time with the set
matching the right operand), strict sequence (in which all primi-
tive events matching the left operand must precede all events
matching the right operand), iteration (matching a fixed number of
occurrences of events that each match the operand, with the set of
primitive events matching the operand on different iterations po-
tentially overlapping in time), and strict iteration (matching a
fixed number of occurrences of events matching the operand, with
the set of primitive events matching the operand on one iteration
preceding the set of primitive events matching the operand on the
next iteration). Negation and exclusive or are defined in part in
terms of the absence of an event during a validity interval. Valid-
ity intervals of expressions are defined recursively in terms of the
subexpression structure.

In SAMOS [8], compound events are constructed from other
events using sequence, conjunction, disjunction, testing for the
absence of an event during a specified monitoring interval, and

collapsing occurrences of a specified type of event during a speci-
fied monitoring interval into a single occurrence. A monitoring
interval is defined in terms of starting and ending events or times,
or by the union, intersection, or repetition of other monitoring
intervals. Fixed rules define the attributes of a compound event in
terms of the attributes of its constituents. A coupling mode deter-
mines whether the condition of an even-condition-action rule and
any resulting action are processed immediately upon event detec-
tion, deferred until the end of the triggering transaction, or exe-
cuted asynchronously. Programmed priorities determine the order
in which multiple eligible rules are executed.

In Amit [1], a rule defining an event pattern is active during a
lifespan delimited by events or times. Some rules are triggered by
the presence or absence of certain sets of event occurrences during
the lifespan (e.g., occurrences of each of a specified list of event
types, optionally in a specified order; any single occurrence of any
of a specified list of event types; the occurrence of at least a speci-
fied number of such events, optionally with the stipulation that
each event be of a different type; the occurrence of at most a
specified number of events of one of a specified set of event types,
optionally counting at most one event of each type; or, for two
specified event types, an occurrence of the first type and no occur-
rence of the second type). Other rules are triggered by the passage
of time. Each event type in a rule may be accompanied by a predi-
cate that an arriving event must satisfy; a predicate indicating
whether the arriving event should contribute to multiple situation
occurrences or just one; and a quantifier indicating whether to use
all eligible events of that type that arrive during the lifespan, only
the first, or only the last. There is an option to control whether an
event that cannot contribute to a situation as soon as it arrives
should be discarded or retained for possible use later. For situa-
tions that can be detected before the end of the lifespan, there is an
option to timestamp the situation with either the time of detection
or the time of lifespan termination. Amit also provides an elabo-
rate set of options for managing lifespan initiation and termination.

In the Rapide event pattern language [12], an input adapter orders
events in a partial order called causal order, in a manner not
specified by Rapide. A basic event pattern matches a set consist-
ing of a single event occurrence, with suitable attribute values.
More complex patterns consist of two patterns joined by a binary
relational operator. Three of the relational operators, called struc-
tural operators, match all unions P4Q of event sets such that for
all pcP and qcQ, p and q have a particular temporal or causal
relationship. Other relational operators are defined in terms of
traditional set operations. A repetition pattern specifies a number
of repetitions (possibly unbounded), a structural operator, and a
subpattern to be repeated, with the stipulation that the structural
operator hold between the event sets matched on subsequent itera-
tions. Any pattern may have a predicate that must be true in order
for the pattern to match.

Other mechanisms for specifying compound events include the
Snoop event-specification language for the Sentinel database [3]
and Trigs [11].

While many previous approaches introduce mathematical notions
and abstractions unfamiliar to the typical programmer, regular
expressions are familiar to the users of languages like awk, C#,
Java, JavaScript Perl, PHP, Python, Ruby, and Visual Basic and
tools like grep, sed, and vi. Unlike subsets of event histories, va-

lidity intervals, monitoring intervals, rule priorities coupling
modes, lifespans, quantifiers, and matching event sets, regular
expressions offer an intuitive underlying model—the matching of
a sequence of symbols against a pattern that can be reduced to
sequence, repetition, and alternative constructs.

3. THE EVENT MODEL
Before presenting examples, we explain our fundamental view of
what an event is and what an EventScript program does. An
EventScript program consumes input events that arrive in some
well-defined order and emits output events in a well-defined order.
(Events emitted by one EventScript program may be consumed by
another.) Every event has a name and carries a value belonging to
some data type. All events with a given name carry values of the
same data type. EventScript has primitive data types such as boo-
lean, long, double, string, and time, as well as structure
types and array types. The correspondence between event names
and entities in the real world is not defined by EventScript, mak-
ing the language applicable in a wide variety of milieus.

4. BASIC PROGRAMMING PARADIGMS
In this section, we consider ten paradigms that arise repeatedly in
event-processing applications, and show how regular expressions
can be used to apply those paradigms. The ten paradigms are:

• event translation
• monitoring during an interval
• periodic processing
• filtering
• reacting to the absence of an event
• joining data from asynchronous streams
• event grouping
• associative lookup
• piping

We illustrate each paradigm with an example involving embedded
devices, an example involving a cyber-physical system (i.e., one
performing data processing related to the physical world), and a
business example. The line between device-level and cyber-
physical applications, and the line between cyber-physical and
business applications, are fuzzy. We have not agonized over the
appropriate classification of borderline examples, but have en-
deavored to present a collection of examples that span the spec-
trum from clearly device-level to clearly business-level.

4.1 Event Translation
Perhaps the simplest kind of event-processing application is one
that translates each event in an input stream into a corresponding
output event. The translation may involve, for example, reformat-
ting, conversion of units, or the dropping of certain attributes.

