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ABSTRACT 
Many formalisms have been proposed for specifying patterns of 
events and responses to the recognition of such patterns. Too of-
ten, these formalisms are intricate, unintuitive, and unfamiliar to 
typical programmers. We propose an alternative that is simple, 
intuitive, and familiar: regular expressions with placeholders for 
particular types of events, interleaved with actions that perform 
computations and emit output events. We have designed and im-
plemented a language called EventScript that uses such regular 
expressions as the basis for building event-processing applications. 
Through dozens of short examples, spanning the spectrum from 
device-level events to cyber-physical system events to business 
events, we show that regular expressions with actions are a pow-
erful and versatile basis for specifying event-processing logic. 

Categories and Subject Descriptors 
C.3 [Special Purpose and Application-Based Systems]: Real-
time and embedded systems; D.2.2 [Software Engineering]:  
Design Tools and Techniques – State diagrams; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features – 
Patterns; H.2.4 [Database Management]: Systems – Rule-based 
databases; I.5.1 [Pattern Recognition]: Models – Structural; J.1 
[Administrative Data Processing]: Business; J.7 [Computers in 
Other Systems]: Industrial control; Process control; Real time 

General Terms 
Algorithms, Design,  Languages 

Keywords 
event processing; reactive programs; event patterns; regular ex-
pressions 

1. INTRODUCTION 
Many previous approaches for specifying patterns of events are 
extremely intricate, providing a dizzying range of unfamiliar op-
erators, modes, and options. We assert that a much simpler and 
more familiar approach—the use of regular expressions to specify 

patterns of events—is sufficient for a wide variety of event-
processing applications. 

Event patterns arise at many levels of event-processing systems. 
Close to the hardware, event patterns can be used to interpret raw 
sensor input as an indication of a physical occurrence or condi-
tion—for example, to sample sensor signals periodically or to 
report a set of closely spaced signals from an RFID tag as a single 
tag reading. In a cyber-physical system, event patterns can be 
applied to indications of the physical occurrences to detect situa-
tions meaningful to an application, such as a combination of  sig-
nals from light-beam detectors and RFID readers indicating that a 
package on a conveyor belt is missing an RFID tag, or computing 
the average time it takes for car-mounted RFID tags to get from 
one point on a highway to the next. At the business-process level, 
event patterns can be applied to sequences of business events 
produced by business IT systems, to maintain inventories at ap-
propriate levels or monitor suspicious patterns of ATM withdraw-
als. Event-processing systems at these various levels have differ-
ent nonfunctional requirements: Near the hardware level, real-
time response is important, and near the business-process level, 
recoverability without data loss is important. However, we assert 
that the same kinds of compound-event patterns are useful at each 
level. The single regular-expression model we propose here can 
be implemented by various systems with various nonfunctional 
characteristics. 

We have defined and implemented a language called EventScript 
for writing regular expressions that match sequences of incoming 
events. Placeholders in these regular expressions match incoming 
events of particular event types. Actions performing computations 
and emitting output events can be embedded within the regular 
expression. EventScript also provides for events triggered by the 
passage of time and the grouping of events into separate event 
streams, each of which is matched independently against the same 
regular expression, based on the contents of the incoming events. 

A previous paper  [5] focuses on details of the EventScript lan-
guage and on programming-language design and implementation 
issues. Our focus here is on paradigms for using regular expres-
sions to solve practical real-world event-processing problems, 
illustrated by several dozen short EventScript examples. We ex-
plain EventScript language features as they arise in our examples, 
but the reader is referred to  [5] for a comprehensive discussion of 
language constructs and rules.  

This paper is structured as follows: Section  2 compares our ap-
proach to previous approaches for defining compound-event pat-



terns. In Section  3 we define our fundamental notions of an event 
and an event-processing program. Section  4, which constitutes the 
bulk of the paper, illustrates the use of regular expressions for 
applying ten paradigms that are common in event-processing ap-
plications; each paradigm is illustrated by an example involving 
embedded devices, an example involving cyber-physical systems, 
and an example involving business. Section  5 observes that 
EventScript programming is conducive to distinct styles of pro-
gramming, in which the state of the computation is reflected either 
by current positions within a regular expression or by the values 
of variables. Section  6 describes current implementations of 
EventScript and Section  7 summarizes our argument for the use of 
regular expressions. 

2. PREVIOUS APPROACHES 
Most approaches to the specification of event patterns can be 
traced back to active databases, such as HiPAC  [7]. Event-
condition-action rules for such databases can be written at a more 
abstract level by viewing certain combinations of low-level data-
base events as constituting  higher-level compound events.  

In the COMPOSE event system  [9] for the Ode object database, a 
compound event E[h] is a subset of a history, h, of event occur-
rences. Compound-event operators are defined in terms of set 
operations on event histories. A primitive event p maps a history h 
to the set of all event occurrences of p in h; E.F, where E and F 
are event expressions, maps h to E[h]3F[h]; !E maps h to h–E[h]. 
Other compound-event operators are defined in terms of these. 
For example, prior(E,F) takes place when F takes place and E has 
taken place some time earlier; sequence(E,F) takes place when E 
takes place on one event occurrence and F takes place on the next; 
(<n>E) takes place the nth time that E takes place; (every <n> E) 
takes place every nth time that E takes place; E|F maps a history 
h to F[E[h]]. Named composite events are defined by rules, for 
example A(x,y) = prior(B(x),C(y)), that associate a name with an 
event expression and specify how attributes of the composite 
event are computed. 

The NAOS compound-event model  [6] features event expressions 
consisting of placeholders for single primitive events of a speci-
fied type, joined by eight operators: negation, disjunction, con-
junction, exclusive or, sequence (in which the set of primitive 
events matching the left operand may overlap in time with the set 
matching the right operand), strict sequence (in which all primi-
tive events matching the left operand must precede all events 
matching the right operand), iteration (matching a fixed number of 
occurrences of events that each match the operand, with the set of 
primitive events matching the operand on different iterations po-
tentially overlapping in time), and strict iteration (matching a 
fixed number of occurrences of events matching the operand, with 
the set of primitive events matching the operand on one iteration 
preceding the set of primitive events matching the operand on the 
next iteration). Negation and exclusive or are defined in part in 
terms of the absence of an event during a validity interval. Valid-
ity intervals of expressions are defined recursively in terms of the 
subexpression structure. 

In SAMOS  [8], compound events are constructed from other 
events using sequence, conjunction, disjunction, testing for the 
absence of an event during a specified monitoring interval, and 

collapsing occurrences of a specified type of event during a speci-
fied monitoring interval into a single occurrence. A monitoring 
interval is defined in terms of starting and ending events or times, 
or by the union, intersection, or repetition of other monitoring 
intervals. Fixed rules define the attributes of a compound event in 
terms of the attributes of its constituents. A coupling mode deter-
mines whether the condition of an even-condition-action rule and 
any resulting action are processed immediately upon event detec-
tion, deferred until the end of the triggering transaction, or exe-
cuted asynchronously. Programmed priorities determine the order 
in which multiple eligible rules are executed.  