4.1.1 Device-Level Example
A sensor periodically emits a scaled integer representing 1000
times the sensed temperature in degrees Celsius, but our applica-
tion logic requires temperatures expressed in degrees, as floating-
point numbers. The following EventScript program implements a
“virtual sensor” of the kind required by the application, taking
events of the form produced by the hardware as input and emitting
events of the form required by the application logic as output:

in long RawReading
out double DegreesC

(RawReading(n) { !>DegreesC(n/1000.0); })*

The first two lines indicate that there is an input event named
RawReading, carrying a value of type long, and an output event
named DegreesC, carrying a value of type double. These event
declarations are followed by a regular expression of the form R*,
denoting a sequence of zero or more occurrences of event se-
quences matching the pattern R. In this case, the pattern R is a
sequence consisting of the event marker RawReading(n) fol-
lowed by the action sequence { !>DegreesC(n/1000.0); }.
The event marker matches a single RawReading input event and
assigns the value carried by that event to the variable n. (The tar-
get variable in an event marker can be omitted if there is no need
to capture the value carried by the matched event.) The action
sequence consists of a single action, which computes the value
n/1000.0 and emits a DegreesC event carrying that value.

4.1.2 Cyber-Physical Example
A system needs to translate incoming DegreesC events into Cold,
Normal, and Hot events, depending on whether they carry tem-
peratures less than 5°C, in the range 5°C to 25°C, or greater than
25°C, respectively. Here is the program:

in double DegreesC
out {} Cold, {} Normal, {} Hot

(DegreesC(t)
 { t < 5.0 ? !>Cold({});
 : t <= 25.0 ? !>Normal({});
 : !>Hot({});
 }
)*

The output events Cold, Normal, and Hot are declared to carry
values of type {}, the structure type with no fields; this is the type
of value carried by events that serve as pure signals, carrying no
information other than their names. The action in this case is a
conditional action that executes one of three different emit actions
depending on the value of t.

Another solution to this problem uses an EventScript feature
called event classification. In the program

in double DegreesC
 case { DegreesC < 5.0 ? ColdIn
 : DegreesC <= 25.0 ? NormalIn
 : HotIn }

out {} Cold, {} Normal, {} Hot

(ColdIn() { !>Cold({}); }

|
 NormalIn() { !>Normal({}); }
|
 HotIn() { !>Hot({}) }

)*

the case construct in the declaration of input event DegreesC
specifies that each incoming DegreesC event will be classified as
either a ColdIn, NormalIn, or HotIn event, depending on the
value it carries, and matched accordingly. This program contains a
regular expression of the form R1 | ... | Rn , which matches any
event sequence matching any of the regular expressions R1 ... Rn .
R1 ... Rn are called alternatives. Each alternative in this example

includes an emit action that is executed when it is reached in the
matching process.

4.1.3 Business example
Incoming Sale and Purchase events with unsigned cash
amounts are to be translated into outgoing BalanceChange
events with signed cash amounts:

in {string saleID; long amount;} Sale,
 {string purchaseID; long amount;} Purchase

out {string transationType;
 string transactionID;
 long amount;} BalanceChange

(Sale(s)
 { !>BalanceChange
 ({transactionType: "S",
 transactionID: s.saleID,
 amount: s.amount});
 }
 |
 Purchase(p)
 { !>BalanceChange
 ({transactionType: "P",
 transactionID: p.purchaseID,
 amount: p.amount});
 }
)*

The input and output events of this program carry values belong-
ing to structure types, which have fields with specified names and
values. The expressions in the emit actions specify the construc-
tion of structure values, given expressions for each field of the
structure.

4.2 Monitoring During an Interval
The notion of reacting to an event that occurs during an interval of
interest is so fundamental to event processing that some event-
pattern formalisms have special constructs to define such intervals.
In EventScript, the events marking the beginning and end of the
interval are simply included in the pattern to be matched.

4.2.1 Device-Level Example
The following program runs a radiation detector that samples the
number of particles striking it during the first ten seconds of every
minute and emits a Sample event at the end of each sampling
interval:

in { } Particle
out {time sampleTime; long count; } Sample

(Particle()*
 arrive[.:.:00](startOfMinute) { n=0; }
 (Particle() {n=n+1;})*

arrive[.:.:10]()
{ !>Sample
 ({sampleTime:startOfMinute, count:n}); }

)*

In addition to named events corresponding to event messages
arriving from the outside, EventScript recognizes time events,
corresponding to the arrival of a particular time. Such an event
can be matched by an event marker of the following form:

arrive[year-month-day hour:minute:second:msec: sec](t)

Any of the fields may be replaced by a wildcard, denoted by a dot.
If the matching process is positioned just before this event marker
when a matching time is reached, the event marker is matched and
the time of matching (a value of type time) is stored in the vari-
able t. Certain fields can be omitted, with natural defaults. Thus
this program matches repetitions of a pattern consisting of zero or
more Particle events that are not counted, the arrival of second
0 of any minute, zero or more Particle events that are counted,
and the arrival of second 10 of any minute.

4.2.2 Cyber-Physical Example
The beginning and end of the interval of interest need not be time-
related. Consider a home-security system that includes a motion
detector. The system’s control processor receives an Activate
event when the alarm is activated, a Deactivate event when the
alarm is deactivated, and a Motion event each time the system
detects motion. A Motion event arriving during an interval in
which the alarm is activated should cause an IntrusionAlert
event to be emitted, but a Motion event received at any other time
should be ignored. The regular expression in the following pro-
gram describes the life cycle of this system:

in { } Activate, { } Deactivate, { } Motion
out { } IntrusionAlert

(Motion()* //ignore
 Activate()
 (Motion() { !>IntrusionAlert(); })*
 Deactivate()
)*

4.2.3 Business Example
By computing time values, an EventScript programmer can con-
struct an interval of interest that starts with a named event and
ends a specified amount of time after the arrival of that event. For
example, the following program enables a business process to
issue an Audit event if two or more SteelDelivery events
occur within a 24-hour period:

in string SteelDelivery
out string Audit

(SteelDelivery()
 { endOfInterval=hoursAfter(24,now()); }

(SteelDelivery(deliveryInfo)
 {!>Audit(deliveryInfo);}
)*
arrive[(endOfInterval)]()

)*

(The action setting the variable endOfInterval calls the built-in
functions now, which returns the current time, and hoursAfter,
which returns the time a specified number of hours after a speci-
fied time. In an arrive event marker, the date-time pattern can be
replaced by a parenthesized expression of type time.)

4.3 Periodic Processing
Time events can be used to achieve periodic behavior.

4.3.1 Device-Level Example
The following program receives DeviceReading events at arbi-
trary intervals and issues PeriodicReport events, carrying the
value of the most recent DeviceReading event, every second:

in double DeviceReading
out double PeriodicReport

{ nextReport=secondsAfter(1,now());

latestValue = 0.0; }

(DeviceReading(latestValue)
 |
 arrive[(nextDeadline)]()
 { !>PeriodicReport(latestValue);
 nextReport=secondsAfter(nextReport,1); }
)*

The timing of input events and the timing of output events are
decoupled: If several input events arrive during the same second,
only the last one is reported; if no input events arrive during some
second, the latest one from some previous second is reported.

4.3.2 Cyber-Physical Example
The following program counts cars entering and leaving a parking
garage, and reports once each minute on the number of cars in the
garage:

in { } CarEntering, { } CarLeaving
out long CarCount

{ count=0; }

(CarEntering() { count=count+1; }
 |
 CarLeaving() { count=count-1; }
 |
 arrive[.:.]() { !>CarCount(count); }
)*

4.3.3 Business Example
The following program reports total sales for the day at 5:00 p.m.
each day:

in double SaleAmount
out double DailySalesTotal

({ sum = 0.0; }
 (SaleAmount(x) {sum=sum+x;})*
 arrive[17:00]()
 { !>DailySalesTotal(dailyTotal); }
)*

4.4 Filtering
Filtering is the emitting of an output stream containing events that
correspond to a subset of the events in an input stream.

4.4.1 Device-Level Example
The following EventScript program presents a sensor that emits
repeated temperature readings as a virtual device that emits alerts
about temperature readings over 150°C:

in double Temperature
 case { Temperature > 150.0 ? HighTemperature }

out double OverheatingAlert

(HighTemperature(t)

{ !> OverheatingAlert(t); }
)*

(The “else part” of an event-classification case construct can be
omitted. An input event not satisfying any of the conditions in the
case construct is dropped from the sequence of events that is
matched against the regular expression.)

4.4.2 Cyber-Physical Example
A common form of stateful filtering is duplicate filtering. The
following program in a cyber-physical system receives a continual
stream of input events reporting the current zone in which a piece
of equipment is located, and emits a single output event only
when the current zone changes:

in string CurrentZone
out string NewZone

{ previousZone=""; }

(CurrentZone(z);
 { z != previousZone ?
 { !>NewZone(z); previousZone=z; }
 }
)*

4.4.3 Business Example
Another form of stateful filtering is reporting when certain thresh-
olds have been crossed. The following program receives a Mar-
ketOpen event at the start of a trading day, a MarketClose event
at the end of the trading day, and a stream of Ticker events dur-
ing the trading day. The program emits Up and Down events when
a quote for stock XYZ has risen or fallen two percent from the
first trade of the day or from the amount reported in the most re-
cent Up or Down event of the day:

type StockQuote = {string symbol; double price; }

in { } MarketOpen,
 { } MarketClose,
 StockQuote Ticker
 case {Ticker.symbol="XYZ" ? XYZQuote}

out StockQuote Up, StockQuote Down

(MarketOpen()
XYZQuote(q) {thresholdsNeedSetting = true; }

 ({ thresholdsNeedSetting ?
 { topThreshold = 1.02*q.price;
 bottomThreshold = .98 =*q.price;
 thresholdsNeedSetting = false; }
 }
 XYZQuote(q)
 { q.price >= topThreshold ?
 {!>Up(q); thresholdsNeedSetting=true;}
 : q.price <= bottomThreshold ?
 {!>Down(q); thresholdsNeedSetting=true;}
 }

)*

 MarketClose()
)*

4.5 Reacting to the Absence of Events
Event processing often entails reacting to the fact that an event
has not occurred within some interval of interest.

4.5.1 Device-Level Example
The following program repeatedly reports when a signal from a
radio beacon has not been received for 10 seconds:

in { } Signal
out { } Timeout

(Signal() | elapse[10 sec]() {!>Timeout({});})*

4.5.2 Cyber-Physical Example
To ensure that every package on a conveyor belt has an RFID tag,
we use an RFID reader alongside the belt with light-beam sensors
before and after it. A package is assumed to be within range of the
RFID reader from the time it interrupts the first light beam until
the time it interrupts the second light beam. If no RFID reading
occurs during this interval, a MissingTag event is emitted. The
same RFID tag may be read several times as it travels down the
conveyor belt, and on occasion an RFID tag might be read from a
distance, before it is between the light-beam sensors. The follow-
ing program checks for the absence of a TagRead event between a
Beam1Blocked event and a subsequent Beam2Blocked event:

in {} Beam1Blocked, {} TagRead, {} Beam2Blocked
out { } MissingTag

(TagRead()*
 Beam1Blocked()
 (TagRead()+ Beam2Blocked()
 |
 Beam2Blocked() { !>MissingTag({}); }
)
)*

(The regular expression TagRead()+ matches one or more occur-
rences of TagRead events.)

4.5.3 Business Example
The following program, enforcing a safety process, issues an In-
spectionOverdue event when three days pass without the arri-
val of an InspectionCompleted event:

in { } InspectionCompleted
out { } InspectionOverdue

({deadline=daysAfter(3, now());}
 (InspectionCompleted()
 |
 arrive[(deadline)]()
 {!>InspectionOverdue({});}
)
)*

4.6 Joining Data from Asynchronous Streams
Much event processing entails receiving data arriving asynchro-
nously from two or more input streams, maintaining some sort of
current state based on the latest data from each stream, and emit-
ting output events based on the current state. Output events might
be triggered by arrival of a new event from one of the streams,
arrival of a new event from any of the streams, or by the passage
of time.