In Amit  [1], a rule defining an event pattern is active during a 
lifespan delimited by events or times. Some rules are triggered by 
the presence or absence of certain sets of event occurrences during 
the lifespan (e.g., occurrences of each of a specified list of event 
types, optionally in a specified order; any single occurrence of any 
of a specified list of event types; the occurrence of at least a speci-
fied number of such events, optionally with the stipulation that 
each event be of a different type; the occurrence of at most a 
specified number of events of one of a specified set of event types, 
optionally counting at most one event of each type; or, for two 
specified event types, an occurrence of the first type and no occur-
rence of the second type). Other rules are triggered by the passage 
of time. Each event type in a rule may be accompanied by a predi-
cate that an arriving event must satisfy; a predicate indicating 
whether the arriving event should contribute to multiple situation 
occurrences or just one; and a quantifier indicating whether to use 
all eligible events of that type that arrive during the lifespan, only 
the first, or only the last. There is an option to control whether an 
event that cannot contribute to a situation as soon as it arrives 
should be discarded or retained for possible use later. For situa-
tions that can be detected before the end of the lifespan, there is an 
option to timestamp the situation with either the time of detection 
or the time of lifespan termination. Amit also provides an elabo-
rate set of options for managing lifespan initiation and termination. 

In the Rapide event pattern language  [12], an input adapter orders 
events in a partial order called causal order, in a manner not 
specified by Rapide. A basic event pattern matches a set consist-
ing of a single event occurrence, with suitable attribute values. 
More complex patterns consist of two patterns joined by a binary 
relational operator. Three of the relational operators, called struc-
tural operators, match all unions P4Q of event sets such that for 
all pcP and qcQ, p and q have a particular temporal or causal 
relationship. Other relational operators are defined in terms of 
traditional set operations. A repetition pattern specifies a number 
of repetitions (possibly unbounded), a structural operator, and a 
subpattern to be repeated, with the stipulation that the structural 
operator hold between the event sets matched on subsequent itera-
tions. Any pattern may have a predicate that must be true in order 
for the pattern to match. 

Other mechanisms for specifying compound events include the 
Snoop event-specification language for the Sentinel database  [3] 
and Trigs  [11]. 

While many previous approaches introduce mathematical notions 
and abstractions unfamiliar to the typical programmer, regular 
expressions are familiar to the users of languages like awk, C#, 
Java, JavaScript Perl, PHP, Python, Ruby, and Visual Basic and 
tools like grep, sed, and vi. Unlike subsets of event histories, va-



lidity intervals, monitoring intervals, rule priorities coupling 
modes, lifespans, quantifiers, and matching event sets, regular 
expressions offer an intuitive underlying model—the matching of 
a sequence of symbols against a pattern that can be reduced to 
sequence, repetition, and alternative constructs. 

3. THE EVENT MODEL 
Before presenting examples, we explain our fundamental view of 
what an event is and what an EventScript program does. An 
EventScript program consumes input events that arrive in some 
well-defined order and emits output events in a well-defined order. 
(Events emitted by one EventScript program may be consumed by 
another.) Every event has a name and carries a value belonging to 
some data type. All events with a given name carry values of the 
same data type. EventScript has primitive data types such as boo-
lean, long, double, string, and time, as well as structure 
types and array types. The correspondence between event names 
and entities in the real world is not defined by EventScript, mak-
ing the language applicable in a wide variety of milieus. 

4. BASIC PROGRAMMING PARADIGMS 
In this section, we consider ten paradigms that arise repeatedly in 
event-processing applications, and show how regular expressions 
can be used to apply those paradigms. The ten paradigms are: 

• event translation 
• monitoring during an interval 
• periodic processing 
• filtering 
• reacting to the absence of an event 
• joining data from asynchronous streams 
• event grouping 
• associative lookup 
• piping 

We illustrate each paradigm with an example involving embedded 
devices, an example involving a cyber-physical system (i.e., one 
performing data processing related to the physical world), and a 
business example. The line between device-level and cyber-
physical applications, and the line between cyber-physical and 
business applications, are fuzzy. We have not agonized over the 
appropriate classification of borderline examples, but have en-
deavored to present a collection of examples that span the spec-
trum from clearly device-level to clearly business-level. 

4.1 Event Translation 
Perhaps the simplest kind of event-processing application is one 
that translates each event in an input stream into a corresponding 
output event. The translation may involve, for example, reformat-
ting, conversion of units, or the dropping of certain attributes. 

4.1.1 Device-Level Example 
A sensor periodically emits a scaled integer representing 1000 
times the sensed temperature in degrees Celsius, but our applica-
tion logic requires temperatures expressed in degrees, as floating-
point numbers. The following EventScript program implements a 
“virtual sensor” of the kind required by the application, taking 
events of the form produced by the hardware as input and emitting 
events of the form required by the application logic as output: 

in long RawReading 
out double DegreesC 
 
( RawReading(n) { !>DegreesC(n/1000.0); } )* 

The first two lines indicate that there is an input event named 
RawReading, carrying a value of type long, and an output event 
named DegreesC, carrying a value of type double. These event 
declarations are followed by a regular expression of the form R*, 
denoting a sequence of zero or more occurrences of event se-
quences matching the pattern R. In this case, the pattern R is a 
sequence consisting of the event marker RawReading(n) fol-
lowed by the action sequence { !>DegreesC(n/1000.0); }. 
The event marker matches a single RawReading input event and 
assigns the value carried by that event to the variable n. (The tar-
get variable in an event marker can be omitted if there is no need 
to capture the value carried by the matched event.) The action 
sequence consists of a single action, which computes the value 
n/1000.0 and emits a DegreesC event carrying that value. 

4.1.2 Cyber-Physical Example 
A system needs to translate incoming DegreesC events into Cold, 
Normal, and Hot events, depending on whether they carry tem-
peratures less than 5°C, in the range 5°C to 25°C, or greater than 
25°C, respectively. Here is the program: 

in double DegreesC 
out {} Cold, {} Normal, {} Hot 
 
( DegreesC(t)  
  {   t < 5.0 ? !>Cold({}); 
    : t <= 25.0 ? !>Normal({}); 
    : !>Hot({}); 
  } 
)* 

The output events Cold, Normal, and Hot are declared to carry 
values of type {}, the structure type with no fields; this is the type 
of value carried by events that serve as pure signals, carrying no 
information other than their names. The action in this case is a 
conditional action that executes one of three different emit actions 
depending on the value of t. 

Another solution to this problem uses an EventScript feature 
called event classification. In the program 

in double DegreesC 
      case {   DegreesC < 5.0 ? ColdIn 
             : DegreesC <= 25.0 ? NormalIn 
             : HotIn } 
 
out {} Cold, {} Normal, {} Hot 
 
(   ColdIn() { !>Cold({}); }  

|  
  NormalIn() { !>Normal({}); } 
|  
  HotIn() { !>Hot({}) } 

)* 

the case construct in the declaration of input event DegreesC 
specifies that each incoming DegreesC event will be classified as 
either a ColdIn, NormalIn, or HotIn event, depending on the 
value it carries, and matched accordingly. This program contains a 
regular expression of the form R1 | ... | Rn , which matches any 
event sequence matching any of the regular expressions R1 ... Rn . 
R1 ... Rn are called alternatives. Each alternative in this example 



includes an emit action that is executed when it is reached in the 
matching process. 