4.6.1 Device-Level Example
A controller sets a warning light may either to remain off, to blink
once a second, or to remain on. There are many client processes
that may send the warning-light controller either a Start-
SoftAlert event followed eventually by an EndSoftAlert
event, or a StartHardAlert event followed eventually by an
EndHardAlert event. The current state in this case consists of
the number of pending soft alerts and the number of pending hard
alerts. If there is at least one hard alert pending, the light should
remain on; otherwise, if there at least one soft alert, the light
should blink; otherwise, the light should remain off. Here is a
program that receives events starting and ending hard and soft
alerts and issues alternating On and Off events to control the light:

in { } StartSoftAlert, { } EndSoftAlert,
 { } StartHardAlert, { } End HardAlert

out { } On, { } Off

{ softCount=0; hardCount=0; lightOn=false;
 nextBlinkTime=millisecondsAfter(500,now()); }

(StartSoftAlert(){ softCount=softCount+1; }
|
 EndSoftAlert(){ softCount=softCount-1; }
|
 StartHardAlert()
 { hardCount=hardCount+1;
 hardCount==1 && !lightOn?
 { !>On({}); lightOn=true; }
|
 EndHardAlert()
 { hardCount=hardCount-1;
 hardCount==0 && softCount==0 ?
 { !>Off({});lightOn=false; }
 }
|
 arrive[(nextBlinkTime)]()
 { hardCount==0 && softCount>0 ?
 { lightOn ?
 { !>Off({}); lightOn=false; }
 : { !>On({}); lightOn=true; }
 }
 nextBlinkTime =
 millisecondsAfer(500,nextBlinkTime);
 }

)*

4.6.2 Cyber-Physical Example
A software air-conditioning thermostat receives SetTarget
events from a process that uses personal preferences, current re-
gional demand for electricity, and the time of day to compute
target temperatures. The thermostat also receives Temperature
events from a temperature sensor, and emits a TurnCoolingOn
event when the current temperature rises to two degrees above the
target temperature, followed by a TurnCoolingOff event when
the current temperature falls to two degrees below the target tem-
perature. In this case, the current state consists of the target tem-
perature and the actual measured temperature. Here is the
EventScript program for the thermostat:

in double SetTarget, double Temperature
out TurnCoolingOn, TurnCoolingOff

{ target=25; actual=25; coolingOn=false; }

((SetTarget(target) | Temperature(actual))
{ actual >= target+2.0 && !coolingOn ?
 { !TurnCoolingOn({}); coolingOn=true; }
 : actual <= target-2.0 && coolingOn ?
 { !TurnCoolingOff({}); coolingOn=false; }
}

)*

4.6.3 Business Example
A warehouse replenishment process receives an OrderReceived
event when an order is received from a customer, a Shipment-
Received event when products are delivered to the warehouse
from the manufacturer, and an OrderFulfilled event when
items are shipped from the warehouse to the customer. Each of
these events carries a number of items. When the current ware-
house inventory falls more than 10 below the number of items in
pending orders, the process issues a ResupplyRequest event to

request the manufacturer to deliver a number of items that will
raise the inventory to 20 more than the number of items in pend-
ing orders. The current state consists of the number of items in the
warehouse inventory and in pending orders. Here is the program:

in long OrderReceived, long ShipmentReceived,
 long OrderFulfilled

out long ResupplyRequest

{ pendingFulfillment=0; inStock=0; }

((OrderReceived(itemCount)

 { pendingFulfillment =
 pendingFulfillment+itemCount; }
 |
 OrderFulfilled(itemCount)

 { inStock=inStock–itemCount; }
)
 { surplus =
 inStock – pendingFulfillment;
 surplus < 10 ?
 !>ResupplyRequest(20-surplus);

 }
|
 ShipmentReceived(itemCount)
 { inStock=inStock+itemCount; }

)*

4.7 Event Grouping
It is often useful to group arriving events based on the values they
carry, and to look for patterns only among events in the same
group.

4.7.1 Device-Level Example
We wish to report closely spaced readings of the same RFID tag
by the same reader as a single event. In effect, we want to perform
duplicate elimination separately for each combination of tag and
reader. The following program reports readings of the same tag by
the same reader as a single event unless they are separated by a
ten-second interval in which that tag was not read by that reader:

type RFIDReading =
 {string readerID;
 string tagID;
 time timestamp;}

in RFIDReading RawReading
 group(RawReading.readerID, RawReading.tagID)

out RFIDReading UniqueReading

RawReading(r) { !>UniqueReading(r); }
RawReading()*
elapse[10 seconds]()

The group clause in the declaration of RawReading stipulates
that incoming RawReading events will be grouped according to a
grouping key computed from the value carried by each event. In
this case, the grouping key has two parts, corresponding to the
readerID and tagID fields of the incoming RawReading event.
(The values of grouping-key parts may be specified by arbitrarily
complex expressions; within these expressions, the name of the
event being declared—RawReading in this case—represents the
value carried by the incoming event for which a grouping key is to
be computed.) In effect, for each grouping-key value, a separate
instance of the program executes, and each incoming event is
directed to the instance corresponding to its grouping key.

In this example, each grouping-key value corresponds to a unique
reader/tag combination. The first reading for a given combination
is echoed in a UniqueReading output event. Subsequent
RawReading events for the same reader and tag match
RawReading()*, and are ignored until 10 seconds elapse without
such an event. Then the elapse event marker is matched, and the
execution instance corresponding to this grouping key terminates.