4.1.3 Business example 
Incoming Sale and Purchase events with unsigned cash 
amounts are to be translated into outgoing BalanceChange 
events with signed cash amounts: 

in {string saleID; long amount;} Sale, 
   {string purchaseID; long amount;} Purchase 
 
out {string transationType; 
     string transactionID; 
     long amount;} BalanceChange 
 

(   Sale(s) 
    { !>BalanceChange 
           ( {transactionType: "S", 
              transactionID: s.saleID, 
              amount: s.amount} ); 
    } 
  | 
    Purchase(p)  
    { !>BalanceChange 
           ( {transactionType: "P", 
              transactionID: p.purchaseID, 
              amount: p.amount} ); 
    } 
)* 

The input and output events of this program carry values belong-
ing to structure types, which have fields with specified names and 
values. The expressions in the emit actions specify the construc-
tion of structure values, given expressions for each field of the 
structure.  

4.2 Monitoring During an Interval 
The notion of reacting to an event that occurs during an interval of 
interest is so fundamental to event processing that some event-
pattern formalisms have special constructs to define such intervals. 
In EventScript, the events marking the beginning and end of the 
interval are simply included in the pattern to be matched. 

4.2.1 Device-Level Example 
The following program runs a radiation detector that samples the 
number of particles striking it during the first ten seconds of every 
minute and emits a Sample event at the end of each sampling 
interval: 

in { } Particle 
out {time sampleTime; long count; } Sample 
 
( Particle()* 
  arrive[.:.:00](startOfMinute) { n=0; } 
  ( Particle() {n=n+1;} )* 

arrive[.:.:10]() 
{ !>Sample 
      ({sampleTime:startOfMinute, count:n}); } 

)* 

In addition to named events corresponding to event messages 
arriving from the outside, EventScript recognizes time events, 
corresponding to the arrival of a particular time. Such an event 
can be matched by an event marker of the following form: 

arrive[year-month-day hour:minute:second:msec: sec](t) 

Any of the fields may be replaced by a wildcard, denoted by a dot.  
If the matching process is positioned just before this event marker 
when a matching time is reached, the event marker is matched and 
the time of matching (a value of type time) is stored in the vari-
able t. Certain fields can be omitted, with natural defaults. Thus 
this program matches repetitions of a pattern consisting of zero or 
more Particle events that are not counted, the arrival of second 
0 of any minute, zero or more Particle events that are counted, 
and the arrival of second 10 of any minute. 

4.2.2 Cyber-Physical Example 
The beginning and end of the interval of interest need not be time-
related. Consider a home-security system that includes a motion 
detector. The system’s control processor receives an Activate 
event when the alarm is activated, a Deactivate event when the 
alarm is deactivated, and a Motion event each time the system 
detects motion. A Motion event arriving during an interval in 
which the alarm is activated should cause an IntrusionAlert 
event to be emitted, but a Motion event received at any other time 
should be ignored. The regular expression in the following pro-
gram describes the life cycle of this system: 

in { } Activate, { } Deactivate, { } Motion 
out { } IntrusionAlert 
 
( Motion()*  //ignore 
  Activate() 
  ( Motion() { !>IntrusionAlert(); } )* 
  Deactivate() 
)* 

4.2.3 Business Example 
By computing time values, an EventScript programmer can con-
struct an interval of interest that starts with a named event and 
ends a specified amount of time after the arrival of that event. For 
example, the following program enables a business process to 
issue an Audit event if two or more SteelDelivery events 
occur within a 24-hour period: 

in string SteelDelivery 
out string Audit 
 
( SteelDelivery() 
  { endOfInterval=hoursAfter(24,now()); } 

( SteelDelivery(deliveryInfo) 
  {!>Audit(deliveryInfo);} 
)* 
arrive[(endOfInterval)]() 

)* 

(The action setting the variable endOfInterval calls the built-in  
functions now, which returns the current time, and hoursAfter, 
which returns the time a specified number of hours after a speci-
fied time. In an arrive event marker, the date-time pattern can be 
replaced by a parenthesized expression of type time.) 

4.3 Periodic Processing 
Time events can be used to achieve periodic behavior. 

4.3.1 Device-Level Example 
The following program receives DeviceReading events at arbi-
trary intervals and issues PeriodicReport events, carrying the 
value of the most recent DeviceReading event, every second: 



in double DeviceReading 
out double PeriodicReport 
 
{ nextReport=secondsAfter(1,now()); 

latestValue = 0.0; } 
 

(   DeviceReading(latestValue) 
  | 
    arrive[(nextDeadline)]() 
    { !>PeriodicReport(latestValue); 
      nextReport=secondsAfter(nextReport,1); } 
)* 

The timing of input events and the timing of output events are 
decoupled: If several input events arrive during the same second, 
only the last one is reported; if no input events arrive during some 
second, the latest one from some previous second is reported. 

4.3.2 Cyber-Physical Example 
The following program counts cars entering and leaving a parking 
garage, and reports once each minute on the number of cars in the 
garage: 

in { } CarEntering, { } CarLeaving 
out long CarCount 
 
{ count=0; } 
 
(   CarEntering() { count=count+1; } 
  | 
    CarLeaving() { count=count-1; } 
  | 
    arrive[.:.]() { !>CarCount(count); } 
)* 

4.3.3 Business Example 
The following program reports total sales for the day at 5:00 p.m. 
each day: 

in double SaleAmount 
out double DailySalesTotal 
 
( { sum = 0.0; } 
  ( SaleAmount(x) {sum=sum+x;} )* 
  arrive[17:00]() 
  { !>DailySalesTotal(dailyTotal); } 
)* 

4.4 Filtering 
Filtering is the emitting of an output stream containing events that 
correspond to a subset of the events in an input stream.  

4.4.1 Device-Level Example 
The following EventScript program presents a sensor that emits 
repeated temperature readings as a virtual device that emits alerts 
about temperature readings over 150°C: 

in double Temperature 
   case { Temperature > 150.0 ? HighTemperature } 
 
out double OverheatingAlert 
 
( HighTemperature(t) 

{ !> OverheatingAlert(t); } 
)* 

(The “else part” of an event-classification case construct can be 
omitted. An input event not satisfying any of the conditions in the 
case construct is dropped from the sequence of events that is 
matched against the regular expression.)  