4.7.2 Cyber-Physical Example
An active-badge location-tracking system enforces a rule that a
visitor to a business and his host or must remain within 10 meters
of each other. The system issues an alert when the host and visitor
are too far apart, or when a minute passes without a position up-
date for one of them. Locations within the building are described
by a two-dimensional coordinate system in which one unit equals
one meter. When a visitor enters the building, at location (0,0), he
is issued a badge by a receptionist, who registers the host assigned
to that visitor. The location-tracking system then begins issuing a
stream of Visitor events, carrying the visitor’s ID and location.
It also tracks the location of each registered host, and issues a
Host event for each visitor assigned to that host, containing the
ID of the visitor and the location of the host. This allows an
EventScript program to group Visitor and Host events by visi-
tor ID, so that there is a separate execution instance for each visi-
tor, tracking the location of that visitor and his host. When the
visitor turns in his badge at the end of the visit, an Unregister
event containing the visitor’s ID is sent to the EventScript pro-
gram to signal that the execution instance corresponding to that
visitor ID can be terminated. Here is the program:

type Point = {double x; double y;}

type BadgeReport =
 {string visitorID; Point location;}

in BadgeReport Host group(Host.visitorID),
 BadgeReport Visitor group(Visitor.visitorID),
 string Unregister group(Unregister)

out BadgeReport UnaccompaniedVisitor,
 string HostNotSeen,
 string VisitorNotSeen

{ INITIAL_REPORT =
 { visitorID: group[0],
 location: {x: 0.0, y: 0.0} };
 h = INITIAL_REPORT;
 v = INITIAL_REPORT;
 hostDeadline = minutesAfter(1, now());
 visitorDeadline = hostDeadline;
}

((Host(h)
 {hostDeadline=minutesAfter(1,now());}
 |
 Visitor (v)
 {visitorDeadline=minutesAfter(1,now());}
)
 { deltaX = v.location.x-h.location.x;
 deltaY = v.location.y-h.location.y;
 deltaX*deltaX + deltaY*deltaY > 100 ?
 !>UnaccompaniedVisitor
 ({visitorID: group[0],
 location: v.location});
 }
 |

 arrive[(hostDeadline)]()
 { !>HostNotSeen(group[0]);
 hostDeadline =
 minutesAfter(1,hostDeadline); }
 |
 arrive[(visitorDeadline)]()
 { !>VisitorNotSeen(group[0]);
 visitorDeadline =
 minutesAfter(1,visitorDeadline); }
)*
Unregister()

For each execution instance of a program that uses grouping, an
expression of the form group[n] evaluates to the nth part of that
instance’s grouping key, where parts are numbered starting from
zero. (In this example the grouping key has only one part.) In
addition to grouping, this program illustrates several paradigms
that we discussed earlier: reacting to the absence of events, peri-
odic processing, and the joining of data from asynchronous
streams.

4.7.3 Business Example
The warehouse replenishment example of Section 4.6.3 assumes
that there is only one kind of item to be tracked. We can easily
generalize this program by adding an item ID to each event and
grouping by item ID:

type ItemInfo{string itemID; long count;}

in ItemInfo OrderReceived
 group(OrderReceived.itemID),
 ItemInfo ShipmentReceived
 group(ShipmentReceived.itemID),
 ItemInfo OrderFulfilled
 group(OrderFulfilled.itemID)

out ItemInfo ResupplyRequest

{ pendingFulfillment=0; inStock=0; }

((OrderReceived(r)
 { pendingFulfillment =
 pendingFulfillment+r.count; }
 |
 OrderFulfilled(f)

 { inStock=inStock–f.count; }
)
 { surplus =
 inStock – pendingFulfillment;
 surplus < 10 ?
 !>ResupplyRequest
 ({itemID: group[0],
 count:20-surplus});

 }
|
 ShipmentReceived(sr)
 { inStock=inStock+sr.count; }

)*

Each execution instance of this version has its own copies of vari-
ables pendingFulfillment and inStock, and, for one particu-
lar item ID, mimics the behavior of the version in Section 4.6.3.

4.8 Associative Lookup
Grouping can be used to perform associative lookup. In effect, a
program with grouping implements a mapping from grouping-key
values to the variables and other state information of a particular
execution instance.

4.8.1 Device-Level Example
An RFID reader emits events consisting of a reader ID (a cryptic
number such as a MAC address), a tag ID, and a timestamp. The
following EventScript program implements an abstract RFID
reader that emits events consisting of an abstract location name, a
tag ID, and a timestamp:

in {long readerID; string locationName}
 RegisterReaderLocation
 group(RegisterReaderLocation.readerID),

 {long readerID; string tagID; time when;}
 RawReading group(RawReading.readerID)

out { string locationName;
 string tagID;
 time when; } AbstractReading

RegisterReaderLocation(registration)
{ myLocationName = registration.locationName; }

(RawReading(r)
 { !>AbstractReading
 ({locationName: myLocationName,
 tagID: r.tagID,
 when: r.when}); }
)*

At system startup, initialization code emits a RegisterReader-
Location event for each RFID reader, specifying the hardware
reader ID and abstract location name for that reader. EventScript
creates an execution instance for each hardware reader ID and
sends the event to that instance, which saves the abstract location
name in its own copy of the variable myLocationName.
EventScript sends each subsequent RawReading event to the
execution instance storing the appropriate abstract location name,
so that the appropriate event translation can be performed.

4.8.2 Cyber-Physical Example
New York State has introduced a system that uses RFID tags in
cars, normally used to pay tolls, to sample the travel time between
two readers and post travel advisories about expected travel times
Error! Reference source not found. [13]. The following program
receives events reporting RFID readings and emits events contain-
ing anonymous samples of the travel time for a given tag between
two consecutive readers:

in {string readerID; string tagID; time when;}
 Reading group(Reading.tagID)

out { string fromReader;
 string toReader;
 long travelTime;} Sample

Reading(r)
{ prevReader=r.readerID; prevTime=r.when; }

(Reading(r)
 { !>Sample
 ({ fromReader: prevReader,
 toReader: r.readerID,
 travelTime: minutesBetween
 (prevTime, r.when)
 });
 prevReader=r.readerID;
 prevTime=r.when;
 }
)*
elapse[1 hour]()

(The built-in function minutesBetween takes two values of type
time and returns the number of minutes between those two times
as a rounded integer.) The initial reading of a given tag creates an
execution instance for that tag ID, and the relevant historical in-
formation for that tag is stored in the prevReader and prevTime
variables of that instance. Subsequent Reading events for that tag
are directed to the same execution instance. After an hour passes
without a reading from a given tag, the corresponding execution
instance matches the elapse event marker and the instance ter-
minates.