4.4.2 Cyber-Physical Example 
A common form of stateful filtering is duplicate filtering. The 
following program in a cyber-physical system receives a continual 
stream of input events reporting the current zone in which a piece 
of equipment is located, and emits a single output event only 
when the current zone changes: 

in string CurrentZone 
out string NewZone 
 
{ previousZone=""; } 
 
( CurrentZone(z); 
    { z != previousZone ? 
          { !>NewZone(z); previousZone=z; } 
    } 
)* 

4.4.3 Business Example 
Another form of stateful filtering is reporting when certain thresh-
olds have been crossed. The following program receives a Mar-
ketOpen event at the start of a trading day, a MarketClose event 
at the end of the trading day, and a stream of Ticker events dur-
ing the trading day. The program emits Up and Down events when 
a quote for stock XYZ has risen or fallen two percent from the 
first trade of the day or from the amount reported in the most re-
cent Up or Down event of the day: 

type StockQuote = {string symbol; double price; } 
 
in { } MarketOpen, 
   { } MarketClose, 
   StockQuote Ticker 
      case {Ticker.symbol="XYZ" ? XYZQuote} 

out StockQuote Up, StockQuote Down 

( MarketOpen() 
XYZQuote(q)  {thresholdsNeedSetting = true; } 
 

  (  { thresholdsNeedSetting ? 
          { topThreshold = 1.02*q.price; 
            bottomThreshold = .98 =*q.price; 
            thresholdsNeedSetting = false; } 
     } 
     XYZQuote(q) 
     {  q.price >= topThreshold ? 
           {!>Up(q); thresholdsNeedSetting=true;} 
      : q.price <= bottomThreshold ? 
         {!>Down(q); thresholdsNeedSetting=true;} 
     } 

)* 
 

  MarketClose() 
)* 

4.5 Reacting to the Absence of Events 
Event processing often entails reacting to the fact that an event 
has not occurred within some interval of interest. 

4.5.1 Device-Level Example 
The following program repeatedly reports when a signal from a 
radio beacon has not been received for 10 seconds: 

in { } Signal 
out { } Timeout 
 
( Signal() | elapse[10 sec]() {!>Timeout({});} )* 



4.5.2 Cyber-Physical Example 
To ensure that every package on a conveyor belt has an RFID tag, 
we use an RFID reader alongside the belt with light-beam sensors 
before and after it. A package is assumed to be within range of the 
RFID reader from the time it interrupts the first light beam until 
the time it interrupts the second light beam. If no RFID reading 
occurs during this interval, a MissingTag event is emitted. The 
same RFID tag may be read several times as it travels down the 
conveyor belt, and on occasion an RFID tag might be read from a 
distance, before it is between the light-beam sensors. The follow-
ing program checks for the absence of a TagRead event between a 
Beam1Blocked event and a subsequent Beam2Blocked event: 

in {} Beam1Blocked, {} TagRead, {} Beam2Blocked 
out { } MissingTag 
 
( TagRead()* 
 Beam1Blocked() 
 (   TagRead()+ Beam2Blocked()  
   | 
     Beam2Blocked() { !>MissingTag({}); } 
  ) 
)* 

(The regular expression TagRead()+ matches one or more occur-
rences of TagRead events.) 

4.5.3 Business Example 
The following program, enforcing a safety process, issues an In-
spectionOverdue event when three days pass without the arri-
val of an InspectionCompleted event: 

in { } InspectionCompleted 
out { } InspectionOverdue 

( {deadline=daysAfter(3, now());} 
  (   InspectionCompleted() 
    | 
      arrive[(deadline)]() 
      {!>InspectionOverdue({});} 
  ) 
)* 

4.6 Joining Data from Asynchronous Streams 
Much event processing entails receiving data arriving asynchro-
nously from two or more input streams, maintaining some sort of 
current state based on the latest data from each stream, and emit-
ting output events based on the current state. Output events might 
be triggered by arrival of a new event from one of the streams, 
arrival of a new event from any of the streams, or by the passage 
of time. 

4.6.1 Device-Level Example 
A controller sets a warning light may either to remain off, to blink 
once a second, or to remain on. There are many client processes 
that may send the warning-light controller either a Start-
SoftAlert event followed eventually by an EndSoftAlert 
event, or a StartHardAlert event followed eventually by an 
EndHardAlert event. The current state in this case consists of 
the number of pending soft alerts and the number of pending hard 
alerts. If there is at least one hard alert pending, the light should 
remain on; otherwise, if there at least one soft alert, the light 
should blink; otherwise, the light should remain off. Here is a 
program that receives events starting and ending hard and soft 
alerts and issues alternating On and Off events to control the light: 

in { } StartSoftAlert, { } EndSoftAlert, 
   { } StartHardAlert, { } End HardAlert 
 
out { } On, { } Off 
 
{ softCount=0; hardCount=0; lightOn=false; 
  nextBlinkTime=millisecondsAfter(500,now()); } 

(   StartSoftAlert(){ softCount=softCount+1; } 
| 
  EndSoftAlert(){ softCount=softCount-1; } 
| 
  StartHardAlert() 
  { hardCount=hardCount+1; 
    hardCount==1 && !lightOn? 
       { !>On({}); lightOn=true; } 
| 
  EndHardAlert() 
  { hardCount=hardCount-1; 
    hardCount==0 && softCount==0 ? 
       { !>Off({});lightOn=false; } 
  } 
| 
  arrive[(nextBlinkTime)]() 
  { hardCount==0 && softCount>0 ? 
       { lightOn ?  
             { !>Off({}); lightOn=false; } 
           : { !>On({}); lightOn=true; } 
       } 
    nextBlinkTime =  
       millisecondsAfer(500,nextBlinkTime); 
  } 

)* 

4.6.2 Cyber-Physical Example 
A software air-conditioning thermostat receives SetTarget 
events from a process that uses personal preferences, current re-
gional demand for electricity, and the time of day to compute 
target temperatures. The thermostat also receives Temperature 
events from a temperature sensor, and emits a TurnCoolingOn 
event when the current temperature rises to two degrees above the 
target temperature, followed by a TurnCoolingOff event when 
the current temperature falls to two degrees below the target tem-
perature. In this case, the current state consists of the target tem-
perature and the actual measured temperature. Here is the 
EventScript program for the thermostat: 

in double SetTarget, double Temperature 
out TurnCoolingOn, TurnCoolingOff 

{ target=25; actual=25; coolingOn=false; } 

( ( SetTarget(target) | Temperature(actual) ) 
{   actual >= target+2.0 && !coolingOn ? 
      { !TurnCoolingOn({}); coolingOn=true; } 
  : actual <= target-2.0 && coolingOn ?  
      { !TurnCoolingOff({}); coolingOn=false; } 
} 

)* 

4.6.3 Business Example 
A warehouse replenishment process receives an OrderReceived 
event when an order is received from a customer, a Shipment-
Received event when products are delivered to the warehouse 
from the manufacturer, and an OrderFulfilled event when 
items are shipped from the warehouse to the customer. Each of 
these events carries a number of items. When the current ware-
house inventory falls more than 10 below the number of items in 
pending orders, the process issues a ResupplyRequest event to 



request the manufacturer to deliver a number of items that will 
raise the inventory to 20 more than the number of items in pend-
ing orders. The current state consists of the number of items in the 
warehouse inventory and in pending orders. Here is the program: 

in long OrderReceived, long ShipmentReceived, 
   long OrderFulfilled 
 
out long ResupplyRequest 
 
{ pendingFulfillment=0; inStock=0;  } 
 
(   (   OrderReceived(itemCount) 

      { pendingFulfillment = 
           pendingFulfillment+itemCount; } 
    | 
      OrderFulfilled(itemCount) 

        { inStock=inStock–itemCount; } 
    )  
    { surplus = 
         inStock – pendingFulfillment; 
      surplus < 10 ? 
         !>ResupplyRequest(20-surplus); 

  } 
| 
  ShipmentReceived(itemCount) 
  { inStock=inStock+itemCount; } 

)* 

4.7 Event Grouping 
It is often useful to group arriving events based on the values they 
carry, and to look for patterns only among events in the same 
group. 