4.8.3 Business Example
The following program receives ATMUse events whenever an
ATM card is used, groups these events by card ID, and issues an
alert whenever the same card is used more than once within six
hours:

in {string cardID; string location} ATMUse
 group(ATMUse.cardID)
out string TwiceInSixHours

ATMUse()
(ATMUse() { !>TwiceInSixHours(group[0]); })*
elapse[6 hours]()

The first use of a card after six hours creates a new execution
instance, and subsequent uses of the card without a six-hour gap
are directed to the same instance. After six hours pass without
another use of the card, the elapse event marker is matched and
execution terminates. In this case, the relevant information re-
trieved by associative lookup is not the value of a variable, but the
instance’s internal record of how much time has passed since its
last ATMUse event.

4.9 Piping
Many event-processing problems can be simplified by decompos-
ing them into stages of a pipeline, in which the output events
emitted by one stage are fed as input events into the next stage.
Sometimes the simplification results from separating different
aspects of the problem into different stages, or by filtering out
irrelevant information. Sometimes the simplification results from
the use of event grouping to group data in different ways at differ-
ent stages. Sometimes the simplification results from resolving a
clash between the structure of the original input stream and the
structure of the ultimate output stream by introducing an interme-
diate stream whose structure is compatible with both.

4.9.1 Device-Level Example
The warning-light-controller program of Section 4.6.1 addresses
two distinct concerns—determining what kind of alert, if any,
should be signaled and controlling the blinking of the light for soft
alerts. We can separate these concerns into two simpler
EventScript programs, or stages, by introducing intermediate
events OffMode, BlinkingMode, and OnMode emitted by the first
stage and received by the second stage. The first stage is responsi-
ble for determining when mode changes should take place, and
signaling those changes:

in {} StartSoftAlert, {} EndSoftAlert,
 {} StartHardAlert, {} End HardAlert

out {} OffMode, {} BlinkingMode, {} OnMode

{ softCount=0; hardCount=0; }

(StartSoftAlert()
 { softCount=softCount+1;
 hardCount==0 & softCount==1 ?
 !>BlinkingMode({});
 }

|
 EndSoftAlert()
 { softCount=softCount-1;
 softCount==0 && hardCount==0 ?
 !>OffMode({});
 }
|
 StartHardAlert()
 { hardCount=hardCount+1;
 hardCount==1 ? !>OnMode({});
 }

 |

 EndHardAlert()
 { hardCount=hardCount-1;
 hardCount==0 ?
 { softCount==0 ?
 !>OffMode({});
 : !>BlinkingMode({});
 }

)*

The second stage is responsible for emitting On and Off events in
accordance with the current mode:

in {} OffMode, {} BlinkingMode, {} OnMode

out { } On, { } Off

{ lightOn=false; }

(OffMode()
 { lightOn ? { !>Off({});lightOn=false; } }

|
 OnMode()

 { !lightOn ? { !>On({});lightOn=true; } }
 |

 BlinkMode()
 { nextBlinkTime =

 millisecondsAfter(500,now()); }
 ({ lightOn ?
 { !>Off({}); lightOn=false; }
 : { !>On({}); lightOn=true; }
 }
 arrive[(nextBlinkTime)]()
 { nextBlinkTime =
 millisecondsAfer(500,nextBlinkTime);}
)*

)*

The first stage does not deal with time events at all. The second
stage does not deal with alert counts at all, and is easily structured
so that time events occur only in blinking mode.

4.9.2 Cyber-Physical Example
The travel-time sampling program of Section 4.8.2 is actually the
first stage of a pipeline whose second stage averages samples for a
given pair of readers to estimate the travel time from the first
reader to the second. Here is the second stage, which computes an
exponential moving average:

in { string fromReader;
 string toReader;
 long travelTime;} Sample
 group(Sample.fromReader, Sample.toReader)

out { string fromReader;
 string toReader;
 double travelTime;} Average

{ ALPHA = 0.1; // smoothing factor
 ONE_MINUS_ALPHA = 1.0-ALPHA; }

Sample(s) { history = double(s.travelTime); }
({ !>Average
 ({ fromReader: s.fromReader,
 toReader: s.toReader,
 travelTime: history }) ;
 history =
 ALPHA*s.travelTime +
 ONE_MINUS_ALPHA*history;
 }
 Sample(s)
)*

Thus the first stage groups RFID-reading data by tag ID to pro-
duce events related to a given tag having various starting and
ending readers; the second stage groups events by starting and
ending reader IDs to perform a computation related to a given
reader pair, using data originating from various tags. Piping in
conjunction with grouping is a powerful way to cross-section a
collection of data in multiple dimensions.

4.9.3 Business Example
Piping can also be used to reconcile what M.A. Jackson [10] calls
a boundary clash. Suppose a business receives events containing
various numbers of customer leads, and wishes to assign customer
leads to sales staff in groups of ten. Jackson solves such problems
by writing two coroutines, one of which feeds values to the other,
and then performing intricate program transformations to imple-
ment the coroutines in a conventional programming language. In
an EventScript solution, two stages of a pipeline can play the role
of these coroutines. A program that receives events with arbitrar-
ily sized bundles of leads and emits events with bundles of ten
leads can be written easily in two stages. The first stage disassem-
bles incoming events and emits output events containing one lead
at a time:

in string[] IncomingBundle
out string CustomerLead

(IncomingBundle(b)
{ for (i: 0, length(b)-1)
 !>CustomerLead(b[i]); }

)*

(The EventScript type string[] consists of arrays with elements
of type string, indexed starting at zero. The built-in function
length reports the number of elements in an array.) The second
stage receives events containing individual leads and assembles
them into bundles of ten:

in string CustomerLead
out string[] OutgoingBundle

{ buffer = new string[10]; cursor = 0; }

(CustomerLead(buffer[cursor])
 { cursor==9 ?
 { !>OutgoingBundle(buffer);
 buffer = new string[10];
 cursor=0; }
 : cursor=cursor+1;
 }
)*

(The expression new string[10] allocates a new array with 10
uninitialized array elements.)