4.7.1 Device-Level Example 
We wish to report closely spaced readings of the same RFID tag 
by the same reader as a single event. In effect, we want to perform 
duplicate elimination separately for each combination of tag and 
reader. The following program reports readings of the same tag by 
the same reader as a single event unless they are separated by a 
ten-second interval in which that tag was not read by that reader: 

type RFIDReading = 
    {string readerID; 
     string tagID; 
     time timestamp;} 

in  RFIDReading RawReading 
   group(RawReading.readerID, RawReading.tagID) 

out RFIDReading UniqueReading 
 
RawReading(r) { !>UniqueReading(r); } 
RawReading()* 
elapse[10 seconds]() 

The group clause in the declaration of RawReading stipulates 
that incoming RawReading events will be grouped according to a 
grouping key computed from the value carried by each event. In 
this case, the grouping key has two parts, corresponding to the 
readerID and tagID fields of the incoming RawReading event. 
(The values of grouping-key parts may be specified by arbitrarily 
complex expressions; within these expressions, the name of the 
event being declared—RawReading in this case—represents the 
value carried by the incoming event for which a grouping key is to 
be computed.) In effect, for each grouping-key value, a separate 
instance of the program executes, and each incoming event is 
directed to the instance corresponding to its grouping key. 

In this example, each grouping-key value corresponds to a unique 
reader/tag combination. The first reading for a given combination 
is echoed  in a UniqueReading  output  event.  Subsequent  
RawReading   events  for   the   same   reader   and   tag   match  
RawReading()*, and are ignored until 10 seconds elapse without 
such an event. Then the elapse event marker is matched, and the 
execution instance corresponding to this grouping key terminates. 

4.7.2 Cyber-Physical Example 
An active-badge location-tracking system enforces a rule that a 
visitor to a business and his host or must remain within 10 meters 
of each other. The system issues an alert when the host and visitor 
are too far apart, or when a minute passes without a position up-
date for one of them. Locations within the building are described 
by a two-dimensional coordinate system in which one unit equals 
one meter. When a visitor enters the building, at location (0,0), he 
is issued a badge by a receptionist, who registers the host assigned 
to that visitor. The location-tracking system then begins issuing a 
stream of Visitor events, carrying the visitor’s ID and location. 
It also tracks the location of each registered host, and issues a 
Host event for each visitor assigned to that host, containing the 
ID of the visitor and  the location of the host. This allows an 
EventScript program to group Visitor and Host events by visi-
tor ID, so that there is a separate execution instance for each visi-
tor, tracking the location of that visitor and his host. When the 
visitor turns in his badge at the end of the visit, an Unregister 
event containing the visitor’s ID is sent to the EventScript pro-
gram to signal that the execution instance corresponding to that 
visitor ID can be terminated. Here is the program: 

type Point = {double x; double y;} 
 
type BadgeReport = 
   {string visitorID; Point location;} 

in BadgeReport Host group(Host.visitorID),  
   BadgeReport Visitor group(Visitor.visitorID),  
   string Unregister group(Unregister) 

out BadgeReport UnaccompaniedVisitor, 
    string HostNotSeen, 
    string VisitorNotSeen 

{ INITIAL_REPORT =  
    { visitorID: group[0], 
      location: {x: 0.0, y: 0.0} }; 
  h = INITIAL_REPORT; 
  v = INITIAL_REPORT; 
  hostDeadline = minutesAfter(1, now()); 
  visitorDeadline = hostDeadline; 
} 

(   (   Host(h) 
        {hostDeadline=minutesAfter(1,now());}  
      |  
        Visitor (v) 
        {visitorDeadline=minutesAfter(1,now());}  
    )  
    { deltaX = v.location.x-h.location.x;  
      deltaY = v.location.y-h.location.y;  
      deltaX*deltaX + deltaY*deltaY > 100 ?  
         !>UnaccompaniedVisitor 
            ( {visitorID: group[0], 
              location: v.location} );  
    } 
  |  



    arrive[(hostDeadline)]()  
    { !>HostNotSeen(group[0]); 
      hostDeadline = 
         minutesAfter(1,hostDeadline); }  
  |  
    arrive[(visitorDeadline)]()  
    { !>VisitorNotSeen(group[0]); 
      visitorDeadline = 
         minutesAfter(1,visitorDeadline); }  
)*  
Unregister() 

For each execution instance of a program that uses grouping, an 
expression of the form group[n] evaluates to the nth part of that 
instance’s grouping key, where parts are numbered starting from 
zero. (In this example the grouping key has only one part.) In 
addition to grouping, this program illustrates several paradigms 
that we discussed earlier: reacting to the absence of events, peri-
odic processing, and the joining of data from asynchronous 
streams. 

4.7.3 Business Example 
The warehouse replenishment example of Section  4.6.3 assumes 
that there is only one kind of item to be tracked. We can easily 
generalize this program by adding an item ID to each event and 
grouping by item ID: 

type ItemInfo{string itemID; long count;} 
 
in ItemInfo OrderReceived 
               group(OrderReceived.itemID), 
   ItemInfo ShipmentReceived 
               group(ShipmentReceived.itemID), 
   ItemInfo OrderFulfilled 
               group(OrderFulfilled.itemID) 
 
out ItemInfo ResupplyRequest 
 
{ pendingFulfillment=0; inStock=0; } 

(   (   OrderReceived(r) 
      { pendingFulfillment = 
           pendingFulfillment+r.count; } 
    | 
      OrderFulfilled(f) 

        { inStock=inStock–f.count; } 
    )  
    { surplus = 
         inStock – pendingFulfillment; 
      surplus < 10 ? 
         !>ResupplyRequest 
              ( {itemID: group[0], 
                 count:20-surplus} ); 

  } 
| 
  ShipmentReceived(sr) 
  { inStock=inStock+sr.count; } 

)* 

Each execution instance of this version has its own copies of vari-
ables pendingFulfillment and inStock, and, for one particu-
lar item ID, mimics the behavior of the version in Section  4.6.3. 

4.8 Associative Lookup 
Grouping can be used to perform associative lookup. In effect, a 
program with grouping implements a mapping from grouping-key 
values to the variables and other state information of a particular 
execution instance. 

4.8.1 Device-Level Example 
An RFID reader emits events consisting of a reader ID (a cryptic 
number such as a MAC address), a tag ID, and a timestamp. The 
following EventScript program implements an abstract RFID 
reader that emits events consisting of an abstract location name, a 
tag ID, and a timestamp: 

in {long readerID; string locationName} 
    RegisterReaderLocation 
       group(RegisterReaderLocation.readerID), 

    {long readerID; string tagID; time when;} 
    RawReading group(RawReading.readerID) 

out { string locationName; 
      string tagID; 
      time when; } AbstractReading 

RegisterReaderLocation(registration) 
{ myLocationName = registration.locationName; } 

( RawReading(r) 
  { !>AbstractReading 
         ( {locationName: myLocationName, 
            tagID: r.tagID, 
            when: r.when} ); } 
)* 

At system startup, initialization code emits a RegisterReader-
Location event for each RFID reader, specifying the hardware 
reader ID and abstract location name for that reader. EventScript 
creates an execution instance for each hardware reader ID and 
sends the event to that instance, which saves the abstract location 
name in its own copy of the variable myLocationName. 
EventScript sends each subsequent RawReading event to the 
execution instance storing the appropriate abstract location name, 
so that the appropriate event translation can be performed. 

4.8.2 Cyber-Physical Example 
New York State has introduced a system that uses RFID tags in 
cars, normally used to pay tolls, to sample the travel time between 
two readers and post travel advisories about expected travel times 
Error! Reference source not found. [13]. The following program 
receives events reporting RFID readings and emits events contain-
ing anonymous samples of the travel time for a given tag between 
two consecutive readers: 

in {string readerID; string tagID; time when;}  
   Reading group(Reading.tagID) 

out { string fromReader; 
      string toReader; 
      long travelTime;} Sample 

Reading(r) 
{ prevReader=r.readerID; prevTime=r.when; } 

( Reading(r) 
  { !>Sample 
        ( { fromReader: prevReader, 
            toReader: r.readerID, 
            travelTime: minutesBetween 
                          (prevTime, r.when) 
          } ); 
    prevReader=r.readerID; 
    prevTime=r.when; 
  } 
)* 
elapse[1 hour]() 



(The built-in function minutesBetween takes two values of type 
time and returns the number of minutes between those two times 
as a rounded integer.) The initial reading of a given tag creates an 
execution instance for that tag ID, and the relevant historical in-
formation for that tag is stored in the prevReader and prevTime 
variables of that instance. Subsequent Reading events for that tag 
are directed to the same execution instance. After an hour passes 
without a reading from a given tag, the corresponding execution 
instance matches the elapse event marker and the instance ter-
minates. 

4.8.3 Business Example 
The following program receives ATMUse events whenever an 
ATM card is used, groups these events by card ID, and issues an 
alert whenever the same card is used more than once within six 
hours: 

in {string cardID; string location} ATMUse 
   group(ATMUse.cardID) 
out string TwiceInSixHours 
 
ATMUse() 
( ATMUse() { !>TwiceInSixHours(group[0]); } )* 
elapse[6 hours]() 

The first use of a card after six hours creates a new execution 
instance, and subsequent uses of the card without a six-hour gap 
are directed to the same instance. After six hours pass without 
another use of the card, the elapse event marker is matched and 
execution terminates. In this case, the relevant information re-
trieved by associative lookup is not the value of a variable, but the 
instance’s internal record of how much time has passed since its 
last ATMUse event. 

4.9 Piping 
Many event-processing problems can be simplified by decompos-
ing them into stages of a pipeline, in which the output events 
emitted by one stage are fed as input events into the next stage. 
Sometimes the simplification results from separating different 
aspects of the problem into different stages, or by filtering out 
irrelevant information. Sometimes the simplification results from 
the use of event grouping to group data in different ways at differ-
ent stages. Sometimes the simplification results from resolving a 
clash between the structure of the original input stream and the 
structure of the ultimate output stream by introducing an interme-
diate stream whose structure is compatible with both. 

4.9.1  Device-Level Example 
The warning-light-controller program of Section  4.6.1 addresses 
two distinct concerns—determining what kind of alert, if any, 
should be signaled and controlling the blinking of the light for soft 
alerts. We can separate these concerns into two simpler 
EventScript programs, or stages, by introducing intermediate 
events OffMode, BlinkingMode, and OnMode emitted by the first 
stage and received by the second stage. The first stage is responsi-
ble for determining when mode changes should take place, and 
signaling those changes: 

in {} StartSoftAlert, {} EndSoftAlert, 
   {} StartHardAlert, {} End HardAlert 

out {} OffMode, {} BlinkingMode, {} OnMode 

{ softCount=0; hardCount=0; } 

(   StartSoftAlert() 
    { softCount=softCount+1; 
      hardCount==0 & softCount==1 ? 
         !>BlinkingMode({}); 
    } 

| 
  EndSoftAlert() 
  { softCount=softCount-1; 
    softCount==0 && hardCount==0 ? 
       !>OffMode({}); 
  } 
| 
  StartHardAlert() 
  { hardCount=hardCount+1; 
    hardCount==1 ? !>OnMode({}); 
  } 

  | 

  EndHardAlert() 
  { hardCount=hardCount-1; 
    hardCount==0 ? 
       { softCount==0 ? 
             !>OffMode({}); 
           : !>BlinkingMode({}); 
  } 

)* 

The second stage is responsible for emitting On and Off events in 
accordance with the current mode: 

in {} OffMode, {} BlinkingMode, {} OnMode 

out { } On, { } Off 

{ lightOn=false; } 

(   OffMode() 
    { lightOn ? { !>Off({});lightOn=false; } } 

| 
    OnMode() 

    { !lightOn ? { !>On({});lightOn=true; } } 
  | 

  BlinkMode() 
    { nextBlinkTime = 

         millisecondsAfter(500,now()); } 
  ( { lightOn ?  
           { !>Off({}); lightOn=false; } 
         : { !>On({}); lightOn=true; } 
    } 
    arrive[(nextBlinkTime)]() 
    { nextBlinkTime =  
       millisecondsAfer(500,nextBlinkTime);} 
  )* 

)* 

The first stage does not deal with time events at all. The second 
stage does not deal with alert counts at all, and is easily structured 
so that time events occur only in blinking mode. 

4.9.2  Cyber-Physical Example 
The travel-time sampling program of Section  4.8.2 is actually the 
first stage of a pipeline whose second stage averages samples for a 
given pair of readers to estimate the travel time from the first 
reader to the second. Here is the second stage, which computes an 
exponential moving average: 

in { string fromReader; 
     string toReader; 
     long travelTime;} Sample 
   group(Sample.fromReader, Sample.toReader)    



out { string fromReader; 
      string toReader; 
      double travelTime;} Average 

{ ALPHA = 0.1;  // smoothing factor 
  ONE_MINUS_ALPHA = 1.0-ALPHA; } 

Sample(s) { history = double(s.travelTime); } 
( { !>Average 
        ( { fromReader: s.fromReader, 
            toReader: s.toReader, 
            travelTime: history } ) ;  
    history = 
       ALPHA*s.travelTime + 
       ONE_MINUS_ALPHA*history; 
  } 
  Sample(s) 
)* 

Thus the first stage groups RFID-reading data by tag ID to pro-
duce events related to a given tag having various starting and 
ending readers; the second stage groups events by starting and 
ending reader IDs to perform a computation related to a given 
reader pair, using data originating from various tags. Piping in 
conjunction with grouping is a powerful way to cross-section a 
collection of data in multiple dimensions. 