5. SYNTAX- AND DATA-DRIVEN STYLES
Regular expressions with fundamentally different structures can
describe the same set of input sequences. For example, the follow-
ing regular expressions all match zero or more repetitions of sub-
sequences each consisting of either an A event or of a B event
followed by a C event:

• (A() | B() C())*
• (A()* B() C())*
• ((B() C())* A())*

Furthermore, it is possible to write a regular expression that
matches a superset of the sequences we expect to encounter in an
application, and to use conditional actions if necessary to ensure
that sequences of no interest are properly ignored.

In the regular expressions of automata theory, the state of an exe-
cution is captured entirely in the identity of the current state in the
corresponding finite automaton, or equivalently, the set of possi-
ble current positions within the regular expression. In an
EventScript program, part of the current state of an execution may
also be captured in variables. For example, consider a program to
control a traffic light at the intersection of a north-south road and
an east-west road. The light must change no more frequently than
once every 30 seconds and no less frequently than once every 120
seconds. However, after 30 seconds have passed since the light
last changed, it changes again as soon as a car is detected on the
road that has a red light. The input events NSCar and EWCar cor-
respond to a car being detected on the north-south road or the
east-west road, respectively. The output events NSGreen and
EWGreen direct the light to change so that it is green along the
north-south road or the east-west road, respectively. In the follow-
ing program, the state of the execution is captured primarily in the
current position within the regular expression, as evidenced by the
rich comments we can interleave at various points within the regu-
lar expression:

in {} NSCar, {} EWCar
out {} NSGreen, {} EWGreen

({ !>NSGreen({});
 currentTime = now();
 minChangeTime =
 secondsAfter(30,currentTime);
 maxChangeTime =
 secondsAfter(120,currentTime);
 }

 // The light has been green for the N-S road
 // for less than 30 sec, and must not change.

 (NSCar() | EWCar())*
 arrive[(minChangeTime)]()

 // The light has been green for the N-S road
 // for at least 30 sec, and must change when
 // an E-W car is detected or 120 sec have
 // passed since the last change.

 NSCar()*
 (EWCar() | arrive[(maxChangeTime)]())
 { !>EWGreen({});
 currentTime = now();
 minChangeTime =
 secondsAfter(30,currentTime);
 maxChangeTime =
 secondsAfter(120, currentTime);
 }

 // The light has been green for the E-W road
 // for less than 30 sec, and must not change.

 (NSCar() | EWCar())*
 arrive[(minChangeTime)]()

 // The light has been green for the E-W road
 // for at least 30 sec, and must change when
 // a N-S car is detected or 120 sec have
 // passed since the last change.

 EWCar()*
 (NSCar() | arrive[(maxChangeTime)]())
)*

In contrast, the following version of the program has only one
current position while it is waiting for an event—at the start of the
set of alternatives—and saves its state in variables:

in {} NSCar, {} EWCar
out {} NSGreen, {} EWGreen

{ pendingChange = "NSGreen"; }

({ pendingChange != "none" ?
 { pendingChange=="NSGreen" ?
 { !>NSGreen({});
 currentGreen = "NS"; }
 : { !>EWGreen({});
 currentGreen = "EW"; }
 currentTime = now();
 minChangeTime =
 secondsAfter(30,currentTime);
 maxChangeTime =
 secondsAfter(120,currentTime);
 nextMilestone = minChangeTime;
 changeAllowed = false;
 pendingChange = "none"; }
 }

 (NSCar()
 { currentGreen=="EW" && changeAllowed ?
 pendingChange = "NSGreen";
 }
 |
 EWCar()
 { currentGreen=="NS" && changeAllowed ?
 pendingChange = "EWGreen";
 }

 |
 arrive[(nextMilestone)]()
 { changeAllowed ?
 { // 120 sec passed

 currentGreen="EW" ?
 pendingChange = "NSGreen";

 : pendingChange = "EWGreen"; }
 : { // 30 sec passed
 changeAllowed=true;
 nextMilestone = maxChangeTime; }

)

)*

This program initially marks a change to N-S green as pending
then enters a loop that repeatedly applies any pending change,
waits for whichever event occurs next, and reacts to that event
(possibly by marking a new change as pending).

There is a spectrum of programming styles between the purely
syntax-driven style, in which no variables are used, and the purely
data-driven style, in which there is only one current position in the
regular expression. A regular expression in the syntax-driven style
models the structure of the incoming event stream and has a sim-
ple state corresponding to locations in the program. It follows that
various points in the regular expression can be annotated with
simple problem-oriented invariants. A regular expression in the
data-driven style is not all that different from writing a single
event-handling routine for each possible input event. It provides
confidence that all possible event sequences are handled. It is
conducive to writing a single program-wide representation invari-
ant concerned with relationships among the variables inside the
program. The state machines describing some problems are diffi-
cult to express in the syntax-driven style because their state-
transition graphs do not resemble the flow graphs of structured
programs, but any reactive program is easily expressed in the
data-driven style. We speculate that programmers with different
mental models of programming might prefer different styles.

6. THE STATUS OF EVENTSCRIPT
EventScript has been implemented, and used in large program-
ming exercises.

We have a standalone version that executes in a state-machine
driver written in Java, receiving input events from an input
adapter and sending output events to an output adapter. The
standalone version also features a testing tool that allows a pro-
gram to be executed in simulated time, obtaining input events
from a time-stamped event trace. Performance tests detailed in [5]
show that this implementation is capable of handling hundreds of
thousands of events per second.

We have also embedded EventScript in two programming envi-
ronments—DRIVE [4] and System S [2]—that support the con-
struction of large event-processing and stream-processing pro-
grams through the use of event channels to connect input and out-
put ports of event-processing nodes. In each case, EventScript is
one of the languages available to specify the logic of a node: In-
put-event names correspond to the names of input ports at which
events arrive and output-event names correspond to the names of
output ports through which events are emitted.

7. CONCLUSIONS
Some of the device-level examples we have seen require micro-
second-scale response times. Some of the business examples we
have seen require transactional treatment of events, with the state
of the computation stored persistently between events to facilitate
recovery from system failures. It is unlikely that one EventScript
implementation can satisfy both these requirements. However, the
execution model of an EventScript program is extremely simple,
so the construction of both a real-time implementation and a
transactional implementation is not a daunting prospect.