4.9.3  Business Example 
Piping can also be used to reconcile what M.A. Jackson  [10] calls 
a boundary clash. Suppose a business receives events containing 
various numbers of customer leads, and wishes to assign customer 
leads to sales staff in groups of ten. Jackson solves such problems 
by writing two coroutines, one of which feeds values to the other, 
and then performing intricate program transformations to imple-
ment the coroutines in a conventional programming language. In 
an EventScript solution, two stages of a pipeline can play the role 
of these coroutines. A program that receives events with arbitrar-
ily sized bundles of leads and emits events with bundles of ten 
leads can be written easily in two stages. The first stage disassem-
bles incoming events and emits output events containing one lead 
at a time: 

in string[] IncomingBundle 
out string CustomerLead 

( IncomingBundle(b) 
{ for (i: 0, length(b)-1 ) 
     !>CustomerLead(b[i]); } 

)* 

(The EventScript type string[] consists of arrays with elements 
of type string, indexed starting at zero. The built-in function 
length reports the number of elements in an array.) The second 
stage receives events containing individual leads and assembles 
them into bundles of ten: 

in string CustomerLead 
out string[] OutgoingBundle 

{ buffer = new string[10]; cursor = 0; } 

( CustomerLead(buffer[cursor]) 
  { cursor==9 ? 
      { !>OutgoingBundle(buffer); 
        buffer = new string[10]; 
        cursor=0; } 
    : cursor=cursor+1; 
  } 
)* 

(The expression new string[10] allocates a new array with 10 
uninitialized array elements.)  

5. SYNTAX- AND DATA-DRIVEN STYLES 
Regular expressions with fundamentally different structures can 
describe the same set of input sequences. For example, the follow-
ing regular expressions all match zero or more repetitions of sub-
sequences each consisting of either an A event or of a B event 
followed by a C event: 

• ( A() | B() C() )*  
• ( A()* B() C() )* 
• ( ( B() C() )* A() )* 

Furthermore, it is possible to write a regular expression that 
matches a superset of the sequences we expect to encounter in an 
application, and to use conditional actions if necessary to ensure 
that sequences of no interest are properly ignored. 

In the regular expressions of automata theory, the state of an exe-
cution is captured entirely in the identity of the current state in the 
corresponding finite automaton, or equivalently, the set of possi-
ble current positions within the regular expression. In an 
EventScript program, part of the current state of an execution may 
also be captured in variables. For example, consider a program to 
control a traffic light at the intersection of a north-south road and 
an east-west road. The light must change no more frequently than 
once every 30 seconds and no less frequently than once every 120 
seconds. However, after 30 seconds have passed since the light 
last changed, it changes again as soon as a car is detected on the 
road that has a red light. The input events NSCar and EWCar cor-
respond to a car being detected on the north-south road or the 
east-west road, respectively. The output events NSGreen and 
EWGreen direct the light to change so that it is green along the 
north-south road or the east-west road, respectively. In the follow-
ing program, the state of the execution is captured primarily in the 
current position within the regular expression, as evidenced by the 
rich comments we can interleave at various points within the regu-
lar expression: 

in {} NSCar, {} EWCar 
out {} NSGreen, {} EWGreen 
 
( { !>NSGreen({}); 
    currentTime = now(); 
    minChangeTime = 
       secondsAfter(30,currentTime); 
    maxChangeTime = 
       secondsAfter(120,currentTime); 
  } 

  // The light has been green for the N-S road 
  // for less than 30 sec, and must not change. 

  ( NSCar() | EWCar() )* 
  arrive[(minChangeTime)]()  

  // The light has been green for the N-S road 
  // for at least 30 sec, and must change when 
  // an E-W car is detected or 120 sec have 
  // passed since the last change.  



  NSCar()* 
  ( EWCar() | arrive[(maxChangeTime)]() ) 
  { !>EWGreen({}); 
    currentTime = now(); 
    minChangeTime = 
       secondsAfter(30,currentTime); 
    maxChangeTime = 
       secondsAfter(120, currentTime); 
  } 

  // The light has been green for the E-W road 
  // for less than 30 sec, and must not change. 

  ( NSCar() | EWCar() )* 
  arrive[(minChangeTime)]() 

  // The light has been green for the E-W road 
  // for at least 30 sec, and must change when 
  // a N-S car is detected or 120 sec have 
  // passed since the last change.  

  EWCar()* 
  ( NSCar() | arrive[(maxChangeTime)]() ) 
)* 

In contrast, the following version of the program has only one 
current position while it is waiting for an event—at the start of the 
set of alternatives—and saves its state in variables: 

in {} NSCar, {} EWCar 
out {} NSGreen, {} EWGreen 
 
{ pendingChange = "NSGreen"; } 

( { pendingChange != "none" ?  
       { pendingChange=="NSGreen" ? 
               { !>NSGreen({}); 
                 currentGreen = "NS"; } 
             : { !>EWGreen({}); 
                 currentGreen = "EW"; } 
         currentTime = now(); 
         minChangeTime = 
            secondsAfter(30,currentTime); 
         maxChangeTime = 
            secondsAfter(120,currentTime); 
         nextMilestone = minChangeTime; 
         changeAllowed = false; 
         pendingChange = "none"; }        
  } 

  (   NSCar() 
      { currentGreen=="EW" && changeAllowed ? 
           pendingChange = "NSGreen"; 
      } 
    | 
      EWCar() 
      { currentGreen=="NS" && changeAllowed ? 
           pendingChange = "EWGreen"; 
      } 

 
  | 
    arrive[(nextMilestone)]() 
    { changeAllowed ? 
           { // 120 sec passed 

               currentGreen="EW" ? 
                    pendingChange = "NSGreen"; 

                : pendingChange = "EWGreen"; } 
         : { // 30 sec passed 
             changeAllowed=true; 
             nextMilestone = maxChangeTime; } 
 
) 

)* 

This program initially marks a change to N-S green as pending 
then enters a loop that repeatedly applies any pending change, 
waits for whichever event occurs next, and reacts to that event 
(possibly by marking a new change as pending). 

There is a spectrum of programming styles between the purely 
syntax-driven style, in which no variables are used, and the purely 
data-driven style, in which there is only one current position in the 
regular expression. A regular expression in the syntax-driven style 
models the structure of the incoming event stream and has a sim-
ple state corresponding to locations in the program. It follows that 
various points in the regular expression can be annotated with 
simple problem-oriented invariants. A regular expression in the 
data-driven style is not all that different from writing a single 
event-handling routine for each possible input event. It provides 
confidence that all possible event sequences are handled. It is 
conducive to writing a single program-wide representation invari-
ant concerned with relationships among the variables inside the 
program. The state machines describing some problems are diffi-
cult to express in the syntax-driven style because their state-
transition graphs do not resemble the flow graphs of structured 
programs, but any reactive program is easily expressed in the 
data-driven style. We speculate that programmers with different 
mental models of programming might prefer different styles. 

6. THE STATUS OF EVENTSCRIPT 
EventScript has been implemented, and used in large program-
ming exercises. 

We have a standalone version that executes in a state-machine 
driver written in Java, receiving input events from an input 
adapter and sending output events to an output adapter.  The 
standalone version also features a testing tool that allows a pro-
gram to be executed in simulated time, obtaining input events 
from a time-stamped event trace. Performance tests detailed in  [5] 
show that this implementation is capable of handling hundreds of 
thousands of events per second. 