While a single EventScript implementation might not be equally
applicable to embedded-device event processing and business
event processing, we have shown through numerous examples
that EventScript programming paradigms are equally applicable

across the spectrum between these domains. So are EventScript
programming skills. Furthermore, in contrast to event-pattern
specification approaches that have been proposed in the past,
regular expressions are simple, familiar, and intuitive. People who
have not seen EventScript before quickly acquire the ability to
read and understand EventScript programs. Furthermore,
EventScript is defined in a way that allows it to fit naturally into a
wide variety of event-processing environments. For these reasons,
we believe EventScript can serve as a lingua franca for event
processing.

REFERENCES
[1] Adi, Asaf, Botzer, David, and Etzion, Opher. The situation

manager component of Amit—active middleware technol-
ogy. In Alon Halevy and Avigdor Gal, eds., Next Genera-
tion Information Systems and Technologies: 5th Interna-
tional Workshop, NGITS 2002, Caesarea, Israel, June 24-
25 2002, Proceedings. LNCS 2382, Springer, Berlin, 2002,
158-168.

[2] Amini, Lisa, Jain, Navendu, Sehgal, Anshul, Silber, Jeremy,
and Verscheure, Olivier. Adaptive control of extreme-scale
stream processing systems. 26th IEEE International Con-
ference on Distributed Computing Systems (ICDCS '06),
2006, 71–77.

[3] Chakavarthy, Sharma, and Mishra, Deepak. Snoop: an ex-
pressive event specification language for active databases.
Tech. report UF-CIS-TR-93-007, Dept. of Comp. and Inf.
Sci., U. of Florida, Mar. 1993.

[4] Chen, H., Chou, P., Cohen, N.H., Duri, S., and Jung, C. A
distributed responsive infrastructure virtualization environ-
ment for sensor and actuator applications. IBM Systems
Journal 47, No. 2 , to appear.

[5] Cohen, Norman H., and Kalleberg, K.T. EventScript: an
event-processing language based on regular expressions
with actions. ACM SIGPLAN/SIGBED 2008 Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES 2008), Tucson, Arizona, June 2008 (to appear)

[6] Collet, Christine, and Coupaye, Thierry. Primitive and
Composite Events in NAOS. Actes des 12e Journées Bases
de Données Avancées, Cassis (France), August 1996, 331–
349.

[7] Dayal, U., Blaustein, B., Buchmann, A., Chakravarthy, U.,
Hsu, M., Ledin, R., McCarthy, D., Rosenthal, A., Sarin, S.,
Carey, M. J., Livny, M., and Jauhari, R. The HiPAC project:
combining active databases and timing constraints.
SIGMOD Rec. 17, 1 (Mar. 1988), 51-70.

[8] Dittrich, Klaus R., Fritschi, Hans, Gatziu, Stella, Geppert,
Andreas, and Vaduva, Anca. SAMOS in hindsight: experi-
ences in building an active object-oriented DBMS. Techni-
cal report 2000.05, Database Technology Research Group,
University of Zurich Department of Information Technol-
ogy, ftp://ftp.ifi.unizh.ch/pub/techreports/
TR-2000/ifi-2000.05.pdf

[9] Gehani, Narain, Jagadish, H. V., and Shmueli, O.
COMPOSE: a system for composite event specification and
detection. In Adam, Nabil R., and Bhargava, Barat K., eds.,
Advanced Database Systems, LNCS 759, 1994, 3–15.

[10] Jackson, M.A. Principles of Program Design. Academic
Press, London, 1975.

[11] Kappel, Gerti, Rausch-Schott, Stefan, and Retschitzegger,
Werner. A tour on the TriGS active database system—
architecture and implementation. In Proceedings of the 1998
ACM Symposium on Applied Computing (SAC '98), At-
lanta, Georgia, Feb. 27 - Mar. 1, 1998, 211-219.

[12] Luckham, David. The Rapide pattern language. In The
Power of Events: An Introduction to Complex Event Proc-
essing in Distributed Enterprise Systems. Addison-Wesley,
Boston, 2002, chapter 8.

[13] Swedberg, Claire. RFID provides ETAs to N.Y. drivers.
RFID Journal, October 12, 2007, http://www.rfidjournal.
com/article/articleview/3673/1/1/

	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	2. PREVIOUS APPROACHES
	3. THE EVENT MODEL
	4. BASIC PROGRAMMING PARADIGMS
	4.1 Event Translation
	4.1.1 Device-Level Example
	4.1.2 Cyber-Physical Example
	4.1.3 Business example

	4.2 Monitoring During an Interval
	4.2.1 Device-Level Example
	4.2.2 Cyber-Physical Example
	4.2.3 Business Example

	4.3 Periodic Processing
	4.3.1 Device-Level Example
	4.3.2 Cyber-Physical Example
	4.3.3 Business Example

	4.4 Filtering
	4.4.1 Device-Level Example
	4.4.2 Cyber-Physical Example
	4.4.3 Business Example

	4.5 Reacting to the Absence of Events
	4.5.1 Device-Level Example
	4.5.2 Cyber-Physical Example
	4.5.3 Business Example

	4.6 Joining Data from Asynchronous Streams
	4.6.1 Device-Level Example
	4.6.2 Cyber-Physical Example
	4.6.3 Business Example

	4.7 Event Grouping
	4.7.1 Device-Level Example
	4.7.2 Cyber-Physical Example
	4.7.3 Business Example

	4.8 Associative Lookup
	4.8.1 Device-Level Example
	4.8.2 Cyber-Physical Example
	4.8.3 Business Example

	4.9 Piping
	4.9.1 Device-Level Example
	4.9.2 Cyber-Physical Example
	4.9.3 Business Example

	5. SYNTAX- AND DATA-DRIVEN STYLES
	6. THE STATUS OF EVENTSCRIPT
	7. CONCLUSIONS
	REFERENCES