We have also embedded EventScript in two programming envi-
ronments—DRIVE  [4] and System S  [2]—that support the con-
struction of large event-processing and stream-processing pro-
grams through the use of event channels to connect input and out-
put ports of event-processing nodes. In each case, EventScript is 
one of the languages available to specify the logic of a node: In-
put-event names correspond to the names of input ports at which 
events arrive and output-event names correspond to the names of 
output ports through which events are emitted. 

7. CONCLUSIONS 
Some of the device-level examples we have seen require micro-
second-scale response times. Some of the business examples we 
have seen require transactional treatment of events, with the state 
of the computation stored persistently between events to facilitate 
recovery from system failures. It is unlikely that one EventScript 
implementation can satisfy both these requirements. However, the 
execution model of an EventScript program is extremely simple, 
so the construction of both a real-time implementation and a 
transactional implementation is not a daunting prospect. 

While a single EventScript implementation might not be equally 
applicable to embedded-device event processing and business 
event processing, we have shown through numerous examples 
that EventScript programming paradigms are equally applicable 



across the spectrum between these domains. So are EventScript 
programming skills. Furthermore, in contrast to event-pattern 
specification approaches that have been proposed in the past, 
regular expressions are simple, familiar, and intuitive. People who 
have not seen EventScript before quickly acquire the ability to 
read and understand EventScript programs. Furthermore, 
EventScript is defined in a way that allows it to fit naturally into a 
wide variety of event-processing environments. For these reasons, 
we believe EventScript can serve as a lingua franca for event 
processing. 

REFERENCES 
[1] Adi, Asaf, Botzer, David, and Etzion, Opher. The situation 

manager component of Amit—active middleware technol-
ogy. In Alon Halevy and Avigdor Gal, eds., Next Genera-
tion Information Systems and Technologies: 5th Interna-
tional Workshop, NGITS 2002, Caesarea, Israel, June 24-
25 2002, Proceedings. LNCS 2382, Springer, Berlin, 2002, 
158-168. 

[2] Amini, Lisa, Jain, Navendu, Sehgal, Anshul, Silber, Jeremy, 
and Verscheure, Olivier. Adaptive control of extreme-scale 
stream processing systems. 26th IEEE International Con-
ference on Distributed Computing Systems (ICDCS '06), 
2006, 71–77. 

[3] Chakavarthy, Sharma, and Mishra, Deepak. Snoop: an ex-
pressive event specification language for active databases. 
Tech. report UF-CIS-TR-93-007, Dept. of Comp. and Inf. 
Sci., U. of Florida, Mar. 1993. 

[4] Chen, H., Chou, P., Cohen, N.H., Duri, S., and Jung, C. A 
distributed responsive infrastructure virtualization environ-
ment for sensor and actuator applications. IBM Systems 
Journal 47, No. 2 , to appear. 

[5] Cohen, Norman H., and Kalleberg, K.T. EventScript: an 
event-processing language based on regular expressions 
with actions. ACM SIGPLAN/SIGBED 2008 Conference on 
Languages, Compilers, and Tools for Embedded Systems 
(LCTES 2008), Tucson, Arizona, June 2008 (to appear) 

[6] Collet, Christine, and Coupaye, Thierry. Primitive and 
Composite Events in NAOS. Actes des 12e Journées Bases 
de Données Avancées, Cassis (France), August 1996, 331–
349. 

[7] Dayal, U., Blaustein, B., Buchmann, A., Chakravarthy, U., 
Hsu, M., Ledin, R., McCarthy, D., Rosenthal, A., Sarin, S., 
Carey, M. J., Livny, M., and Jauhari, R. The HiPAC project: 
combining active databases and timing constraints. 
SIGMOD Rec. 17, 1 (Mar. 1988), 51-70. 

[8] Dittrich, Klaus R., Fritschi, Hans, Gatziu, Stella, Geppert, 
Andreas, and Vaduva, Anca. SAMOS in hindsight: experi-
ences in building an active object-oriented DBMS. Techni-
cal report 2000.05, Database Technology Research Group, 
University of Zurich Department of Information Technol-
ogy, ftp://ftp.ifi.unizh.ch/pub/techreports/ 
TR-2000/ifi-2000.05.pdf 

[9] Gehani, Narain, Jagadish, H. V., and Shmueli, O. 
COMPOSE: a system for composite event specification and 
detection. In Adam, Nabil R., and Bhargava, Barat K., eds., 
Advanced Database Systems, LNCS 759, 1994, 3–15. 

[10] Jackson, M.A. Principles of Program Design. Academic 
Press, London, 1975. 

[11] Kappel, Gerti, Rausch-Schott, Stefan, and Retschitzegger, 
Werner. A tour on the TriGS active database system—
architecture and implementation. In Proceedings of the 1998 
ACM Symposium on Applied Computing (SAC '98), At-
lanta, Georgia, Feb. 27 - Mar. 1, 1998, 211-219. 

[12] Luckham, David. The Rapide pattern language. In The 
Power of Events: An Introduction to Complex Event Proc-
essing in Distributed Enterprise Systems. Addison-Wesley, 
Boston, 2002, chapter 8. 

[13] Swedberg, Claire. RFID provides ETAs to N.Y. drivers. 
RFID Journal, October 12, 2007, http://www.rfidjournal. 
com/article/articleview/3673/1/1/ 

 

 
 


	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	2. PREVIOUS APPROACHES
	3. THE EVENT MODEL
	4. BASIC PROGRAMMING PARADIGMS
	4.1 Event Translation
	4.1.1 Device-Level Example
	4.1.2 Cyber-Physical Example
	4.1.3 Business example

	4.2 Monitoring During an Interval
	4.2.1 Device-Level Example
	4.2.2 Cyber-Physical Example
	4.2.3 Business Example

	4.3 Periodic Processing
	4.3.1 Device-Level Example
	4.3.2 Cyber-Physical Example
	4.3.3 Business Example

	4.4 Filtering
	4.4.1 Device-Level Example
	4.4.2 Cyber-Physical Example
	4.4.3 Business Example

	4.5 Reacting to the Absence of Events
	4.5.1 Device-Level Example
	4.5.2 Cyber-Physical Example
	4.5.3 Business Example

	4.6 Joining Data from Asynchronous Streams
	4.6.1 Device-Level Example
	4.6.2 Cyber-Physical Example
	4.6.3 Business Example

	4.7 Event Grouping
	4.7.1 Device-Level Example
	4.7.2 Cyber-Physical Example
	4.7.3 Business Example

	4.8 Associative Lookup
	4.8.1 Device-Level Example
	4.8.2 Cyber-Physical Example
	4.8.3 Business Example

	4.9 Piping
	4.9.1  Device-Level Example
	4.9.2  Cyber-Physical Example
	4.9.3  Business Example


	5. SYNTAX- AND DATA-DRIVEN STYLES
	6. THE STATUS OF EVENTSCRIPT
	7. CONCLUSIONS
	REFERENCES

